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ABSTRACT: We present a novel, correlative chemical imaging
strategy based on multimodal matrix-assisted laser desorption/
ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral
microscopy, and spatial chemometrics. Our workflow overcomes
challenges associated with correlative MSI data acquisition and
alignment by implementing 1 + 1-evolutionary image registration for
precise geometric alignment of multimodal imaging data and their
integration in a common, truly multimodal imaging data matrix with
maintained MSI resolution (10 μm). This enabled multivariate
statistical modeling of multimodal imaging data using a novel
multiblock orthogonal component analysis approach to identify
covariations of biochemical signatures between and within imaging
modalities at MSI pixel resolution. We demonstrate the method’s
potential through its application toward delineating chemical traits of
Alzheimer’s disease (AD) pathology. Here, trimodal MALDI MSI of transgenic AD mouse brain delineates beta-amyloid (Aβ)
plaque-associated co-localization of lipids and Aβ peptides. Finally, we establish an improved image fusion approach for correlative
MSI and functional fluorescence microscopy. This allowed for high spatial resolution (300 nm) prediction of correlative, multimodal
MSI signatures toward distinct amyloid structures within single plaque features critically implicated in Aβ pathogenicity.
KEYWORDS: mass spectrometry imaging (MSI), light microscopy (LM), matrix-assisted laser desorption/ionization (MALDI),
spatial chemometrics, image analysis, correlative imaging, Alzheimer’s disease (AD), amyloid pathology

■ INTRODUCTION
Over the last years, mass spectrometry imaging (MSI) has
emerged as a powerful tool for chemical imaging to increase
understanding of spatial biochemical distribution dynamics in
tissue that are associated with histopathological processes.1−7

Moreover, acquisitions of multiple chemical imaging modal-
ities contribute with complementary molecular information,
specifically multimodal MSI or the integration of MSI with
histological microscopy, vibrational spectroscopy, magnetic
resonance imaging, as well as fluorescence microscopy.8−13

The acquisition of imaging data in multiple modalities yields
datasets that may be spatially misaligned. In order to combine
such datasets, the imaging data need to be registered to one
another, meaning precisely geometrically aligned and image
distortion-corrected.14 However, the registration of MSI
images may be particularly difficult due to image noise and
low contrast. Consequently, manual selection of accurate
control points may be challenging, and machine-based
registration approaches struggle to converge. While MSI data
are commonly complemented with other modalities, cross-
modal interpretation is often subject to human judgment.
Workflows that incorporate image registration procedures are

usually applied for co-representing images rather than to mine
data across modalities.15,16

A major bottleneck is then the comprehensive statistical
evaluation of multimodal imaging data. Here, statistics are
typically performed on averaged data from assigned regions of
interest (ROI) at the expense of spatial information.17 Elegant
multivariate data analysis approaches have been pioneered
integrating MSI data together with orthogonal imaging,
typically histological microscopy, for comprehensive multi-
modal data analysis.11,18−20 These integrative multimodal
analyses were, however, solely considering single ion mode
MSI data. This highlights the need for both improved data
processing workflows for accurate MSI image alignment and
more powerful data mining strategies for the interpretation of
multimodal data at the acquired MSI image resolution.21−23
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The goal of the present work was, therefore, to leverage and
significantly extend on previous multimodal imaging ap-
proaches including those developed in our lab,8,10 to provide
a spatial strategy for comprehensive acquisition, registration,
and integration of multimodal MSI and microscopy data to
interrogate complex biological tissues while maintaining single
pixel resolution. We developed new sample preparation
workflows and imaging protocols that allow for trimodal
matrix-assisted laser desorption/ionization (MALDI) MSI
(negative ion mode lipids, positive ion mode lipids, and
peptides) and interlaced fluorescence microscopy to be
acquired on a single brain tissue section. We present a novel
computational workflow that implements effective data
processing and automated image registration and integration
enabling multivariate statistical modeling of chemical informa-
tion across multiple modalities while reducing human bias.
Finally, we extend these analyses toward image data fusion to
predict MSI ion distributions (10 μm) at microscopy image
resolution (300 nm), while making use of hyperspectral
microscopy information provided by using functional lumines-
cent probes. We demonstrate the potential of the method
toward delineating chemical traits of amyloid beta (Aβ) plaque
pathology, the main pathological hallmark of Alzheimer’s
disease (AD), in a transgenic mouse model (tgAPPSwe). We
and others have been demonstrating the potential of MSI to
interrogate Aβ pathology in human brain24−31 and mouse
models.8,32−39 Herein, we demonstrate our novel chemical
imaging strategy to identify multimodal imaging signatures
associated with structurally heterogeneous Aβ plaque pathol-
ogy at the micrometer scale. This is important as structural
plaque heterogeneity has been associated with heterogeneous,
clinical presentation of AD, such as cognitive performance,
while the underlying chemical traits remain unclear.40−43

■ RESULTS

Automated Alignment of Multimodal MSI Data

We here demonstrate a novel strategy for the acquisition,
integration, and analysis of multimodal MSI data as well as
functional fluorescent microscopy using structure-sensitive
amyloid probes.44

For this, we generated two independent trimodal MSI
datasets of cortical AD mouse brain that each incorporate
positive and negative ion mode lipid data and peptide data
[consisting of 673 (53%) variables in the negative ion mode
lipid modality, 553 (43%) variables in the positive ion mode
lipid modality, and 20 (2%) variables in the peptide modality].

The first step of this approach involves the acquisition of
multimodal MSI data and their integration into a common,
spatial data matrix that retains single pixel resolution.

MSI allows for acquisition of multimodal imaging data from
the same tissue section. Commonly this involves the
combination of MALDI-based metabolite and lipid imaging
in positive and negative ion modes that are acquired
sequentially on the same tissue without interruptions.8 This
approach has been expanded toward different compounds by
re-application of another more suited matrix or tissue washing
depending on the molecular targets of interest (i.e., other lipids
or peptides/proteins). Alternatively, this discontinuous multi-
modal imaging involves the combination of different MSI
techniques such as secondary ion MS and MALDI45 or
desorption ionization electrospray ionization and MALDI.46

For sequential analyses from the same preparation (dual
polarity lipid MSI), the coordinate systems of the pixels in the
two datasets correspond exactly and the data can be united
into one multimodal dataset without the need for image
registration.47 In contrast, discontinuously acquired multi-
modal MSI data are commonly spatially misaligned. Repeated
measurement of the same tissue may be done with
interruptions where additional tissue treatment steps are
performed such as washing steps and matrix re-application
for lipid and protein imaging, as performed here for both
positive lipid and protein imaging. In such cases, the resulting
MS imaging data will likely be spatially misaligned because of
the tissue deforming during experimental procedures. More-
over, in certain cases, consecutive sections are required, and
therefore image registration is necessary to achieve alignment
of the corresponding pixels in each dataset.22 An accurate pixel
correspondence between datasets is hence critical for down-
stream spatial chemometrics analyses.

