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Abstract

Causal effect estimation is important for many tasks in the natural and social sciences. We design
algorithms for the continuous partial identification problem: bounding the effects of multivariate,
continuous treatments when unmeasured confounding makes identification impossible. Specifi-
cally, we cast causal effects as objective functions within a constrained optimization problem, and
minimize/maximize these functions to obtain bounds. We combine flexible learning algorithms
with Monte Carlo methods to implement a family of solutions under the name of stochastic causal
programming. In particular, we show how the generic framework can be efficiently formulated in
settings where auxiliary variables are clustered into pre-treatment and post-treatment sets, where no
fine-grained causal graph can be easily specified. In these settings, we can avoid the need for fully
specifying the distribution family of hidden common causes. Monte Carlo computation is also much
simplified, leading to algorithms which are more computationally stable against alternatives.

Keywords: Causal effects, partial identification, shape constraints

1. Introduction

Estimating causal effects is a key goal of scientific inquiry (Pearl, 2009; Imbens and Rubin, 2015;
Hernán and Robins, 2020). When unobservable confounders between some treatment X and some
outcome Y are present, observed auxiliary variables can be exploited in a variety of identification
strategies, such as (a) instruments in instrumental variable (IV) models (Hernán and Robins, 2020,
Ch. 16); (b) mediators in the front-door criterion (Pearl, 2009, Ch. 3); or (c) noisy measurements of
the confounders, known as proxies (Tchetgen et al., 2022).
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Even then, identification requires further assumptions. Assumptions are needed not just about the
graphical structure, but also about the functional form of causal associations, e.g., monotonicity
(Angrist and Imbens, 1995), additivity (Hartford et al., 2017; Singh et al., 2019; Muandet et al., 2020;
Bennett et al., 2019) or conditions such as completeness (Tchetgen et al., 2022). Some of these
assumptions are not immediately intuitive, as they refer to undetermined hidden variables lacking
interpretation. When such assumptions fail, effects may still be partially identifiable. That is, we can
report a non-vacuous set containing all effects implied by the causal models consistent with the data
and assumptions (Manski, 1990). Effect sets are typically described as intervals, which we can define
in terms of a lower bound and an upper bound on the causal quantity of interest. In this scenario,
using Pearl’s do-operator notation (Pearl, 2009), one estimation task is to infer some (Lxx′ , Uxx′)
such that Lxx′ ≤ E[Y | do(X = x)]− E[Y | do(X = x′)] ≤ Uxx′ .

This task has not received comparatively as much attention as the identifiable cases, despite promising
early work in this area (Chickering and Pearl, 1996; Balke and Pearl, 1997). Lately the topic has
sparked some interest in reinforcement learning (Kallus and Zhou, 2020; Zhang and Bareinboim,
2020), algorithmic fairness (Wu et al., 2019a,b), and other settings (Gunsilius, 2019; Zhang and
Bareinboim, 2021; Hu et al., 2021). There has also been more interest recently in the problem
of bounding causal effects from the perspective of sensitivity analysis (Freidling and Zhao, 2022;
Marmarelis et al., 2022; Jesson et al., 2022). Xia et al. (2021) outline a procedure for bounding
causal effects with neural networks, but restrict their focus to discrete, low-dimensional data. Duarte
et al. (2021) and Zhang et al. (2022) reduce the bounding problem to a polynomial program, but both
assume that variables are discrete and Zhang et al. (2022) further assumes that variables are finite. In
a recent paper, Kilbertus et al. (2020) propose a method for computing causal bounds in IV models
with continuous treatments using gradient descent and Monte Carlo integration. Their procedure
however is limited to univariate treatment settings (see Appendix G for further limitations).

In this work, we consider the problem of bounding causal effects for continuous data with multivariate
treatments and auxiliary variables. Such models, based on variable clusters (Anand et al., 2023),
are particularly useful as they can help circumvent the need for excessive untestable assumptions
in complex causal models. However, the setting of partial identification is conceptually tricky. The
most direct way of tackling the problem of hidden confounding is by postulating distributions over
black-box hidden variables (e.g., the GAN-based setup of Hu et al., 2021). Unfortunately, these
distributions are not only completely uninterpretable, they also do not imply any testable implications
to the observed marginals without further assumptions (Gunsilius, 2021). This is true even in the
highly constrained instrumental variable setup.

To address this, we make the following contributions: (1) We propose a generic, modular form of
the effect bounding problem compatible with a wide range of graphical structures, function classes,
optimization procedures, and distance measures; (2) We derive a customized method for clustered
models, where observed variables are separated into three vectors, treatment vector X , outcome
vector Y , and a third vector of auxiliary variables, which are structurally constrained in the way they
interact with X and Y . Figure 1 provides an initial depiction of such classes. This not only covers a
large array of practical problems where a complex causal graph is inapplicable but also, jointly with
our optimization setup, removes distributional assumptions about unknowable hidden causes. (3) We
illustrate our method on synthetic and semi-synthetic datasets, where simulations confirm that our
approach computes valid bounds even in complex settings that are challenging to optimize for.
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Figure 1: Graphs in a. and b. depict generic causal graphs for two classes of problems involving a
treatment vector X and an outcome vector Y : the first with pre-treatment causes Z, and the second
with post-treatment mediators M , all confounded by a possibly infinite-dimensional vector of hidden
common causes U . Graphs in c. and d. suggest partitioning U into disjoint direct causes of the
observed vectors, confounded by some black-box dependency structure (represented by mutual
bi-directed edges). Dashed edges in red indicate submodels of interest obtained by removing those
edges, submodels which can provide informative bounds on the causal relation between X and Y .

2. Setup

We first present a convenient way of formulating structural causal models (SCMs, Pearl, 2009) that
is useful for the problem of partial identification, followed by a generic problem formulation for
bounding unidentifiable causal estimands. In Section 3, we then specify how to solve the practical
clustered case in a way that minimizes distributional assumptions.

2.1. SCMs and The Response Function Framework

Let each variable V ∈ V be generated by a structural equation fV (PaV , UV ), where PaV are the di-
rect causes of V in V and UV is a potentially infinite-dimensional background hidden vector of “other
causes” of V . A generic stochastic process on the set of background variables {U1, U2, . . . , U|V|} is
assumed to exist.

Hence, specifying a causal model may require the joint distribution of potentially infinite-dimensional
hidden confounders, along with the structural equations. To tackle this complexity, we make use of a
response function framework (Balke and Pearl, 1994; Kilbertus et al., 2020), see also (Peters et al.,
2017, Section 3.4). Let fV,u(·) := fV (·, u) be the response function for the fixed value UV =u of the
background variable UV . Function fV,u encodes the direct causal effect of PaV on V at realization u.
A distribution over UV entails a joint distribution over functions fV,UV (·) := fV (·, UV ) evaluated at
inputs PaV .

The implication is that instead of explicitly modeling the distribution of background variables and,
separately, the function space of the structural equations, we can directly encode a model via a
distribution over response functions. This has interpretability and algorithmic advantages. To see
this, consider the following KV -dimensional function space for any given V ,

FV :=

{
fV,θ(·) :=

KV∑
k=1

θV kψV k(·)
∣∣∣ θV k ∈ R

}
. (1)

Instead of postulating distributional assumptions over background variables U , we directly postulate
a distribution over parameter vector θV := [θV1 , . . . , θVKV ]. Each basis function ψV k(·) is a function

3



PADH ZEITLER WATSON KUSNER SILVA KILBERTUS

of PaV only, i.e. fV,θ(PaV ) = θTVψV (PaV ). This is equivalent to assuming that the “true” structural
equation has a finite (but arbitrarily large) factorized format

fV,u(PaV ) :=

KV∑
k=1

ϕV k(u)ψV k(PaV ),

for some finite representation ϕV ·(·) of the latent process UV . This type of product representation,
between two subsets of inputs to a structural equation, has been shown to be generic even in very
complex treatment spaces (Kaddour et al., 2021), having numerous advantages as we shall see.

At first, we can assume a parameterized family of distributions over F , the joint product function
space over all of V , via distributions over θV , denoted by {pηV | ηV ∈ RDV }. There is, however,
only so much data can tell us about the choice of DV and KV . Without restrictions on the functional
dependence between V and UV , bounds are provably vacuous (Gunsilius, 2021, 2019). As in general
we have little information about the dimensionality and distribution of Uv, we argue that it is more
practical to work with the equivalent assumptions on the function space and distribution of response
functions parameterized by θV . Specifically:

1. We can choose the function space FV to capture knowledge of the domain. For instance, we
can inquire an expert about, “all other things being equal” (a fixed background variable UV ),
how smooth a response function should be and what a plausible maximum number of inflection
points it could have. It may be plausible to exclude having more than one inflection point, for
instance, for the dose-response conditional effect of a drug dosage on a health outcome, given
all other known and unknown factors (Gupta et al., 2020). Exploiting this knowledge can lead
to tighter bounds;

2. Depending on which information from the observed data will be used to constraint the function
space in order to compute bounds, we may be able to get away with a partially specified model
for pηv . As we shall see in the sequel, as the factorized formulation of (1) puts all randomness
in the generation of V within the randomness of θV , it may be enough to specify pηV only up
to some of its moments while retaining a very flexible function space.

