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Effect of tissue‑grouped regulatory 
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Genome‑wide association studies have identified over five hundred loci that contribute to variation 
in type 2 diabetes (T2D), an established risk factor for many diseases. However, the mechanisms and 
extent through which these loci contribute to subsequent outcomes remain elusive. We hypothesized 
that combinations of T2D‑associated variants acting on tissue‑specific regulatory elements might 
account for greater risk for tissue‑specific outcomes, leading to diversity in T2D disease progression. 
We searched for T2D‑associated variants acting on regulatory elements and expression quantitative 
trait loci (eQTLs) in nine tissues. We used T2D tissue‑grouped variant sets as genetic instruments to 
conduct 2‑Sample Mendelian Randomization (MR) in ten related outcomes whose risk is increased 
by T2D using the FinnGen cohort. We performed PheWAS analysis to investigate whether the T2D 
tissue‑grouped variant sets had specific predicted disease signatures. We identified an average 
of 176 variants acting in nine tissues implicated in T2D, and an average of 30 variants acting on 
regulatory elements that are unique to the nine tissues of interest. In 2‑Sample MR analyses, all 
subsets of regulatory variants acting in different tissues were associated with increased risk of the 
ten secondary outcomes studied on similar levels. No tissue‑grouped variant set was associated with 
an outcome significantly more than other tissue‑grouped variant sets. We did not identify different 
disease progression profiles based on tissue‑specific regulatory and transcriptome information. Bigger 
sample sizes and other layers of regulatory information in critical tissues may help identify subsets of 
T2D variants that are implicated in certain secondary outcomes, uncovering system‑specific disease 
progression.
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LDSC  LD Score regression
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MPP  Multi-potent progenitor
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PAD  Peripheral artery disease
PheWAS  Phenome-wide association studies
RNA  Ribonucleic acid
SCP  SNP colocalization probability
SMR  Summary-based Mendelian Randomization
SNP  Single-nucleotide polymorphism
T2D  Type 2 diabetes
UKB  UK Biobank

Type 2 diabetes mellitus (T2D) has an estimated prevalence of 10% in the United States and is on the  rise1,2, 
leading to increased risk of premature  death3, prolonged hyperglycemia from insulin resistance and relative 
insulin  deficiency4, and numerous micro- and macrovascular  complications5. These complications affect several 
organs and tissues, causing e.g. heart damage, eye problems, and nerve disease. Even though there are over 500 
independent genetic variants associated with  T2D6–8, there is little understanding of their pathophysiology lead-
ing to T2D itself and to secondary outcomes. As with other complex traits, most T2D-associated variants are 
located within non-coding regions of the genome, and might interrupt the action of regulatory elements crucial 
in relevant  tissues9. Several studies point to an enrichment of T2D-associated variants in tissues such as pancreas, 
adipose, skeletal muscle, liver, arteries, kidney and the  heart8,10,11. These are also the tissues affected by secondary 
outcomes related to diabetes, such as heart disease, nephropathy or peripheral artery disease. Genes controlled by 
regulatory elements affected by DNA variation act in different pathways in these tissues, and disturbance in gene 
expression is often reflected in a variety of outcomes for which T2D is a risk factor. Thus, T2D-associated vari-
ants altering expression of genes in the heart may more likely affect disease progression through heart-mediated 
processes rather than kidney-mediated processes. It follows that, while all patients are initially diagnosed with 
T2D, some patients may develop coronary artery disease while others may suffer kidney failure (Fig. 1).

We aimed at identifying T2D progression profiles and their impact in different secondary outcomes whose 
risk is increased by T2D. To this end, we studied the effect of the combination of sets of T2D-associated variants 
that show tissue-specificity based on epigenetic markers and expression quantitative trait loci (eQTL) in sec-
ondary outcomes related to T2D (Fig. 2). We identified subsets of T2D-associated variants or single-nucleotide 
polymorphisms (SNPs) acting in regulatory elements and expression quantitative trait loci (eQTL) of relevant 
tissues, and assessed whether each subset had an increased risk to develop secondary outcomes related to T2D, in 
order to unravel tissue-specific genetic profiles that could increase risk of an outcome affecting tissues of interest.

