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1. Introduction 

Understanding human anatomy is fundamental to research and ed
ucation related to medicine and forensic anthropology [1,2]. Physical 
specimens such as cadaveric prosections, dissection or, human bone 
collections are arguably irreplaceable for anatomical teaching [3,4]. 
However, the use of physical specimens introduces significant ethical 
considerations [5,6], as well as limitations related to cost and a gradual 
diminishing of specimen quality due to time and prolonged handling. 
The advent of medical imaging and its different modalities have pro
vided research fields related to anatomy with the means to examine and 
visualise internal morphologies such as bone and soft tissues without the 
need for dissections or serial sections [7,8]. With digitisation techniques 
becoming increasingly utilised in archaeological and anthropological 
sciences [9], computed tomography (CT) databases are being accessed 
as repositories of virtual skeletal data [10]. In forensic anthropology, 
relevant techniques in scanning and processing of CT images are utilised 
in the development of novel methods for identification [11–18]. CT 
scanning is a non-destructive acquisition method traditionally used in 
medical applications. CT scanning follows the basic physics principles of 
x-rays [7]. As x-rays traverse through matter, the beam undergoes 
attenuation. This effect is the reduction of x-ray beam intensity as it is 
either absorbed or deflected by the tissue [19]. In CT, a series of x-ray 
images of the object cross section are captured to construct 
three-dimensional visualisations with volumetric information [7, 
20–22]. While accessibility of CT data (including associated software) 
have improved in recent years through the efforts of open-source data 
repositories [23] and methods [24], dependencies on manual thresh
olding and segmentations continue to limit the number of images and 
sample size of data that can feasibly be processed for research. This has 
meant that it has been difficult to undertake research on modern day 
populations at sufficient scale to address identification challenges at 
sufficient scale. 

The following is a pre-processing pipeline that has been created to 
remove irrelevant and non-osseous structures (such as fat, lymph nodes, 
and skin) or noise (such as the sliding table, stents, and medical tubing 
apparatus) in a CT scan. It offers the possibility of processing large 
numbers of CT scans to create large datasets that have relevance for the 
assessment of human remains in the context of modern populations. The 
pipeline presents three distinct outputs, 2D images thresholded for the 
tissue(s) of interest, stereolithography (STL) files for quantitative mesh 
analysis and 3D printing, and 3D image files readily available for ma
chine learning applications. 

2. Background 

The increase in the application of medical imaging and digital data 
on the analysis of human remains and anatomy in forensic anthropology 
(FA) is well-documented [16]. This growing trend, now commonly 
referred to as virtual anthropology, has contributed to the development 
of quantitative forensic anthropology methodologies [11,25–27]. Med
ical imaging, specifically CT scanning, is able to provide high contrast 
digital image data that allow the slightest differences in tissues to be 
detected [19]. Structures scanned through CT can be visualised as 
high-fidelity grayscale images. These images can be further recon
structed as three-dimensional models or thresholded into images with 
regions/tissues of interest highlighted, enabling the investigation of 
complex skeletal morphology [28]. The features of CT have aided re
searchers across disciplines in the interpretation of medical images [7,8, 
29]. CT images are also used in other established and emerging research 
fields related to medicine, forensic anthropology, virtual anthropology, 
and 3D forensic science [10,30–32]. The advances in medical imaging 
technologies alongside disciplines such as computer science, has pro
vided new ways of generating 3D visualisations of human anatomy for 
study and research from CT scans [33]. CT scans, recorded as Digital 
Imaging and Communications in Medicine (DICOM) data, can be 
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visualised as two-dimensional image files in axial, coronal, and sagittal 
views, and the tissues of interest can be differentiated and highlighted 
using the differences in attenuation [34]. Attenuation is the overall 
decrease in the intensity of the emitted x-ray beam as it passes through 
the object due to processes such as absorption and scattering [19]. As 
result of the attenuation effect, dense tissue/material will appear bright, 
while less dense tissue/material will appear dark [35]. Further, the 
DICOM images can be stacked and reconstructed as a three-dimensional 
volume rendering [28]. Through three-dimensional reconstructions and 
renderings using DICOM data from CT, size and shape information of the 
scanned object, or anatomy of interest can be accurately determined 
[28,31]. Comparative studies have further shown a high degree of 
comparability between dry bones and three-dimensional models 
rendered from CT scanning [36–38]. As a result of this accuracy and 
continual efforts to adapt traditional FA methods into virtual settings 
enabled by CT, CT scanning has seen increased use and in some institutes 
it has become part of routine procedure in medico-legal investigations 
[26,27,31,39]. 

