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Abstract

Background:Whole-brain longitudinal diffusion studies are crucial to examine changes

in structural connectivity in neurodegeneration. Here, we investigated the longi-

tudinal alterations in white matter (WM) microstructure across the timecourse of

Huntington’s disease (HD).

Methods: We examined changes in WM microstructure from premanifest to early

manifest disease, using data from two cohorts with different disease burden. The

TrackOn-HD study included 67 controls, 67 premanifest, and 10 early manifest HD

(baseline and 24-month data); the PADDINGTON study included 33 controls and 49

early manifest HD (baseline and 15-month data). Longitudinal changes in fractional

anisotropy (FA),meandiffusivity (MD), axial diffusivity, and radial diffusivity frombase-

line to last study visit were investigated for each cohort using tract-based spatial

statistics. An optimized pipeline was employed to generate participant-specific tem-

plates to which diffusion tensor imaging maps were registered and change maps were

calculated. We examined longitudinal differences between HD expansion-carriers

and controls, and correlations with clinical scores, including the composite UHDRS

(cUHDRS).

Results:HDexpansion-carriers fromTrackOn-HD, with lower disease burden, showed

a significant longitudinal decline in FA in the left superior longitudinal fasciculus and an

increase in MD across subcortical WM tracts compared to controls, while in manifest

HD participants from PADDINGTON, there were significant widespread longitudinal

increases in diffusivity compared to controls. Baseline scores in clinical scales including

the cUHDRS predictedWMmicrostructural change in HD expansion-carriers.

Conclusion: The present study showed significant longitudinal changes in WM

microstructure across the HD timecourse. Changes were evident in larger WM areas
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and across more metrics as the disease advanced, suggesting a progressive alteration

ofWMmicrostructure with disease evolution.

KEYWORDS

diffusion tensor imaging, Huntington’s disease, longitudinal, presymptomatic, symptomatic

1 INTRODUCTION

Loss of white matter (WM) organization is a key feature of Hunt-

ington’s disease (HD), with myelin thinning, reduced expression of

myelin-related genes, andincreased density of oligodendrocytes in the

tail of the caudate nucleus occurring early on (Gómez-Tortosa et al.,

2001; Teo et al., 2016; Xiang et al., 2011). Morphological magnetic res-

onance imaging (MRI) studies provide clear evidence of progressive

striatal atrophy that rapidly extends to WM during premanifest (pre-

HD) stages (Tabrizi et al., 2011, 2012, 2013). However, investigation

at the microstructural level can help characterize the changes in WM

organization and their relationship to the HD phenotype.

Diffusion tensor imaging (DTI) is commonly used to infer the coher-

ence of WM tracts and WM organization in vivo. Although biological

properties of brain tissue, such as the presence of crossing fibers,

limit their interpretation, DTI metrics remain the most widely used

method to characterize WM microstructure (Alexander et al., 2007).

Cross-sectional studies usingDTI haveprovided robust evidenceof dis-

organization in deep and superficial WM (Casella et al., 2020; Filippi

& Agosta, 2016; Phillips et al., 2014; Wu et al., 2017) and the corpus

callosum (Di Paola et al., 2012; Rosas et al., 2010) in HD many years

before symptomonset (Liu et al., 2016). Cross-sectional analyses of dif-

fusion metrics have also shown correlations with motor, cognitive, and

functional scales (Estevez-Fraga, Scahill, Rees et al., 2021).

The composite UHDRS (cUHDRS) is a multidimensional measure

of progression in HD encompassing functional, cognitive, and motor

subscales that has been used as a primary outcome in the phase 3

clinical trial with tominersen, an antisense oligonucleotide targeting

HTT mRNA. A recent study demonstrated a significant correlation

between the cUHDRS and diffusivity metrics (Estevez-Fraga et al.,

2021).

An increasing number of clinical trials in HD are using diffusion

imaging measures as biomarkers for drug efficacy and safety, as well

as to understand the mechanisms underlying treatment response (Tae

et al., 2018). Therefore, longitudinal investigation of WM microstruc-

ture is paramount. Apart from correlations with clinical function,

investigating the exact point at which a certain biomarker is sensitive

and determining the longitudinal sensitivity over short periods of time

are crucial to defining the role of diffusion imaging metrics in clinical

trials.

