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Abstract

Background: Targeted prostate biopsy guided by multiparametric magnetic reso-
nance imaging (mpMRI) detects more clinically significant lesions than conventional
systemic biopsy. Lesion segmentation is required for planning MRI-targeted biopsies.
The requirement for integrating image features available in T2-weighted and diffusion-
weighted images poses a challenge in prostate lesion segmentation from mpMRI.

Purpose: A flexible and efficient multistream fusion encoder is proposed in this work
to facilitate the multiscale fusion of features from multiple imaging streams. A patch-
based loss function is introduced to improve the accuracy in segmenting small lesions.

Methods: The proposed multistream encoder fuses features extracted in the three
imaging streams at each layer of the network, thereby allowing improved feature
maps to propagate downstream and benefit segmentation performance. The fusion
is achieved through a spatial attention map generated by optimally weighting the con-
tribution of the convolution outputs from each stream. This design provides flexibility
for the network to highlight image modalities according to their relative influence on
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the segmentation performance. The encoder also performs multiscale integration by
highlighting the input feature maps (low-level features) with the spatial attention maps
generated from convolution outputs (high-level features). The Dice similarity coeffi-
cient (DSC), serving as a cost function, is less sensitive to incorrect segmentation for
small lesions. We address this issue by introducing a patch-based loss function that
provides an average of the DSCs obtained from local image patches. This local average
DSC is equally sensitive to large and small lesions, as the patch-based DSCs associated
with small and large lesions have equal weights in this average DSC.

Results: The framework was evaluated in 931 sets of images acquired in several clin-
ical studies at two centers in Hong Kong and the United Kingdom. In particular, the
training, validation and test sets contain 615, 144 and 172 sets of images, respectively.
The proposed framework outperformed single-stream networks and three recently pro-
posed multistream networks, attaining F1 scores of 82.2% and 87.6% in the lesion and
patient levels, respectively. The average inference time for an axial image was 11.8 ms.

Conclusion: The accuracy and efficiency afforded by the proposed framework would
accelerate the MRI interpretation workflow of MRI-targeted biopsy and focal thera-
pies.

ii
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Prostate Cancer Segmentation by MSFusion page 1

I. Introduction

Prostate cancer is the most common non-skin cancer for males in the United States1. The

first-line screening involves digital rectal examination (DRE) and serum prostate-specific

antigen (PSA) tests. A transrectal ultrasound-guided (TRUS-guided) systematic biopsy

is recommended if either test indicates a suspicion for prostate cancer2. However, TRUS

biopsy is non-targeted, resulting in low sensitivity for detecting clinically significant prostate

lesions. Targeted biopsy directed by multiparametric MRI (mpMRI) has been shown to

be superior to conventional systematic biopsy by increasing the detection of clinically sig-

nificant cancer while reducing the detection of clinically insignificant cancers, reducing the

number of unnecessary biopsies, and reducing the number of biopsy cores required to make

a diagnosis3,4.

The Prostate Imaging Reporting and Data System (PIRADS) is the consensus guide-

line developed by radiologists for interpreting and reporting findings in mpMRI. Although

the PIRADS Version 2 recommended the use of the T2-weighted (T2W), diffusion-weighted

imaging (DWI) and dynamic contrast-enhanced (DCE) sequence for localization and de-

tection of prostate lesions, DCE imaging only plays a minor role in assessing the clinical

significance of peripheral zone lesions when they are equivocally suspected by DWI5. Since

the establishment of PIRADS Version 2, several investigations reported that biparametric

MRI (bpMRI), involving only T2W and DWI, has similar diagnostic accuracy compared to

mpMRI6,7. The acquisition time required by bpMRI is 17 minutes compared to 45 minutes

required for mpMRI7. Besides, a physician is required to monitor the potential of allergic

reactions to intravenous contrast agents required for DCE imaging, thereby increasing the

imaging cost. With the substantial saving of imaging time and cost, bpMRI is a strong alter-

native to mpMRI. In this paper, we evaluated the prostate lesion segmentation performance

of our proposed networks in the bpMRI setting.

Lesion segmentation is useful for MRI-targeted biopsy. Beyond its role in the biopsy

workflow, lesion segmentation is also required for any form of focal prostate cancer thera-

pies, such as high-intensity focused ultrasound, cryotherapy, or brachytherapy, which aim

to treat localized prostate cancer while not exposing the patients to risks associated with

aggressive treatments8. Although lesion segmentation can be performed manually, manual

segmentation is laborious and prone to observer variability.
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I.A. Prior work

The segmentation methods proposed in a few earlier works9,10,11,12,13 were developed before

the publication of the mpMRI consensus guideline on prostate mpMRI acquisition and inter-

pretation5,14 and were evaluated in samples with quantitative T2 maps available. Although

quantitative T2 maps are superior to T2W imaging in that they are not affected by variabil-

ities in repetition time (TR) and bias field inhomogeneity, repeated T2W acquisitions were

required at tens of echo times, thereby substantially lengthening the acquisition time. Be-

sides, these algorithms9,10,11,12,13 were evaluated on a single 2D axial image of each prostate

chosen at the mid-gland position with lesions segmented from the peripheral zone only.

Deep learning methods have achieved tremendous success in medical image segmenta-

tion, and convolutional neural networks (CNN) have been developed to segment lesions from

the entire prostates from images acquired according to the consensus guideline. A major

challenge for segmenting lesions from MRI is the development of a framework capable of

integrating information available from T2W and diffusion-weighted (DW) images. DW im-

ages are analyzed as either one or two image modalities. Some methods examined only the

apparent diffusion coefficient (ADC) map, which characterizes the amount of water diffusion

computed from DW images with different b values, whereas others involve a high-b DW im-

age (DWIhb) in addition to the ADC map. The DWIhb image provides better visualization

of clinically significant cancers in regions adjacent to the anterior fibromuscular stroma and

at the apex and base of the prostate5 and is important to be included. Most CNN-based

lesion segmentation methods took an early-fusion approach, in which images acquired with

different sequences were stacked together and input to the network as a multi-channel ten-

sor15,16,17,18,19. Kohl et al.15 used a U-Net with an adversarial loss to segment lesions. De

Vente et al.16 used U-Net with soft-label output that simultaneously segmented lesions and

determined the Gleason Grade Group20 on a pixel-by-pixel basis. Schelb et al.17 performed

prostate lesion segmentation using a modified U-Net. Netzer et al.18 evaluated the effects

of increased and diversified training data on prostate lesion segmentation performance using

U-Net. Sumathipala et al.19 proposed a Holistically Nested Edge Detector (HED) network,

in which side-outputs were generated at different convolution layers and fused to generate

the final segmentation mask.

