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Abstract
Inhibition in the mammalian cerebral cortex is mediated by a
small population of highly diverse GABAergic interneurons.
These largely local neurons are interspersed among excitatory
projection neurons and exert pivotal regulation on the forma-
tion and function of cortical circuits. We are beginning to un-
derstand the extent of GABAergic neuron diversity and how
this is generated and shaped during brain development in mice
and humans. In this review, we summarise recent findings and
discuss how new technologies are being used to further
advance our knowledge. Understanding how inhibitory neu-
rons are generated in the embryo is an essential pre-requisite
of stem cell therapy, an evolving area of research, aimed at
correcting human disorders that result in inhibitory dysfunction.
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Introduction
Inhibitory neurons in the cerebral cortex represent
around 20e30% of the neuronal population. Their het-

erogeneity has been extensively studied in an effort to
define subtypes and explore their function. Recent
transcriptomic and epigenomic studies have provided
unprecedented insight into the extent of heterogeneity
but have also questioned the definition of cell types.
The neuroepithelial origin of cortical inhibitory neurons
in the embryo has been studied in mice for years. Recent
www.sciencedirect.com
data from human studies have shown remarkable
developmental conservation between the two species
but have also re-introduced the idea of additional sour-
ces of cortical interneurons in primates. The inter-
neuron population continues to be moulded beyond the
initial specification stages through processes such as
migration, morphological and functional maturation and
cell death. All these processes, from cell birth to cell

function, are controlled by transcriptomic, epigenomic
and proteomic networks that underlie the emergence of
cortical inhibition.

In this review, we discuss how new technologies have
provided novel insight into the question of diversity and
specification. We report on emerging aspects of cortical
interneuron development, focusing on novel tran-
scriptomic epigenetic and post-translational findings,
and propose how new technical breakthroughs that
combine the many different levels of molecular control

can be harnessed to further understand cortical inter-
neuron development and diversification.

Cortical interneuron subtypes: how many
are there?
For many years, cortical interneuron classification had
relied on their molecular, morphological and electro-

physiological characteristics [1e3]. Interneuron popu-
lations had been defined on the basis of expression of
neurochemical markers, such as Parvalbumin (PV) and
Somatostatin (SST), axonal morphology and physiolog-
ical characteristics [4]. These criteria, as well as the
firing times of cortical interneurons during circuit
function, led to the identification of 21 interneuron
subtypes in the hippocampal CA1 area [1]. For a while,
this provided a broad appreciation of interneuron di-
versity and function and numerous studies were subse-
quently conducted in several species, including mouse

and human, in an effort to identify common and distinct
interneuron subtypes.

An explosion in the classification field came recently
from large scale single cell transcriptomic studies
(Table 1). While previous work had relied on a handful of
markers to identify interneuron types, single cell and
single nucleus sequencing studies made use of the entire
transcriptome of cells to identify and classify them
(Figure 1). Based on transcriptomic findings, cell types
have been mapped in fine detail and comparisons have
Current Opinion in Neurobiology 2023, 80:102703
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Table 1

Single cell/nuclei sequencing studies (published from 2016 onwards) that characterise cortical interneuron diversity and development.

Reference Age Area Cells sequenced Approach Comments/findings

Mouse adult
Tasic et al., 2016 [66] 8-weeks male primary visual cortex 761 GABA sc RNA-seq A pilot study that identified 23 transcriptomic GABAergic cell

types. Combined retrograde labelling with sc RNA seq to
examine axonal projections. Combined Cre-labelling to
examine electrophysiological features of one population.

Paul et al., 2017 [67] 6-weeks motor cortex,
somatosensory cortex

584 GABA sc RNA-seq Used recombinase-based tracing to isolate 6 cardinal
interneuron populations for high-resolution transcriptional
profiling. Synaptic communication profiles distinguish
major classes of cortical interneurons.