Our first aim was, therefore, to establish an image
registration workflow for precise alignment of imaging data
acquired in different modalities. Image registration can be done
using manual selection of fiducial points. This is, however,
challenging on MSI data due to image noise and low contrast
in single ion images. Consequently, it is difficult to achieve a
registration accuracy suited for the investigation of small
features such as Aβ plaques (50−100 μm) in AD pathology.
The use of glass etched fiducials is not suitable, as they do not
account for tissue deformations that can occur during
experimental procedures. An automated method for the
registration of MSI data based on a gradient descent algorithm
has been previously presented.48 However, while gradient
descent might work for image data with tissue edges, the
alignment of small anatomical features without tissue edges
was not successful for our data (no convergence). We have
therefore developed a workflow for the registration of
multimodal data employing an intensity-based optimization
algorithm.

Image registration procedures usually require one represen-
tative image of each modality, but MSI datasets consist of
thousands of ion images which makes appropriate selection of
references challenging. Moreover, registration of single ion
images may be particularly difficult due to typical image noise
and low contrast. To solve both of these issues, we made use of
principal components analysis (PCA) to capture the variance
in the MSI datasets, while separating noise, an approach that
was previously presented where magnetic resonance imaging
(MRI) and MSI data were registered.49 This approach
produces a limited set of PCA score images, which are
typically of higher contrast and less noisy than single ion
images. From this set of images, a suitable reference for image
registration can be selected. We selected reference images that
represented prominent anatomical- or pathological features
and, at the same time, were matching best between the
modalities (Figure 1a). We then applied an intensity-based,
automated image registration method to estimate the geo-
metric transformation required to align the corresponding
pixels between two reference images and MSI modalities,
respectively (Figures 1b and S1). The method solves image
registration problems through iterative optimization of a
predefined dissimilarity metric using a 1 + 1-evolutionary
optimizer approach.50 This optimizer is suitable for the
registration of images with different brightness and contrast
and, therefore, particularly suited for the registration of
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multimodal images. A further challenge is to estimate
registration accuracy, which is not always straightforward, as
spatial offset can not only be rigid but also be confounded by
distortional and rotational factors (Figure S1a−f). We applied
a combination of structural similarity, Jaccard similarity index,
and mutual information (MI) metric as numerical evaluation
of the automated image registration method (Figure S1a).
Together, the 1 + 1-evolutionary optimizer approach was
found to produce superior image registration results compared
with manual registration by fiducial points (indicated by the
smaller relative standard deviation of 0.036−0.138, Figure
S1b).

While evolutionary optimizers aim at finding a global
minimum, they are subject to non-optimal (local) minima,
leading to poor convergence results. The 1 + 1-evolutionary
strategy locally adjusts parameters to provide a mechanism to
step out of non-optimal minima. Optimizer parameters need to
be supplied to the algorithm and tuned for successful
convergence. However, we found that tuning optimizer
parameters manually is tedious, and we implemented an
algorithmic exhaustive search between set parameter limits to
maximize structural similarity between registered images.

While we present extensive registration efforts to align the
pixel arrays of different modalities, we acknowledge that an
uncertainty of pixel correspondence always remains. This
uncertainty of pixel correspondence arises as a result of, for
example, the offset between actual measurement locations and
laser foci, which potentially vary slightly between modalities.
Furthermore, interpolation of image data can introduce

additional variation (such as blurring) that may confound
accurate pixel correspondence. However, MSI datasets tend to
exhibit positive spatial autocorrelation, which may lessen some
of the impact of pixel correspondence uncertainty when
multivariate modeling is applied (Figure S1). On this note, the
use of imaging data obtained from consecutive tissue sections
weakens the statistical pixel correspondence and should be
avoided for image analysis purposes at full pixel resolution
(Figure S1).

The resulting transformation matrix can then be applied to
geometrically transform the MSI dataset (Figure 1c) and,
finally, the registered data can be combined into one matrix
and analyzed as one multimodal array for subsequent
multivariate analysis(Figure 1d).
Spatial Chemometrics Using OnPLS Modeling Reveals
Covariation of Multi-Modal Chemical Signatures in
Pathological Features of AD

Statistical analysis of MSI datasets is commonly done by
averaging spectral data of multiple pixels from ROIs. While
averaging pixel information reduces spatial information, it
provides a method to analyze multimodal data without the
need for image registration. A further reason for combing
spatial information from different pixels would be to enhance
mass spectra quality. Averaged mass spectra are typically less
noisy compared to single-pixel spectra as S/N increases with
sqrt(n), where n is the number of averaged spectra. This is
especially useful with low abundant peaks in high spatial
resolution data in which single-pixel spectra are often too noisy
due to reduced MSI sensitivity and do not permit robust peak
detection and quantification.

This ROI approach works for analyses of datasets where the
full acquired spatial information is not critical, but manual ROI
selection also introduces user bias by selection of size and
location of ROI. This further may be confounded by chemical
inter- and intra-feature heterogeneity as, for instance, observed
for beta-amyloid plaques in AD that vary in size, shape,
structural morphotype, and chemical content both within and
across different plaques.40,51 Therefore, retaining the spatial
information at single pixel resolution is essential for the
investigation of systems with heterogeneous pathological
features.

To address these issues, we present an alternative approach
that allows for comprehensive interrogation of multimodal
imaging data of heterogeneous tissue areas, while maintaining
the full image resolution to reveal chemical co-localization
patterns that covary within and between imaging modalities.