Figure 1.  Hypothetical tissue-specific consequences of T2D variants. A number of bona fide SNPs have 
been associated with T2D risk. A subset of these SNPs overlaps enhancers, promoters and eQTLs in different 
tissues. The variant might affect the regulatory element it overlaps, and consequently the expression of the gene 
affected by this regulatory element. Carriers of particular sets of tissue-specific regulatory SNPs might manifest 
consequences of T2D in a different way, with different progression and outcome profiles.
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Results
Overview of the approach. We identified subsets of T2D-associated variants acting in regulatory ele-
ments or influencing expression of genes in tissues relevant to T2D and secondary outcomes related to T2D 
(Fig. 2). We then associated these variant sets to T2D-related outcomes through both 2-sample Mendelian ran-
domization (MR) and PheWAS, in order to investigate for differential (causal) effects..

T2D‑associated variants are enriched in pancreas, heart, eye, liver and kidney. We applied 
LD score regression (LDSC) in epigenetic data from the Epigenome Integration across Multiple Annotation 
Projects (Epimap), replicating the cell-type enrichment of T2D-associated variants previously observed  in8,10 
(“Methods”). LDSC can be used to test whether a particular genome annotation, such as histone marks, capture 
more heritability than expected by chance. The strongest enrichment was in pancreas (p = 8.7 ×  10−4), followed 
by heart (p = 0.01), endometrial adenocarcinoma (p = 0.012), Multi-Potent Progenitor (MPP) cells (p = 0.014), 
eye (p = 0.016), liver (p = 0.017) and kidney (p = 0.032) (Supplemental Table 1). Previous studies also highlight 
the involvement of adipose  tissue8 and skeletal  muscle12. Due to the involvement of pancreas, heart, eye, liver, 
kidney, skeletal muscle and adipose tissue in secondary outcomes related to T2D, we selected these tissues for 
downstream analysis. Despite arteries, nerve and adrenal gland not showing significant results in our enrich-
ment analyses, we included these tissues due to their known involvement in subsequent outcomes of  T2D13–16. 
We used esophagus as a control tissue for downstream analysis, a tissue ranked one of the least significant 
p-values in the LDSC analysis and is not known to be involved in secondary outcomes related to T2D.

Identification of sets of variants acting on regulatory elements in relevant tissues. We used 
three methods to identify subsets of T2D variants acting in tissues involved in secondary outcomes related 
to T2D: overlap with enhancers and promoters, Summary-based Mendelian Randomization (SMR)17 and Fast 
Enrichment Estimation Aided Colocalization Analysis  FastENLOC18,19.

Overlap with enhancers and promoters. We identified high confidence enhancers in nine tissues of interest, 
namely adipose, adrenal gland, arteries, heart, kidney, liver, muscle, nerve, pancreas and esophagus (control) 
(“Methods”). Briefly, we used as criteria for a confidence enhancer to be present in at least 2/3 of all datasets 
of its category in adult tissue present on Epimap  database20. According to these criteria, no datasets of adult 
kidney were available on  Epimap20, so we excluded kidney from downstream analysis. We identified an average 
of 28,047 enhancers and 19,483 promoters in the datasets included (Supplemental Table 2). We further identi-
fied enhancers and promoters that are unique to each of the nine tissues of interest. An average of 2371 unique 
enhancers and 603 unique promoters were identified.

Next, we overlapped all 425 T2D-associated SNPs and their non-coding proxies in high linkage disequilib-
rium (LD) (N = 14,007) with these high confidence enhancers and promoters, as well as the unique enhancers 
and promoters (“Methods”).

Summary‑based Mendelian Randomization (SMR). We ran  SMR17 to identify variants that affect both gene 
expression and T2D risk. An average of 75 non-independent variants per tissue passed the SMR and HEIDI 
tests thresholds (“Methods”). We selected significant SMR results unique to each of the nine tissues of interest, 
in comparison with all datasets from the Genotype-Tissue Expression (GTEx) project.

FastENLOC. We used  fastENLOC18,19 to identify T2D-associated variants that colocalize with eQTLs in the 
tissues of interest. An average of six non-independent variants per tissue passed the colocalization threshold 
(“Methods”). We selected unique fastENLOC results as those significant results unique to each of the nine tissues 
of interest, in relation to all datasets from GTEx.