The growth of virtual anthropology has resulted in an increasing 
demand for CT data [31,40] that is currently being met by CT databases 
created using modern populations from clinical scans or post-mortem 
scans [9,41]. The New Mexico Decedent Image Database (NMDID) 
and other open-source data archives (such as The Cancer Imaging 
Archive (TCIA)) are reflective of contemporary populations. The virtual 
nature of these databases not only provides research opportunities for 
digital preservation, clinical diagnostics, and post-mortem examina
tions, but also provides the opportunity for non-destructive analysis of 
contemporary skeletal structures [42]. Using these valuable sources of 
data can provide a better representation of modern populations in 
comparison to historical skeletal collections [9,43]. Further, collections 
of high-resolution post-mortem and clinical CT databases eliminates the 
need for bone preparation, the deterioration of physical samples over 
time, and allows for easy data sharing and distribution for rapid analysis 
[28,44]. The virtual nature of CT and its associated imaging modalities 
allows access where physical examination is impossible [45,46]. The 
virtual access also provides users with the opportunity to engage in 
transnational research and analysis, with virtual reconstructions being 
analysed between institutions in different geolocations [27]. 

The recent increase in the availability of data from medical imaging 
and interest in virtual anthropology has resulted in studies which 
conduct estimation methods based on morphological feature analysis on 
digital models [11,26,42,47–50]. This is typically done through the 
conversion of DICOM data into a surface model, an STL (stereo
lithography) file. With the success of machine learning techniques in 
analysing nonmedical images [51], there is currently a rise in number of 
studies which utilise machine learning (ML) and artificial intelligence on 
biological profile estimations in FA [14,16,17,46,52,53,53–65]. ML 
studies in medicine and FA have shown that 3D image files restructured 
from DICOM images such as Neuroimaging Informatics Technology 
Initiative (NIfTI), Wavefront Alias (OBJ), and STL is gaining interest and 
may be a valuable file format for convolutional neural networks in 
processing volumetric data [66]. 

The limitation to study sample sizes can be seen as a two-fold 
problem. Lack of data availability, and the feasibility of manually pro
cessing high quantities medical images to acceptable file formats and 
standards. While the former is being addressed by the emergence of 
databases such as the NMDID, TCIA, and the usage of diagnostic clinical 
CT scans from hospitals and medical facilities, the latter is often over
looked in research literature. Forensic science and virtual anthropology 
studies involving CT scans often overlook or underemphasize the time 
taken to process medical images for machine learning. As medical im
ages used in virtual anthropology tend to be from post-mortem and/or 
clinical settings, the scanned specimen may include irrelevant and un
necessary biological and non-biological structures such as the sliding 
table (as part of the CT scanning apparatus), medical tubing, clothing, 
fat, skin, or lymph nodes. While noisy structures can be removed in 

medical imaging programs such as 3D Slicer [67] using guides and re
sources developed [24], it is arguably unfeasible and time-consuming to 
undergo these steps if hundreds, if not thousands of 3D models or in
dividual scans were required for machine learning studies in FA or VA. 

Given the current interest to utilise ML in Forensic Anthropology and 
Virtual Anthropology, large-scale CT databases are being turned to as a 
viable source of data. However, the manual steps involved in removing 
noise and unnecessary structures from great quantities of CT images 
remain a challenge for researchers and the tight timings of research 
project cycles. The purpose of this technical note is therefore, to intro
duce a pre-processing pipeline based in Python 3. Allowing users to 
adapt the Python scripts provided to handle and automatically process 
CT images to remove noise, and to generate three discrete file outputs 
relevant to 3D modelling, machine learning, and image analysis in 
forensic and virtual anthropology. 

3. Pre-processing pipeline 

A pre-processing pipeline was designed for application with Python 
3.8 programming language to remove noise, generate thresholded CT 
images, 3D models in STL format, and 3D image files in NIfTI format. 
This pipeline has been developed to run on all operating systems 
compatible with Python 3.8.0 and the packages required in the pipeline. 
The packages utilised to construct this pipeline include pydicom, 
dicom2nifti, scipy, skimage, ITK, and VTK among others. The code and 
additional detail regarding dependencies is available for review and use 
at https://github.com/preprocessing_pipeline. 