In multivariate analysis of MSI data, each pixel of the
imaging dataset is treated as individual observations while
retaining its spatial information (coordinates) during data
analysis to be able to later reconstruct score results into
component score images. Each of the score images in
multivariate image analysis constitutes a component, where
score values are represented by color. Meaning of the
representation can be drawn from the corresponding loading
vectors. In that way, PCA and hierarchical clustering have
previously been used to extract biochemical characteristics of
tissues and cell cultures from MS imaging data.18,52,53 These
approaches are, however, limited toward generating models for
single-modal54 but not multimodal data blocks. This results in
issues with respect to different measurement scales, adequate
normalization, and block-specific noise, limiting interpretation

Figure 1. Overall workflow for the multimodal exploration of
biological tissues by MALDI MSI and spatial chemometrics. (a)
MALDI MS imaging of tissue sections in various modalities provides
distribution maps of different biochemical species such as lipids and
peptides. (b) Registration procedure for single pixel alignment is done
using an intensity-based automated image registration approach.50

PCA score images are used as reference images for image registration
due to their lower noise and higher contrast compared with single ion
images.49 (c) Geometric transformation MSI datasets combined into
one multimodal dataset. (d) Advanced spatial chemometrics analysis
of the combined imaging data. This involves multivariate image
analysis at the original image resolution without averaging and
includes multiblock orthogonal component analysis, to extract
covariations within and between modalities. High-resolution
prediction of ion distribution by image fusion enhances histological
interpretation.
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of these projections models for multimodal (multi-block)
data.55,56

Therefore, more advanced multivariate analysis approaches
that examine a multi-block data structure are necessary. Multi-
block data integration methods, specifically O2PLS, and multi-
block orthogonal component analysis based on the OnPLS
algorithm55,57−60 are potentially suitable approaches to handle
the challenges arising with multimodal MSI data. OnPLS is a
descriptive modeling technique with a purpose to reveal the
relationships between multiple blocks of data and an aim to
enhance interpretability of the results.55,59,60 These algorithms
allow to model the joint and unique variation between blocks
of data in an unsupervised fashion and can avoid the previously
described problems of different scales and block specific noise.
OnPLS components can then be investigated using scores and
loadings in the same way as single-block methods, such as PLS
or PCA.

We therefore used multiblock orthogonal component
analysis, based on the OnPLS algorithm to interrogate our
registered multimodal MSI data, to explore the relationships of
the three modalities in an unsupervised manner (Figures 2a,b,
S2, and S3).

Here, resulting globally joint component (tj1) images
displayed the general, plaque specific covariation between all
MSI modalities. Analytes increased or depleted within plaque

structures relative to non-plaque areas are identified. The
strongest globally joint correlations were found for LPE (18:0)
(m/z 480.3, neg. lipids), LPC (16:0) (m/z 496.3, pos. lipids),
and Aβ1−40 (m/z 4331, average mass, peptides), all
previously found to localize to Aβ plaques (Figures 2c and
S4a).8,10 In contrast, multiple lipid species showed a general
plaque specific depletion pattern including sulfatides ST-
(d18:1_24:1) (m/z 888.6) and ST(d18:1_24:0(2OH)) (m/z
906.6) in negative lipid mode and PC(38:2) (m/z 852.6) in
positive lipid mode (Figure S4a and Table S1).

A strength of multiblock OnPLS data analysis is to provide
further locally joint components that provide the covariation
also between just some modalities that can explain further
detailed substructures. Specifically, locally joint covariation
between positive and negative ion mode lipids species (tj2, tj4)
captured, here, lipid localization patterns associated with
structural plaque heterogeneity including peripheral and core
specific localizations (Figures 2d,e and S4b,d). This exemplifies
the strong advantage of using full imaging resolution together
with multimodal data analysis with the potential to recognize
detailed correlating localizations that could not be detected
with univariate regression analyses. A second locally joint
component (tj4) identified lipid core localizations with
increased levels of PE-Cer(38:1) (m/z 715.6) and CerP-
(d36:1) (m/z 644.5) in negative ion mode, PE(P-34:3) (m/z
720.5) in positive ion mode, and decreased levels at the plaque
core for LPI 18:0 (m/z 599.3), ST(d18:1_22:0 (m/z 862.6),
and ST(d18:1_22:0(2OH)) (m/z 4 878.6) (tj4, Figures 2e
and S4d).61 Moreover, positive lipid and peptide covariates
emphasize plaque core localizations between all plaques
detected. The plaque cores were found to consist of higher
levels of Aβ(1−40) (m/z 4331), Aβ(1−40ox) (m/z 4347),
and Aβ1−38 (m/z 4132) and were depleted in the majority of
positive lipid species (tj3, Figures 2f and S4c).

Finally, multiblock component analysis also provides
modality-unique components (tu) that capture variation
specific for a modality. Here, in negative lipid data, unique
variations (tu1 and tu2) revealed the core-localizing analytes
PE-Cer 38:1 (m/z 715.5) and peripheral localization
distributions for PI 38:4 (m/z 885.5) and PI 36:4 (m/z
857.5) around plaque structures (Figures 2g, S2c, S3c, and
S4d).

In sum, multi-block modeling with its capability to detect
cross-modal relationships allows for improved and unbiased
biological understanding of the investigated systems. Visual-
ization of scores from multivariate analyses together with
corresponding loadings have the potential to reveal spatially
defined chemical signatures that provide valuable new insights
into the heterogeneous biocehmical distributions associated
with plaque pathology.
Image Fusion for Predictions of MSI-Derived Chemical
Distributions at High, Microscopy-Level Resolution

Histological and immunohistochemical imaging using light
microscopy (LM)-based methods offer a distinguished spatial
resolution limited solely by the diffraction limit. MSI on the
other hand is characterized by high molecular specificity and
high content chemical information though at lower spatial
resolution, particularly for peptide analysis.62 Data-driven
image fusion combines the advantages of both techniques to
produce image predictions that enhance histological inter-
pretation and contribute to insight about complex biological
systems at cellular length scales.63 Following the extensive

Figure 2. Spatial chemometrics analysis of multimodal MALDI MSI
data of Alzheimer’s disease (AD) pathology. (a) Cortical brain tissues
of atransgenic mouse model of AD (tgAPPSwe) is analyzed using
MALDI MSI to obtain negative ion mode lipid-, positive ion mode
lipid-, and peptide imaging data. (b) Unsupervised modeling using
OnPLS allows for the analysis of relationships between all modalities.
The Venn diagram shows partition of the variation within the three
datasets where numbers refer to OnPLS components of globally joint,
locally joint, and unique variation. (c) Globally joint component score
image and loadings describing covariance among all three modalities.
(d, e) Locally joint component of negative- and positive ion mode
lipid data. (f) Locally joint component of positive ion mode lipid- and
peptide data. (g) Unique variation in the negative ion mode lipid
modality. Normalization: root mean square; scale bar = 100 μm.
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cross (MSI) modality analysis, we aimed to extend the
trimodal MSI approach toward integration with functional
microscopy.

For this, we applied data-driven image fusion based on
multivariate linear regression63 to predict MSI ion distributions
at high (LM) resolution. Specifically, we aimed to fuse the
trimodal MSI data (positive/negative ion mode lipid and
peptide data) with hyperspectral fluorescence amyloid imaging
data obtained from the same biological tissue (Figures 3a and

S5). To achieve this, we developed a tissue preparation
workflow that allows for the acquisition of tetramodal imaging
data on a single biological tissue minimizing artifacts and
distortions. MALDI MSI acquisitions desorb analytes from the
sample surface potentially impacting imaging modalities
applied thereafter. The peptide analysis step of the previously
described MSI3 workflow requires MALDI MSI acquisition
settings that lead to laser ablation marks on the sample tissue.
In order to avoid ablation artifacts, peptide analysis has to be
performed last.9

For functional microscopy staining, we used structure-
sensitive, fluorescent amyloid probes [luminescent conjugated
oligothiophenes (LCO) dyes] that show differential binding to
varying amyloid polymorphs and can be delineated with
hyperspectral, fluorescence microscopy. The challenge with
combining the LCO staining protocol with the MSI3 paradigm
was to reconcile the order of acquisitions, matrix removal for
LCO staining, and removal of the cover slip while preventing
significant damage to the tissue.