Figure 2.  Overview of the approach. We selected variants from 425 T2D-associated loci acting on enhancers, 
promoters and eQTLs of nine tissues relevant for T2D and its secondary outcomes. We used the nine tissue-
grouped variant sets as input for downstream analyses to test their effects on ten secondary outcomes related to 
T2D: 2-sample MR and PheWAS.
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After performing all three analyses for identification of subsets of variants acting on tissues relevant for T2D 
and its secondary outcomes, we further narrowed down these subsets to only independent variants (“Methods”). 
The final subsets of T2D variants had on average 176 SNPs, while subsets of T2D variants acting on unique 
regulatory elements had on average 30 SNPs (Table 1). These were used as input/instruments on 2-sample MR 
analyses and PheWAS analyses.

No causal relation between tissue‑grouped variant sets and T2D secondary outcome. We ran 
MR analyses to assess the association of each tissue-grouped variant set as genetic instruments to secondary 
outcomes related to T2D (“Methods”). Briefly, MR is a method that uses genetic variants to estimate causal 
effects between the exposure and outcome under a set of assumptions, such as independence of confound-
ing  factors21. MR-analysis was performed using an inverse-variance weighted (IVW) linear regression, with 
instrument-outcome associations as dependent variable, instrument-exposure associations as independent vari-
able, and with the intercept constrained to zero (“Methods”). Considering all T2D genetic instruments (425 lead 
variants identified  in7), an increase in T2D risk was associated with an increased risk of all outcomes tested, 
apart from the control esophagitis (Supplemental Fig. 1). In the tissue-grouped MR analyses, for all outcomes 
tested except chronic kidney disease (CKD) and the control outcome esophagitis, all tissue-grouped variant sets 
showed to increase risk of secondary outcomes related to T2D, including the set of our control tissue, esophagus 
(Supplemental Fig. 1). These results were consistent both when using tissue-grouped variant sets of variants 
overlapping all regulatory elements in tissues of interest, as well as regulatory elements unique to each of the tis-
sues of interest. Due to the lower power of tissue-grouped sets of variants acting in unique regulatory elements, 
their confidence intervals were much wider than the much bigger sets of SNPs overlapping all regulatory ele-
ments in tissues of interest. In the analysis including variants overlapping all regulatory elements, as expected, 
the outcome with most risk increase was T2D itself (highest T2D odds ratio (OR) 2.44, 95% (confidence interval 
(CI) 2.29–2.60) in adrenal gland, 2.44 (95% CI 2.30–2.59) in nerve). The other outcomes (apart from the con-
trol esophagitis) had ORs between 1.04 (95% CI 0.93–1.16) for CKD in the pancreas subset, and 2.07 (95% CI 
1.68–2.53) for diabetic neuropathy in the adipose subset (Supplemental Fig. 1, Supplemental Table 3). However, 
we did not observe an instance in which a tissue-grouped variant set increased risk of a secondary outcome of 
T2D more than others. We also performed three complementary analyses which relax the assumption of no 
horizontal pleiotropy amongst the genetic variants. First, MR-Egger regression, of which the intercept formally 
tests for the presence of unbalanced horizontal pleiotropy, and the slope reflects the causal effect estimate after 
adjusting for this pleiotropy by adding an intercept to the IVW  method22. We also applied weighted median-
based  estimator23 and the weighted mode-based  estimator24, which respectively use the weighted median of, and 
the highest density of, the ratio estimates across the individual instruments as estimate of the true causal effect. 
Sensitivity analyses using MR Egger, Weighted Median and Weighted Mode were largely consistent with IVW 
results, and similarly did not provide evidence for heterogeneity across variant sets (Supplemental Table 3).