We can define each ψV k to itself have parameters, which can be fit along ηV . In most examples that
follow, however, we will choose to keep the basis functions fixed to demonstrate in the experiments
the trade-off between sources of causal knowledge, other than conditional independence constraints,
and the informativeness of the bounds. See Appendix A for more on adaptive basis functions.

2.2. A Causal Mathematical Program

Assume we observe data from a causal model S⋆, with density function pS⋆ over continuous variables,
including a (possibly multivariate) continuous treatment X ∈ Rp and outcome Y ∈ R among the
observed variables. Let o(S∗) be a causal estimand of interest. For instance, using Pearl’s do notation
(Pearl, 2009), the functional ES⋆ [Y | do(X = x⋆)]. Our goal will be to minimize/maximize ox⋆(S⋆)
over all feasible causal models S among a (uncountable) model class S . Feasible here means that the
causal model lies in the feasible region of the constrained optimization problem. We characterize
feasibility via two types of constraints. First, the missing edges of the assumed directed acyclic
graph (DAG) encode conditional independencies between variables. Further assumptions on the
functional form of structural equations are required for non-vacuous solutions (Kilbertus et al., 2020;
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Gunsilius, 2021). We refer to the constraints implied by graphical and functional assumptions jointly
as structural constraints. Second, we have observational data from S⋆. Let an estimate of the data
distribution pS⋆ be p̂. Let pS be the distribution entailed by an admissible causal model S. Then pS
should replicate p̂ as closely as possible. We measure this data constraint via a distance function
dist(pS , p̂) into R+ that measures the (estimated) discrepancy between model S ∈ S and the ground
truth model S⋆ via observations. Given this, we can formulate the following general problem setting
for computing the minimum/maximum causal effect among all models S that are (dist, ϵ)-compatible
with observations:

min / max
ηθ,wψ

o(S) [obj] (2)

subject to dist(pS , p̂) ≤ ϵ , [c-data] (3)

structural constraints, [c-struct] (4)

where: ηθ defines the joint distribution pη(θ) over a finite-dimensional representation of the back-
ground variables in the construction of equations (1) for each variable; wψ parameterizes the respec-
tive basis functions, where applicable. The objective function [obj] and constraints [c-data]
are well-defined as a function of (θ, ψ) and the distribution pη(θ). The shape of the pη(θ) and the
structural equations (1) should be such that [c-struct] holds by construction.

One way to implement the above for V := {V1, . . . , Vd} is to define a deep generative model (e.g.,
Papamakarios et al., 2021) for the distribution over the set {θ1, . . . ,θd}. Distance functions can in
general be defined as

dist(pS , p̂) := ||TS − T̂ ||p,

where || · ||p is a norm such as L2 or L∞, and TS is a (possibly infinite) vector of functionals of
pS . Likewise, T̂ is the (smoothed) empirical counterpart of this vector of functionals. One related
alternative is to define this distance in terms of a set of maximum mean discrepancies (MMD,
Muandet et al., 2017) at different choices of hyperparameters.

Algorithm. The key challenges in implementing the method are two-fold. First, Monte Carlo
evaluation of both [obj] and [c-data] will in general be necessary (see, e.g., Kilbertus et al.,
2020). The result is a non-linear mathematical program with Monte Carlo evaluations, and constraints
enforced by methods such as augmented Lagrangian optimization (Nocedal and Wright, 2006), which
from now on we will refer to as stochastic causal programming (SCP). Second, the parameterization
of pS will need to enforce [c-struct]. The corresponding graphical representation of a SCM
is a acyclic mixed directed graphical model (ADMG, see Richardson, 2003, for its Markovian
properties), a graph with directed and bi-directed edges (as in Fig. 1). The lack of directed edges
can be easily enforced by the scope of each structural equation. The lack of bi-directed edges,
however, may require a special treatment. A common trick is to introduce yet another layer of
hidden variables according to the cliques of the bi-directed substructure of the ADMG, as done in
many contexts by e.g. Silva et al. (2007), Barber (2009) and Zhang et al. (2022). This implies a
considerable computational burden. Furthermore, at least in the continuous case, the plausibility
of the causal model may be compromised, as such a workflow invites imposing distributions over
hidden variables in a mechanical way, without a proper discussion of what they entail in terms of
causal assumptions.
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3. Approaches for the Clustered Case

The generic recipe for a SCP can be implemented by combining off-the-shelf components, as we
have done, as described in Appendix B. This general SCP is applicable to any ADMG structure
with function spaces, as in (1). However, the most interesting use cases should exploit the special
structure of the domain. In what follows, we look at two important scenarios, found in many
applications:

1. The first comes from Figure 1c., where we remove the dashed edges. As this is the same
structure found in instrumental variable models, we call it the IV family;

2. The second comes from Figure 1d., again where dashed red edges are removed. As it resembles
the structure exploited by the (identifiable) front-door criterion of Pearl (2009) but for the
confounding of M and Y , we call this the leaky mediator family.

These families are meant to capture two major classes of applications: the first representing pre-
treatment variables which explain part of the non-causal backdoor association between treatment
and outcome; the second representing mediators which explain (part of) the causal effect between
treatment and outcome. In both cases, allowing for the edge Z → Y or X → Y is trivial, but further
constraints (such as a bound on the derivative of the structural equation of Y with respect to the
added parent) will be necessary to avoid vacuous bounds (Ramsahai, 2012). We do acknowledge that
combinations of the IV and leaky mediation scenarios appear in longitudinal studies, but we leave a
specialized treatment of such a case to future work.

3.1. Parameterization

The main relevant common feature found in the IV and leaky mediator is the way we can deal with
the marginal independence model implied by the lack of bi-directed edges UZ ↔ UY and UX ↔ UM
(Verma and Pearl, 1990). The main idea comes from observing that the only structural confounding
of interest is the association between UY and the ancestors of Y . Figures 2a. and b. reconceptualize
the independence model of the IV1 and leaky mediator cases in terms of treatment X , outcome Y ,
structural background variable UY , and the corresponding auxiliary variable (Z or M ).

Following the standard idea of transforming cliques of bi-directed edges by adding a latent variable
vector per clique in a DAG model (e.g. Silva et al., 2007), we can reconceptualize Figures 2a. and b.
as the DAG models in Figures 2 c. and d. Hidden variables NZ and NM are not structural, meaning
that they do not represent background variables in a SCM. We call them the non-structural hidden
variables. Indeed, such models do not need to assume Z and M are manipulable at all as long as
they encode the causal invariances that restrict the model space, such as M(x)⊥⊥X and Y (x)⊥⊥Z,
where M(x) and Y (x) are the respective potential outcomes, under an intervention on X , in the
respective models. Non-independence invariances arise in the leaky mediator model even when
Y (m) is not defined (see Dawid, 2022, for the reasoning in the case where the front-door criterion
holds). For simplicity of presentation, we shall assume that the equation for Y in the leaky mediator
is structural with M as a causal parent such that the constraint Y (m,x) = Y (m,x′) is well-defined,
but we will not make use of a structural equation for M .

1. The graphical criteria for an IV remains the same regardless of the existence of edge UZ ↔ UX (Pearl, 2009).
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Figure 2: a. and b. show the causal structure of the main pre-/post-treatment templates, ignoring the
background variables that will be irrelevant for our tasks. In c. and d. we introduce (non-structural)
hidden causes N·, which will allow for a parameterization of hidden confounding. Please notice
that graphs in c. and d. should not be interpreted as representing causal relations between N. and
their children: N. are just data-augmentation devices to build a distribution, and the graphs here just
represent standard probabilistic Markov conditions.

Using the parameterization from Equation (1), we may now reformulate structural causal claims in
terms of the response function representation of vector UV as vector θV . For instance, ignorability
between V and its observable parents in the ADMG can be cast as θV ⊥⊥PaV .

Structural hidden variables. Following the Markovian structure of the IV and leaky mediator, it
suffices to represent the distribution

θY |NPaY ∼ pηY
(
·;µη0(NPaY ),Ση1(NPaY )

)
, (5)

where NPaY are the non-structural hidden variable parents (in terms of the independence structure
of the graphical model) of UY in the SCM. This distribution is defined up to mean and covariance
functions µη0(·) and Ση1(·), defined by our optimization parameters η = (η0, η1). Other than
that, we make no further assumptions about the shape of pηY , as they are unnecessary for the
inference problems we set up to solve in the next section. To ensure Ση1(N) is a valid covariance
matrix, we represent it in terms of its Cholesky factor L and add a small constant Ω to the diagonal
Ση1 = L⊤L+Ω1. In our implementation of Section 4, we use flexible function approximators for
µη0 and Ση1 given by feedforward neural networks.