The optimized MSI/LM acquisition workflow included
sequential lipid MSI followed by LCO microscopy prior to
final peptide MSI. One crucial step was to perform LCO
staining prior to peptide MSI analysis. This produced

fluorescence imaging data without tissue distortion and
discernable laser ablation patterns, respectively (Figures S9
and S10). Image fusion calculation time increases with the
number of MSI variables. Combining three MSI modalities can
lead to very large datasets that comprise variables that are of
lesser importance for fusion modeling and should be excluded.
To do so, we applied a variable selection strategy based on
variable importance in projection (VIP).64

The VIP value of each variable reflects its importance in the
projection of the orthogonal projection to latent structure
(OPLS) model, here between MSI (x-block) and microscopy
(y-block), and provide a method to rank the variables.

In this case, the initial number of 2924 variables in the
trimodal MSI dataset was reduced to 601 of the most
important variables (VIP), reducing computational efforts. The
data-driven fusion protocol reported by Van de Plas et al.63

incorporates automated means of filtering a large number of
variables (i.e., ion species) and is restricted to single mode MSI
data and histological staining. A previously presented approach
for data-driven fusion63 incorporates automated means of
filtering a large number of variables (i.e., ion species) and is
restricted to single mode MSI data and histological staining. By
passing pre-selected variables from VIP selection to the fusion
protocol as demonstrated in our approach decreased the
computation time from days to hours. (Further information on
the VIP selection process and computation conditions can be
found in the Supporting Information.)

Data-driven image fusion predicted high-resolution molec-
ular distributions of various lipid and peptide species by
modeling trimodal MSI data and hyperspectral fluorescence
imaging data obtained from the same biological tissue section.
The fusion results obtained with this approach yielded good
reconstruction scores (Figures S6 and S7), well in alignment
with previous studies.63 However, as with all predictive
modeling, some uncertainty remains, and fusion predictions
should be cross evaluated also with the acquired data of the
corresponding ions. For this purpose, we display original, non-
interpolated, ion images next to the fusion results (Figures 3b
and S5−S7). Single MSI ion images and their fusion
predictions at microscopy resolution supported by hyper-
spectral LCO microscopy reveal intricate details of amyloid
polymorphism associated lipids and peptides. Specifically,
phosphoinositol species PI(18:0_20:4) (m/z 885.5) and
PI(16:0_20:4) (m/z 857.5) yielded high reconstruction scores
for their predictions toward diffuse plaque periphery. In turn,
Aβ1−38 and Aβ1−40 showed strong prediction scores across
the entire plaque (Figure 3b). On the other hand, plaque-
specific depletion of sulfatide ST(d18:1_24:1) (m/z 888.6)
and its oxidized form ST(d18:1_24:1(2OH) (m/z 904.6) was
observed, as suggested from the OnPLS models described
above. The fusion predictions are evaluated together with 95%
confidence intervals images displaying the confidence in the
prediction in each pixel. There, locations with a narrow 95%
confidence interval indicate where the confidence in the
prediction is strong and, hence, whre there is strong support
for the predicted ion intensity value (Figures S6 and S7).

■ DISCUSSION
In this study, we present a series of experimental and
chemometric strategies to acquire and integrate multimodal
molecular imaging data with different spatial resolutions. This
comprises approaches for their alignment, registration, and
combination into a common data matrix with maintained pixel

Figure 3. Data-driven image fusion: Prediction of molecular
distribution at microscopy resolution. (a) Image fusion based on
multimodal MALDI MSI and hyperspectral fluorescence imaging
combining high chemical specificity of MSI with high spatial
resolution of microscopy. (b) Single ion images and their fusion
prediction at microscopy resolution. Reconstruction score in %. Scale
bar: 100 μm.
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resolution. This allowed for comprehensive interrogation of
those multimodal data using novel, multivariate statistical
modeling strategies to gain insight into disease pathology. We
further make use of the multivariate results of these truly
multimodal analyses for integration and prediction onto
hyperspectral microscopy data providing functional insight of
MSI signatures at scales not previously possible.

The accurate combination of multiple MSI modalities at
single pixel resolution was enabled through precise image data
alignment by an intensity-based automated image registration
procedure.

For this, we employed an automatic image registration
approach using an 1 + 1 evolutionary optimizer. The
importance of image (data) alignment tools were recently
surveyed in an extensive review by Balluff et al.65 As outlined,
most approaches and software tools available implement
interactive overlay methods or control point selection (used
here as the manual method), which all result in user bias with
variable image registration accuracies. Moreover, there is still
no consensus on how image registration accuracy should be
benchmarked and reported.

Herein, we provide therefore a selection of comparisons and
metrics to demonstrate the relative accuracy to manual
registration. This is a fair comparison given that most
alignment approaches reported for the integration of MSIn
and MSI/LM data provide manual methods. Further, the
relative standard deviations of all similarity metrics in the
comparison were smaller for all automated alignments
compared to manual ones indicating a more precise
repeatability (relative standard deviation 0.036−0.138 smaller)
of automated alignment (Figure S1).

Absolute accuracy measurements require a user input on
both (ion- and light-) images for MSI/LM imaging data, which
in turn contain user bias similar to control point selection for
manual registration. Our methods for comparing accuracy of
registration results are relative but without user bias over-
coming this limitation.

This facilitated the generation of a trimodal MSI data matrix
maintaining molecular information at single pixel resolution.