Fig. 1 provides a visual representation of the framework developed in 
this empirical section. The framework consists of three distinct stages, 
where each stage involves different Python scripts to produce the output 
desired.  

(1) Data source/input  
(a) Dataset sorting and extraction script  

(2) Restructuring data  
(a) Noise removal and segmentation script  

(3) Useable output  
(a) Thresholding for tissues of interest script  
(b) Conversion to NIfTI format  
(c) Conversion to stereolithography format. 

3.1. Data source/input 

The first set of scripts (S1) takes DICOM images as input and checks 
for corrupted and non-DICOM files, if found the identified files are 
deleted. It then sorts them into folders according to the series numbers. 
This enables the user to automatically sort and extract relevant DICOM 
files into folders created according to the series of each scan. Each CT 
study consists of multiple series of DICOM files; each DICOM file is an 
image consisting of an X-Ray slice of the body and the image metadata, 
while each series of DICOM files is the collection of the images of the 
scanned body. Each series may differ depending on the presence or 
absence of contrast agents or the scanned regions of interest. The met
adata contain information such as slice thickness, series number, series 
date, patient sex, patient age etc. These fields or tags are defined by a 
pair of four alphanumeric characters [68], for example, (0020, 000E) 
denotes the Series Number tag of a DICOM file. While the DICOM files are 
generally extracted and provided in sequential order, each folder for a 
CT study for each patient could have multiple uncollated series of CT 
scans (Fig. 2). This first script therefore utilises the tags stored in each 
DICOM files’ metadata with Pydicom [69], a python package capable of 
reading metadata to sort and extract DICOM files into its own ‘series 
folder’ within each CT study folder (Fig. 3). Finally, the third part of S1 
enables users to delete DICOM files based on metadata information. 
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3.2. Restructuring the data 

The second script (S2) removes undesired structures such as the 
sliding table, which has been highlighted in Fig. 4. To ensure the script’s 
adaptability for other CT scanning procedures, manufacturers, and 
protocols, the code in S2 was optimised so that a selection of the pa
tient’s tissues can be detected and the noisy structures outside of the 
selection can be removed. The selected section of the image matrix 
effectively becomes a mask; any sections outside of the selected mask is 
overwritten as ‘zero’, thus deleting the unwanted structures. As S2 
directly overwrites the original file, metadata pertaining to each file is 
preserved. To achieve the described functions of S2, a few notable Py
thon packages were used. The DICOM files were first thresholded using a 
combination of modules within the Pydicom package [69]. Thresh
olding highlights specific materials based on their radio density – 
measured in Hounsfield units [70]. The pixel matrix was thresholded to 

only display structures which had the radio density of bone tissue. 
First, the DICOM file is loaded as an array of pixels and labelled as 

‘Original Image’. This array of pixels undergoes a series of thresholding 
functions to only display the structures which has the radiodensity of 
bone and surrounding tissue. The thresholding values in S2 can be used 
as a fixed threshold if the tissue of interest is of bone tissue only. The 
selected area or area of interest is returned as a ‘Mask’, which denotes 
the parts of the pixel array that should be kept, returning an area of 
interest labelled as ‘Mask’. Using the area identified by the ‘Mask’, the 
‘Original Image’ is segmented to produce the ‘Final Image’, the ‘Final 
Image’ array overwrites the original DICOM file while maintaining 
relevant metadata and the appropriate image matrix size (512 by 512) 
for future processing. The noise removal function of this script can be 
visualised in Fig. 5. In addition to the remove noise function above, S2 
can detect corrupted DICOM files and non-DICOM files to be filtered and 
flagged for the user. This is to ensure the script’s adaptability for other 

Fig. 1. Pre-processing pipeline showing the steps for adapting CT (DICOM) datasets into file formats suitable for 2D and 3D image processing, virtual modelling, and 
machine learning work in forensic anthropology. The first stage is retrieving the data (Data Source), followed by the operations of data cleaning (Restructuring the 
data); the last stage is the Useable output, where different scripts prepare the scans for outputs required for the specifics of different types of research. 