Phenome‑wide analyses of tissue‑specific genetic risk scores (GRSs). Finally, we took a disease-
agnostic approach and tested the association of the GRS of each tissue-grouped variant set (i.e., SNPs overlap-
ping with all regulatory elements in the nine tissues of interest) with phenotypes in a PheWAS  analysis31,32 
(“Methods”). The only phenotype to pass Bonferroni correction was T2D and its variations, such as T2D with 
renal manifestations or T2D with peripheral circulatory disorders (Supplemental Fig. 2). When assessing results 
at nominal significance (p < 0.05), no tissue-grouped variant set was associated to diseases linked to both T2D 
and the tissue itself, such as cardiovascular diseases associated to heart-grouped or artery-grouped variants, or 
obesity-related diseases associated to adipose-grouped variants (Supplemental Fig. 2).

Table 1.  Number of SNPs and their F-statistics (median, 25th and 75th percentiles) in each tissue-grouped 
variant set, using all regulatory elements and tissue-specific (unique) regulatory elements. IQR interquartile 
range.

Tissue

All regulatory elements
Tissue-specific (unique) 
regulatory elements

N F-statistics median (IQR) N F-statistics median (IQR)

Adipose 196 39.8 (31.4–64.6) 45 51.9 (36.3–71.9)

Adrenal gland 140 40 (31.7–60.6) 13 50.6 (38.8–71.2)

Aorta/arteries 209 39.3(31–59.2) 65 34.6 (31.2–56.9)

Esophagus 195 39.8 (32–60.4) 64 43.4 (33.8–56.8)

Heart 186 39.2 (31.6–63.7) 52 37.4 (26.7–69.6)

Liver 167 39.8 (31.5–64.9) 44 36.9 (29.7–64)

Muscle 165 39.4 (30.9–59) 60 39.7 (29.7–53.7)

Nerve 172 38.9 (31.3–58.6) 17 36.5 (31.7–64.7)

Pancreas 150 39.4 (31.3–58.9) 24 35.4 (29.7–44.8)
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Discussion
We hypothesized that subsets of variants associated with T2D could have tissue-specific effects, and therefore 
would influence the emergence of specific secondary outcomes. Similar to previous analyses, we observed an 
enrichment of T2D variants in pancreas, heart, eye, liver and  kidney8,10. We obtained subsets of T2D-associated 
regulatory variants in these tissues when available, and also others previously implicated in T2D etiology (adi-
pose, adrenal gland, skeletal muscle, arteries and nerve).

We used the selected tissue-grouped variant sets in two analyses to assess their association with secondary 
outcomes related to T2D: 2-sample MR and PheWAS. T2D loci found through GWAS might speak primarily to 
the development of T2D (and the tissues important to developing T2D) rather than tissue-specific downstream 
consequences of T2D. We did not observe, in any of the analyses carried out, that a tissue-grouped variant set 
increases risk of any particular outcome more than other tissue-grouped variant sets, or has a specific disease 
signature.

The identification of T2D-associated variants acting in regulatory elements and gene expression is limited to 
the databases of regulatory elements and gene expression available. Despite the great number of regulatory ele-
ments identified by  Epimap20, we still do not have the full catalog of regulatory elements in all human tissues and 
cells. Recent large-scale common and rare GWAS suggest that substantially larger association studies are needed 
to identify most T2D loci in the  population25. Similarly, larger datasets capturing the regulatory landscape of the 
human genome in relevant tissues are needed to help explain T2D-associated loci, and this work can be extended 
and applied to more high powered eQTL  databases26,27 and more recently published atlas of relevant single-cell 
epigenomes. Currently available single‑cell epigenomic data include T2D‑relevant tissue such as coronary artery 
28, heart 29, and pancreatic islets30. An extension of this work could also benefit from a more refined selection of 
input variants associated to T2D, such as the fine-mapped credible sets of potential causal variants for each T2D 
risk locus made available  by31. Such efforts will increase the potential of identification of causal variants acting 
on gene regulation, and might identify groups of T2D-associated variants that have specific effects in disease risk.