Unfortunately, only a limited number of studies have evaluated

change in WMmicrostructure over time, with findings generally mixed

(Gregory et al., 2015; Hobbs et al., 2015; Poudel et al., 2015; Sritharan

et al., 2010; Vandenberghe et al., 2009;Weaver et al., 2009). However,

evidencing significant longitudinal change over a clinical trial period is

a necessary step toward showing change in the natural trajectory of a

biomarker in response to a therapy.

It is likely that due to the methodological limitations analyzing mul-

tiple time points of diffusion data, the subtle changes that can occur

in a slowly progressive degenerative disease over time may remain

undetected. In the current study, therefore, we have employed a lon-

gitudinal pipeline that seeks to reduce misalignment between multiple

time point scans by creating individual participant templates to which

diffusion data frommultiple visits are registered; this then ensures that

the location of voxels is consistent across the data (Engvig et al., 2012).

We investigated WM microstructural change over the trajectory

of HD, analyzing longitudinal diffusion data from two HD cohorts

with different disease burden: TrackOn-HD, composed mainly of pre-

manifest HD (pre-HD) and controls, with change over 24 months;

and PADDINGTON, including early manifest HD and controls, with

change over 15 months. For each cohort, we used the novel longitu-

dinal pipeline in conjunction with whole-brain voxelwise tract-based

spatial statistics (TBSS) (S. M. Smith et al., 2006) to compare change

in diffusion metrics between HD expansion-carriers and controls. We

also correlated baseline scores in clinical measures with change in

diffusion metrics to test the predictive ability of these scales for

microstructural degeneration. We hypothesized that HD expansion-

carriers would display evidence of progressive WM disorganization

from pre-HD tomanifest HD, coupledwith a clear correlation between

baseline function andWMdegeneration.

2 MATERIALS AND METHODS

2.1 Participants

Participants with DWI data for baseline and final (third) visits

were recruited from the TrackOn-HD (time interval 24 months) and

PADDINGTON (time interval 15 months) cohorts (Hobbs et al., 2013;

Klöppel et al., 2015).

2.2 TrackOn-HD

The TrackOn-HD cohort recruited 239 participants (106 pre-HD, 22

early HD, and 111 controls), from four study sites (London, Leiden,

Paris, andVancouver) evaluated annually over a periodof 2 years.Gene

expansion carriers were required to have ≥40 CAG repeats in the HTT

gene and a disease burden score >250 (Penney et al., 1997). Control

participants were gene-negative volunteers and family members. At
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TABLE 1 Baseline demographics of participants

TrackOn-HD PADDINGTON pValue

Controls HD expansion-carriers Controls HD expansion-carriers

n 67 77 33 49

Age 49.55 (9.84) 44.03 (8.28) 51.99 (9.13) 47.75 (9.75) p< .0001

Sex (M:F) 40:27 39:38 14:19 20:29 p= .1758

CAG N/A 43.12 (2.26) N/A 43.61 (2.99) p= .2983

DBS N/A 311.32 (55) N/A 366.12 (83.20) <.0001

Study site Leiden: 11 Leiden: 12 Leiden: 6 Leiden: 11 N/A

London: 23 London: 27 London: 10 London: 13

Paris: 22 Paris: 24 Paris: 9 Paris:10

Vancouver: 11 Vancouver: 14 Ulm: 8 Ulm: 15

Stage N/A pre-HD: 67 N/A pre-HD: 0 p< .0001

HD: 10 HD: 49

Baseline TMS 1.33 (1.59) 7.43 (5.8) 1.5 (1.95) 18.71 (9.18) p< .0001

Baseline TFC 13.00 (0) 12.86 (0.42) 12.97 (0.17) 12.04 (0.81) p< .0001

Baseline SDMT 56.88 (11.17) 52.62 (12.00) 54.00 (9.34) 37.53 (10.41) p< .0001

Baseline SWR 107.94 (17.60) 102.60 (17.16) 109.39 (14.54) 79.26 (15.21) p< .0001

Baseline cUHDRS 17.87 (1.61) 16.74 (1.84) 17.67 (1.26) 13.04 (1.93) p< .0001

Note: Values aremean+/− SD or n (%) group comparisons weremade using one-way ANOVA (age, SDMT, SWR, TMS, TFC and cUHDRS), t-tests (CAG, DBS),
and chi squared tests (sex, stage) between groups.