Late fusion is an alternative paradigm that uses multiple streams to process each imaging
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Prostate Cancer Segmentation by MSFusion page 3

modality independently and the high-level features extracted by individual streams are then

fused together (typically by concatenation). This strategy was shown to have higher seg-

mentation accuracy than early fusion in multimodality MR segmentation applications21,22,23.

The late fusion strategy was employed in several lesion segmentation methods from bpMRI.

Yang et al.24 developed a multistream architecture to localize prostate lesions. Lesion local-

ization was weakly supervised by a binary image-based tag indicating the presence/absence

of lesion(s). Features were independently extracted from T2W and ADC images to generate

an activation map for each stream, with the ADC activation map used as the lesion local-

ization result. This method focuses more on determining a rough location of the lesion and

not on providing an accurate segmentation for prostate lesions. Chen et al.25 proposed a

multi-branch U-Net (MB-UNet) which integrated the feature from T2W, ADC and DWIhb

modalities using channel concatenation and convolution operations. Seetharaman et al.26

proposed a two-stream model, Stanford Prostate Cancer Network (SPCNet), to perform

prostate cancer segmentation from T2W and ADC images. SPCNet concatenated upsam-

pled features extracted at different depths and applied a final classifier to obtain the final

segmentation results. In these late fusion strategies, there was no interaction between differ-

ent branches before the output features of individual branches were concatenated. The lack

of interactions does not allow the difference in the feature maps between different streams

to be properly adjusted. Recent multistream architectures allow interactions on a layer-by-

layer basis. HyperDenseNet21 concatenates feature maps extracted at all previous layers

in all streams. Although providing connection among all streams, the dense concatenation

architecture is not scalable to more streams and larger images. FuseUNet27 concatenated

the feature maps extracted in a master and an assistant stream. The network minimized

the attention maps generated in the master and assistant streams at each layer, thereby

allowing adjustments of difference in the two streams through knowledge distillation. How-

ever, FuseUNet is not symmetric. The choice of the master and assistant modalities would

have an effect on the segmentation result. This issue was addressed by the cross-modal

self-attention distillation network (CSADNet)28. CSADNet has two streams to encode the

T2W and ADC images for prostate lesion segmentation. The two encoders interact by an

attention distillation mechanism, in which the differences between attention maps generated

in the two streams were minimized. Unlike FuseUNet, the loss function evaluating the differ-

ence between two attention maps was made symmetric by summing the forward and reverse
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page 4 Jiang et al.

Kullback-Leibler divergences. The feature maps encoded by the two streams were fused by

first multiplying with their correlation matrix; the two resulting feature maps were then con-

catenated and decoded. Although shown to have high performance in segmenting prostate

lesions, CSADNet, like FuseUNet, compares the difference between the attention maps in

a pairwise manner. As such, there is no natural extension to accommodate more than two

streams. CSADNet was further constrained to be pairwise by the requirement of the cor-

relation matrix of the feature maps from the two streams at the fusion stage. Although

multiple pairwise cost functions and multiple correlation matrices can be used to account

for an exhaustive permutation of pairwise comparisons, the computation is more complex,

and pairwise comparisons may not be able to account for higher-order correlations. This

would be a limitation for prostate lesion segmentation from bpMRI as the clinical guideline

recommends consideration of DWIhb in addition to T2W and ADC images5.

I.B. Contributions

In this paper, we propose a multistream encoding network that allows communication among

the T2W, ADC and DWIhb branches at each layer. Propagation of fused feature maps ob-

tained through interactions among streams at each layer improves segmentation performance.

The specific contributions of this work are summarized below:

1) We propose a layer-by-layer encoder that integrates feature maps in the T2W, ADC

and DWIhb streams in a multiscale manner. Multistream interaction is achieved through a

spatial attention map generated by integrating the convolution outputs (high-level features)

in the three streams adaptively with the relative contribution of each stream optimized by

backpropagation. Multiscale integration is achieved on two levels: first, through highlighting

the inputs to the three streams (low-level features) by the spatial attention map generated

from high-level features and second, by summing the convolution outputs and the spatially

highlighted input features.

2) The Dice similarity coefficient (DSC) penalizes incorrect segmentation of larger re-

gions more than that of smaller regions. As a result, more small regions are incorrectly

segmented, thereby lowering segmentation accuracy. We propose a patch-based loss func-

tion that equally weights incorrect segmentation of larger and smaller regions in each image

patch. We showed that adding patch-based loss improves lesion segmentation performance.
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Prostate Cancer Segmentation by MSFusion page 5

3) We performed extensive experiments on a set of diverse bpMRI data acquired from

several clinical studies in multiple medical centers. We demonstrated that the fusion module

and the new cost function contributed independently to the improvement of lesion segmen-

tation performance and showed that the proposed architecture has a higher segmentation

accuracy than existing single-stream and multistream architectures.

II. Materials and methods

II.A. MR imaging

MRI datasets acquired at two centers are involved in this study. Scanning parameters are

summarized in Table ??. The first dataset was acquired from 58 subjects at the Princes

of Wales Hospital (PWH), Hong Kong. Research ethics approval has been obtained from

the Joint Chinese University of Hong Kong-New Territories East Cluster Clinical Research

Ethics Committee (2021.003) and the Human Subjects Sub-committee in the City University

of Hong Kong (10-2021-22-E). T2W and DW images were acquired according to standards

that have been set by the consensus guideline29. ADC images were generated using the

console available in the scanner from DW images acquired with multiple b-values. Two

radiologists with six-year experience categorized regions according to PIRADS detection

guideline (Version 2)5 with consensus reached and regions with PIRADS score of at least 3

were then manually segmented by one of the radiologists.