Although multivariate projection methods, such as PCA, can
be used to model a single high-dimensional data block, they are
theoretically not suited for modeling multiple data blocks
simultaneously.55 Problems may arise due to different
measurement scales and number of variables of the different
data blocks generated for each modality. Also, combining
multimodal data blocks into one matrix requires normalization
to avoid variable-size biased projection models. Moreover,
block-specific noise, such as measurement errors, could
confound a projection model and make it difficult to effectively
separate biologically relevant structures from noise.55

Finally, interpretation of projection models of multimodal
data may be difficult, as they do not separate variation that is
shared between data blocks and variation that is unique to each
modality.56

OnPLS partitions the total variation into globally joint,
locally joint, and unique parts. Global variation is shared
between all data blocks of a multiblock dataset (Table S1),
local variation is shared between at least two blocks, and
unique variation occurs in only one data block. Decomposing
levels of variation in this manner allow to identify also
relatively small trends, in contrast to modeling methods that do
not regard block structure and are, therefore, strongly biased
toward large (global) variations.55,59,60

Unsupervised cross-modality chemometrics modeling of the
combined data using multiblock orthogonal component
analysis allowed for the identification of covariance structures
and unique chemical variations at the acquired image
resolution that otherwise could not be achieved with
traditional methods and would be missed. The presented
strategies, hence, lay the groundwork for correlative molecular
imaging to further understand the interplay of underlying
biochemistry with a multimodal imaging approach. Here, for
example, LPE 18:0 and LPC 16:0 lipids that were associated
with the dominant Aβ peptide 1−40 and 1−38, as contained in
a common OnPLS component (tj1, Figures 2c and S4a), are
likely directly involved in amyloid aggregation.

The number of joint components in OnPLS modeling is
dependent on the covariation of the input datasets. If no
covariation is found between two or more datasets, no joint
components will be generated. Here, the peptide dataset
contributed to few joint components only (Figure 2). A
possible explanation for why not more components for the
peptide modality were found may lie partly in the small
fraction of peptide variables (2% of variables). However, this
approach statistically links the different imaging modalities by
the analytes’ covariance and colocalization. In our analyses, the
imaging modalities were entirely congruent, meaning that there
were no missing values, which is important as the OnPLS
algorithm cannot process missing values.

However, modeling of systems with a large numbers of
variables, and especially noisy variables such as the ones
commonly observed in MSI, carries the risk of spurious
correlations. As in any analysis, interpretation of multivariate
models requires common sense. It is important to keep in
mind that linear modeling methods, including OnPLS, are not
suitable for detecting non-linear relationships, and in those
cases, other methods should be used.56 Since not all variables
were annotated, we acknowledge the uncertainty that not all
variables within the lipid modalities are in fact lipids and could
correspond to other low molecular weight compounds. Data
analysis was performed with all data points from all peaks, that
is, without spectral binning. Therefore, multiple loading
variables may originate from the same species (isotopologues).
We acknowledge that the mass accuracy of the used
instrumentation limits the separation of isobars, which is
however possible to resolve with recent advances within
MALDI ion mobility spectrometry MSI.51,66

Reliable investigation of biological features of the scale as the
observed core structures (30−40 μm) rely on the precise
alignment of the modalities. This emphasizes the need for a
method for accurate image alignment rather than averaging
pixel information. On the other hand, image data that cannot
be registered accurately, such as strongly distorted image data
as well as data from intrinsically different consecutive sections,
are likely not suited for this type of analysis.

We further developed a workflow that enable the acquisition
of correlative multimodal imaging data combining both MSI3
and LM data. Specifically, we demonstrate the integration of
OPLS modeling of trimodal MSI data with functional
fluorescence microscopy imaging data to gain a deeper
understanding of correlative relationships between MSI and
fluorescence emission data that encode information on
structural amyloid conformation. Impressive MSI-related
fusion approaches have previously been presented for different
multimodal imaging data such as for MSI with MRI67 and
IHC12. Most prominently, the previously presented data-driven
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fusion algorithm for MSI data63 was based on PLS regression
modeling and only MSI variables with strong relationships to
the microscopy variables are considered for prediction.
However, this approach is limited by the specificity of the
histological imaging, in particular when interfaced with classic,
morphological staining (such as H&E or Nissl staining), which
are performed with brightfield microscopy and report only
three channels (red, green, and blue). This restricts the
prediction of distinct functional localizations that are not
captured by the microscopy. For this reason, we expanded this
approach toward both confocal microscopy and the use of
multi-channel hyperspectral microscopy data that captures
pathology-relevant variation. This allows for data-driven image
fusion and prediction of multimodal MSI derived chemical
imaging distribution at LM resolution along with structural
information of amyloid aggregates. Here, even very small
features that can be detected by microscopy but evade
detection by MSI (due to limitations in MSI spatial resolution
or sensitivity) are included in fusion predictions based on their
hyperspectral signatures and their scoring in the regression
model (Figure S8).

This allowed to identify amyloid maturation-specific
chemical correlates across different MSI modalities within
single plaques at single pixel resolution. This is critical as
plaque maturation into structurally distinct plaque morpho-
types has been associated with different trajectories of AD
pathology across different forms and stages of AD29,40 While
their spatial plaque association has been described before for
most of the lipids detected here, those previous observations
were on a more global, plaque ROI scale and mostly obtained
at single mode MSI. The present approach provides more
spatial and chemical details along with further validation of
those lipids and their role in Aβ plaque pathology. Specifically,
we identified phosphoinositol lipids to be associated with
diffuse/premature aggregates, indicated by heptamer formyl
thiophene acetic acid (h-FTAA) emission profiles prominently
observed in the periphery of plaques. Interestingly, LPI has
been identified as a ligand of TREM2, a microglial surface
receptor critically involved in microglial activation and
implicated in AD pathology by mechanisms of Aβ ingestion
and seeding of Aβ plaque formation.68−70 The current
approach provides the means to further explore lipid−Aβ
interactions as well as the associated cellular environment at a
more detailed picture.

The presented modeling and fusion approach can further be
expanded to other multimodal imaging approaches including
MSIn and LM in combination with multiplexed IHC/mass
cytometry.71 This will have great potential for other molecular
histology applications such as tumor margin annotation and
tumor classification.72

Together, the multimodal imaging and spatial chemometrics
strategy described here is a pathway to deepen biological
understanding through integration of molecular information
from multiple imaging modalities, which is key to unlocking
the full potential of multimodal imaging studies.

■ MATERIALS AND METHODS

Chemicals and Reagents
All chemicals and solvents were used without further purification:
acetic acid (Cat.#: 64197, VWR Chemicals), acetonitrile (ACN,
Cat.#: 75058, Fisher Scientific), chloroform (Cat.#: 67663, LabScan),
1,5-diaminonaphthalene (DAN, Cat.#: 56451, Sigma Aldrich), 2′,5′-
dihydroxyacetophenone (DHA, Cat.#: D107603, Sigma Aldrich),

ethanol (Cat.#: V002075; Sigma Aldrich), formic acid (FA, Cat.#:
56302, Honeywell), and trifluoroacetic acid (TFA, Cat.#: 40967;
Honeywell). LCO tetramer formyl thiophene acetic acid (q-FTAA)
and heptamer formyl thiophene acetic acid were obtained from Prof.
Peter Nilsson, Department of Chemistry, Linköping University. Water
was obtained from a SynergyUV water purification system (Milli-Q,
Merck Millipore).