Moreover, despite being assumed that the majority of GWAS-associated loci, which are non-coding, exert 
small regulatory effects on the expression of genes, the majority of disease-associated genetic variants have not yet 
been clearly explained by current eQTL  data32–35. Studies have found that 5–40% of trait associations co-localize 
with eQTLs in relevant  tissues36–40. In fact, a study designed specifically to investigate the link between genetic 
association and regulatory function has failed to capture it. The authors observed that for the majority of puta-
tively causative genes considered, no fine-mapped variants were associated with regulatory regions in relevant 
 tissues40. The authors speculate that lack of statistical power could be one of the reasons, as well as the biological 
context – causative eQTLs may only manifest in certain developmental windows, under specific conditions, or in 
a crucial cell  subpopulation40. The above may explain why another effort to identify tissue-grouped variant sets 
based on tissue-expression profiles has similarly failed to identify different disease risks for their tissue-grouped 
 sets41,42. However, a more recent study utilizing larger gene expression datasets for brain and subcutaneous 
adipose tissue showed evidence that BMI-associated variants colocalizing with gene expression in brain tissue 
might be driving the genetically predicted effects of BMI on cardiovascular-disease endpoints, whereas adipose 
tissue variants might predominantly explain the effects of BMI on measures of cardiac  function43.

Another limitation of this study is that GWAS summary statistics for the secondary outcomes related to 
T2D studied where all control individuals have diabetes were not available. Thus, while for example in the case 
of outcomes such as diabetic nephropathy it is possible that many controls had diabetes, we could not filter for 
those individuals specifically, and the control group may include individuals without diabetes, and a mix of type 
1 and type 2 diabetes.

To conclude, our novel approach for the identification and assessment of tissue-grouped T2D-associated 
variants did not find evidence for significantly different causal effects in any tissue-grouped variant set that could 
be used for prediction of secondary outcomes related to T2D. Increasing sample sizes, both in the number of 
participants as the number of regulatory variants identified in each specific tissue, may overcome the limita-
tions faced in this study. Moreover, the use of datasets at the single-cell resolution could help capture effects not 
observed in analysis of RNA sequencing performed on bulk tissue. As more experiments on the investigation of 
the regulatory landscapes in a variety of tissues are performed, the more data will be available for such integration, 
and the more our knowledge will increase on how regulatory variants act on specific tissues and the interplay of 
regulatory elements. Further investigation on tissue-specific genetic risk profiles can not only help us understand 
the disease mechanisms, but also build a basis for tissue-specific, genetic profile-driven therapeutics.

Methods
Ethical approval. All research was performed in accordance with relevant guidelines/regulations, and 
informed consent for sequencing, phenotype assessment, and publication of results was obtained at time of 
enrollment for BioMe biobank and FinnGen participants. The Coordinating Ethics Committee of the Helsinki 
and Uusimaa Hospital District has evaluated FinnGen, and the EU Data Protection Regulation that came into 
force in May 2018 has been taken into account when planning the project. Further details can be found in 
https:// www. finng en. fi/ en/ code_ of_ condu ct. BioMe Biobank was approved by the Program for the Protection 
of Human Subjects. Further details are located in the BioMe researcher FAQ (https:// icahn. mssm. edu/ resea rch/ 
ipm/ progr ams/ biome- bioba nk/ resea rcher- faqs) and https:// icahn. mssm. edu/ resea rch/ pphs.

Description of the cohorts. The Mount Sinai BioMe Biobank is an ongoing electronic health record 
(EHR)-linked biorepository that enrolls participants non-selectively from the Mount Sinai Health  System44. It 
has included 60,000 participants from the greater New York City area since its inception in 2007. Participants 
are between 18 and 89 years of age and represent a broad spectrum of racial and ethnic diversity (African (24%), 

https://www.finngen.fi/en/code_of_conduct
https://icahn.mssm.edu/research/ipm/programs/biome-biobank/researcher-faqs
https://icahn.mssm.edu/research/ipm/programs/biome-biobank/researcher-faqs
https://icahn.mssm.edu/research/pphs
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European (32%), Hispanic-Latino (35%) and other (9%) ancestries). At enrollment, participants consent to link 
their DNA and plasma samples to their de-identified EHRs. Clinical and EHR information are complemented 
by a detailed questionnaire that gathers demographic and lifestyle information. The median number of clinical 
encounters for BioMe participants is 21.

The FinnGen study utilizes samples collected by a nationwide network of Finnish biobanks. The study is based 
on combining genome information with digital health care data from national health registries. The R5 freeze 
used in this study consists of > 218,700 individuals, up to 17 M variants and > 2800  phenotypes45.