Fig. 2. Uncollated DICOM files within individual CT study folder.  
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CT scanning procedures, manufacturers, protocols, and datasets from 
other sources. By removing incompatible and corrupted files, S2 enables 
the smooth transition to the next stage of the pre-processing pipeline. 

3.3. Useable outputs 

With the noise removed, the third script, S3, enables users to pass 
DICOM files through thresholding functions from Pydicom and coded to 
produce 2D general-purpose image formats. General-purpose image 
formats such as PNG (portable network graphics) and JPEG (joint 
photographic experts group) are regarded as standards and widely used 
as image storage formats and thus, commonly used in image-based 
machine learning [71]. As both PNG and JPEG are capable of com
pressed storage of image data without visible reductions of image 
quality, this conversion from DICOM to PNG/JPEG reduces the strain on 
computational power and resources [72,73]. Depending on the filetype 
requirements of the user/researcher, S3 can be altered to produce either 
PNG or JPEG files. 

The fourth set of script (S4), enables users to compile and convert the 
processed DICOM files to the NIfTI file format using dicom2nifti package 
[74]. This package takes the collections of DICOM files sorted into each 
series folder to generate a single NIfTI file per series. By stacking the 
DICOM files, the resulting NIfTI file which contains volumetric data 
converted from the metadata and image data in the DICOM files is now 
fit for machine learning. Although originally created for neuroimaging, 
NIfTI is not limited to neurological tissue. Recent studies have demon
strated that NIfTI files can be thresholded through radiodensity 
thresholding to examine other soft tissues such as lung connective tissue 
and hard tissues such as bone [57,75–77]. With clinical and anatomical 
research demonstrating the feasibility of using NIfTI to examine bone 
tissues, this development implicates that the NIfTI format can be 
explored in the field of forensic and virtual anthropology. Moreover, the 
NIfTI format has been noted as the preferred format to conduct 3D 
machine learning as it contains the equivalent information of hundreds 
or even thousands of DICOM files in a single file [78]. Lastly, the NIfTI 
format is not exclusive of existing software, it is compatible with many 

Fig. 3. DICOM files automatically sorted and extracted into subfolders matching the series number in the metadata of each DICOM file.  

Fig. 4. DICOM file with sliding table highlighted in red. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 5. DICOM file labelled ‘Original Image’ undergoes a series of thresholding and masking functions to return an area of interest labelled as ‘Mask’. The ‘Final 
Image’ returned overwrites into the DICOM file, thus removing noisy structures such as the sliding gantry. 
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current ready-made viewers, image analysis software such as 3DSlicer, 
ImageJ, InVesalius, OsiriX, R, and Python – through the Nibabel package 
[67,79–84]. The second part of S4 enables users to move the generated 
NIfTI files into a new and separate directory. 

The fifth script (S5), enables users to pass the processed DICOM files 
through the visualization toolkit (VTK) package, which is an open- 
source, Python compatible toolkit for 3D visualization and image pro
cessing [85], and contributes to the core of many open-source, multi-
platform, ready-made software such as 3DSlicer, InVesalius, FreeSurfer 
[67,81,86]. The compiled DICOM files can be converted into stacks of 
array and thresholded to highlight the tissues of interest. The stacks of 
arrays utilise volumetric data from the DICOM files to form vertices and 
triangles which can be tessellated into a manipulable virtual model. The 
model can be written and saved as an STL file which can be visualised in 
virtual 3D viewing platforms/software or printed as a physical 3D 
model. The printed models provides tactile surface information of the 
scanned object [87,88]. This technology has since been incorporated 
into various fields of forensic science such as FA, crime scene recon
struction, ballistic reconstruction, and forensic medicine [88–92]. 
Recent research involving the usage of STL files have demonstrated that 
it can be used in both virtual and physical environments to an acceptable 
degree of accuracy and validity [11,93,94]. Through the automation 
potential presented by this script, large-scale datasets can be readily 
converted into STL files for either virtual manipulation or printed 3D 
structures for surface analysis or even used as demonstrative evidence in 
court [94,95]. Examples of the thresholded 2D image files, 3D models, 
and 3D image files produced by scripts S3 – 5 can be found in the ex
amples folder of GitHub repository provided above. 