Non-structural hidden variables. Unlike black-box approaches, including the one we presented
in the previous section and related approaches such as Hu et al. (2021); Zhang et al. (2022), in
our clustered case there is no need to waste computational resources and making further model
assumptions by defining a model for NV , the non-structural hidden variables. Instead, define

V = hPaV (NV )

as the model of a cluster V with parent clusters PaV and respective non-structural hidden parent NV

in a way that hPaV (·) is invertible in NV . That is,

NV = h−1
PaV

(V ). (6)

When V is one dimensional, this can be done using the usual construction based on inverse cumulative
distribution functions (cdf). That is, if FPaV (·) is the cdf of V given PaV , then we can define it
as V = F−1

PaV
(U) for a uniform in (0, 1) random variable U (recall we are assuming that all

variables are continuous). This means we can define our NV as U itself. Moreover, given (V,PaV )
U = NV = FPaV (V ) allows for actually observing NV within any data point.
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When V is multivariate, all sorts of approaches can be used. A convenient one is conditional
normalizing flows composed of invertible and differentiable (i.e., diffeomorphic) transformations
(Papamakarios et al., 2021). They are flexible candidates that we use in our experiments. We provide
all details of our specific implementation in Appendix E. The fact that we can deterministically infer
the non-structural hidden variables will vastly simplify our algorithm, as we shall see next.

3.2. Objective functions and enforcing [c-data]

Now that we described how the model space is defined, we finish the specification of the causal
program by constructing the objective function and data constraints.

Objective functions. The objective function we will assess in our experiments is the expected
outcome under intervention,

ox⋆ := E[Y (x⋆)] = E[Y | do(X = x⋆)], (7)

for a particular value x⋆ of interest. This can be used to generate pointwise bounds over a dose-
response curve on a grid of treatment values, for instance. Average treatment effects (ATEs) easily
follow, and pre-treatment variables can be trivially added for deriving conditional average treatment
effects (CATEs), as similarly discussed by (Kilbertus et al., 2020). The function ox⋆ is particularly
easy to compute in the case without mediators, where

ox⋆ = ψY (x
⋆)⊤ ENX [µη0(NX)].

The expectation is over the marginal distribution of NX . Defining the model for X as a normalizing
flow with independent Gaussian seeds NX means that this objective function can be easily computed
by a Monte Carlo approximation of the integral over NX .

When mediator M is at play, we need also to integrate out M(x⋆). As M(x⋆) is deterministically
given by NM , and ox⋆ is still a linear function of θY , this can be much simplified as

E[Y | do(X = x⋆)] = EM(x⋆),θY [ψY (M(x⋆))⊤θY ]

= ENX ,NM EM(x⋆),θY [ψY (M(x⋆))⊤θY | NX , NM ]]

= ENX ,NM [ψY (hx⋆(NM ))⊤µη0(NX , NM )].

In case of cross-world counterfactual quantities, V[Y (x)− Y (x′)] is an example of estimand which
is useful as a summary of the joint distribution of counterfactuals and can also be easily calculated.
We will not experimentally pursue cross-world estimands further in our manuscript.

Encoding the [c-data] constraints. Classical methods such as Balke and Pearl (1994) match
the entire likelihood function implied by the model against the maximum likelihood estimator of
the observational distribution. With continuous realizations, we cannot match entire likelihoods.
However, matching only at a particular set of realizations will not invalidate the bounds.

Let W be the auxiliary variable Z, or M , depending on the model. From the factorization
p(W,X, Y ) = p(Y |X,W ) p(X,W ), the model for p(X,W ) can be learned independently of
causal parameters. This means, for instance, making NZ = Z and fitting separately a normalizing
flow for X as a function of Z and NX prior to any causal effect bounding.
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A key feature of the clustered method is then only matching functionals of p(Y |X,W ). This
matching can be conveniently formulated as matching expectations of the two distributions when
transformed by a set of dictionary functions {ϕl : Y → R}Ll=1. That is, we want some norm of

νl(x,w) = Ep̂(Y |x,w)[ϕl(Y )]− EpηY (θY |x,w)[ϕl(fθY (x))] (8)

defined as ∥νl(·, ·)∥ at a representative, finite set of points in the support of p(X,W ). Arguably,
the most representative set is a uniformly random subsample of the observed data D of size D. In
our experiments, we specifically consider the entry-wise sup-norm ∥ · ∥∞,∞ and the entry-wise 2-
norm ∥·∥2,2. For ∥·∥∞,∞ we require the absolute value of each entry to be small, i.e., practically have
to enforce D · L constraints, whereas for ∥ · ∥2,2 we get away with a single overall constraint.

Choosing L = 2 with ϕ1(s) := s and ϕ2(s) := s2 will allow us to calculate constraints in closed
form, while keeping the premise that pηY (θY ) can be defined only up to (conditional) first and second
moments µη0(NPaY ) and µη1(NPaY ). This task is more computationally efficient and use weaker
assumptions than modeling the complete joint distribution p(X,Y,W ), as required, for example, by
generative methods such as GANs (Hu et al., 2021). For instance, in the IV case,

A1,j(η) := E[fθY (Xj) | xj , zj ] = ψ(xj)
⊤µη0(nj),

A2,j(η) := E[fθY (Xj)
2 | xj , zj ] = ψ(xj)

⊤(Ση1(nj) + µη0(nj)µη0(nj)
⊤)ψ(xj) , (9)

where nj := h−1
zj (xj), for each j ∈ 1, 2, . . . , D.

3.3. Solving the optimization

Taking all the steps from previous sections together, we have νl,j = ϕ̂l(xj , zj)−Al,j(η) and ultimately
arrive at the following non-convex optimization problem with non-convex constraints

min / max
ηθY ,wψY

ox⋆(η)] [obj] (10)

subject to ∥ν∥ ≤ ϵ [c-data]

for a choice of norm ∥ · ∥ and where ν is a stacked vector of the left-hand side of all νl-induced
constraints. For this problem, the augmented Lagrangian method with inequality constraints is a
natural choice (Nocedal and Wright, 2006, Sect. 17.4), along with a Monte Carlo evaluation of
gradients of the objective function (recall that ∥ν∥ and its gradients can be done in closed form). A
high-level description and details are in Appendix E.

4. Experiments

Since ground truth causal effects must be known to properly evaluate the validity of our bounds, we
make use of synthetic and semi-synthetic datasets. We show experiments for identifiable settings as
well as for other datasets and constraint formulations in Appendix F. All plots for our method are
using the clustered formulation (Section 3) unless specified otherwise.2

2. Code for the experiments is available at https://github.com/kirtanp/SCP_bounds
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Figure 3: Top Left (IV-lin-2d-strong; GAN comparison) Our general SCP (Appendix B gives bounds
comparable to the GAN method. The clustered SCP outperforms both the GAN and general SCP in
terms of tightness of bounds and stability. Top Right (LM-lin-2d-strong; leaky mediator setting) We
get reliable bounds also in the leaky mediator setting compared to the GAN framework. Bottom
Left (IV-lin-2d-strong; comparing response functions) As expected, neural response functions give
wider bounds than a linear polynomial basis because of being less expressive. Bottom Right (IV-lin-
2d-weak; comparing norms) Our framework easily allows for different data-matching criteria (dist).
The choices shown here (∥ · ∥∞,∞ and ∥ · ∥2,2) yield comparable and consistent bounds.

4.1. Treatment choices

When visualizing results for multidimensional treatments X , we vary the interventional values x⋆

along a single treatment dimension, keeping the remaining components at fixed values. While this
allows us to show continuous treatment effect curves, we note our method can compute bounds for
any multidimensional intervention do(X = x⋆). Specifically, we vary the first component of X
and fix the values of the other components to their empirical marginal means. For each figure, we
include a kernel density estimate of the marginal distribution of the empirically observed treatments
to distinguish “data poor” from “data rich” regions. In “data poor” regions (towards the tails of
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the empirical distribution), we expect our bounds to become looser, as less information about the
data-matching constraints is available.

4.2. Baselines

We compare our clustered SCP method to a general SCP implementation (Appendix B), naïve
regression and the method of Hu et al. (2021), which is a typical representative of black-box methods
for continuous treatments.

• General SCP implementation. We provide an implementation of the general formulation of SCP.
The idea is that each variable is a flow conditioned on its parents. The structural constraints are
enforced by the fact that all variables within each c-component share the same noise distribution,
and noise distributions for different c-components are independent. Details are described in
Appendix B.

• Regression with MLP. We naïvely fit an MLP with quadratic loss to predict outcome Y from the
multidimensional treatment X , a modeling approach that assumes no confounding at all.

• GAN framework. Hu et al. (2021) parameterize the causal model (i.e., its exogenous random vari-
ables and structural equations) with neural networks and apply the adversarial learning framework
to search the parameter space. We adjust the model in their code to our examples, but otherwise
leave hyperparameter choices and convergence criteria untouched.

4.3. Implementation choices

Choice of response functions. As described in Equation (1), we choose linear combinations of non-
linear basis functions {ψk}k∈[K]. For our experiments we mostly work with a set of pre-trained K
neural basis functions, obtained from the last hidden-layer activations of an MLP fit to the observed
data {(xi, yi)}i∈[n], as well as (multivariate) polynomials up to a fixed degree (see Appendix E.4 for
details). For two-dimensional treatments, we use K = 6 and K = 3 for polynomial and neural basis
functions, respectively. For three-dimensional treatments, we use K = 10 for both polynomial and
neural basis functions. This allows up to quadratic terms in the polynomial basis for both two- and
three-dimensional treatments. We also show experiments with adaptive basis functions, with ψk is
tanh(w0k + w1kx). The bases in this case are therefore not fixed, but rather adapt to the problem at
hand through the learned weights. More details are provided in Appendix E.4.