Variant selection and tissue enrichment. We obtained summary statistics including 425 loci identified 
by a GWAS meta-analysis, including 21 independent (p < 5e − 8, > 500 kb and LD  r2 < 0.05) variants identified 
in Europeans only, 153 novel independent SNPs identified in the transethnic meta-analysis, and 251 independ-
ent established T2D  variants8. Full summary statistics comprise SNP, chromosome, position, effect and non-
effect allele frequencies, beta, standard deviation, p-value and N. The full meta-analysis included 1.4 million 
participants and identified a total of 568 associations across all ancestries. We used  LDSC46 to perform tissue 
enrichment analysis, integrating the full summary statistics from Vujkovic et al.8 with 806 datasets of predicted 
enhancers from the Epimap  project20.

Tissue‑grouped variant sets. We selected variants acting on regulatory elements in each tissue of interest 
by overlapping variants with enhancers or promoters and bona fide eQTLs. In a secondary analysis, we identi-
fied enhancers, promoters and eQTLs that are unique to the tissues of interest, and overlapped those with T2D-
associated loci. Variants passing these criteria were then grouped by tissue, and each tissue group was narrowed 
down to independent variants using function clump from PLINK v1.947, parameters --clump-p1 1e-5 
--clump-kb 500 --clump-r2 0.001, using 1000 Genomes phase3 Europeans as reference  panel48. 
GRS was calculated using function –score from PLINK v1.947, weighted by European-specific effect sizes from 
Vujkovic et al.8.

T2D variants acting on regulatory elements. We used enhancers and promoters predicted within the 
scope of  Epimap20. We downloaded chromHMM tracks on 35 tissues and cell-types from https:// perso nal. broad 
insti tute. org/ cboix/ epimap/ Chrom HMM/ obser ved_ aux_ 18_ hg19/. A list of samples used in this analysis and 
grouped by tissue is available on Supplemental Table 2. We included only tissues that had at least three repli-
cates generated from adult tissues. We selected enhancer regions classified by ChromHMM as EnhA1, EnhA2, 
EnhG1 and EnhG2. We selected as promoters regions classified by ChromHMM as TssA, TssFlnk, TssFlnkU or 
TssFlnkD. We assessed how many times each enhancer and promoter appear across all datasets of each tissue, 
using bedtools multiinter49. We then retrieved only enhancers or promoters that appear in at least two thirds of 
the total number of datasets available for each tissue (Supplemental Table 2).

After building a database of high confidence enhancers and promoters in 35 tissues, we also identified regu-
latory elements that are unique to each tissue, using function bedtools intersect ‑v. We then overlapped T2D 
variants and their proxies in high LD with the full set of confidence enhancers/promoters identified in the nine 
tissues of interest, and the set of enhancers/promoters unique to each tissue of interest, using function bedtools 
intersect. High LD was defined as  r2 > 0.8, retrieved using FUMA v1.3.6b50 and their built-in database of 10,000 
randomly selected unrelated Europeans from the  UKBiobank51,52 as reference panel. A total of 14,007 variants 
were intersected.

T2D variants acting on eQTLs. We used two methods to identify T2D-associated variants influencing 
gene expression: SMR and colocalization with fastEnloc. SMR integrates gene expression information to pin-
point candidate causal variants by determining whether the association between an associated SNP and the 
phenotype is mediated through an  eQTL17. fastENLOC is a Bayesian hierarchical colocalization method that 
prioritizes candidate causal variants by colocalizing associated variants and  eQTLs18. For both analyses, we used 
as input data from GTEx  v836. Datasets included eQTL information on the tissues relevant for T2D and its 
secondary outcomes: adipose subcutaneous (n = 663), adipose visceral (n = 541), adrenal gland (n = 258), artery 
aorta (n = 432), artery coronary (n = 240), artery tibial (n = 663), heart atrial appendage (n = 429), heart left ven-
tricle (n = 432), liver (n = 226), muscle skeletal (n = 803), nerve tibial (n = 619) and pancreas (n = 328). We used 
esophagus–gastroesophageal junction (n = 375), mucosa (n = 555) and esophagus muscularis (n = 515) as control 
tissues.