4. Pipeline implementation 

The pipeline described above was tested and implemented on a large- 
scale database of 3575 CT scans retrieved from the Picture Archiving 
and Communication System (PACS) office at University College London 
Hospital (UCLH). The scans were anonymised by removing all patient 
identifiers identified by NHS Patient Identification Policy and official 
documentation on Patient Safety Alert [96,97], leaving only minimal 
demographic information. Ethics approval was granted by the Health 
Research Authority and Health and Care Research Wales under protocol 
number 130244. The age of the patients ranged from 19 to 97 for fe
males and 18–99 for males. All scans in the UCLH database were ac
quired using 120 kVp at 0.50 mm slice thickness on a single scanner – 
Aquillion ONE ViSION 320-detector row detector scanner (Toshiba 
Medical Systems, Otawara, Japan). Additionally, the pipeline was tested 
on single scans obtained from open-source public repositories NMDID 
and TCIA. The NMDID scans were acquired using 120 kVp at 0.50 mm 
slice thickness on the Philips Big Bore CT Scanner (Philips Medical 
Systems, Amsterdam, Netherlands), while the TCIA scans were acquired 
using 120 kVp at 0.625 mm slice thickness on an unknown CT scanner. 
Figs. 6 and 7 show that the scripts, particularly the ‘noise removal and 
segmentation’ was able to remove the sliding table from CT scans from 
alternative datasets such as the NMDID and the TCIA as designed. S3 – 5 
were also able to produce the discrete outputs as designed. Examples of 
the thresholded 2D image files, 3D models, and 3D image files from the 

single case files of the NMDID and TCIA databases can be found in the 
GitHub repository provided above. 

5. Discussion 

This pre-processing pipeline is an effective tool available to re
searchers that seeks to process large amounts of DICOM data from 
hospitals, forensic science institutes, scanned historical collections, or 
post-mortem databases to create any of the outputs offered for ML, 2D 
and 3D image analysis. This pipeline is flexible: the DICOM file stand
ardisation allows the processing of any CT scans with little to no changes 
to the code provided. The processing thresholds and the noise removal 
(S2) have been tested and demonstrated against three different sets of 
scans from different data sources and regions of body anatomy. Conse
quently, the outputs provided at the end of the pipeline present high 
reliability outputs which can be used for multiple research purposes. 

The capabilities shown by this preliminary pre-processing pipeline 
address both growing demands and problems faced by modern forensic 
and virtual anthropology. Firstly, the demand for modern population 
data is fully addressed by the pipeline as it has shown the capacity to 
transform clinical CT data and post-mortem CT data straightforwardly. 
Second, the pipeline addresses the limitations due to manual segmen
tations. While it has been noted by previously published studies that 
noise can be manually deleted through the use of visualization software 
programs [93], the task is time-consuming for larger data sets. This 
manual cleaning of noise ultimately impacts the sample size that a 
research study can feasibly process in the life cycle of the research 
project itself. As shown by the current ML research in FA, medical im
ages have been shown to produce successful ML classification models 
which contribute to advanced ML techniques such as neural networks 
and random forests for age and sex estimation in post-mortem skeletal 
remains and living skeletal data. These studies utilise X-ray images 
[98–102], MRI images [103,104], photography [105], and CT scans [56, 
102,106–108] of bony anatomy to either cluster or classify individuals’ 
age and biological sex. While the growing body of literature has pre
sented ML algorithms with promising results, study sample sizes are 
often limited to below 500 individuals/scans [17,64,65,109,110]. 
Though small datasets may be sufficient for the training of machine 
learning algorithms, the generalisability, accuracy, validity, and reli
ability of developed ML and AI models can be greatly improved with 
larger high-quality datasets [111].The larger sample sizes that the 
pipeline is able to produce will allow ML and AI models to decrease 
variability in predictive accuracies and increase model robusticity 
[112]. Additionally, the outputs of S2-4 are file formats are consistent 
with the inputs used in current ML research in FA. This pipeline there
fore not only addresses the time-consuming problem removing unde
sirable background noise and structures, but enables robust future ML 
research in FA. The outputs produced by the pipeline can be used 
beyond ML and image analysis research. For example, as the pipeline is 
able to utilise large DICOM datasets to produce STL models via S5, it 
therefore serves as a tool to create virtual or printed 3D models repre
sentative of the contemporary population for training, teaching, and 
development purposes. Another example of pipeline flexibility can be 
seen in the output generated by S3, while the current script thresholds 