Abbreviations: cUHDRS, composite UHDRS; DBS, disease burden score; HD, Huntington’s disease; SDMT, symbol digit modalities test; SWR, Stroop word

reading; TBSS, tract-based spatial statistics; TFC, total functional capacity; TMS, total motor score.

each visit, participants underwent clinical testing, a neuropsychologi-

cal battery, and anMRI scanning session. Inclusion criteria required age

between 18 and65 years free frommajor neurological, medical, or psy-

chiatric disorders and able to tolerate MRI. The study was approved

by the local ethics committee and all participants provided written

informed consent. For further details, see Kloppel et al. (2015).

We excluded 95 participants due to incomplete DWI data, incom-

plete clinical data, or failed quality control, while further five partic-

ipants had to be excluded because of failed longitudinal registration,

leaving a total of 144 participants in this study (10 early HD, 67 pre-

HD and 67 controls) (Table 1, Figure S1). There were no statistically

significant differences between included/excluded participants.

Given the small number of early HD participants, we combined

premanifest and manifest HD participants into a single group of HD

gene-expansion carriers. We grouped together pre-HD and manifest

HD participants as imaging and histological studies have shown that

pathology in HD is progressive, rather than dichotomic (Tabriz et al.,

2009;Vonsattel et al., 1985). In addition, differences in disease severity

between the examined cohorts is better quantified through the dis-

easeburden score (Penneyet al., 1997), showing significant differences

between TrackOn-HD and PADDINGTON (Table 1).

2.3 PADDINGTON

The PADDINGTON cohort included 101 participants (61 early HD

patients and40healthy controls) from four sites (Leiden, London, Paris,

and Ulm) with visits at baseline, 6 months, and 15 months. HD partici-

pants were required to have ≥39 CAG repeats in the HTT gene and be

at stage1of thedisease, definedby aUHDRSTotal FunctionalCapacity

(TFC) ≥11. Control participants were gene-negative partners or first-

degree family members. At each visit, participants underwent clinical

testing, a neuropsychological battery, and an MRI scanning session.

Inclusion criteria required agebetween18and65years, free fromneu-

rological, medical, or psychiatric disorders other than HD, and able to

tolerate MRI. The study was approved by the local ethics committees,

and all participants provided written informed consent. For further

details, see Hobbs et al. (2013).

In the current study, we excluded 19 participants due to incomplete

DWI, clinical data, or failed quality control, while there were no fail-

ures in longitudinal registration leaving a total of 82 participants (49

early manifest HD and 33 controls) (Table 1, Figure S2). There were no

statistically significant differences in baseline characteristics between

included/excluded participants.
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2.4 Clinical scales

For our correlation analysis, we used two cognitive scales: Symbol-

DigitModalities Test (SDMT) (Parmenter et al., 2007) and StroopWord

Reading (SWR) (Stroop, 1935), one functional scale, the TFC, and one

motor scale, the UHDRS-Total Motor Score (TMS) (Huntington Study

Group, 1996). In addition, we performed correlations with the disease

burden score, a function of age and CAG repeat length (disease burden

score = Age × (CAG − 35.5)), which measures the amount of time that

a subject has been exposed to the effects ofmHTT (Penney et al., 1997)

andwith the cUHDRS.

The cUHDRS is a multidomain scale including the SDMT, SWR,

TFC, and TMS (Equation 1), which tracks disease progression and has

excellent sensitivity to disease stage (Schobel et al., 2017).

cUHDRS =

(
TFC − 10.4

1.9

)
−

(
TMS − 29.7

14.9

)
+

(
SDMT − 28.4

11.3

)

+

(
SWR − 66.1

20.1

)
+ 10.

Higher scores in all scales except for TMS and disease burden score

indicate better performance.

2.5 MRI acquisition

Scanning protocols were standardized between sites, and inter-

scanner comparisons were performed using human volunteers or

phantoms. Ixico Ltd. contributed to the development of the imaging

protocol and performed initial quality control

2.6 TrackOn-HD

Data were acquired on two different 3T MRI scanner systems (Philips

Achieva at Leiden and Vancouver and Siemens Trio at London and

Paris). T1-weighted images were acquired using the 3D MP-RAGE

acquisition sequence. T1 imaging parameters were repetition time

(TR) = 2200 ms (Siemens)/7.7 ms (Philips), echo time (TE) = 2.2 ms

(Siemens)/3.5 ms (Phillips), flip angle = 10o Siemens/8o Phillips, field-

of-view (FOV) = 28 cm Siemens/24 cm (Phillips), and matrix size

256 × 256 (Siemens)/224 × 224 (Phillips), yielding 208 (Siemens)/164

(Phillips) sagittal slices to cover the entire brainwith a slice thickness of

1.0 mm with no gap. Diffusion-weighted images (DWI) were acquired

with 42 unique gradient directions (b = 1000 s/mm2). Seven images

with no diffusion weighting (b = 0 s/mm2) or one image with no diffu-

sion weighting were collected from the Siemens and Philips scanners,

respectively. For further details, see Kloppel et al. (2015)