Tasic et al., 2018 [6] P53–P91 males and
females

primary visual cortex,
anterior lateral motor
cortex

10,534 GABA sc RNA seq Identified 61 transcriptomic GABAergic cell types in the adult
cortex. Embryonic origin (MGE vs CGE) defines the
biggest subdivision of cortical interneurons. Identified 31
MGE-derived, 29 CGE-derived with their inferred layer
distribution. Combined with retrograde labelling to match
transcriptomic identity with projection specificity. GABA
cell types shared across the two areas.

Scala et al., 2020
[68]

P75 males and
females

primary motor cortex 1,329 patch-seq (all cells)
646 morphologies

Patch-seq
morphological
reconstruction

Whole-cell patch recording followed by ss RNA-seq and
morphological reconstruction. Transcriptomic families and
their morpho-electric properties are discrete. Within each
family, transcriptomic cell types have overlapping morpho-
electric features.

Gouwens et al., 2020
[10]

P45–P70 males and
females

visual cortex 4,270 GABA patch-seq
517 morphologies

Patch-seq, layer
mapping,
morphological
reconstruction

Whole cell patch-recording followed by single cell
sequencing, mapping of cell soma location onto the Allen
Mouse Common Coordinate Framework and
reconstruction of the dendritic and axonal morphologies.
Identified 28 met-types of cortical interneurons
distinguished by their morphological, electrophysiological
and transcriptomic properties.

Yao et al., 2021 [69] P50–P121 males
and females

isocortex and
hippocampus

>1.3 million (all cells) sc RNA seq Compared cortical and hippocampal GABAergic
transcriptomic types. Most are shared between the two
areas and are found in similar proportions. A cortical
subset is missing from the hippocampus and vice versa.

Mouse embryonic
Chen et al., 2017 [70] E11.5

E13.5
E15.5
E17.5

MGE
MGE
MGE
MGE

96
48
63
18

sc RNA-seq Identified VZ/SVZ progenitors and immature MGE neurons
of the cortex, the striatum and the globus pallidus.
Compared these to ES-derived MGE cells.

Mi et al., 2018 [28] E12.5/E14.5
E12.5/E14.5
E12.5/E14.5

Dorsal MGE ventral
MGE
CGE

298/307
363/288
466/281

sc RNA-seq Identified embryonic emergence of cortical interneuron
subtype diversity. Used adult databases to assign
developmental identity to adult subtypes.

Mayer et al., 2018
[27]

E13.5
E14.5
E14.5
E18.5, P10

MGE
CGE
LGE sorted cortical
interneurons

5622
7401
8543
8382

sc RNA-seq Identified developmental trajectories of cortical interneurons.
Used adult databases and correlated precursor with adult
cell heterogeneity.
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Allaway et al., 2021
[37]

E13.5
E18.2, P2, P10,
P28

MGE
Sorted cells from the
cortex

sc RNA-seq
sn ATAC-seq

Distal elements are accessible before gene expression.
Subclass-specific (SST vs PV) chromatin states
discernible only from P2 onwards.

Lee et al.
2022 [26]

E12.5/E14.5 MGE
LGE
CGE

12,052/8,389
10,316/8,658
9,275/7,171

sc RNA-seq WT and Nes-dVenus embryos were used to identify and
enrich for ventricular zone cells. Temporal changes in
gene expression are reported between E12.5 and E14.5
VZ cells.

Human adult
Lake et al., 2018 [71] One female aged 51 six brain areas 4,488 (all cells) sn RNA-seq Eight inhibitory subtypes identified. Grouped by

developmental origin. Subtypes parallel those in the
mouse somatosensory cortex.

Boldog et al., 2018
[23]

Two males aged 50,
54

layer 1 middle temporal
gyrus

769 NeuN sn RNA seq Combined transcriptomics and electrophysiology to study
layer 1 neurons – mostly GABAergic. Identified 11
GABAergic clusters in layer 1. Identified a new GABAergic
cell type not seen in mouse cortex.