Fig. 6. Noise removal and segmentation script on CT scan from the NMDID.  
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for bone tissue, and the thresholding value can be adjusted to highlight 
any tissue of interest. Thus, enabling the user to detect and highlight 
other tissues structures such as muscle. This flexibility allows the pipe
line presented here to produce outputs that are relevant in fields outside 
of FA, e.g., medicine. Although this pipeline has shown success in pro
cessing different sets of CT data, it is noted that the STL models produced 
by S5 could be further improved. Surface differences were observed 
throughout the model, and it is noted that current step-by-step guides 
developed on open-source software will allow users to generate models 
of higher quality. While the scripts in the present pipeline were devel
oped using CT scans, the code developed processes DICOM files. DICOM 
image files produced by other imaging modalities such as MRI or plain 
radiography can also be feasibly processed with some modification to 
the scripts. 

The pipeline scripts are publicly available on GitHub for any inter
ested stakeholders or researchers to download, use and validate to 
produce impactful work in relevant fields. This commitment to Open 
Science contributes to the transparency of the databases produced, and 
increases their value as tools in the evaluative interpretations made to 
assist the court [113,114]. Moreover, as this is the first tool published for 
the aforementioned purposes, the use of platforms such as GitHub allows 
the modification and improvement of the code by any interested mem
ber of the community. Therefore, we welcome any computationally 
advanced users of the pipeline to alter and refine the code provided, to 
generate higher quality models and other outputs on a mass scale. It is 
noted that the development of such a tool to process large quantities of 
medical image data could pose an impact to data privacy [115]. Medical 
images contain vast amounts of personal data in the form of the image 
and metadata that can be used to re-identify scanned individuals which 
violates privacy. However, it is noted in the published literature that 
medical images stored as DICOM images can be anonymised to reduce 
the risk of re-identification. Metadata associated with DICOM images is 
typically removed when these images are used for research purposes 
[116,117]. As the present pipeline uses DICOM images as the sole input 
format, future works that may utilise this pipeline would also adhere to 
the recommendations in the current literature to de-identify images. The 
potential of data privacy violations is mitigated with anonymisation 
processes and ethical safeguards in place. 

6. Conclusion 

The pipeline presented here is a set of novel procedures to prepare CT 
image data, specifically but not limited to clinical data, for forensic and 
virtual anthropology. The processes automated by the scripts found in 
the pipeline also allows a greater quantity of CT studies and scans to be 
processed, thus, removing the manual constraints such as manual seg
mentations and labelling that have limited the sample sizes of current 
research. With the automated processes in place, the pipeline grants the 
user with the flexibility to access and transform CT datasets from 
virtually any source and of any size. Finally, the three distinct outputs 
provided by the pipeline enables the potentially large scale and auto
mated production of 2D and 3D image files for machine learning pur
poses and 3D models for printing and virtual manipulation at a 
minimum. In the forensic anthropology context where funding, time, 

and access to modern population data may be restricted, this pipeline 
creates a process to transform CT data from a variety of contexts such as 
post-mortem, living, or virtual preservations of historical collections 
into ad-hoc datasets with useable and relevant outputs. 

Disclosure statement 

The authors declare no conflicts of interest were present in this 
research. 

Disclaimers 

There was no external funding for this research. 

Presentation 

This research was be presented at ANZFSS 2022 Brisbane, Forensics: 
Designing the Future. 11–15 Sept 2022 as a keynote presentation. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The authors wish to thank the data administrators at UCLH for their 
work in anonymising the data used in the development of the pipeline. 
Ethical approval was granted by the Health Research Authority and 
Health and Care Research Wales under protocol number 130244. 

References 

[1] A. Marom, R. Tarrasch, On behalf of tradition: an analysis of medical student and 
physician beliefs on how anatomy should be taught, Clin. Anat. 28 (2015) 
980–984, https://doi.org/10.1002/ca.22621. 

[2] C. Rissech, The importance of human anatomy in forensic anthropology, Eur. J. 
Anat. 25 (2021) 1–18. 