Animals and Tissue Preparation

Transgenic AD mice (number of animals: n = 2) carrying the Swedish
mutation in APP (tgAPPSWE) were reared ad libitum at an animal
facility at Uppsala University under a 12/12 light cycle. Fresh brain
tissue samples were obtained from female, 18-month-old C57BL/6
mice. Animals were anesthetized with isoflurane and sacrificed by
decapitation. The brains were dissected quickly with less than 3 min
postmortem delay and frozen on dry ice. Animal procedures were
approved by an ethical committee and performed in compliance with
national and local animal care and use guidelines (DNr #5.8.18-
20401/2020, Uppsala djurförsöksetiska na ̈mnd). Frozen tissue
sections (12 μm) were cut in a cryostat microtome (Leica CM
1520, Leica Biosystems, Nussloch, Germany) at −18 °C and collected
on indium tin oxide conductive glass slides (Cat.#: 237001; Bruker
Daltonics, Bremen, Germany) and stored at −80 °C. Prior to analysis,
tissue sections were thawed under vacuum for 1 h.

Matrix Application and MALDI MSI

For MALDI MSI of lipids, the DAN matrix was applied to unwashed
tissue sections using a TM sprayer (HTX Technologies, Carrboro,
NC, USA) combined with a HPLC pump (Dionex P-580, Sunnyvale,
CA, USA). Before spraying, the solvent pump was purged with 70%
aqueous ACN (ACNaq) at 300 μL/min for 5 min followed by manual
rinse of matrix loading loop using a syringe. A matrix solution
containing 20 mg/mL DAN in 70% ACNaq was sprayed onto the
tissue sections with the following instrumental parameters: nitrogen
flow (10 psi), spray temperature (75 °C), nozzle height (40 mm), five
passes with offsets and rotations, spray velocity (1250 mm/min), and
isocratic flow of 50 μL/min using 70% ACNaq as pushing solvent.
After lipid analysis in negative ion mode, tissue sections were
resprayed with three passes of the DAN matrix for lipid analysis in
positive ion mode.

Hyperspectral imaging was performed between MALDI MSI lipid
and peptide analyses on the same tissue section as described further
below. Following hyperspectral imaging procedures, tissue sections
were exposed to vapor of concentrated FA for 25 min for Aβ peptide
signal enhancement, as previously described in detail.10,29 For MALDI
MSI of amyloid peptides, DHA was used as matrix compound and
applied using the TM Sprayer. A matrix solution of 15 mg/mL DHA
in 70% ACN/2%CH3COOH/2%TFA was sprayed onto the tissue
sections using the following instrumental parameters: nitrogen flow
(10 psi), spray temperature (75 °C), nozzle height (40 mm), eight
passes with offsets and rotations, spray velocity (1000 mm/min), and
isocratic flow of 100 μL/min using 70% ACN as pushing solvent.

MALDI MSI was performed using a Bruker rapifleX TissueTyper
TOF mass spectrometer (Bruker Daltonics), equipped with a
Gaussian 355 nm Nd:YAG laser. Lipid analyses were performed in
both positive- and negative ionization mode over a mass range of
400−2000 Da, whereby laser power settings were optimized for
sensitivity in this mass range. Lipid imaging data were acquired at 10
μm spatial resolution, with the laser frequency of 10 kHz and 50 shots
per pixel. External calibration was carried out using peptide calibration
standard I (Bruker Daltonics). Peptide MSI data were acquired over a
mass range of 1500−6000 Da, in linear positive ion mode, with 200
shots per pixel at a laser frequency of 10 kHz. The laser beam focus
was set to “single” mode with beam scan, resulting in a lateral pixel
resolution of 10 μm. External calibration was performed using Protein
Calibration Mix 1 (Bruker Daltonics). Lipids and peptides were
annotated by accurate mass following previous MS/MS based
identifications reported by our group35,51 and others.73,74
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Fluorescent Staining and Hyperspectral Image Acquisition
The LCO staining procedure requires over-night incubation of the
sample tissue with LCO dyes under a glass cover slip, which is critical
for image quality. The exact preparation workflow for tetramodal
imaging comprises (i) dual polar MALDI MSI of lipids with matrix re-
application after the first acquisition, (ii) removal of matrix by
washing, (iii) LCO fluorescence staining with cover slip mounted and
over-night incubation, (iv) hyperspectral image acquisition, followed
by (v) removal of cover slip for subsequent (vi) peptide MALDI MSI.

Fluorescent staining and hyperspectral imaging were performed
after MALDI MSI lipid analyses and prior to MALDI MSI peptide
analysis on the same tissue section. Therefore, the remaining matrix
after MALDI MSI analysis was removed prior to fluorescent staining
by sequential washes of 95% EtOH for 30 s, 95% EtOH for 60 s, 70%
EtOH for 30 s, Carnoy’s solvent (60% EtOH, 30% chloroform, 10%
acetic acid) for 90 s, and 95% EtOH for 10 s followed by 3 water
washes of 2 min each. For the washing procedures, the glass slides
were placed upright in fresh solvents and allowed to stand. The tissue
sections were then incubated in dark at room temperature (23 °C) for
25 min with a combination of the LCO q-FTAA (3 μM in water) and
h-FTAA (3 μM in water). After staining, the tissue sections were
washed three times in water for 2 min each and mounted with a
coverslip using Dako fluorescence mounting medium (Cat.#:
S302380-2, Agilent Technologies) and incubated at room temper-
ature (23 °C) for a minimum of 24 h before image acquisition.

Images were acquired on a Zeiss LSM-780 inverted confocal
microscope equipped with a 32-channel GaAsP spectral detector
using a Plan-Apochromat 20×/0.8 air objective and Zen Black
software (Carl Zeiss, Jena, Germany). The excitation wavelength used
was 458 nm with an average power of about 35 nW on the tissue
sample. Acquisition was performed in lambda mode and using tile
scan. A typical dataset comprised 32 spectral channels, covering
wavelengths from 415 to 690 nm with 8.9 nm bandwidth, resulting in
a x,y,λ-data cube.

Following hyperspectral imaging, coverslips were removed by
soaking the glass slides in water for 24 h at room temperature (23
°C). Tissue sections were then subjected to sequential washes in
water for 8 min, 70% EtOH for 60 s, and EtOH for 30 s and dried
under vacuum before moving on to MALDI MSI peptide analysis. A
comparison of different coverslip removal protocols and their effect
on spectral quality can be found in Figure S9.