Hodge et al., 2019 [7] Eight males and
females aged 18-
68

middle temporal gyrus 4,297 GABA sn RNA seq 45 transcriptomic GABAergic cell types identified.
Hierarchical relationships mirror developmental origins:
‘major classes’ (excitatory and inhibitory), ‘classes’ (e.g.,
MGE and CGE), ‘subclasses’ (intermediate order nodes)
and ‘cell types’ (clusters). All classes and subclasses are
conserved between mouse and human. Homologous cell
types show divergence of gene expression between the
two species. This divergence is related to connectivity and
signalling.

Krienen et al., 2020
[8]

Human, macaque,
marmoset, mouse,
ferret

across different regions 188,876 GABA sn RNA seq Ivy cells of the mouse hippocampus are also found in the
neocortex of humans, macaque and marmosets but not
mice or ferrets. A new striatal interneuron identified in
primates that is absent in mice and ferrets and constitutes
~30% of all striatal interneurons.

Human embryonic
Yu et al., 2021 [30] Human

GW9-GW12
subpallium 40,572 sc RNA-seq Used scRNA-seq data for in situ sequencing to identify

spatial distributions of cell types. Identified VZ and SVZ
genes expressed in the subpallium. Similar to rodents,
class-specific transcriptional identity specified in immature
neurons before migration into the cortex.

Shi et al., 2021 [29] Human
GW9-GW18

ganglionic eminences
(MGE, LGE, CGE)

56,412 sc RNA-seq Identified expansion of intermediate precursor cells in the
human ganglionic eminences. Report conserved
mechanisms underlying, not only specification, but also
migration and differentiation of interneurons between
mouse and human. Using MGE-SST as an example, they
identify 11 subtypes in the adult, of which 7 can be
detected in the ganglionic eminences before migration.
Therefore, cortical interneuron subtype-specific
transcriptional identity is specified shortly after neuron
birth.

Zhao et al., 2022 [31] Human GW9 and
GW13
Macaque GW7,
GW10 and GW12
Human GW9

ganglionic eminences
(MGE, LGE, CGE)

13,782
29,269

sc RNA-seq
sc RNA-seq
sc ATAC-seq

Report strong conservation of cell diversity and lineage
between human and macaque.
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4 Developmental Neuroscience
been made across areas and species [5]. Subclasses such
as PV and SST have been split into >15 transcriptomic
subtypes each in both mice [6] and humans [7,8].
Altogether, >50 interneuron subtypes have been iden-
tified based on transcriptomic content and unbiased
statistical classification (see Table 1). At the same time,
some of these studies reported unexpected clustering of
small populations that was inconsistent with previous

knowledge (e.g. Lamp5;Lhx6;Nkx2-1 interneurons were
found to cluster with CGE-derived populations, despite
expressing the two classical markers of MGE-derived
interneurons [6]). Overall, single cell RNA sequencing
findings confirmed much of previous work, in terms of
molecular identity of interneuron classes, but raised the
important questions what is an interneuron subtype? and
just how many subtypes really exist? [9]. Transcriptomic
analysis alone will not answer these questions. Some
studies are beginning to integrate transcriptomic data
with electrophysiological and morphological characteris-

tics (see Table 1) and have already clustered the cortical
GABAergic population into 28 met-types (morphology,
electrophysiology and transcriptome) in themouse visual
cortex [10] (Figure 1a). This combinatorial approach has
narrowed down the transcriptomic diversity into a more
tangible classification with functional relevance. The
next step should be to expand this work to cover all
subtypes and arrive at a generally accepted consensus
that includes well-defined criteria that can be applied
across laboratories. At the same time, -omic technologies
and analysis pipelines need to be streamlined to make

them more accessible and affordable.

The spatial embryonic origins of cortical
interneurons: a new challenge to the dogma
Genetic fate-mapping in mice has demonstrated that
subcortical germinal zones generate distinct populations
of cortical GABAergic neurons [11e15]. The medial and
caudal ganglionic eminences (MGE and CGE, respec-
tively) are the two major sources, while the preoptic area

(POA) is an additional minor source. Further parcella-
tions of these germinal zones have been reported on the
basis of combinatorial transcription factor expression
[16]. However, to date, there is only little evidence of
distinct neuronal fates being generated from these
subdomains [12,16].