For our method, we individually compute lower (▽) and upper (△) bounds at multiple values
x⋆ ∈ R for one dimension of the treatment and show how it compares to the true causal effect ( )
and naïve regression ( ). The lines shown for lower and upper ( ) bounds are univariate cubic
splines fit to the bounds for individual x⋆-grid values. We use n = 10, 000 i.i.d. sampled data points
for each experiment and subsampleM = 100 data points uniformly at random for the data constraints
[c-data]. For theX |Z model in the IV setting, we use a quadratic conditional spline normalizing
flow. Details of the implementation, including hyperparameters, are described in Appendix E.

Getting final bound estimates. For each x⋆, we run 5 optimizations with different seeds each for
the lower and upper bounds. For the final upper bound estimate, we take the maximum of the 5 upper
bound estimates we get, and for the final lower bound estimate, we take the minimum of the 5 lower
bound estimates we get. We follow the same process for the GAN bounds.

11
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4.4. Results

A full glossary of datasets can be found in Appendix D, along with exact structural equations for
each setting. While the naming of the datasets is intuitive, Figure 6 provides a short description of
the naming logic. We now describe the results obtained for selected datasets, with more results and
details in Appendix F.

IV-lin-2d-strong. This dataset is simulated from an IV setting, where the true effect Y | do(X) is
linear in a two-dimensional treatment X . The naïve regression E[Y |X] differs substantially from
the true effect, indicating strong confounding.

SCP is more stable than GAN. Figure 3 (top right) compares both the clustered and the general
implementation to the GAN framework baseline. Our general SCP gives bounds comparable to
the GAN method, though with fewer sharp jumps and instabilities. The clustered SCP on the other
hand simplifies constraints through structural encoding and avoids full density estimation, which is
reflected in the increased stability over both the general SCP and the GAN methods. Indeed, Figure 3
(top right) shows that despite the flexible neural basis functions, our clustered approach can yield
tighter bounds and avoid the instabilities observed in the GAN approach when we move towards the
tails of the observational distribution.

While the tightness of bounds across different models with different assumptions should not be an
indicative of quality of a solution, the point here is to illustrate that using only a few moments of
the distribution does not trivialize the resulting interval when contrasted against methods that use
full distributions (GAN), and the bounds remain consistently valid. Furthermore, the stability of
the bounds is especially encouraging when we remember that each upper and lower bound for each
intervention value x∗ is a separate optimization problem.

The flexibility of the response functions affects the tightness of the bounds. We continue by assessing
the effect of the flexibility of response functions on our bounds in Figure 3 (bottom left). Choosing
less flexible basis functions (polynomials) yields tighter bounds, highlighting the flexibility of
our approach in obtaining more informative bounds when more restrictive assumptions are made.
Our method can also accommodate alternative constraint formulations and slack parameters. We
show experiments demonstrating this flexibility in Appendix F. While sometimes loose, especially
for flexible basis functions (MLP) and in “data poor” regions towards the tails of the empirical
distribution of observed treatments, our bounds contain the true causal effect for all x⋆. This validity
holds for all other experiments as well.

IV-lin-2d-weak. This is an IV setting with weak confounding. In Figure 3 (top left), we show
how our bounds behave under different choices of dist, namely under the entry-wise ∥ · ∥∞,∞ norm
(which results in D · L constraints in the augmented Lagrangian) versus the entry-wise ∥ · ∥2,2 norm
(yielding only a single constraint). The obtained bounds are compatible and comparable, indicating
relatively mild effects of the choice of the data-matching criterion dist.

LM-lin-2d-strong. Figure 3 (top right) shows results for data from a leaky mediator setting, where
the true effect is a linear function of the mediator M , and the treatment X is two-dimensional.
Confounding between the mediator and the effect is relatively strong. These results corroborate our
findings regarding stability and reliability of our bounds compared to the GAN framework from the
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IV setting, despite using the neural basis function. Again, additional results for different structural
assumptions, treatment dimensions, and confounding strength are presented in Appendix F.

5. Discussion

Limitations. After parameterization, the optimization problem in Equation (2) will generally result
in a non-convex objective with non-convex constraints. Therefore, our proposed gradient-based local
optimization may not converge to a global optimum, possibly rendering our bounds overly tight.
Empirically, we do not observe evidence of consistently getting stuck in bad local optima. Because
we optimize both bounds individually for each value of x⋆, our method may be computationally
expensive when the intervention space is very large. However, it is well-suited for scenarios where
we want reliable bounds on a well-defined set of plausible interventions. Finally, we have not
accounted for the uncertainty of our bounds. Confidence or credible intervals for both extrema can
help practitioners evaluate the reliability of causal inferences, and are an interesting direction for
future work.

Conclusion. Causal modeling inevitably involves a trade-off between the strength of input assump-
tions and the specificity of resulting inferences. If assumptions do not correspond to reality, the
inference that follows is unwarranted. The role of a method is to provide the sandbox in which
assumptions can be transparently expressed and informative constraints, where available, are not
wasted. Our framework allows for the practitioner to focus more on the coarse structure of the prob-
lem and assumptions about the function space, and to deliver results with minimal assumptions about
non-causal aspects of the model, while also having the flexibility of making stronger assumptions
when appropriate. See Appendix A for further discussion.

We have introduced a stochastic causal program for bounding treatment effects in partially identifiable
settings. We showed how major computational simplifications and weakening of assumptions can
be achieved in practical cases where variables can be clustered in pre- and post-treatment layers.
Our approach does not rely on the typical assumptions of linearity, monotonicity, or additivity, nor
on distributional assumptions about unknowable hidden common causes. Experiments on synthetic
and semi-synthetic datasets demonstrate that our method produces valid and informative bounds in
a wide range of settings, including with continuous and multidimensional instruments, mediators,
treatments, and outcomes.
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Appendix A. On the Choice of Function Space

The function space in Eq. (1) is, at a high-level view, a standard finite basis expansion with or
without adaptive bases. We chose this particular function space template as it is (i) general, (ii)
computationally advantageous and (iii) scientifically advantageous.

It is general, as it can arbitrarily approximate any practical function of interest (keeping in mind
that allowing for an unbounded number of discontinuities will result in vacuous bounds (Gunsilius,
2021)), particularly when we are dealing with a small number of causal parents. As a matter of fact,
(Gunsilius, 2019) uses as basis functions a truncated wavelet expansion. We could likewise use the
dictionary of regression spline basis functions, with splits decided by any rule of interest, including
uniform grids or those based on the training points.

As a matter of fact, no computable estimator of nonparametric functions is infinite dimensional at any
given sample size. In the case of kernel machines, for instance, the celebrated Representer Theorem
of (Schölkopf et al., 2022) shows how any resulting estimate will be a function that is parameterized
explicitly by the data (and such will be the case for the broad class of linear smoothers (Wasserman,
2006, Ch. 5)). As our causal models are not fit to the data directly, but to estimated functionals of
the observed distribution, which we use as constraints in a mathematical program, we can directly
parameterize it in terms of a finite basis expansion.

Moreover, there is nothing stopping us from making each element ψi of the basis functions pa-
rameterized by, say, a linear transformation of the function inputs followed by some non-linearity
(effectively, a hidden unit in a feedforward neural network). An entire neural network could also be
used for each ψi, so that the function space becomes a deep model, with the distribution over the
function space confined only to randomness on the θ parameters. Nothing in the main algorithm
changes, except for extra terms added to the overall gradient.

This leads to the fact that our function space is computationally advantageous, particularly when
we can eliminate bidirected edges using ideas from Drton and Richardson (2008), combined with the
decision to use only the first two moments of target causal factors. In this case, all constraints can be
computed in closed-form, and we can perform a relatively simple Monte Carlo approximation for the
objective function. As a matter of fact, we did not have to make any distributional assumptions about
θ at all, except for the existence of its first and second moments. There is much to appreciate in the
generic blackbox of Hu et al. (2021), but solving full density estimation problems and requiring a
complex nesting of multiple optimization and simulation steps may not be the preferred way to go in
some real-world applications.

Moreover, response functions only need to be structural with respect to its manipulable inputs. If
we want to model, say, E[Y | do(x), w] for some pre-treatment covariates W , there is no need at
all to model W structurally. The causal model can be defined in terms of the response function
f(w,uY )(x), where W is just another source of background variability (though observable, unlike
UY ). This means that the distribution of θ will be parameterized as a black-box function that includes
w as inputs, while the basis function expansion can remain flexible, and informative, in the small
dimensional space of X .