Data Analysis
Data Processing. Data processing was performed in matlab

R2020b with Bioinformatics Toolbox 4.14, Signal Processing Toolbox
8.4 and Image Processing Toolbox 11.1 (MathWorks, Inc.) installed.
MALDI imaging data were exported from SCiLS Lab (version 2021c,
Bruker Daltonics, Bremen, Germany) in the .imzML format and
imported into matlab using the imzMLConverter by Race et al.75

Hyperspectral imaging data in the .czi format were loaded into matlab
using the open-source matlab script “czi_spec_im_load” developed
by Dr. Rafael Camacho (https://github.com/CamachoDejay/czi_
spec_im_load). MS data were processed by baseline correction and
normalization to root mean square peak picking. For our peak picking
routine, we removed the noise between peaks and extracted all data
points over the peaks without binning. Here, no peak convolution was
done to allow for detection of potentially overlapping species. For the
extraction of data for ROI analysis, the ROI was selected using the
imageSegmenter() function (Image Processing Toolbox) to then
subset the dataset to the ROI’s boundaries while retaining pixel
coordinates.

Image Data Registration
The spatial alignment (image registration) of MSI modalities was
performed using in-house scripted matlab routines. Reference images
for image registration were obtained through PCA of each modality as
previously presented.49 The workflow for the alignment of MSI
modalities involved a transformation matrix, which was estimated
through automated image registration based on the PCA score images
as reference images for each modality. The reference images were

coarse-aligned by manual control point selection prior to the
automated registration procedure. Control point selection was done
using the cpselect() function (Image Processing Toolbox).

While the selection of three fiducial points would be sufficient for
affine registration, we recommend select at least five points spread out
over the tissue surface. More control points may improve initial
registration, for example, when a control point is inaccurately selected.
For the registration comparison, five control points were selected with
even spread over the tissue surface at recognizable hallmarks in either
image at variable locations between replicates (number of replicate
alignment experiments: N = 5).

The automated image registration method utilized an intensity-
based optimization approach particularly suited for multimodal
applications. The optimization algorithm employed a 1 + 1-
evolutionary optimizer with various settings paired with Mattes MI
metric configuration.76 Thereby, the geometric transformation is
estimated by minimizing the mean square error (MSE) between a
fixed reference image (I, with m rows and n columns) and moving
image (K) that is to be transformed (eq 1).
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Optimizer parameters involving the search radius including growth
factor, initial size, and minimal size were determined by algorithmic
exhaustive search between set parameter limits to maximize structural
similarity between reference images.77 We refer to Styner et al.50 for
guidance in tuning optimizer parameters and setting parameters
limits. Here, we describe the details about used optimizer settings and
metric configurations, as well as parametric limits and step sizes of the
exhaustive search. Mattes MI76 was kept constant, number of spatial
samples = 500, number of histogram bins = 60, use all pixels = true.
One-Plus-One Evolutionary optimizer settings presented as lower
limit: increment: upper limit as applied in the exhaustive search:
maximum iterations = 100 (constant); growth factor =
1.005:0.0005:1.1; ε = 1.5 × 10−7:1:1.5 × 10−3; initial radius = 6.25
× 10−4:1:6.25 × 10−2.

Finally, data cubes of MSI modalities were geometrically trans-
formed using the imwarp function (Image Processing Toolbox) with
bicubic interpolation. Bicubic interpolation was found to produce best
results based on structural similarity, Jaccard similarity index, MI, and
visual inspection of overlay comparisons.
Jaccard Similarity Coefficient
The Jaccard index was calculated as the intersection of images A and
B divided by the union of A and B, as shown in eq 2.78 For this,
images to compare were converted to 8-bit unsigned integers before
computing the Jaccard index using the jaccard() function in Matlab.

J(A, B)
A B
A B

= | |
| | (2)

Mutual Information
The MI of two images was calculated according to the axiom of
information theory which is defined as

H H HMI (A) (B) (A, B)= + (3)

where H(A) and H(B) denote the individual entropies of image A
and image B, and H(A,B) denotes their joint entropy. Since A and B
are discrete images, entropies can be expressed as sums instead of
integrals. Thus, their individual entropies can be calculated as

H X p x p x( ) ( ) log ( )
x

X X= ×
(4)

where pX(x) is the probability distribution of pixels associated with
image A or B.79 Probability distributions were computed by binning
image values into histograms using accumarray() in Matlab. For this,
images were converted to 8-bit unsigned integers and the floating
point image values were assigned to unique IDs before passing the
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information to accumarray(). The joint entropy was calculated in a
similar fashion

H p a b p a b(A, B) ( , ) log ( , )
a b,

AB AB= ×
(5)

The joint entropy is minimized when the pixels in each of the
images correspond exactly. In contrast, if the statistical relationship
between the two images weakens, the joint entropy increases.79

A comparison of interpolation methods including nearest neighbor,
linear, bilinear, and bicubic interpolation and details about the
similarity metrics are outlined in Supplementary Results.
Multivariate Modeling and Image Visualization
Registered image data were cropped to common area and
concatenated along the spectral dimension into a multimodal dataset.
For chemometrics analysis datasets were reshaped into a two-
dimensional matrix where pixels are represented as rows and spectral
vectors as columns. Pixels with a total ion current of zero (black
pixels) from, for example, off-sample acquisition or pixels from
outside irregularly shaped acquisition areas, were omitted from data
analysis. Black pixel (bp) and data pixel (dp) matrices were extracted
by logical indexing using indices to sums of the multimodal dataset
(Xi, j) that satisfy the equalities in eq 6. Thereby, the spectral values j
of each individual pixel i were summed up.
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Multivariate analyses of MSI data were performed in SIMCA 17
(Sartorius Stedim Biotech, Umeå, Sweden) and comprised PCA and
multiblock orthogonal projections to latent structures based on the
OnPLS algorithm.59,60 OnPLS components describe variation in
globally joint, locally joint, and unique parts for each data block as
follows:

Thereby, global variation implies the structure that is shared
between all blocks, local variation between at least two blocks, and
unique variation that occurs in only one data block.59,60 Data were
mean-centered for data mining (PCA and OnPLS of mass spectral
data) and scaled to unit variance for predictive modeling (OPLS
including hyperspectral channels). The number of evaluated
components was based on the predictive performance as determined
by the seven-block cross-validation of SIMCA. Component score
matrices were transferred to matlab, where they were reunited with
black pixels and reshaped into image dimensions prior to score image
visualization. Respective loadings for the interpretation of the score
images were generated in SIMCA software. Images were not
interpolated beyond the spatial acquisition resolution for visualization
purposes, and color scales were set by the default settings of Matlab.
Variable Selection and Image Data Fusion
Variable selection for fusion predictions was based on predictive
variable importance in projection (VIP) of OPLS models.64,80 To
achieve this, hyperspectral image data were registered to the MSI data
and geometrically transformed to then be incorporated as Y matrix in
OPLS modeling. Variables of OPLS models with VIP values larger
than 1 are the most relevant for explaining Y; therefore, variables with
a VIPOPLS‑predictive > 1 were considered most important and selected
for high-resolution prediction of ion distribution by image fusion.80