Classical studies in primates and humans had suggested
that unlike the mouse, human and non-human primate
cortical interneurons originate, not only in the gangli-
onic eminences, but also in cortical progenitor regions

[17]. Guided by studies in mice and the observations of
clear migrations from the MGE and CGE towards the
cortex in primate and human embryos in vitro, it was
later suggested that, like the rodent, the majority of
primate neocortical GABAergic interneurons originate
from the ganglionic eminences of the ventral telen-
cephalon [18,19]. Novel studies that combine progeni-
tor tagging with high-throughput sequencing in human
Current Opinion in Neurobiology 2023, 80:102703
in vitro slices now challenge this view and postulate that
some cortical interneurons in humans share their origin
with pyramidal neurons [20]. These cortical-derived
neurons have transcriptional similarity to both CGE-
derived inhibitory and cortical-derived excitatory neu-
rons, indicating that the cortex may form an additional
source of cortical interneurons in humans [20]. This
additional source, together with observations of

expanded ganglionic eminences and protracted neuro-
genesis periods, may explain how the human brain can
generate larger numbers and perhaps new types of in-
terneurons for a bigger cortical volume [21,22]. Tran-
scriptomic studies combined with morpho-electric
observations have found evidence of a human-specific
GABAergic neuron with rosehip morphology, the origin
of which remains unknown [23]. Whether cortical
interneuron generation from local progenitors occurs in
humans in vivo and the role of evolutionarily novel
neurons in human cortical circuits and disease remain

exciting unexplored avenues for future research.
The temporal emergence of cortical
interneuron heterogeneity: at the foothills
Developmental studies have been instrumental for the
classification of cortical interneuron subtypes in the
adult cortex: the embryonic origin of cortical in-
terneurons has been incorporated into all reported
transcriptomic-based classification schemes, as it pro-
vided a genetic basis for lineage divergence (Figure 1a).
‘Major classes’ (excitatory versus inhibitory) and ‘classes’
(MGE versus CGE) of neurons in the adult cortex have

been found to cluster according to their developmental
origin, indicating that their neuroepithelial origin defines
their transcriptome and their broad identity [7]. Key
transcriptional regulators that drive pan-GABAergic and
origin-specific identities in cortical interneurons have
been defined in mice and humans using mutational
analysis and modelling [24,25]. However, neither the
embryonic origin, nor the exclusive or combinatorial
expression patterns of a handful of key transcription
factors are sufficient to explain the diversity of cortical
interneurons and the segregation of ‘classes’ into ‘sub-

classes’ and ‘subtypes’. When does this extensive di-
versity emerge? Is it present within cycling progenitors in
the ganglionic eminences or in emerging young imma-
ture neurons? Can diversity be traced to newborn neu-
rons or is diversity imposed when interneurons reach
their destination and integrate into networks? Attention
turned to single-cell transcriptomic and epigenomic tools
in an attempt to tackle these questions.

Transcriptomics
Ground-breaking single-cell RNA sequencing studies in
the developing mouse and human brain were undertaken
in an effort to reveal the temporal emergence and ge-
netic networks that underlie diversity. Transcriptomic
studies focussing on early ventricular zone progenitors
report significant shifts in gene expression with
www.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


Figure 1

Diversity and development of cortical GABAergic interneurons in the single cell era. a. Analysis of single cells from the mouse adult visual cortex has
revealed the extent of diverse met-types of inhibitory neurons that can be distinguished on the basis of morphological, electrophysiological and tran-
scriptomic signatures. ‘Major classes’ and ‘classes’ of neurons cluster according to their embryonic origins (see B). The cladogram is based on Gouwens
et al., 2021 [10] and Hodge et al., 2019 [7].b. The embryonic cortical progenitors generate all cortical excitatory neurons found in the adult cortex while the
MGE and the CGE are the two major sources of cortical GABAergic interneurons. Single cell RNA sequencing of dissociated embryonic MGE and CGE
cells identified numerous prospective interneuron subtypes demonstrating an early divergence of cortical GABAergic interneurons in the ganglionic
eminence before migration into the cortex. The cladogram is based on Mi et al., 2018 [28]. VCx, visual cortex; MGE, medial ganglionic eminence; CGE,
caudal ganglionic eminence; Cx, cortex.
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advancing development and postulate that these may
underlie temporal changes in cell fates [26]. Indeed,
previous findings had reported temporal biases in the