[3] H.-W. Korf, H. Wicht, R.L. Snipes, J.-P. Timmermans, F. Paulsen, G. Rune, 
E. Baumgart-Vogt, The dissection course – necessary and indispensable for 
teaching anatomy to medical students, Ann.Anatomy - AnThe Sci. Ethic. Concern. 
Legacy Hum. Remain. Hist. Collect.atomischer Anzeiger 190 (2008) 16–22, 
https://doi.org/10.1016/j.aanat.2007.10.001. 

[4] T.D. White, M.T. Black, P.A. Folkens, Chapter 3 - bone biology and variation, in: 
T.D. White, M.T. Black, P.A. Folkens (Eds.), Human Osteology, third ed., 
Academic Press, San Diego, 2012, pp. 25–42, https://doi.org/10.1016/B978-0- 
12-374134-9.50003-9. 

[5] S.N. DeWitte, Bioarchaeology and the ethics of research using human skeletal 
remains, Hist. Compass 13 (2015) 10–19, https://doi.org/10.1111/hic3.12213. 

[6] R. Ballestriero, The science and ethics concerning the legacy of human remains 
and historical collections: the Gordon Museum of Pathology in London, The 
Science and Ethics Concerning the Legacy of Human Remains and Historical 
Collections: The Gordon Museum. Pathol. London (2021) 135–149. 

[7] S.K. Rowbotham, S. Blau, Chapter 22 - the application of medical imaging to the 
anthropological estimation of sex, in: A.R. Klales (Ed.), Sex Estimation of the 
Human Skeleton, Academic Press, 2020, pp. 351–369, https://doi.org/10.1016/ 
B978-0-12-815767-1.00022-5. 

[8] F. Spoor, N. Jeffery, F. Zonneveld, Imaging Skeletal Growth and Evolution, 2021. 

Fig. 7. Noise removal and segmentation script on CT scan from the TCIA.  

M. Lo et al.                                                                                                                                                                                                                                       

https://doi.org/10.1002/ca.22621
http://refhub.elsevier.com/S2589-871X(23)00006-2/sref2
http://refhub.elsevier.com/S2589-871X(23)00006-2/sref2
https://doi.org/10.1016/j.aanat.2007.10.001
https://doi.org/10.1016/B978-0-12-374134-9.50003-9
https://doi.org/10.1016/B978-0-12-374134-9.50003-9
https://doi.org/10.1111/hic3.12213
http://refhub.elsevier.com/S2589-871X(23)00006-2/sref6
http://refhub.elsevier.com/S2589-871X(23)00006-2/sref6
http://refhub.elsevier.com/S2589-871X(23)00006-2/sref6
http://refhub.elsevier.com/S2589-871X(23)00006-2/sref6
https://doi.org/10.1016/B978-0-12-815767-1.00022-5
https://doi.org/10.1016/B978-0-12-815767-1.00022-5
http://refhub.elsevier.com/S2589-871X(23)00006-2/sref8


Forensic Science International: Synergy 6 (2023) 100319

7

[9] C. Villa, J. Buckberry, N. Lynnerup, Evaluating osteological ageing from digital 
data, J. Anat. 235 (2019) 386–395, https://doi.org/10.1111/joa.12544. 

[10] H.M. Garvin, M.K. Stock, The utility of advanced imaging in forensic 
anthropology, Acad. Forensic Pathol. 6 (2016) 499–516, https://doi.org/ 
10.23907/2016.050. 

[11] M. Robles, C. Rando, R.M. Morgan, The utility of three-dimensional models of 
paranasal sinuses to establish age, sex, and ancestry across three modern 
populations: a preliminary study, 0, Aust. J. Forensic Sci. (2020) 1–20, https:// 
doi.org/10.1080/00450618.2020.1805014. 

[12] T.L. Simmons-Ehrhardt, C.J. Ehrhardt, K.L. Monson, Evaluation of the suitability 
of cranial measurements obtained from surface-rendered CT scans of living 
people for estimating sex and ancestry, J. Forensic Radiol. Imag. 19 (2019), 
100338, https://doi.org/10.1016/j.jofri.2019.100338. 

[13] W.D. Turner, R.E.B. Brown, T.P. Kelliher, P.H. Tu, M.A. Taister, K.W.P. Miller, 
A novel method of automated skull registration for forensic facial approximation, 
Forensic Sci. Int. 154 (2005) 149–158, https://doi.org/10.1016/j. 
forsciint.2004.10.003. 