The second dataset was acquired from 637 prostate cancer patients involved in five

clinical trials conducted at the University College London (UCL) Hospital as described in

the following publications30,31,32,33. The goals of the clinical trials include the assessment

of diagnostic accuracy of MRI, compared with TRUS biopsy, with and without previous

biopsy31,32, the comparison of different approaches for registering MRI and TRUS dur-

ing biopsy30 and the investigation of the roles of MRI in focal ablation33. These studies

were approved by the local research ethics committees: SmartTarget Biopsy (14/LO/0830),

PROMIS (11/LO/0185), INDEX (NCT01194648), PICTURE (11/LO/1657), and Smart-

Target Therapy (14/LO/1375). In total, 873 sets of T2W and ADC and DWIhb images were

available as multiple scans were performed for some patients. It is important to note that

image partitioning to the training, validation and testing sets in our experiments was on a
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page 6 Jiang et al.

patient basis (i.e., multiple scans from the same patient belong to one partition). Radiologist

contours were obtained for all lesions with Likert scores greater than or equal to 3 and served

as the ground truth segmentation for radiologist segmentation. The Likert scheme was based

on the outputs of a consensus group29 convened before the publication of PIRADS version

114. The Likert and PIRADS (version 1) scoring schemes were subsequently found to yield

similar results34,35.

II.B. Preprocessing of biparametric MR images

SimpleITK was used to adjust the relative displacement between the T2W, ADC and DWIhb

images36. Prostate segmentation was done using a pre-trained CNN model37. The bounding

box of the prostate boundary was expanded by 25% to form a region of interest (ROI). The

ROI was cropped for subsequent lesion segmentation. Since CNN requires input images to

be of the same size in each training batch, the ROI in each axial image was resampled to a

fixed size of 128×128. Although the size of the images in different training batches may vary

in fully convolutional networks, the ROIs of all training images were resampled to a fixed

size so that the receptive field of the network has similar fractional coverage of all prostates.

The ROI of validation and testing images were also resampled to the same size to match the

fractional coverage by the receptive field of the trained model.

II.C. MSFusion-UNet for lesion segmentation

II.C.1. Architecture

Fig. 1 shows the architecture of the proposed multistream fusion U-Net (MSFusion-UNet), in

which the proposed fusion encoder is embedded in the U-Net structure to form a multistream

image segmentation network. The input and output images are represented by rectangles in

Fig. 1 with the number of channels labeled. MSFusion-UNet consists of the T2W, ADC and

DWIhb streams. Features extracted in these three streams were fused at each layer along the

encoder path through the fusion encoder block, described in detail in Sec. II.C.2. Since the

input images are smaller than those evaluated by the conventional U-Net38 by a factor of

4, the number of filters used in the first layer was reduced to 16, as compared to 64 in the

original U-Net. The outputs of the encoder paths in the T2W, ADC and DWIhb streams
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Prostate Cancer Segmentation by MSFusion page 7

were decoded independently using the U-Net decoder shown in Fig. 1. At the end of the

decoder path, the output feature maps from the three streams were concatenated. A pixel

classification layer was used to generate a lesion probability map from the concatenated

feature maps. The final segmentation map was generated by binarizing the output map of

the classifier using a threshold of 0.5.

II.C.2. Fusion encoder module

Fig. 2 shows the encoder developed to fuse features extracted in the T2W, ADC and DWIhb

streams. The proposed fusion encoder integrates features extracted in the three streams in a

multiscale manner. The inputs from the T2W, ADC and DWIhb streams are denoted by T ,

A, D, respectively. Features maps, denoted by F (T ), F (A) and F (D), were independently

generated by the three streams using the double convolutional blocks (DCB) shown in Fig. 1.

The input and the filtered feature maps can be considered as low-level and high-level feature

maps. A fusion map Fmap was generated by combining the high-level feature maps:

Fmap = σ(F (T ) ~ k
(1)
1×1) + σ(F (A) ~ k

(1)
1×1) + σ(F (D) ~ k

(1)
1×1), (1)

where σ is the sigmoid function. X ~ k
(1)
1×1 denotes the convolution of the feature map X

with an 1 × 1 convolution with one kernel. Fmap was then used as a spatial attention map

to highlight the low-level feature map (i.e., A, T and D), as described in Eq. 2. To facilitate

the mathematical expression for highlighting the n-channel feature maps A, T and D using a

one-channel spatial attention map, we define F rep
map as an n-channel map that replicates Fmap

to match the size of A, T and D and express the outputs as element-wise multiplication

between the feature maps and F rep
map. With this definition, the outputs in the three streams,

labeled yA, yT and yD in Fig. 2, can be expressed by:

yA = F (A) + αA · F rep
map

yT = F (T ) + βT · F rep
map

yD = F (D) + γD · F rep
map

(2)

where · represents element-wise multiplication and α, β and γ are the learnable coefficients

representing the relative weights of Fmap and they sum up to unity. We note that the outputs

yA, yT and yD are the sum of high-level features and spatially highlighted low-level features.
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II.C.3. Loss function

Lesion segmentation is a pixel-by-pixel classification task involving a highly unbalanced data

set, as the number of pixels with lesions is much smaller than that without lesions. Compared

to the mean-square-error and binary cross-entropy, the Dice loss, as a metric measuring

the relative overlap between the algorithm and manual segmentation, is more suitable for

this application and was used for optimizing the proposed segmentation framework. The

following loss is referred to as the global DSC to differentiate it from the patch-based DSC

described later:

Lglobal = LDSC(p, p̂) = 1− 2
∑N

i=1 pip̂i∑N
i=1(pi + p̂i)

(3)

where p is a binary map indicating whether each pixel of the input image is within a manually

segmented lesion, whereas p̂ is the map representing the probability of each pixel being inside

a lesion, as determined by the algorithm. These two maps have the same size as the input

image and consist of N pixels, denoted by {pi}Ni=1 and {p̂i}Ni=1.