generation of interneuron subtypes from the ganglionic
eminences [2]. It seems likely, therefore, that a temporal
code of cortical interneuron subtype generation may be a
strong contributor to the generation of diversity.

Transcriptomic studies in mouse and human embryos
have also revealed a clear diversity among newborn
neurons as soon as these cells emerge from the ven-
tricular zone (Figure 1b). Distinct groups of immature
neurons with regional identities have been found in
the mouse embryonic ganglionic eminences [27,28].

Human studies found similar GABAergic interneuron
diversity among newborn neurons and reported con-
servation of developmental programs between mouse
and human [29e31]. Interestingly, single-cell RNA
www.sciencedirect.com
sequencing studies that combined lineage tracing
found no evidence of mixed excitatory and inhibitory
clones, confirming that mouse cortical precursors do

not generate interneurons in vivo [32]. Transcriptomic
studies have not detected as many postmitotic pre-
cursor clusters as there are mature neuronal pools in
the adult cortex, pointing to only limited diversity
among newborn neurons. This is not surprising given
that transcriptomic classification in the adult cortex
relies on expression of maturation markers that define
these cells and their functional characteristics. Het-
erogeneity within progenitors or newborn neurons may
be too subtle to detect at the level of differential
transcript expression. Attention turned to epigenetics,

because it provided an exciting possibility that chro-
matin marks preceding gene expression may reveal
early additional heterogeneity within progenitors and
newborn neurons.
Current Opinion in Neurobiology 2023, 80:102703
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6 Developmental Neuroscience
Epigenomics
Epigenetic mechanisms - molecular processes that
impose specific and heritable patterns of gene expression
on the progeny of differentiated cells without altering
the DNA sequence e include, histone modifications
(acetylation, methylation, phosphorylation and ubiq-
uitination) and DNA methylation. Histone methylation
or acetylation at distinct lysine (K) residues of histone 3
have been associated with gene activation (H3K4me1/3,
H3K9ac, H3K27ac, H4K36ac) and repression
(H3K27me3) and chromatin immunoprecipitation with

sequencing (ChIP-seq) has been used to interrogate
chromatin accessibility. Using bulk epigenomic ap-
proaches, several studies had examined the chromatin
status of basal forebrain progenitors during the acquisi-
tion of GABAergic identity and had linked specific
transcription factors to the regulation of the epigenome.
NKX2-1 and LHX6, two core regulators of generic MGE
identity are involved in the regulation of chromatin state
that permits MGE gene expression and represses alter-
native fates [33]; DLX proteins, transcription factors
that act further up the hierarchy to control generic

GABAergic fates, are also involved in the regulation of
the epigenome by directly interacting with and recruit-
ing chromatin modifiers to gene regulatory elements
[34,35]. Additionally, deletion of genes that encode
components of chromatin modifying complexes revealed
defects in several aspects of cortical interneuron devel-
opment, including cell proliferation and death [36].

Bulk epigenomic studies gave us a broad picture of the
epigenomic state of interneuron precursors and their
progeny. By combining high-throughput scRNAseq and

single-cell assay for transposase-accessible chromatin
with sequencing (scATAC-seq), Allaway et al. explored
the epigenetic divergence among embryonic progenitors
in the ganglionic eminences at the single cell level.
Distinct chromatin landscapes were found to predict and
stabilize the mature identity of future interneuron sub-
classes. However, chromatin accessibility signatures
were found to be broader than gene expression profiles,
starting earlier and lasting longer and only stabilizing
when interneurons settle within the cortical layers [37].
This indicated that the epigenome alone cannot be used

to infer identity at embryonic stages. Furthermore, the
transcriptome and the epigenome together are not suf-
ficient to explain diversity. Instead, downstream protein
interactions and cellular events dictated by temporal and
spatial cues may drive lineage divergence within the
more ‘plastic’ or more subtly heterogenous clusters of
newborn neurons. This plasticity of embryonic clusters
may also confer an evolutionary advantage as minor var-
iations within conserved initial classes of neurons may
drive expanded variation of neurons in primates [38].