Briefly, the SMR & HEIDI approach integrates summary-level data from GWAS and eQTL studies to test 
if a transcript and phenotype are associated because of a shared causal variant (i.e., pleiotropy)17. We retrieved 
variants that simultaneously affect gene expression and T2D risk that passed a Bonferroni corrected p-SMR and 
a p-HEIDI > 0.05, as in similar  studies17. LD data required for the HEIDI test were estimated from genotyped 
data from the UK Biobank (UKB) study, including 10,000 randomly selected European participants.

We applied  fastENLOC18,19, a Bayesian hierarchical colocalization method, to assess which T2D-associated 
variants colocalize with eQTLs in tissues of interest. We used pre-computed GTEx v8 multi-tissue eQTL annota-
tion available on https:// github. com/ xqwen/ faste nloc. Variants that passed the threshold for SNP colocalization 
probability (SCP) > 0.1 were considered “colocalizing”.

In order to retrieve eQTLs unique to each tissue of interest, we first ran SMR and fastENLOC on all tissues 
available on GTEx. We then selected eQTLs passing SMR and fastENLOC significance thresholds that are unique 
to each of the nine tissues of interest in this study.

https://personal.broadinstitute.org/cboix/epimap/ChromHMM/observed_aux_18_hg19/
https://personal.broadinstitute.org/cboix/epimap/ChromHMM/observed_aux_18_hg19/
https://github.com/xqwen/fastenloc
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Two‑sample Mendelian Randomization. Previous works have described the methods for MR analysis 
of summary data based on two  studies53,54. Here, we used all variants in the tissue-grouped variant sets as pro-
posed instruments to measure their associations to ten outcomes with summary data available from the FinnGen 
 study45: T2D (n total = 215,654; n cases = 35,607), diabetic nephropathy (n total = 213,746; n cases = 3,283), CKD 
(n total = 216,743; n cases = 3902), peripheral artery disease (PAD) (n total = 213,639; n cases = 7098), heart fail-
ure (HF) (n total = 218,208; n cases = 13,087), stroke (n total = 180,862; n cases = 18,661), myocardial infarction 
(MI) (n total = 200,641; n cases = 11,622), diabetic retinopathy (n total = 216,666; n cases = 14,584), diabetic neu-
ropathy (n total = 163,616; n cases = 1415) and esophagitis (n total = 190,442; n cases = 747) as a control (case 
definition for all outcomes can be found on Supplementary Table 4). SNP-exposure associations were retrieved 
from the summary statistics from Vujkovic et al.8, and SNP-outcome associations come from summary statistics 
from  Finngen45. All tissue-grouped variant sets were considered composed of sufficiently strong instruments 
based on their F-statistics, considering an F-statistic > 10 as strong enough instrument to avoid weak instrument 
 bias55 (Table 1). Using fixed effects IVW analyses, we combined the effects of the individual genetic instruments 
to obtain a genetically determined association between exposure and outcome under the assumption of the 
absence of horizontal pleiotropy. Some variants from the tissue-grouped variant sets were removed from MR 
analyses due to being palindromic genetic instruments with intermediate allele frequencies. Estimates from the 
IVW analyses can be interpreted as the odds ratio for the outcome trait(s) per 2.72-fold increase in the odds of 
T2D (i.e., a one unit change in genetic liability to T2D on the log odds scale). We also run sensitivity analyses 
using methods MR  Egger22, Weighted  Median23 and Weighted  Mode24. Analyses were run using the R-based 
package ‘TwoSampleMR’56.

Phenome‑Wide Association Study (PheWAS). We used the PheWAS package in  R57 using default 
settings to test for associations between our tissue-grouped variant sets and a wide range of phenotypes. We 
included 1039 disease outcomes in 8370 individuals of self-reported European ancestry from BioMe  biobank44, 
using age, sex, body mass index (BMI) and 10 first principal components as covariates. We report the ten most 
significant associations. Results were corrected for multiple testing by Bonferroni test.

Data availability
T2D summary statistics were downloaded from  dbGaP7 (Study Accession: phs001672.v1.p1). All the scripts used 
in this project can be found at https:// github. com/ Daian eH/ 2Samp leMR- T2D, together with tables containing 
tissue-specific T2D-associated variants used as input for PheWAS and SMR.
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