Lglobal defined in Eq. 3 is more sensitive to incorrect segmentation for large lesions than

small lesions. However, prostate lesions are multi-focal and some of them are small. To

improve segmentation performance for small lesions, we propose a patch-based loss function

that puts less emphasis on the relative size of lesions. The loss function zooms into each

patch of size Sp × Sp to investigate how well lesions are detected within the patch. The

patch-based loss function Lpatch consists of two components as quantified below:

Lpatch =LDSC(fmax
Sp×Sp

(p), fmax
Sp×Sp

(p̂)) +
1

np

np∑

k=1

ωkLDSC(p
(k)
Sp×Sp

, p̂
(k)
Sp×Sp

) (4)

The first term of Lpatch involves the maxpool operation fmax
Sp×Sp

, which reduces the di-

mensions of the 128× 128 output images to 128
Sp
× 128

Sp
. Each “pixel” in the resulting 128

Sp
× 128

Sp

image shows the maximum value in a Sp × Sp patch in the algorithm segmented mask p̂

or the manually segmented mask p. The DSC of the maxpooled image penalizes incorrect

segmentation in each patch equally, regardless of whether the incorrect segmentation inside

the patch was for a large or small lesion. The second term takes a patch-based average

of the DSC obtained in each Sp × Sp patch. p
(k)
Sp×Sp

and p̂
(k)
Sp×Sp

denote the kth patches of

size Sp × Sp generated by uniformly splitting p and p̂, respectively, whereas np is the total

number of patches, which is (128
Sp

)2 in our studies. In contrast with the Lglobal, this locally
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Prostate Cancer Segmentation by MSFusion page 9

averaged DSC weights the DSC in each involved patch equally, whereas the global DSC

weights overlap according to the lesion size. wk is a binary weight that selects patches with

a maximum p or p̂ of at least 0.5 to be involved in the DSC calculation [i.e., this DSC only

involves patches with a valid manual (p = 1) or algorithm (p̂ ≥ 0.5) segmentation]. The

proposed network was trained to optimize the total loss:

Ltotal = Lglobal + cLpatch, (5)

where the weight c was optimized according to Sec. III.B.1.

III. Experiments

III.A. Evaluation metrics and statistical analyses

III.A.1. Area-based metrics

The lesion segmentation performance were evaluated by the Dice similarity coefficient (DSC)

and sensitivity (SEN) as defined below:

DSC =
2 |A ∩M |
|A|+ |M | , SEN =

|A ∩M |
|M | , (6)

where A and M are the algorithm-generated and the manual segmentation masks, respec-

tively. |·| measures the area of region. In the evaluation, we measured a DSC and an SEN

for each slice and then averaged the measurements for all slices involved in testing.

III.A.2. Lesion-level metrics

Lesion localization performance was assessed by lesion-level precision and recall, the com-

putation of which requires the definition of true positive (TP), false negative (FN) and false

positive (FP). Object detection literature declares TP if a gold-standard boundary has an

intersection of union (IOU) with its closest algorithm segmented boundary higher than a

preset threshold and FN otherwise39,40. FP occurs when an algorithm-segmented bound-

ary does not have an IOU with the closest manually segmented boundary above the preset

threshold. The same definition can be made with DSC instead of IOU.
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page 10 Jiang et al.

However, we note that because IOU and DSC are symmetric (i.e., the metrics do not

depend on which boundary is the gold standard boundary and which is the algorithm-

segmented boundary), a one-to-one correspondence between the gold standard and algorithm

segmentation boundaries is required to be established before quantification40. Fig. 3 shows

two cases demonstrating the need for one-to-one correspondence may not allow multi-focal

cancers to be assessed properly. In Fig. 3a, one of the gold-standard boundaries would

be considered as FN (thereby giving a recall of 0.5) although it is completely covered by

the algorithm boundary, whereas in Fig. 3b, one of the algorithm boundaries would be

considered as FP (thereby giving a precision of 0.5) although it is completely inside the

gold-standard boundary.

Yan et al.41 proposed a set of asymmetric recall and precision metrics to address the

issue, which are used for evaluation in this study. Each of the I gold standard lesion volumes

{M i}Ii=1 is considered a TP if the overlap with any J algorithm segmented lesion volumes

{Aj}Jj=1, single or multiple, is larger or equal to a preset threshold τ and FN otherwise. That

is, M i is a true positive if
∑J

j=1 |M i∩Aj|/|M i| ≥ τ and FN otherwise. The above definitions

of TP and FN allow the calculation of recall, defined by TP/(TP + FN). Similarly, for the

calculation of precision, each Aj is considered a TP if the overlap with a single or multiple

M i is greater than or equal to τ and FP otherwise (i.e., Aj is a TP if
∑I

i=1 |M i∩Aj|/|Aj| ≥ τ

and FP otherwise). The above definitions of TP and FP allow the calculation of precision,

defined by TP/(TP + FP ). As the metrics are lesion-based and lesions are 3D entities, the

above overlap was computed on a 3D basis across axial images. Since lesions with volumes

less than 0.2cm3 are considered insignificant according to Epstein’s criteria42, only M i and

Ai with volumes greater than 0.2cm3 were considered in the assessment. A low threshold

of τ = 0.1 was used in this study because substantial inter-observer variability exists in

detecting lesions and margins of up to 10 mm are required to be added to MRI boundary for

focal treatments43,44 as lesions are underestimated in MRI even if segmentation is performed

manually45. A similar threshold was used in McKinney et al.46, although the threshold

was applied on DSC instead of our asymmetric metrics. The F1 score was calculated to

summarize the precision and recall metrics:

F1 = 2 · precision · recall

precision + recall
. (7)
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III.A.3. Patient-level metrics

The performance quantified by lesion-based metrics is more affected by patients with multiple

lesions. It is also of interest to quantify average precision, recall and the F1 score per patient.

Patient-based metrics were computed by averaging the corresponding metrics obtained for

individual patients, thereby weighting the segmentation performance on the image of each

patient equally.

III.B. Experimental settings

Four sets of experiments were performed as described in the following subsections. Hyper-

parameter tuning (Sec. III.B.1.) the ablation studies (Sec. III.B.2.) and the comparison with

existing methods (Sec. III.B.3.) were performed using the UCL dataset. A total of 873 sets of

data in the UCL database were partitioned into training, validation and test sets with 615,

144 and 172 sets of data, respectively. The proposed MSFusion-UNet trained using the UCL

dataset was fine-tuned to segment lesions in the PWH dataset, as described in Sec. III.B.4.

The purpose of the experiments on the PWH dataset was to evaluate how well the model

trained in a separate dataset generalizes to a new dataset acquired from another center.