[14] J.T. Hefner, S.D. Ousley, Statistical classification methods for estimating ancestry 
using morphoscopic traits, J. Forensic Sci. 59 (2014) 883–890, https://doi.org/ 
10.1111/1556-4029.12421. 

[15] E. Nikita, P. Nikitas, On the use of machine learning algorithms in forensic 
anthropology, Leg. Med. 47 (2020), 101771, https://doi.org/10.1016/j. 
legalmed.2020.101771. 

[16] M.C. Spiros, J.T. Hefner, Ancestry estimation using cranial and postcranial 
macromorphoscopic traits, J. Forensic Sci. 65 (2020) 921–929, https://doi.org/ 
10.1111/1556-4029.14231. 

[17] D. Toneva, S. Nikolova, G. Agre, D. Zlatareva, V. Hadjidekov, N. Lazarov, 
Machine learning approaches for sex estimation using cranial measurements, Int. 
J. Leg. Med. 135 (2021) 951–966, https://doi.org/10.1007/s00414-020-02460-4. 

[18] K. Imaizumi, S. Usui, K. Taniguchi, Y. Ogawa, T. Nagata, K. Kaga, H. Hayakawa, 
S. Shiotani, Development of an age estimation method for bones based on 
machine learning using post-mortem computed tomography images of bones, 
Forensic Imag. 26 (2021), 200477, https://doi.org/10.1016/j.fri.2021.200477. 

[19] V.I. Mikla, V.V. Mikla, 2 - computed tomography, in: V.I. Mikla, V.V. Mikla (Eds.), 
Medical Imaging Technology, Elsevier, Oxford, 2014, pp. 23–38, https://doi.org/ 
10.1016/B978-0-12-417021-6.00002-2. 

[20] B.G. Brogdon, Definitions in Forensics and Radiology, Critical Reviews in 
Diagnostic Imaging, vol. 41, 2000, pp. 1–12, https://doi.org/10.3109/ 
10408370091179163. 

[21] F. Spoor, N. Jeffery, F. Zonneveld, Imaging skeletal growth and evolution, in: 
P. O’Higgins, M.J. Cohn (Eds.), Development, Growth and Evolution: 
Implications for the Study of the Hominid Skeleton (Linnean Society Symposium), 
Volume 20, Illustrated edition, Academic Press, San Diego, 2000. 

[22] J.A. Seibert, J.M. Boone, X-ray imaging physics for nuclear medicine 
technologists. Part 2: X-ray interactions and image formation, J. Nucl. Med. 
Technol. 33 (2005) 16. 

[23] H. Edgar, S. Daneshvari Berry, E. Moes, N. Adolphi, P. Bridges, K. Nolte, New 
Mexico Decedent Image Database, Office of the Medical Investigator, University 
of New Mexico, Albuquerque, NM, USA, 2020. 

[24] M. Robles, R.M. Carew, R.M. Morgan, C. Rando, A step-by-step method for 
producing 3D crania models from CT data, Forensic Imag. 23 (2020), 200404, 
https://doi.org/10.1016/j.fri.2020.200404. 

[25] S.J. Decker, S.L. Davy-Jow, J.M. Ford, D.R. Hilbelink, Virtual determination of 
sex: metric and nonmetric traits of the adult pelvis from 3D computed 
tomography models, J. Forensic Sci. 56 (2011) 1107–1114, https://doi.org/ 
10.1111/j.1556-4029.2011.01803.x. 
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for application of computational anatomy in forensic anthropology for sex 
determination, Forensic Sci. Int. 297 (2019) 156–160, https://doi.org/10.1016/j. 
forsciint.2019.01.009. 

[42] A.M. Christensen, M.A. Smith, D.S. Gleiber, D.L. Cunningham, D.J. Wescott, The 
use of X-ray computed tomography technologies in forensic anthropology, 
Forensic Anthropol. 1 (2018) 124–140, https://doi.org/10.5744/fa.2018.0013. 

[43] D.C. Dirkmaat, L.L. Cabo, Forensic anthropology: embracing the new paradigm, 
in: A Companion to Forensic Anthropology, John Wiley & Sons, Ltd, 2012, 
pp. 1–40, https://doi.org/10.1002/9781118255377.ch1. 

[44] N. Telmon, A. Gaston, P. Chemla, A. Blanc, F. Joffre, D. Rougé, Application of the 
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