Finally, our setup is scientifically advantageous. A naïve view of causal inference postulates that
since functional constraints are untestable assumptions that will imply invalid bounds if misspecified,
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then we must, on purpose, impoverish the language in which we allow causal models to be described
by removing this choice. This line of reasoning is incoherent on many accounts. First, practitioners
do want to express functional constraints, as partial identification is notoriously uninformative in
many cases. Shape constraints may be fruitful even in purely predictive tasks (e.g Gupta et al.,
2020), as further background knowledge to reduce degrees of freedom that cannot be fully decided
by data alone. Many domains have no clear reason to allow for dose-response curves that have
many inflection points, and in fact the community has been criticized by creating benchmarks with
artificial outcome functions for the sake of illustrating overly complex average treatment effect
estimators, which hardly deliver any advantages in several empirical domains (e.g., Gentzel et al.,
2021). The argument that restricting function spaces may lead to invalid bounds is vacuous and
misses the point of causal modeling. A model is what we remove from the space of all possibilities,
that is, the constraints we adopt.3 The missing edges in a causal graph are just that: constraints.
Invalid bounds are a consequence of an overconstrained feasible region, and the function space
is part of the game as much as any decisions about missing edges. The promotion of a type of
constraint (independence constraints) as having a protected place in causal modeling should not be
taken seriously by methodologists or practitioners.

Second, like missing edges, function spaces can be partially tested. Testability is predicated on
assumptions that themselves may be untestable: in the case of purely missing edges, faithfulness
(Spirtes et al., 2000) and its variants; in the case of function spaces and the independence constraints
that go along with them, we can test whether our mathematical program has a feasible solution or
not. Passing the mathematical program is not a guarantee of correctness – which is not surprising,
given that e.g. hypothesis testing and many frameworks of scientific falsifiability are about deciding
not to reject a postulated model, not about confirming it. As another example, passing Fisher’s sharp
null hypothesis by itself does not prove that individual treatment effects are exactly, or even close
to, zero (or whether counterfactuals have a physical meaning at all!), and so on. Nevertheless, there
are important applications of falsifying a causal model with partial identifiability (e.g Wolfe et al.,
2019; Robins et al., 2015), which are useful so long as it is understood that “testability” is always an
asymmetric concept.

Among the practical uses of constrained function spaces, for instance, is the possibility of expressing
knowledge as smooth deviances from responses that do not control for unmeasured confounding:
e.g., parameterizing Y = f(w,uY )(x) as Y = E[Y | w, x] + r(w,uY )(x), the latter function r(w,uY )(x)
taking particularly smooth shapes.

One line of criticism that deserves more serious consideration was raised by Dawid (2003) in
the context of classical categorical models for instrumental variables: postulating constraints on
structural equations/response functions is equivalent to making counterfactual claims which are never
directly testable, even with perfect randomized controlled trials (RCTs). This motivated Dawid to
create an alternative to partial identification in discrete IV settings without postulating the existence
of response functions. A discussion of interventional (response-function-free) and counterfactual
(adopting response functions) models is provided by Swanson et al. (2018). In our case, expressing
models in terms of latent variables and conditional distributions falls back to the issue we discussed

3. To use a quote usually apocryphally attributed to Michelangelo: “It is the sculptor’s power, so often alluded to, of
finding the perfect form and features of a goddess, in the shapeless block of marble; and his ability to chip off all
extraneous matter, and let the divine excellence stand forth for itself.” The Methodist Quarterly Review (1858),
emphasis added.
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in the main text, by which it is unclear how to interpret an infinite dimensional latent variable
space and its relation to the conditional distributions, and all the computational complications that
follow. Our take is that the response functions are idealizations that do not need to correspond
to counterfactuals if all that is required is how well we can model interventional distributions –
themselves testable implications in the sense of comparisons against RCTS. Without RCTs, the
formulation has a degree of falsifiability in terms of the feasible region of the mathematical program,
as discussed above.

Appendix B. A general implementation of the SCP

We show here how we can instantiate the SCP for general graphs. Recall that we observe data from
a causal model S⋆, with density function pS⋆ over continuous variables, including a continuous
treatment X ∈ Rp and outcome Y ∈ R among the observed variables. Let o(S∗) be a causal
estimand of interest. In our case, this is the functional ES⋆ [Y | do(X = x⋆)]. Our goal is to
minimize/maximize ox⋆(S⋆) over all admissible causal models S among a (uncountable) model class
S.

In Section 3, we describe a smart parametrization of the causal model where we only need to estimate
the first two moments of a conditional distribution. This was possible by taking advantage of the
structure of the problem and baking some of the constraints directly into the construction of the
generative model. The advantage of this is that the optimization is more stable and reliable, as we
have seen in Section 4. Alternatively, we can use any off the shelf generative model to define our
model class, S as we describe in the following subsection.

B.1. Parametrizing the causal model

We write V = gV,θV (PaV ), where θV are the parameters of our response functions. This means that
we need to optimize over a distribution over θ.

We model each endogenous variable V as a normalizing flow conditioned on PaV . We denote
the flow transformation corresponding to V as gV and the base distribution as sv. We start with
the root endogenous variables. Since they do not have endogenous parents, they are simply flow
transformations of the noise corresponding to the c-component. We can learn these as fixed flows that
we then sample from to get the generated variable. Samples generated through this architecture for a
variable V are denoted by Vg. Alternatively, for endogenous variables V without any endogenous
parents (meaning PaV is an empty set) we can also simply use the observations of V as Vg to
represent a trivial mapping. We continue downstream in this way, with each variable being a flow
conditioned on the generated parents, so Vg = gV,θV (sv|(PaV )g).4 Repeating this architecture for
each endogenous V will give us a generative model for our endogenous variables. So in the end, the
parameters of our optimization procedure will be η = {θV }{V ∈V} (consistent with the notation from
Section 3). This generative model corresponds to pS .

Note that this construction is similar to the one described in Hu et al. (2021). The difference is that
we still manage to avoid a bi-level optimization by simply using any differentiable difference between
distribution measure as dist instead of using a discriminator as Hu et al. (2021) do. We also note that

4. This is strictly speaking an abuse of notation. We write it like this to make the point that sv is the noise being
transformed, and it is done conditional to having the values of the generated parents (PaV )g given as input as well.
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flows are not at all essential to this general implementation, other generative models can easily be
used as well. This is simply one instantiation of how the generic SCP might be implemented using
off the shelf methods.

Next, we show how we enforce the structural constraints.

B.2. Encoding structural constraints

We note that θV inherits the independence relationships between UV . We use the c-component
factorization of Tian and Pearl (2002), since we know that any pair of exogenous variables are
independent if they belong to different c-components (Tian and Pearl, 2002). We share the same
noise term among flows corresponding to variables within the same c-component. This ensures that
the independence assumptions are encoded.

A small technicality here is that flows require the base distribution to be the same dimension as
the output dimension, but variables in the same c-component will in general not be of the same
dimension. Taking the example of the IV setting, X ∈ Rp and Y ∈ R are in the same c-component,
meaning that they have a shared base distribution.To get around this, we use a base distribution of
dimension p and use the first dimension of this distribution as the base for Y . In practice, this means
that we draw samples from the p-dimensional base distribution and use the first dimension of these
p-dimensional samples as the base samples for Y . Note that this still respects the independence
assumptions of the model. We can do a similar process in general even with more variables being in
the same c-component, using a base distribution with the dimension equal to the dimension of the
maximum dimensional variable among those in the same c-component.

Implementation. In our implementation, we use conditional affine coupling flows (Dinh et al.,
2016) as our conditional flows, with an implementation in PyTorch provided by the python library
Pyro (Bingham et al., 2019). As the dist we use MMD Muandet et al. (2017), which will enforce
the data constraints. The objective value o(S) can be calculated from the generative model. For
example, by using the output of the flows we are using as part of our generative model, except that
the flow corresponding to the intervened variable is replaced by a constant value. Finally, this leads
to a constrained optimization as defined in Equation (2) with a single constraint. This is finally
solved using the augmented lagrangian method, as described in Appendix E.5. We use a slack of
0.02 to account for the scale of the MMD, which is different from the slack used in the clustered
SCP implementations (Appendix E). For the MMD, we use 1000 samples from the generative model
and use 1000 randomly chosen points from the observed distribution to compare the distance.

Appendix C. Extensions

We introduced our problem formulation as a very generic definition of model proximity in terms of
some dist(pη, p̂), and in particular the formulation

dist(pη, p̂) ≡ ||fpη − f p̂||∞,

where f p̂ is a finite-dimensional vector of functionals of the (estimated) observable distribution, and
fpη is a finite-dimensional vector of functionals of the distribution as implied by an unidentifiable
structural causal model. Equation (8) is a particular implementation of this idea. Due to the challenge
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of evaluating this norm, we suggest Monte Carlo approximation for the optimization procedure,
based on Wang and Bertsekas (2016).

We have also presented results for alternative distance metrics, including special cases such as metrics
that can be associated with a single Lagrange multiplier, such as ||fpη − f p̂||2. We note that also
combinations of a limited number of metrics are possible such as

max{||fpη1 − f p̂1 ||1, ||f
pη
1 − f p̂2 ||1, . . . , ||f

pη
K − f

p̂
K ||1},

where each k = 1, 2, . . . ,K describes a cluster of functionals that are easy to compare on the same
scale.