III.B.1. Hyperparameter tuning

The weight c of Lpatch in Eq. 5 and patch size Sp in Eq. 4 were tuned by sequential

optimization. When tuning c, Sp was set as 32. When tuning patch size, c had been optimized

and was held at the optimized value. The weight c and patch size Sp were optimized based

on the average of the area-based DSC and SEN (Eq. 6) on the validation set, denoted by

Mval. The maximum Mval attained throughout the entire training process was used to

assess the performance of each setting. This is a local optimum search and the optimized

hyperparameters are not guaranteed to be the global optimum.

III.B.2. Ablation studies

The proposed algorithm has four major features: (1) the three images were processed indi-

vidually by different streams; (2) a fusion encoder was introduced to integrate feature maps
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generated by the three streams on a layer-by-layer basis; (3) the weights for each stream

at each layer were tuned for optimal segmentation performance (i.e., α, β, γ in Eq. 2); (4)

development of the patch-based loss function Lpatch. Ablation studies were performed to

evaluate the contribution of each feature. The baseline model is the single-stream U-Net

illustrated in Fig. 4a. The second model, referred to as the MS model, implements the

multistream structure without the fusion module, as illustrated in Fig. 4b. The three im-

ages were processed independently. The output feature maps from these three streams were

concatenated with the final segmentation result generated by a classifier consisting of a 1×1

convolution followed by sigmoid activation. In the third model, referred to as the MSFusion

model, the proposed layer-by-layer fusion model was added to the second model, but α, β

and γ were fixed at 1
3
. These three parameters were optimized using backpropagation in the

fourth model, referred to as the MSFusion + Tuning model. The above four models were

driven by Lglobal alone. The fifth model adds Lpatch to the loss function, referred to as the

MSFusion + Tuning + Lpatch model.

III.B.3. Comparison with existing methods

We compared the full MSFusion-UNet model (i.e., MSFusion + Tuning + Lpatch) with

three widely used segmentation networks: U-Net38, Residual U-Net (ResU-Net)47 and

Deeplabv3+48. In this comparison, these three networks were configured as single-stream

models, in which images of three modalities were concatenated and input to a single encoder-

decoder combination, as shown in Fig. 4a. In addition, we also compared with recently

published multistream models: the multi-branch UNet (MB-UNet)25, the SPCNet26 and

the CSADNet28. All methods have been tested for prostate lesion segmentation. Tukey’s

multiple comparison tests were performed to compare the DSC and SEN generated by the

proposed MSFusion-UNet with those by existing single-stream and multistream networks.

In our experiment, the proposed MSFusion-UNet, MB-UNet and SPCNet have three streams

(i.e., T2W, ADC and DWIhb), whereas CSADNet processed only the T2W and ADC images,

as it has a pairwise structure difficult to be extended to support more than two streams, as

detailed the introduction. In our evaluation, the best performance of a method is compared

with that of another method. As CSADNet cannot be expanded to three streams, its best

performance is attained by processing two streams. On the other hand, methods that can

accommodate three streams would generate their best performance when three streams are
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involved. CSAD-Net is limited to two streams and the comparison of the best performance

of the two-stream CSADNet with the three-stream networks would duly include the impact

of this limitation. MB-UNet and SPCNet were implemented as a 2.5D network involving

three neighbouring image slices in the respective papers25,26. As a fair comparison focusing

on the evaluation of two-dimensional multistream networks, we compared the performance

of a two-dimensional version of these networks with our proposed network in our data set.

III.B.4. Evaluation of the trained model in PWH dataset

The full MSFusion-UNet trained using the UCL dataset was directly applied to segment

lesions from half of the patient images in the PWH dataset (i.e., 29 images). We refer to this

setting as the pre-trained setting. MSFusion-UNet was then fine-tuned using the remaining

29 images in the PWH dataset. The fine-tuned model was used to segment the images

previously processed in the pre-trained setting. The performance in this fine-tuned setting

was compared with that in the pre-trained setting.

III.C. Implementation

Adam optimization was used in training with a learning rate of 0.001. All CNNs were

trained for 100 epochs with a batch size of 32. The training and testing are performed on

Ubuntu 16.04 system with 32GB memory, an Intel(R) Core(TM) i7-9700K CPU of 3.60 GHz

and an Nvidia GeForce 2080 Ti graphics card of 11GB memory. All methods described in

Sec. III.B.3. were trained with the same number of epochs as the proposed method.

III.D. Training set augmentation

Data augmentation was performed by transforming the original images of three modalities

simultaneously using the following operations: (a) Flipping: An image was randomly selected

to be transformed by one of the following three flipping operations: vertical, horizontal or

vertical + horizontal flipping operations. The probability of selecting each operation is 1/3.

(b) Rotation: An image was rotated about the image center with an angle within the range of

−20◦ to 20◦ randomly chosen from a uniform probability distribution. (c) Zoom: An image

was randomly zoomed within a range of [0.9,1.1] (d) Translation: An image was translated
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along the x- and y-axes by distances ranging from 0 to 5 pixels. The x and y-translations were

randomly chosen from independent uniform probability distributions. (e) Shear Intensity:

An image was fixed on an axis and stretched with a shear intensity of 0.05.

IV. Results

IV.A. Hyperparameter tuning

Our model was trained with c = 0, 0.25, 0.5, 0.75 and 1. The corresponding Mval are 61.5,

59.6, 61.9, 59.5 and 61.1 with the maximum attained at c = 0.5. Therefore, c = 0.5 was

used in the remaining experiments in this paper. The models trained with different c values

were evaluated in the test set with the results reported in Table ??.

With c held at 0.5, our model was trained with patch sizes Sp of 16, 32 and 64. The

corresponding Mval were 60.2, 61.9 and 61.8, respectively, with the maximum attained at

Sp = 32. Therefore, Sp = 32 was used in the remaining experiments in this paper. We

evaluated the models trained with different Sp values with test data and the result is reported

in Table ??.

IV.B. Ablation studies

Table ?? shows the results of the ablation study described in Sec. III.B.2. The MS model has

a higher DSC, sensitivity and F1 scores in the lesion and patient levels than the baseline.