2.7 PADDINGTON

Data were acquired on four different 3T MRI scanners. T1-weighted

images were acquired using the 3D MP-RAGE acquisition sequence.

T1 imaging parameters were TR = 2200 ms, TE = 2.2 ms, FA = 10◦,

FOV = 28 cm, and matrix size = 256 × 256, yielding 208 sagittal slices

with a thickness of 1.0 mm and no interslice gap (Siemens Trio at Lon-

don and Verio at Paris). For Siemens Allegra at Ulm, parameters were

the same except for a slice thickness of 1.1 mm and TE = 2.81 ms, flip

angle= 9o. Finally for the Philips Achieva at Leiden, acquisition param-

eters were TR= 7.7ms, TE= 3.5ms, FA= 8o, FOV= 24 cm, andmatrix

size = 224 × 224, yielding 164 slices with a thickness of 1.0 mm and

no inter-slice gap. For the diffusion-weighted scans, 42 unique gradi-

ent directions were acquired in the London, Paris, and Leiden sites and

47 directions in Ulm (b = 1000 s/mm2). Seven images with no diffu-

sionweighting (b=0 s/mm2)were acquired for London andParis, three

images with no diffusion weighting were acquired for Ulm, and one

image with no diffusion weighting was acquired for Leiden. For further

details, see Hobbs et al. (2015).

2.8 Data preprocessing

DWI images were first brain extracted with FSL BET and motion-

corrected using eddy in FSL (www.fmrib.ox.ac.uk/fsl) (Andersson &

Sotiropoulos, 2016). FSL DTIFIT was used to apply the diffusion ten-

sor. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity

(AD), and radial diffusivity (RD) maps were then derived. All images

were checked visually.

We then used an optimized version of the longitudinal pipeline

developed by Engvig et al. (Engvig et al., 2012) (Figure 1). In short, for

each participant, baseline FAmapswere linearly registered to final visit

FAmaps and vice versa using FSL FLIRT. Both volumeswere resampled

into the halfway space between the two. Then, the two halfway regis-

tered FA maps were averaged to generate a participant midspace FA

image. Next, standard TBSS (S. M. Smith et al., 2006) was applied into

the midspace images, using the FMRIB_58FA as a target, and images

were thresholded at FA>0.2, resulting in the skeleton for themidspace

images.

FSL’s tbss_non_FA was then applied to the baseline and final visit

halfway FA maps, using the midspace images as targets. This resulted

in the FA skeleton for both the baseline and final study visit in the same

space as themidspace skeleton.

Next, baseline and follow-up images for eachnon-FADTImetricMD,

RD, and AD were linearly registered to each other using the trans-

formation parameters from the longitudinal registration of FA images,

obtaining halfway maps for each metric in the baseline and follow-up

images. FSL’s tbss_non_FAwas then applied in the halfway AD,MD, and

RDmaps obtaining a skeleton for each visit’s non-FA DTI metric in the

same space as themidspace skeleton.

For eachDTImetric, the skeleton from the final visit was subtracted

from the skeleton for baseline visit and standard TBSS statistical

analysis was performed in the resulting DTI map. Visual inspection

of resulting images was performed after each step to check for

errors.

The templates and skeletons were created and analyzed in each

cohort, grouping together healthy controls and expansion carriers

to investigate the differences between HD expansion carriers and

controls.
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ESTEVEZ-FRAGA ET AL. 5 of 13

F IGURE 1 Summary of processing pipeline. Raw FA data from the two visits of all subjects in each study were registered using FSL FLIRT to
create halfway images. These images were averaged to create a subject-wise FAmid-space template. TBSS automatically aligned all mid-space
images to standard space. The warped FA templates were used to create themean FAmap. This mapwas thresholded at FA>0.2 to create the
midspace FA skeleton for all subjects. All halfway image skeletons from the two visits for all DTI metrics were projected to the standardized FA
skeleton. Finally, the skeleton for visit 3 was subtracted from the skeleton for visit 1 and statistical analysis was performed on the subtraction
images to compare betweenHD gene expansion carriers and controls. The same process was repeated to obtain a template only in HD expansion
carriers from each study in order to run the correlations in the subtracted images (adapted and reproducedwith permission from Engvig et al.,
2012). DTI, Diffusion Tensor Imaging; FA, fractional anisotropy; HD, Huntington’s disease; TBSS, tract-based spatial statistics.