A possible extension is the provision of a calculus for a minimal parameterization of arbitrary
structural causal models for a given causal query of interest. Looking back at our instrumental
variable scenario, we could have created a single set of latent variables NXY that would be common
causes of X and Y and model the structural equations for both X and Y at the same time, instead
of fixing p(X |Z) a priori and deterministically extracting latent variables N from X and Z. In
general, we could add independent latent variables for each clique in the bidirected graph component
of the causal graph. This, however, is very wasteful. There is no need to create a causal model for the
(Z,X) marginal – which not only would assume that Z is an unconfounded cause of X , which is
unnecessary, but would also waste computation and stability trying to match the observable marginal
of (Z,X) to the corresponding causal-model-implied marginal, which is also completely unnecessary.
Given that Z and X can be high-dimensional while Y is a scalar, this is clearly a bad idea. Therefore,
the structure-blind strategy of creating latent variables for each bidirected clique is convenient but
not ideal, and a smarter automated way of generating minimal causal parameterizations for arbitrary
graphs and causal queries is needed.

Appendix D. Dataset description

D.1. Semi-synthetic data: Simulating Mendelian randomization

Semi-synthetic yeast data
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Figure 4: Simulating mendelian random-
ization. We get valid bounds even with
very few samples.

We use a semi-simulated setup inspired by Mendelian
randomization (MR). MR studies exploit the natu-
ral genetic variation induced by meiosis to quantify
the causal effect of phenotypes on health outcomes,
even when the two are subject to latent confounding.
In this setting, the genotype serves as an instrumen-
tal variable. Though we can never be certain that
the untestable IV assumptions hold, MR methods are
widely used in genetic epidemiology (Didelez and Shee-
han, 2007).

For our semi-synthetic setting, we use data from an
expression quantitative trait loci (eQTL) study of Sac-
charomyces cerevisiae, where the goal is to identify
genetic sources of variation in mRNA expression. The
data include 112 F1 segregants, a cross of parental
strains BY4716 and the wild isolate RM11-1a (Brem
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and Kruglyak, 2005). We choose 5 eQTLs on chromo-
some 14, which is known to regulate the mitochondrial

ribosomal network in S. cerevisiae, as our instruments (Z). The 15 genes representing this ribosomal
network are then the treatments (X). Finally, a synthetic outcome is generated as a function of
X and a latent confounder C. The treatment is therefore 15-dimensional, and the instrument is
5-dimensional. Treatments are continuous, while instruments are binary (indicating presence or
absence of an allele). Strong dependencies are evident among both sets of variables.

This data poses several challenges to our method, since (a) there are very few samples; (b) there are
strong dependencies between sets of features; and (c) the instruments are not continuous. Despite
these challenges, our method manages to find valid bounds as we see in Figure 4.

Generation of the outcome. We use samples from a 5-dimensional multivariate standard normal
c = (c1, c2 . . . c5) as confounders. We choose a vector β = (β1, β2 . . . β15) of length 15, with each
βi chosen uniformly at random from [0, 1] (but fixed once chosen). Note that x = (x1, x2 . . . x15).
Finally, we set Y =

∑5
i=1 βi ∗ ci ∗ xi +

∑15
i=6 βi ∗ xi + nY . Here nY is a standard Gaussian noise.

For the xstar values, we choose a random x from the treatments, say x0. Then to get x∗i , we add
random noise to three indices of x0, namely indices 3 ∗ i+ 1, 3 ∗ i+ 2 and 3 ∗ i+ 3. So we get five
xstars since the indices go up to 15 (the dimension of X) where each x∗i has three indices shifted
from a point in the dataset. This is done to ensure that the intervention values are not completely
unrealistic given the observed data. In summary, the outcome is a linear function of the treatment,
with non-additive confounding.

Implementation details. For the implementation, we use the clustered SCP formulation and the
l∞ norm. We choose to have 112 data points as constraints, corresponding to each point in the
sample. This gives us a total of 224 constraints, since we have two constraints for each point (the
first and second moment). We use the linear response function family, meaning in this case that we
use the polynomial basis with 15 dimensions. Otherwise, we use the same parameters as described
in Appendix E.

D.2. Glossary of Synthetic Datasets

We describe here the synthetic datasets we use in our experiments.

Instrumental variable Leaky mediation

Z

∈ Rp
instruments

X

∈ Rq
treatments

Y

∈ R
outcome

C

X

∈ Rp
treatments

M

∈ Rq
mediators

Y

∈ R
outcome

U C

Figure 5: These are the structural equations we work with. In the description of the datasets, the
dimensions of each variable are denoted by a subscript. For instance, if X is 2-dimensional, we write
it as X = (X1, X2).

We use various polynomial datasets where the causal effect is a polynomial function of a single or
multidimensional treatment. We provide the construction of each of these here. Figure 5 shows
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IV - lin - 2d - strong - add (optional)

Figure 6: Naming logic for the datasets. The first segment mentions whether it is the Instrumental
Variable (IV) or Leaky Mediator (LM) setting. The second segment says whether y is linear or
quadratic in x. The third segment tells the dimension of the treatment. The fourth segment denotes
the strength of the confounding, strong or weak. The fifth, and last segment is optional, and says
whether the confounding is additive, which in the IV setting makes the effect identifiable.

the structural graphs. In both graphs, every node except Y (outcome) could be multi-dimensional.
If a node, say C, is multi-dimensional, we index the dimension with a subscript. That is, we
write C = (C1, C2). Figure 6 visually describes the naming logic behind the datasets to make the
exposition clearer.

D.2.1. SCALAR TREATMENT

We now describe settings where the treatment X is a scalar, which we present as a sanity check. The
noises, confounder, and instrument follow

eX , eY , c, z ∼ N (0, 1)

• IV-lin-1d-weak-add (fy linear in x, weak additive confounding)

fX(z, c, eX) = 3z + 0.5c+ eX

fY (x, c, eY ) = x− 6c+ eY

• IV-quad-1d-strong (fy quadratic in x, strong non-additive confounding)

fX(z, c, eX) = 0.5z + 3c+ eX

fY (x, c, eY ) = 0.3x2 − 1.5xc+ eY

• IV-quad-1d-weak (fy quadratic in x, weak non-additive confounding)

fX(z, c, eX) = 3z + 0.5c+ eX

fY (x, c, eY ) = 0.3x2 − 1.5xc+ eY

D.2.2. IV MODEL

We now describe datasets satisfying the IV assumptions.

2D treatment. The noises, confounder, and instruments follow

c, z, eX ∼ N 2(0, 1)

eY ∼ N (0, 1)

• IV-lin-2d-strong (fy linear in x, strong non-additive confounding)

fX(z, c, eX) = 0.5z + 2c+ eX

fY (x, c, eY ) = x1 + x2 − 3(x1 + x2)(c1 + c2) + eY
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• IV-lin-2d-weak (fy linear in x, weak non-additive confounding)

fX(z, c, eX) = 2z + c+ eX

fY (x, c, eY ) = 5x1 + 6x2 − x1(c1 + c2) + eY

• IV-quad-2d-strong-add (fy quadratic in x, strong additive confounding)

fX(z, c, eX) = z + 2c+ eX

fY (x, c, eY ) = 2x21 + 2x22 − (c1 + c2) + eY

• IV-quad-2d-weak (fy quadratic in x, weak non-additive confounding)

2fX(z, c, eX) = 2z + c+ eX

fY (x, c, eY ) = 5x21 + 6x22 − (x1 + x2)(c1 + c2) + eY

3D treatment. The noises, confounders, and instruments follow

c, z, eX ∼ N 3(0, 1)

eY ∼ N (0, 1)

• IV-quad-3d-weak (fy quadratic in x, weak non-additive confounding)

fX(z, c, eX) = 2z + c+ eX

fY (x, c, eY ) = 2x21 + 2x22 + 2x3

− 0.3(x2 + x3)(c1 + c2 + c3) + eY

D.2.3. LEAKY MEDIATOR

We now describe datasets following the leaky mediator model with noises, and confounder follow-
ing

eX , eM , c, u ∼ N 2(0, 1)

eY ∼ N (0, 1)

• LM-lin1-2d (fy linear in x, strong confounding)

fX(u, eX) = u+ eX

fM (x, c, eM ) = x+ 3c− eM
fY (m, c, u, eY ) = 2m1 +m2

− (m1 +m2)(c1 + c2 + u1 + u2) + eY

• LM-lin2-2d (fy linear in x, weak confounding)

fX(u, eX) = u+ eX

fM (x, c, eM ) = 3x+ c− eM
fY (m, c, u, eY ) = 2m1 +m2

− 0.3(m1 +m2)(c1 + c2 + u1 + u2) + eY
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Appendix E. Implementation Details

We use n = 10 000 data points for all our simulations of synthetic datasets. All implementation
is in Python, using PyTorch (Paszke et al., 2019). Code for the experiments is provided with the
supplementary material. An overview of the algorithm, specialized for the IV case, is shown in
Algorithm 1.

Algorithm 1 Computing upper or lower bounds on E[Y | do(X = x⋆)] in the IV setting.