These four metrics were improved by the fixed coefficient fusion encoder (MSFusion) and

further improved by tuning the coefficients in the fusion encoder (MSFusion+Tuning). The

introduction of the Lpatch loss function contributed to a further improvement in sensitivity

and the lesion- and patient-level F1 scores. Fig. 5 shows examples in which the Lpatch loss

function helped reduce false positive and false negative segmentations.

The multistream fusion module was used in five scale levels in MSFusion-UNet, as shown

in Fig. 1. Fig. 6 shows the mean feature maps in the ADC, T2W and DWIhb stream (i.e., yA,

yT and yD, respectively) at each level for (a) MSFusion+Tuning+Lpatch and (b) MS settings.
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The combined feature map Fmap for each of the five levels is also shown for Setting a. The fea-

ture maps were averaged in the channel dimension to facilitate visualization. Although this

lesion was primarily detected in DWIhb and, to a lesser extent, in ADC, the lesion was also

highlighted in the T2W feature map starting from Level 2 in the MSFusion+Tuning+Lpatch

setting due to the inter-stream interaction, whereas the lesion was never highlighted clearly

in the T2W feature map in the MS setting. Propagation of more discriminative features

results in higher segmentation accuracy.

IV.C. Comparison with existing methods

Table ?? shows the performance metrics for the seven deep learning models described in

Sec. III.B.3. The proposed method has the highest performance in all metrics. Among

the three multistream methods (i.e., MB-UNet25, SPCNet26 and CSADNet28), only the

CSADNet involves interactions between streams during feature encoding. The performance

of CSADNet was lower than MB-UNet because it had access to three imaging modalities

(i.e., T2W, ADC and DWIhb), whereas CSADNet could only process the T2W and ADC

due to the pairwise nature of the model. Tukey’s multiple comparison tests show that the

area-based sensitivity of the proposed method is significantly higher than the six methods

involved in the comparison (6.66× 10−14 ≤ p ≤ 6.71× 10−14), whereas DSC is significantly

higher than all methods (2.94 × 10−6 ≤ p ≤ 2.05 × 10−2), except Deeplabv3+ (p = 0.18).

Fig. 7 shows example lesions segmented by these models, illustrating that the proposed

model has a higher precision (first/second rows) and a higher sensitivity to small lesions

(third/fourth rows).

Table ?? shows the inference time of the segmentation models evaluated in Table ??.

While improving the lesion segmentation performance as presented above, the inclusion of

the fusion encoder in the multistream network involved only a small computational over-

head. The CSADNet is the only multistream architecture that allows inter-stream inter-

action during encoding and the interaction was between two streams. While our proposed

MSFusion-UNet allows interactions among three streams, the inference time required was

only 65% of that required by CSADNet.
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IV.D. Evaluation on the PWH dataset

Table ?? shows the evaluation based on the PWH dataset described in Sec. III.B.4. The

DSC, lesion- and patient-level precisions of the MSFusion-UNet pre-trained model dropped

by 2%, 22% and 22%, respectively, compared to the results in the UCL dataset, but the

sensitivity, lesion- and patient-level recalls increased by 8%, 3% and 2%, respectively. As

the sample size of the UCL database is large, the variability in the features across lesions

is also large. Therefore, the pre-trained model may have identified a wide range of regions

as lesions, resulting in high recall but also identifying more false positives. Fine-tuning by

training with the PWH data successfully achieved a better balance between precision and

recall, and resulted in higher DSC and F1 scores at the lesion and patient levels.

We also compared the manual segmentation by a second observer with the ground truth

manual segmentation performed by a more experienced radiologist. The second observer is

a subspecialist genitourinary radiologist with one year of experience in segmenting regions

suggestive of prostate cancer. The DSC and SEN are 66.6± 31.7% and 76.5± 35.6%, which

are higher than the fine-tuned model, but the SEN is lower than the pre-trained model.

We also investigated how adding a margin of 1mm to 10mm to the segmented regions would

increase SEN. As MRI was found to underestimate the size of prostate lesions, margins of up

to 10 mm would be required to obtain adequate coverage of the lesions for focal therapies43,44.

Fig. 8 shows that SEN of the fine-tuned model surpassed that of the second radiologist with

a margin of 2mm, although the model had a lower SEN with no margin. The SEN for the

second radiologist segmentation did not improve beyond a margin of 3mm and was 83.8%

with a 10mm margin. In contrast, the SEN of the model increased more with margin added

and the sensitivity reached 96.1% with a margin of 10mm. This suggests that the proposed

MSFusion-UNet segmentation could identify more lesions with a sufficient margin.

V. Discussion

The development of the proposed multistream fusion strategy was motivated by the need to

integrate information available in T2W, ADC and DWIhb images for lesion segmentation. In

particular, the development of an optimal way to integrate features from multiple streams

would improve the network’s ability in identifying important features.
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We introduced a fusion encoder integrating features extracted in the T2W, ADC and

DWIhb images for lesion segmentation. First, the fusion encoder enables the layer-by-layer

fusion of the three image branches in a multiscale manner, thereby allowing improved opti-

mization of the feature maps propagated to the layers downstream. Second, the weight of

the fusion map used to construct the output from each stream was adaptively determined by

backpropagation for optimal performance. We have shown in our ablation experiments that

the use of the fusion module and the weight tuning individually contributed to improving

lesion segmentation performance.

An important novelty of the proposed MSFusion-UNet is the introduction of an atten-

tion mechanism that allows layer-by-layer interaction among multiple streams. Attention

mechanisms have been previously proposed to facilitate image fusion between two streams

in FuseUNet27 and CSADNet28. Both networks involve the computation of attention maps

in two image streams. Image fusion was achieved by implementing cost functions to pro-

mote similarity between the attention maps extracted from different streams in multiple

layers. The attention module within FuseUNet was shown to improve the performance in

breast lesion segmentation, whereas that implemented in CSADNet improved prostate lesion

segmentation. While we also fused features extracted in multiple streams through an atten-

tion map, we did not impose constraints on the similarity of features extracted by different

streams, thereby providing more flexibility in optimizing lesion localization and segmenta-

tion based on the loss function. Different streams identify different salient features (e.g., the

lesion in Fig. 6 was highlighted to a greater extent by the ADC and DWIhb streams than the

T2W stream); enforcing similarity on features extracted by multiple streams at each layer

may not benefit segmentation performance. The proposed MSFusion-UNet further promotes

flexibility in multistream fusion by introducing adaptive parameters to control the weight

of the attention map to be added to the output from each stream. In addition to its flex-

ibility in the flow of information across image streams, the proposed network also provides

architectural flexibility that allows integration of more than two streams, whereas FuseUNet

and CSADNet are limited to the fusion of two streams partly due to their requirement in

enforcing pairwise similarity of features.