The VIP values were calculated using eq 8, where Kp is the total
number of predictive variables, Ap is the total number of predictive

components, and Pa is the ath component. The sum of squares (SS)
has the subscript comp for the explained SS of ath component and the
subscript cum for the cumulative explained SS by all components in
the model.
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(8)
The sum of squares of all VIP’s is equal to the number of terms in

the model hence the average VIP is equal to 1. Variables with VIP
values larger than one, are the most relevant for explaining Y,
therefore, variables with a VIPOPLS‑pred > 1 were considered most
important and selected for further investigation and image fusion
predictions.64,80

Data-driven image fusion was performed according to methods
presented by Van de Plas et al.63 with changes. The image fusion
models utilized partial least-squares regression to link MSI ion
distributions to fluorescence imaging data. Fusion models were based
on multimodality MSI variables of positive and negative ion mode
lipid data and positive ion mode peptide data and hyperspectral
fluorescence emissions from LCO staining. Only MSI variables with
VIPOPLS‑predictive values greater than one were passed to fusion
modeling. Fusion prediction images are evaluated as described in
ref 63 and included reconstruction scores reporting deviation of
prediction from measurement at MSI resolution. Further, absolute
residual images and 95% confidence interval images were generated to
provide location-specific prediction performance (Figure S10). While
these measures of evaluation provide confidence in the fusion results,
there is always some uncertainty left with predictive models.
Therefore, we provide images of the original measurements of ion
distribution to allow the fusion results to be cross-evaluated
independently.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.2c00492.

Supplementary results and additional data on image data
alignment, OnPLS models, image fusion, and sample
preparation (PDF)
Overview of the repeatability across different trimodal
MSI datasets (XLSX)

■ AUTHOR INFORMATION
Corresponding Author

Jörg Hanrieder − Department of Psychiatry and
Neurochemistry, Institute of Neuroscience and Physiology,
Sahlgrenska Academy, University of Gothenburg, Mölndal
431 80, Sweden; Clinical Neurochemistry Laboratory,
Sahlgrenska University Hospital Mölndal, Mölndal 431 80,
Sweden; Department of Neurodegenerative Disease, Queen
Square Institute of Neurology, University College London,
London WC1N 3BG, U.K.; orcid.org/0000-0001-6059-
198X; Email: jh@gu.se

Authors
Patrick M. Wehrli − Department of Psychiatry and
Neurochemistry, Institute of Neuroscience and Physiology,
Sahlgrenska Academy, University of Gothenburg, Mölndal
431 80, Sweden; Present Address: Research and Early
Development, AstraZeneca, SE-431 50 Gothenburg,
Sweden

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.2c00492
JACS Au XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00492/suppl_file/au2c00492_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00492/suppl_file/au2c00492_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00492?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00492/suppl_file/au2c00492_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00492/suppl_file/au2c00492_si_002.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jo%CC%88rg+Hanrieder"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6059-198X
https://orcid.org/0000-0001-6059-198X
mailto:jh@gu.se
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patrick+M.+Wehrli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Junyue+Ge"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00492?fig=eq7&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00492?fig=eq7&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00492?fig=eq7&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00492?fig=eq7&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.2c00492?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Junyue Ge − Clinical Neurochemistry Laboratory, Sahlgrenska
University Hospital Mölndal, Mölndal 431 80, Sweden

Wojciech Michno − Department of Psychiatry and
Neurochemistry, Institute of Neuroscience and Physiology,
Sahlgrenska Academy, University of Gothenburg, Mölndal
431 80, Sweden

Srinivas Koutarapu − Department of Psychiatry and
Neurochemistry, Institute of Neuroscience and Physiology,
Sahlgrenska Academy, University of Gothenburg, Mölndal
431 80, Sweden

Ambra Dreos − Department of Psychiatry and
Neurochemistry, Institute of Neuroscience and Physiology,
Sahlgrenska Academy, University of Gothenburg, Mölndal
431 80, Sweden; orcid.org/0000-0003-0448-2089

Durga Jha − Department of Psychiatry and Neurochemistry,
Institute of Neuroscience and Physiology, Sahlgrenska
Academy, University of Gothenburg, Mölndal 431 80,
Sweden

Henrik Zetterberg − Department of Psychiatry and
Neurochemistry, Institute of Neuroscience and Physiology,
Sahlgrenska Academy, University of Gothenburg, Mölndal
431 80, Sweden; Clinical Neurochemistry Laboratory,
Sahlgrenska University Hospital Mölndal, Mölndal 431 80,
Sweden; Department of Neurodegenerative Disease, Queen
Square Institute of Neurology, University College London,
London WC1N 3BG, U.K.; U. K. Dementia Research
Institute at University College London, London WC1N 3BG,
U.K.; Hong Kong Center for Neurodegenerative Diseases, Sha
Tin, N.T. 1512-1518 Hong Kong, China

Kaj Blennow − Department of Psychiatry and Neurochemistry,
Institute of Neuroscience and Physiology, Sahlgrenska
Academy, University of Gothenburg, Mölndal 431 80,
Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska
University Hospital Mölndal, Mölndal 431 80, Sweden

Complete contact information is available at:
https://pubs.acs.org/10.1021/jacsau.2c00492

Author Contributions

Conceptualization: P.W. and J.H.; methodology: P.W., W.M.,
and J.H.; investigation: P.W., J.G., W.M., S.K., A.D., D.J., and
J.H.; resources: J.H., K.B., and H.Z.; data curation: P.W.;
writing�original draft: P.W. and J.H.; supervision: J.H.;
funding acquisition: P.W., K.B., H.Z., and J.H. The manuscript
was written through contributions of all authors. All authors
have given approval to the final version of the manuscript.
CRediT: Patrick M. Wehrli conceptualization, data curation,
funding acquisition, methodology, software, writing-original
draft; Junyue Ge data curation, investigation, methodology;
Wojciech Michno data curation, methodology, supervision;
Srinivas Koutarapu data curation, investigation, methodology,
visualization; Ambra Dreos investigation, methodology, super-
vision, visualization; Durga Jha data curation, investigation,
methodology; Jörg Hanrieder conceptualization, funding
acquisition, project administration, supervision, writing-original
draft, writing-review & editing.
Funding

J.H. was supported by the Swedish Research Council VR
(#2018-02181 and #2019-02397), the Swedish Alzheimer
Foundation (#AF-968238, #AF-939767), Åhleń-Stiftelsen.
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