DNA methylation is another form of epigenetic modi-
fication that can impact development. Prenatal stress in
mice has been reported to elevate the expression of the
Current Opinion in Neurobiology 2023, 80:102703
DNA methyltransferases DNMT1 and DNMT3A in
GABAergic interneurons, while inducing schizophrenia-
like phenotypes in their offspring [39]. Although studies
to examine the role of DNA methylation in cell fate
determination are yet to be reported, DNTM1 has
recently been described to regulate cortical interneuron
migration and survival of POA-derived interneurons, not
through canonical DNA-methylation mechanisms, but

through a cross-talk with histone modifiers [40e42].
The full impact of DNAmethylation mechanisms in cell
fate decisions of cortical interneurons remains unclear.
Emerging single cell methylome profiling technologies
[43] can be applied to cortical interneurons in order to
gain further insight into the mechanisms of develop-
mental diversification.

Beyond transcriptomic and epigenomic signatures
Undoubtedly, lineage specification in neuronal pro-
genitors involves epigenetic and transcriptional regula-
tion. However, the levels of mRNA transcripts and their
encoded proteins do not always correlate. Post-
transcriptional and post-translational regulation also
need to be considered. Regulation of protein synthesis,
protein modification and degradation all impact the
cellular protein content. Proteomic approaches uncover

the protein components and their abundance inside
cells. Large-scale proteomic studies in the developing
healthy telencephalon have not been performed. One of
the first attempts to obtain a brain-wide high-resolution
mass spectrometryebased proteome identified proteins
in cortical oligodendrocytes, astrocytes, microglia and
neurons [44]. However, deeper coverage of protein
content awaits further improvements in technology.
Uncovering post-translational modifications and cell-
type-specific protein isoforms lag even further behind.

At the single cell level proteomics has proved even more
difficult as there is no PCR equivalent for protein
amplification and detection of low-abundance proteins.
In this regard, the field is about to undergo a trans-
formation. Advances in sample preparation and analysis
pipelines will soon allow characterisation of proteins in
single cells [45,46]. Single cell proteomics with intra-
cellular spatial resolution is another dimension that
will undoubtedly appear in the future. Currently, Deep
Visual Proteomics, a strategy that uses artificial
intelligence-driven image analysis, laser microdissection

and ultrasensitive proteomics, can characterise as few as
100 cells with spatial information [47]. Transferring this
technology to single cells will be truly transformative.
An integrated approach to understanding
the molecular specification and
diversification of cortical interneuron
subtypes
Understanding the genetics of cortical interneuron
specification and diversification requires a multi-modal
approach (Figure 2). This includes: quantifying (1)
www.sciencedirect.com
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The emergence of cortical interneuron diversity Kessaris and Denaxa 7
gene expression (transcriptome) and (2) protein
expression (proteome) in single cells at different stages
of development, (3) identifying key transcription factors
and regulators that drive cell fate decisions (e.g. through
small- or large-scale CRISPR-based mutagenesis
screens [48]), (4) identifying the binding sites for these
transcription factors within the genome, (5) probing the
accessibility of these binding sites in different cells and

at different stages of development (e.g. through epige-
nomic studies, ChIP-seq, Cut&Run and scATAC-seq)
and (6) determining how these different levels of con-
trol come together to form cell-type-specific protein
networks that mediate cell fate specification of cortical
interneuron ontogeny.