Although area-based metrics such as DSC and sensitivity are widely used in evaluating

segmentation performance, it is more important in clinical applications (e.g., targeted biopsy,

focal therapies) to evaluate the precision and recall in segmenting lesions. Although lesion-
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level precision and recall have been defined in object detection applications, these definitions

require one-to-one correspondence between objects detected by an algorithm and the ground

truth and are susceptible to issues illustrated in Fig. 3. The lesion-level evaluation metrics

proposed in Yan et al.41 address the issue and were used in this paper.

With the lesion-level evaluation, we found that the DSC loss (i.e., Lglobal) penalizes

incorrect segmentation of large regions more than small regions, resulting in more inaccu-

racies in segmenting small regions. We address this issue by introducing a patch-based loss

function Lpatch (Eq. 4) that weights the DSC loss in all image patches equally, regardless of

the size of the detected regions being evaluated. We showed that the introduction of Lpatch

increased the lesion- and patient-level precision and recall. In addition to its contribution

to prostate lesion segmentation, the proposed patch-based loss function would potentially

improve the segmentation performance for other multi-focal lesions, such as breast lesion

segmentation46, although a thorough validation is required to verify the benefit in the new

application.

We compared the proposed framework with six state-of-the-art single-stream and mul-

tistream deep learning segmentation models and demonstrated that the proposed framework

performed better in DSC and area-based sensitivity and has higher F1 scores in the lesion

and patient levels than the six existing models. We note that some previous methods were

evaluated to have a higher DSC in the original study. For example, Chen et al.25 reported

that MB-UNet has a DSC of 0.63 and an area-based sensitivity of 0.71. In that study,

MB-UNet was evaluated with images with PIRADS ≥ 4, whereas our data set comes from

different clinical trials and includes lesions less certain to be clinically significant (Likert

score ≥ 3). The Likert score was used before PIRADS was established, and the two schemes

produce similar clinical results34,35. The DSC reported in the current study is higher than

most investigations involving deep-learning lesion segmentation approaches. For example,

Schelb et al.17 included lesions with PIRADS ≥ 3 and reported a DSC of 0.35. Several stud-

ies involving histopathology-confirmed lesions15,49,50 reported a DSC ranging from 0.37 to

0.48 and a sensitivity ranging from 0.46 to 0.55. In the current study, our comparisons were

conducted with all state-of-the-art methods trained with the same number of epochs and the

same training/validation data, and tested with the same testing data, thereby demonstrating

in a fair manner that the proposed segmentation framework outperforms other models.
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Although our method performed better than existing approaches in a large dataset ac-

quired in multiple centers and in different clinical studies, we acknowledge several limitations

of our approach. Our algorithm is slice-based, and therefore, did not account for the con-

tinuity exhibited in adjacent axial prostate images as in a 3D CNN. However, although the

prostate is depicted by consecutive axial image slices, the continuity of lesions in adjacent

axial slices in our image data is limited due to the large slice thickness (3-5mm) in DWI and

the size of the lesions, which can be as small as 0.2cm3 according to Epstein’s criteria42.

For images with slice thickness substantially larger than the in-plane voxel sizes, there is

evidence showing that 3D CNN has a lower performance than 2D CNN51,52. Therefore,

although thorough evaluation is warranted, 3D or 2.5D processing may not improve the seg-

mentation performance. Moreover, 2D implementation requires less computational power

and memory, which provides flexibility for training, inference and further adaptation in the

clinical setting. For these reasons, we opted to implement the network in 2D in this study.

Second, we recognize that the relative importance of T2W and DWI in detecting prostate

lesions depends on whether the lesion is located in the peripheral (PZ) or the transitional

zone (TZ)5. Therefore, the weights of the three modalities (i.e., α, β, γ) should ideally be

trained individually for lesions at PZ and TZ and applied in the testing images according to

the lesion position. However, such an approach would necessitate either automated prostate

zonal segmentation or a softer delineation of the PZ and TZ in the training and testing im-

ages. A thorough evaluation is needed to assess the impact of zonal segmentation accuracy

on lesion segmentation accuracy, and a dedicated workflow must be designed to account for

cases with multi-focal lesions occurring in both PZ and TZ. Considering that zonal informa-

tion has been shown to improve prostate lesion segmentation and detection16,53, we believe

that the performance of the proposed network will improve when zonal prior is provided.

VI. Conclusion

A multistream network was proposed to segment prostate lesions from T2W, ADC and

DWIhb image modalities. The major innovation of this work is the development of a layer-

by-layer encoder allowing multistream and multiscale interactions when encoding image fea-

tures. The inter-stream interaction was optimized by adaptively weighting the contributions

of the three modalities. The introduction of a patch-based DSC loss component in the cost
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function improves the lesion- and patient-level precision and recall. Extensive experiments

involving 931 sets of images acquired in several clinical studies from medical centers in Hong

Kong and the United Kingdom show that the proposed network outperformed state-of-the-

art single-stream and multistream networks.
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Figure captions

1. The architecture of the proposed multistream fusion U-Net (MSFusion-UNet). The

number below each feature block shows the number of channels in the block. MSFM:

multistream fusion module, the detailed structure of which is shown in Fig. 2; Conv3×3,

Conv1 × 1: Convolutions with 3 × 3 and 1 × 1 kernels with stride = 1, MaxPool:

maxpooling with a 2×2 kernel and stride = 2; UpSample: upsample operation with 2×2

upsampling factor; Concat: channel concatenation; BatchNorm: batch normalization;

ReLU: rectified linear unit; Sigmoid: sigmoid function.

2. The architecture of the multistream fusion encoder module. DCB: Double convolution

block shown in Fig. 2; Fmap is a one-channel attention map and F rep
map is an multi-channel

map that replicates Fmap to match the size of A, T and D.

3. Two cases illustrating issues of object detection metrics requiring one-to-one corre-

spondence of boundaries. The gold standard boundary and the algorithm boundaries

were represented in red and blue, respectively.