Require: dataset D = {(zi, xi, yi)}ni=1; constraint functions {ϕl : Y → R}Ll=1; basis functions {ψk : X →
Y}Kk=1; norm ∥ · ∥ for dist; batchsize for Monte Carlo B; number of support points M ; tolerance ϵ > 0

Setup: One-time computations shared for different x⋆ values

1: Fit (invertible) conditional normalizing flow X = hZ(N) from data D for N ∼ N (0,1p)

2: Fit MLPs ϕ̂1 : xi, zi → yi and ϕ̂2 : xi, zi → y2i by minimizing the squared loss from data D
3: subsample M indices from [n] (uniform, no replacement) ▷ “support points”, w.l.o.g. use [M ]

Optimization: performed separately for lower and upper bound for each x⋆

4: minimize OBJECTIVE(η) subject to CONSTRAINT(η) ≤ ϵ (see Appendix E.5)

5: function OBJECTIVE(η)
6: ox⋆(η)← ψ(x⋆)⊤ 1

B

∑B
j=1 µη0(nj) with nj ∼ N (0,1p) ▷ differentiable w.r.t. η

7: return ±ox⋆(η) ▷ objective, ± for lower/upper bound

8: function CONSTRAINT(η)
9: nj ← h−1

zj (xj) for j ∈ [M ] ▷ invert X |Z model to infer “noises”

10: A1,j(η)← ψ(xj)
⊤µη0

(nj) for j ∈ [M ] ▷ moments implied by model

11: A2,j(η)← ψ(xj)
⊤
(
Ση1

(nj) + µη0
(nj)µη0

(nj)
⊤
)
ψ(xj) for j ∈ [M ]

12: νl,j ← ϕ̂l(xj , zj)−Al,j(η) for l ∈ {1, 2}, j ∈ [M ] ▷ constraint matrix
13: return ∥ν∥

E.1. Satisfying [c-data]

In Section 3.2 we explained how we match the observed data distribution by matching scalar statistics
for L dictionary functions {ϕl : Y → R}Ll=1. In practice, we take L = 2 and match the first
and second moments of Y | {X,Z}, which is to say that we set ϕ1(Y ) = Y and ϕ2(Y ) = Y 2.
We learn ϕ1 and ϕ2 by regressing MLPs on the observed data {xi, zi, yi}i∈[n] and, {xi, zi, y2i }i∈[n]
respectively, with {xi, zi}i∈[n] as the input and {yi}i∈[n] and {y2i }i∈[n] as the target values. The
outputs of these MLPs are then approximations of E[Y |X,Z] and E[Y 2 |X,Z], respectively. A
significant advantage of this approach is that we can evaluate the constraints in closed form under
our construction (see Equation (9)). We use MLPs with 3 hidden layers of sizes (64, 32, 16) (first to
last) and train it with a batch size of 512 for 200 epochs, with a learning rate of 0.01. We use ReLU
activations. Identical settings were used for the leaky mediator, with the only difference being that
we match Y | {M,X} instead of Y | {X,Z}.
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E.2. Satisfying [c-struct]

We considered two distinct ways of modeling X |Z. The same idea is analogous when modeling
M | X

Gaussian. . We write the mean and variance of X as a function of Z. That is to say, X = hZ(N) :=
A(Z)N + b(Z). We parameterize A(Z) as A = L⊤L + Ω. A Cholesky factor L : Z → Rp×p
ensures symmetry, and a diagonal matrix Ω adds small constants to the diagonal to ensure symmetry
and positive definiteness. We then learn L⊤L + Ω from observed data D by maximizing the log-
likelihood of p̂(X |Z). In practice, the parameters of A(Z) as described above, and the parameters
of b(Z) (which are just the entries of the vector b(Z)) are the output of an MLP which takes in
X . We learn the weights of this neural net once up front from observed data D by maximizing the
log-likelihood of p̂(X |Z). In practice, this MLP has 3 hidden layers of sizes (64, 32, 16) (first to
last) and is trained with a batch size of 512 for 200 epochs, with a learning rate of 0.01. We use
ReLU activations.

Conditional normalizing flow. . We use an invertible (conditional) normalizing flow to model the
distribution of X |Z. Flows are a natural candidate for modeling distributions, and in this case
follow both the properties we want from the modeling of X |Z. (i) Given X,Z, we can invert the
transformation to get N . (ii) We can sample from X |Z = z. We use the Python library Pyro
(Bingham et al., 2019).

All the experiments shown in this work use conditional normalizing flows due to better performance
and stable optimization. However, the Gaussian modeling is described to point out one more way in
which prior assumptions on functional dependencies could be incorporated in our generic framework.
Once again, the construction is identical for the leaky mediator setting. The only difference is that
there we model M |X instead of X |Z.

E.3. Parameterizing S
We consider θ to be K-dimensional and use the neural basis function in all experiments unless
specified otherwise. Equation (5) describes how we parameterize our model. Here θ |N is parame-
terized by two MLPs with parameters with weights denoted by η0 and η1. The weights of this MLP
constitute our main optimization parameters η and we denote the outputs by µη0 and Ση1 . µη0 has
2 hidden layers with size (16, 16) and Ση0 has 2 hidden layers with size (32, 32). To evaluate the
objective function, we perform Monte Carlo estimation EN [µη0(N)] with 500 samples for N as in
Equation (10).

The difference in the leaky mediator setting is that the parameterization of θ has 2 noise inputs
instead of 1. The remaining implementation choices remain unchanged.

E.4. Response function choice

Our choice of response functions is characterized by the choice of K basis functions, as we saw in
Equation (1). We primarily use the neural basis functions described in Section 4.3. Note that a linear
combination of basis functions allows us to be arbitrarily expressive with our choice of family of
response functions. In particular, we consider the following options:
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1. Neural basis functions: The basis function ψk is the activation of the kth neuron in the last hidden
layer of an MLP which has been trained on the observed data {xi, yi}i∈[n] to learn y given x.

In practice, we train a 3-hidden layer MLP with 64 neurons in the first two layers, rectified linear
units (ReLU) as activation functions and an MSE (mean squared error) loss for 100 epochs and a
batch size of 512 using Adam with a learning rate of 0.01. The size K of the last hidden layer is
equal to the number of basis functions we wish to have in our family of response functions.

An implicit assumption we have here is that the MLP can find a good approximation of y given x.
This assumption is well-supported by theoretical and empirical results showing the approximation
power of neural networks (Shen et al., 2021; Daubechies et al., 2021), making it the perfect
candidate for multi-dimensional treatments.

2. Adaptive basis functions: The basis function psik is tanh(w0k + w1kx). The key point here is
that the weights here are not fixed, but rather also included as parameters to optimize over while
finding the min / max in the constrained optimization. This gives a semantic separation to fθ
since θ depends on X and Z only via the distribution of U , while ψ is a black box function of X .
Due to the adaptive nature of the weights {w0i, w1i}i∈[K], we would expect this choice of basis
to give wider bounds than the neural basis functions. This is illustrated through experiments in
Figure 10b.

3. Polynomials: For a multivariate input x = (x1, x2 . . . xd), a response function can be considered
to be a multivariate polynomial in x. However, in this case, we would have 2d different basis
functions of degree up to d. This leads to the question of what basis functions to use here to have
enough expressive power, but not blow up the number of basis functions and hence the dimension
of the optimization parameter θ (see Equation (1)). Due to this blowup in the choice of basis
functions with the dimension of the treatment in the case of polynomials, mainly use the neural
basis functions.

In the cases when we do use the polynomial basis, we restrict ourselves to having up to quadratic
terms in the basis function. For a d-dimensional treatment, this amounts to having a d(d+3)/2+1
dimensional θ.

4. Gaussian process basis functions (GP): We do not use this family of response functions, but
mention them as a possible option. There is some previous work which considers the GP basis to
define a family of functions (Kilbertus et al., 2020). In this approach, a Gaussian process is fit to
K different sub-samples {(xi, yi)}i∈N ′ with N ′ ≤ N . A single function is then sampled from
each Gaussian process as the basis functions ψk for k ∈ [K]. Here, ‘sampling a function’ means
to get the evaluation of the function at several points in the treatment space and then interpolate.
While this is a reasonable approach when the treatment is scalar, for a multidimensional treatment,
this requires the interpolating a multivariate function. The complexity and computational cost of
such an interpolation increases with the increase in dimensionality, while the reliability of the
interpolated function decreases at the same time. Also, higher dimension require exponentially
higher number of point evaluations to get good interpolations. Due to these reasons, the GP basis
approach is not found suitable for higher dimensions. However, it can be a viable option for scalar
treatments.
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Identifiable settings
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(a) IV-lin-1d-weak-add. An identifiable scalar treat-
ment with weak confounding. We get tight bounds
despite using the neural basis functions.
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(b) IV-quad-2d-strong-add. Multi-dimension treat-
ment using the neural basis functions.

Figure 7: We see that our method is able to find tight bounds in identifiable settings in the data-dense
regions.

E.5. Solving the optimization

The various MLPs described in the previous sections eventually lead to the formulation of a con-
strained optimization problem that we have seen in Equation (10).

We use the augmented Lagrangian method for inequality constraints to solve the constrained opti-
mization problem in Equation (10). The formulation is taken from Section 17.3 in (Nocedal and
Wright, 2006).