The most comprehensively studied core transcriptional
regulators of cortical interneuron specification to date
are the pan-GABAergic DLX proteins. The impact of
mutations in Dlx genes [49e51], the putative binding

sites of DLX proteins in the genome with their acces-
sibility during development [34,52], as well as some of
their interacting partners [35] have been identified.
The core MGE regulators NKX2-1 and LHX6 have also
been studied in some depth: the consequence of NKX2-
Figure 2

Proposed framework for understanding the genetic networks that underline o
modal, integrative approach that combines different levels of information provi
out cortical GABAergic interneuron development and diversification. Key gene
proteomic studies, complemented by mutagenesis screens. Computational m
artificial intelligence can integrate this information to build protein networks a
developmental mutations on the cortical interneuron population.

www.sciencedirect.com
1 [53,54] and LHX6 [55] mutations, as well as the
binding sites for these two key MGE regulators [33]
have been identified.

Until recently, binding partners specific to LHX6,
beyond the typical LIM-homeodomain binding protein
partners [56,57] have been elusive. However, a recent
study from our laboratories demonstrated that LHX6

interacts with a novel transcriptional regulator of cortical
interneurons, MTG8, and the two together are essential
for the early specification of cortical interneuron subsets
that co-express SST and neuropeptide Y (NPY) [58].
When ectopically expressed in developing cortical pro-
genitors, LHX6 and MTG8 are sufficient to activate
expression of critical identity factors of the SST-NPY
lineage. The mechanism of action of MTG8 within
the LHX6-MTG8 complex has not been determined.
There is evidence that LHX6 acts in a dose-dependent
manner to specify distinct MGE interneuron fates [59].

By binding to LHX6, MTG8 may stabilise LHX6 onto
its targets, increasing its effective concentration, a
mechanism previously proposed for another member of
the MTG family [60]. Alternatively, through its high
networking capacity, MTG8 may attract other regulatory
f cortical GABAergic interneuron specification and diversification. A multi-
ded by advanced single cell –omic approaches is fundamental to puzzling
tic players can be identified by large scale epigenomic, transcriptomic and
ethods that take advantage of emerging advances in deep learning and
nd genetic models that can be used to map out the consequence of

Current Opinion in Neurobiology 2023, 80:102703
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8 Developmental Neuroscience
partners, including histone modifiers, which are known
interacting partners of this protein family [61,62]. The
interaction of the MGE-specific master-regulator LHX6
with the more widely expressed MTG8 is an example of
a core transcription program coming together with a
lineage-restricted parallel program to specify cell fate.
The finding that a protein partner of LHX6 mediates
one of its multiple functions suggests that, beyond

transcriptomic, epigenomic and proteomic studies,
proteineprotein interactions may hold the key to un-
derstanding cortical interneuron subtype specification.
The early loss of subsets of SST-NPY interneurons
following the loss of MTG8 further indicates that, not
only ‘major classes’ and ‘classes’, but also ‘subclasses’
and ‘subtypes’ of cortical interneurons are specified
through genetic programs initiated in the ganglionic
eminences [58].
Into the future
Bulk and single-cell ‘omic’ studies continue to
generate an enormous amount of complex data that
must be harnessed further to provide a better under-
standing of the genetics of cortical interneuron gen-
eration. Emerging analytic techniques that employ

deep learning and artificial intelligence will need to be
used to mine these data further. For example, deep
neural networks that can simulate ChIP-seq can be
used to find transcription factor binding sites in the
genome [63]. Software that integrates single cell and
ATAC sequencing data to generate gene-regulatory-
networks and perturb them in silico can also be used
to predict the impact of gene perturbations on cell
lineages [64]. Understanding the genetics of cortical
interneuron development is ongoing, alongside stem
cell studies using human induced pluripotent stem
cells and organoids, which recapitulate the early stages

of human cortical development in vitro [65]. Ulti-
mately, this huge amount of new knowledge can be
integrated to build developmental models that can be
used to map disease states, predict the impact of
human mutations on cortical interneuron development
and develop bespoke stem cell therapies for cortical
interneuron disorders.
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