4. Architecture comparison of (a) single-stream and (b) multistream networks with and

without the multistream encoder module (represented by the red box)
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5. Comparison of segmentation results generated without (second row) and with (third

row) the patch-based loss function Lpatch for four example prostate images. Orange

and green arrows point to false positive and false negative segmentations for Lglobal

setting, which were corrected with the introduction of Lpatch.

6. Comparison of feature maps obtained at different levels (a) with and (b) without the

multistream fusion encoder. Specifically, feature maps in (a) were generated with the

MSFusion+Tuning+Lpatch setting, whereas those in (b) were generated with the MS

setting, described in Sec. III.B.

7. Performance of several CNN-based segmentation methods on four example images.

Each row shows the segmentation results obtained using different methods. Segmented

lesions are highlighted in red. Orange arrows point to false positive segmentation.

Green arrows point to manually segmented lesions delineated by the proposed method,

but not segmented by most methods in comparison.

8. Sensitivity of the proposed MSFusion-UNet and the manual segmentation performed

by the second radiologist as functions of margin.
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Table 1: MRI scanning parameters for the datasets from Prince of Wales Hospital (PWH) and University 

College London (UCL) Hospital 

 T2W DWI 

 PWH Dataset 

TR 3.3s 2.4s 

TE 90ms 84ms 

Slice thickness 3mm 3mm 

In-plane dimensions 0.45×0.45mm 1.25×1.25mm 

High b-value - 1600 

 UCL Datasets 

TR 5.2s 2.2s 

TE 92ms 98ms 

Slice thickness 0.82-1mm 3-5mm 

In-plane dimensions 0.45×0.45mm to 1.31×1.31mm 0.75×0.75mm to 3.41×3.41mm 

High b-value - 1400, 2000 
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Table 2: Testing performance of the proposed method for different c settings 

c 
Area-based Lesion-level Patient-level 

DSC SEN Precision Recall 𝐹1 Precision Recall 𝐹1 

0 54.5±21.5 69.1±24.4 73.2 91.9 81.5 81.0 94.7 87.3 

0.25 52.8±22.0 66.8±25.8 74.6 93.2 82.8 80.2 95.9 87.4 

0.5 54.0±21.2 70.5±24.5 73.6 93.2 82.2 80.6 95.9 87.6 

0.75 52.9±21.8 67.0±25.5 73.8 91.3 81.6 79.8 94.0 86.3 

1 53.6±21.1 69.6±24.0 73.0 91.9 81.4 78.8 95.1 86.2 
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Table 3: Testing performance of the proposed method for different patch size settings 

𝑆𝑝 
Area-based Lesion-level Patient-level 

DSC SEN Precision Recall 𝐹1 Precision Recall 𝐹1 

16 54.0±21.3 67.5±24.6 72.4 90.7 80.5 78.5 93.3 85.3 

32 54.0±21.2 70.5±24.5 73.6 93.2 82.2 80.6 95.9 87.6 

64 53.7±21.8 70.1±24.3 73.0 93.8 82.1 79.2 96.4 87.0 
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Table 4: Ablation study on the individual contributions of the multistream fusion encoder module 

(MSFusion), the adaptive weights for different image modalities (Tuning) and the patch-based loss 

function (𝐿𝑝𝑎𝑡𝑐ℎ). The DSC, sensitivity, recall and precision are reported in percentage. 

Model 
Area-based Lesion-level Patient-level 

DSC SEN Precision Recall 𝐹1 Precision Recall 𝐹1 

Baseline 51.8±21.6 59.7±25.6 71.4 85.7 77.9 77.3 89.9 83.1 

MS 52.1±22.7 60.0±26.1 72.3 90.1 80.2 77.7 93.6 84.9 

MSFusion 54.0±22.5 64.7±26.4 73.2 90.7 81.0 80.2 94.3 86.7 

MSFusion+Tuning 54.5±21.5 69.1±24.4 73.2 91.9 81.5 81.0 94.7 87.3 

MSFusion+Tuning+𝐿𝑝𝑎𝑡𝑐ℎ 54.0±21.2 70.5±24.5 73.6 93.2 82.2 80.6 95.9 87.6 
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Table 5: Performance of the proposed and previous segmentation models quantified by area-based, lesion-

level and patient-level metrics on UCL dataset. The DSC, sensitivity, recall and precision are reported in 

percentage. 

Method 
Area-based Lesion-level Patient-level 

DSC SEN Precision Recall 𝐹1 Precision Recall 𝐹1 

U-Net38 51.8±21.6 59.7±25.6 71.4 85.7 77.9 77.3 89.9 83.1 

ResU-Net47 51.3±22.4 61.3±26.0 68.9 90.1 78.1 75.9 93.1 83.6 

Deeplabv3+48 52.1±23.1 60.0±27.1 68.1 85.7 75.9 76.8 88.5 82.3 

MB-UNet25 51.4±21.2 62.8±25.0 73.1 90.1 80.7 79.5 93.9 86.1 

SPCNet26 50.7±23.5 56.8±26.9 62.3 88.8 73.2 72.4 92.8 81.3 

CSADNet28 50.1±23.7 59.6±28.7 71.7 87.0 78.6 76.0 90.2 82.5 

Ours (MSFusion-UNet) 54.0±21.2 70.5±24.5 73.6 93.2 82.2 80.6 95.9 87.6 
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Table 6: Inference time of the different segmentation models expressed in milliseconds. 

Method Inference time (ms) 

U-Net 3.8 

ResU-Net 6.6 

Deeplabv3+ 17.3 

MB-UNet 13.7 

SPCNet 10.4 

CSADNet 18.3 

Ours (MSFusion-UNet) 11.8 
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Table 7: Performance of the proposed method on PWH dataset. The DSC, sensitivity, recall and precision 

are reported in percentage. 

Method 
Area-based Lesion-level Patient-level 

DSC SEN Precision Recall 𝐹1 Precision Recall 𝐹1 

Pre-trained 52.6±22.2 78.6±28.1 51.5 96.7 67.2 58.7 97.9 73.4 

Fine-tuned 66.3±27.4 72.0±29.7 78.4 93.3 85.2 82.1 93.8 87.5 
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