We have seen in Section 3.3 that we have a total of D · L constraints. We can think of ϕ̂l(xi, yi)
as target values, estimated once up front from observed data. We denote ϕ̂l(xi, yi) = Bl,i. The
right-hand side Al,i is a function of the optimization parameter η, as seen in Section 3.2. For ease of
notation, we “flatten” the indices n and l into a single index l ∈ [D · L]. We set the constraint slack
to be the same value for each constraint, so ϵL = ϵ.

Then our set of constraints is
cl(η) := ϵ− |Bl −Al(η)| ≥ 0

With this, the Lagrangian we aim to minimize with respect to η can be formulated as:

L(η, λ, τ) := ±ox⋆(η) +
D·L∑
l=1

ξ(cl(η), λl, τ) (11)
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Strong instrument VS Weak instrument (Scalar treatment)
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(a) iv-quad-1d-weak. This is a partially identifiable
scalar treatment setting. The bounds are particularly
tight in the data-dense regions due to the strong in-
strument.
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(b) iv-quad-1d-strong. This is a partially identifi-
able scalar treatment setting. The bounds are looser
because the instrument is weak.

Figure 8: As expected, the bounds are tighter in the case of strong instrument.

with

ξ(cl(η), λl, τ) :=

{
−λlcl(η) + τcl(η)

2

2 if τcl(η) ≤ λl,
−λ2l

2τ otherwise,

where −/+ is used for the upper/lower bound. τ is increased throughout the optimization procedure
and is seen as a temperature parameter.

Given an approximate minimum η of this subproblem, we then update λ and τ according to λl ←
max{0, λl − τcl(η)} and τ ← α · τ for all l ∈ [D · L] and a fixed α > 1. The overall strategy is to
iterate between minimizing Equation (11) and updating λl and τ . We find empirical justification
in our experiments, where the approach reliably converges on a range of different datasets. We
summarize our proposed procedure in Algorithm 1.

We have already seen how the basis function is chosen, how we can write the A of the constraints in
closed form, how the B of the constraints is fixed upfront using ϕ1 and ϕ2, and how the objective is
estimated. It now remains, to solve this optimization problem, which we solve using the augmented
lagrangian method as described in S. In practice we fix the initial value of τ to be τinit = 10, and
the multiplier α to be 4, meaning that τ is updated by multiplying it by 4 at each step. The max
value of τ is fixed at τmax = 5000. We use 30 optimization steps to find the approximate optimal xk
at the kth round of the optimization, and perform 150 round of optimization (number of times λ is
updated) for each value of x⋆ and each bound (upper and lower). The optimization was performed
using the Adam optimizer with a learning rate of 0.001. All of this again is through the use of
auto-differentiation in PyTorch Paszke et al. (2019), implemented in python.
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GAN comparison
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(a) IV-quad-2d-weak.
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Figure 9: We do note that in this instance, the bounds given by our method are not as smooth in the
data poor regions. However, our bounds are always valid, while the GAN framework gives some
invalid bounds in both cases above.

E.6. Hyperparameter search

We did not perform an automated hyperparameter search for τinit, τmax and τfactor = α since we
observed that the values τinit = 10, τmax = 100000 and τfactor = 5 worked reasonably well in all
our settings. We arrived at this value through trial and error. An automated hyperparameter search
can also be expected to improve the bounds.

E.7. Computational resources

We used a computing cluster provided by the university, for ease of parallelization of experiments.
We used 1 CPU, 8000 MB of RAM for all the x⋆ bounds for a single random seed for the method.
To clarify, the use of the cluster was only for the purpose of running the optimization algorithm
parallelly for various different random seeds. A single run of the algorithm (for getting bounds on
multiple values of x⋆) runs comfortably on a local machine with 16 GB of RAM. No GPUs were
used for the experiments.

Appendix F. Further Experiments

Here we show the performance of our method in a variety of settings.

F.1. Identifiable settings

Appendix E.4 shows the performance in the case of identifiable settings. We see that our method is
able to find tight bounds in identifiable settings in the data dense regions. However, it is natural that
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Norm comparison Adaptive basis
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(a) IV-quad-weak. Partially identifiable multi-
dimension treatment. The l2 norm includes all the
constraints without sampling.
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Figure 10: Some more comparisons

the more expressive the response function, the wider the bounds. This can potentially be used as a test
of identifiability as described in Section 5. Such a test can be seen as a rather continuous measure of
identifiability, giving an indication of being somewhere between identifiable and partially identifiable
based on the tightness of bounds, rather than being able to distinct strictly between identifiable and
non-identifiable settings.

F.2. Strong instrument VS Weak instrument

Figure 8 compares the bounds in the cases of having a strong or weak instrument, or equivalently
having weak or strong confounding relative to the instrument. As expected, the bounds are looser
when the confounding is stronger.

F.3. Comparing constraint norms

In Section 3.2 we have formulated our constraints in terms of norms. All the experiments so far have
been using the ∥ · ∥∞,∞ norm. Here, we show experiments using the ∥ · ∥2,2 norm as a constraint.
This optimization procedure remains the same, but is potentially easier to solve since there is only 1
constraint now, but on the other hand this constraint is looser than matching the moment of each data
point (or a chosen subsample). The results can be seen in Figure 10a.

We point out that our formulation does not restrict us to norm based constraints. In fact, given the
generative model we have defined in Section 3, we could also use any measure of distance between
distributions as a constraint. However, this would again lead to solving a bi-level optimization,
making the optimization harder.
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GAN comparison
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(a) IV-lin-2d-weak.
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Figure 11: Comparison with GAN

F.4. More comparisons to GAN bounds

We show some further comparisons of our method to the GAN bounds here. We see a similar trend
where our bounds are generally smoother. The plots can be found in Figure 9, Figure 11a and
Figure 11b.

Appendix G. Limitations of Kilbertus et al. (2020)

Kilbertus et al. (2020) limit the number of constraints by estimating E[ϕl(Y ) | zi] only for a small pre-
determined set of grid points, zi around which they bin the observed datapoints for empirical estimates.
Thereby, they only constrain p(Y |Z) instead of p(Y |X,Z) and fundamentally limit themselves
to low-dimensional settings, since otherwise the number of grid points grows exponentially with
the dimension of Z . In particular, their proposed interpolation of empirical cumulative distribution
functions to fix p(x | z) in their copula model that parameterizes the distribution over θ virtually
only allows one-dimensional instruments and treatments. Note that the binning procedure for Z also
becomes problematic in the small data regime, where sufficiently many points are needed in each
bin to keep the variance in the empirical mean and variance estimates low. As a consequence, the
number of gridpoints in z must be carefully tuned depending on the dataset size.

Instead, our stochastic subsampling approach works with a fixed number of constraints for each
update step, independent of the size of the dataset and the dimensionality of Z and X . In addition,
we encode the structural assumptions into a graphical model for X,Z, θ that still allows for flexible
conditional density estimation techniques such as invertible flows for individual components. The
copula model had to rely on interpolated empirical cumulative density function estimated from
potentially few datapoints within each bin. The Gaussian copula is also less flexible than our
proposal. Finally, Kilbertus et al. (2020) used Monte Carlo estimates both for the objective and for
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each individual constraint, often using different sample sizes for these estimates. Instead, we exploit
the form of response functions as linear combinations of basis functions and compute the constraints
in closed form, removing the additional variance from the stochastic optimization procedure. This
leads to fewer tunable parameters and more robust convergence of the optimization.

Appendix H. Ethical and social implications

The ethical implications of causal inference are numerous, especially when machine learning models
are used to make high-stakes decisions in areas like finance, criminal justice, and healthcare. Several
authors in recent years have developed causal notions of algorithmic fairness to acknowledge the
structural links between protected attributes and socially significant outcomes Kusner et al. (2017);
Kilbertus et al. (2017); Wu et al. (2019b); Kilbertus et al. (2019). More reliable methods for
bounding causal effects could help quantify the counterfactual fairness of individual decisions when
identifiability is impossible. By the same token, these bounds may misrepresent treatment effects
when untestable assumptions are not satisfied. In the worst case, an agent may design a DAG in
an adversarial manner to ensure some desired result. This can be mitigated by public disclosure
of all structural assumptions, so that regulators and data subjects may critically evaluate decision
procedures.

35


	Introduction
	Setup
	SCMs and The Response Function Framework
	A Causal Mathematical Program

	Approaches for the Clustered Case
	Parameterization
	Objective functions and enforcing [c-data]
	Solving the optimization

	Experiments
	Treatment choices
	Baselines
	Implementation choices
	Results

	Discussion
	On the Choice of Function Space
	A general implementation of the SCP
	Parametrizing the causal model
	Encoding structural constraints

	Extensions
	Dataset description
	Semi-synthetic data: Simulating Mendelian randomization
	Glossary of Synthetic Datasets
	Scalar treatment
	IV model
	Leaky Mediator


	Implementation Details
	Satisfying [c-data]
	Satisfying [c-struct]
	Parameterizing S
	Response function choice
	Solving the optimization
	Hyperparameter search
	Computational resources

	Further Experiments
	Identifiable settings
	Strong instrument VS Weak instrument
	Comparing constraint norms
	More comparisons to GAN bounds

	Limitations of Kilbertus et al. (2020)
	Ethical and social implications