The same process was performed exclusively in HD gene expansion

carriers for the evaluation of correlations between clinical scales and

structural connectivity.

2.9 Statistical analysis

Demographic variables between groups were evaluated using t-tests

for mean comparisons between the two groups. One-way analysis of

variance (ANOVA) was used for mean comparisons between more

than two groups. Chi-squared test was used to compare proportions

where appropriate. Statistical analysis of demographic variables was

performed using Stata v12.0 (StataCorp, College Station, TX, USA).

All analyses were performed using non-parametric permutation-

based voxel-wise analysis (n = 5000) (Winkler et al., 2014) For

all analyses, age, sex, and site were included as covariates. TBSS

results are presented cluster-corrected using Threshold-Free Cluster

Enhancement (TFCE) (p < .05) (S. Smith & Nichols, 2009). For group

comparisons, we examined change in each diffusion metric over time

between controls and HD gene expansion carriers.

TBSS voxel-wise correlation analyses were performed in the lon-

gitudinal DTI maps of the HD gene expansion carrier group only. We

examined positive and negative correlations between change in diffu-

sion metrics and baseline scores in disease burden score, SDMT, SWR,

TMS, TFC, and the cUHDRS (Schobel et al., 2017).

3 RESULTS

Both cohorts had similar mean age in the control groups. Age in

the gene-expansion groups was significantly higher in PADDINGTON,

which is consistent with manifest HD participants being on average

older than pre-HD. There were no differences in male/female propor-

tions between controls and expansion-carriers in either cohort. Mean

number of CAG repeats was comparable between both cohorts, while

as expected, expansion carriers from TrackOn-HD had significantly

lower disease burden score and lower TMS values than expansion

carriers from PADDINGTON.

3.1 Group differences

In the TrackOn-HD cohort, expansion-carriers compared to controls

showed significant localized decreases in FA over time in the left

superior longitudinal fasciculus when compared to controls (Figure 2).

MD was also significantly increased over time in extensive areas
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6 of 13 ESTEVEZ-FRAGA ET AL.

F IGURE 2 Longitudinal changes in FA andMDbetweenHD
expansion-carriers and controls in the TrackOn-HD cohort. Data
shown are areas with significant decreases in FA or increases inMD in
HD expansion-carriers compared to healthy controls. Results are
shown on the FA skeleton (green), overlaid on theMNI standard brain
template. All analyses presented are adjusted by age, sex, and study
site; thresholded at p< .05 (TFCE cluster-corrected). The color bar
(yellow: red, higher: lower) represents p-values above the statistical
threshold for significance. FA, fractional anisotropy; HD, Huntington’s
disease; MD, mean diffusivity; MNI, Montreal Neurological Institute;
TBSS, tract-based spatial statistics; TFCE, threshold-free cluster
enhancement.

including the superior longitudinal fascicles, splenium of the corpus

callosum, corona radiata, and external capsules bilaterally in the HD

group compared to controls (Figure 2), with both findings indicating

longitudinalWMmicrostructural damage.

There were no significant differences in AD or RD.

For the PADDINGTON cohort, there were longitudinal MD, AD,

and RD increases in the corpus callosum and corona radiata, fornix,

frontal subcortical WM, and external capsules in expansion-carriers

when compared to controls (Figure 3), indicative of progressive WM

disorganization. There were no significant differences in FA between

HD expansion-carriers and controls. There was no evidence of signifi-

cant longitudinal decreases inMD, AD, or RD inHD expansion-carriers

compared to controls.

3.2 Correlations with clinical scales

For the TrackOn-HD cohort, there was a significant positive correla-

tion betweenMD, AD, and RD and baseline TMS scores, indicating that

larger increases in diffusivity were associated with higher TMS scores

(worse motor symptoms) at baseline (Figure S3). Brain regions asso-

ciated with the TMS involved the corpus callosum and corona radiata

bilaterally (Figure S3). There was no correlation between FA and TMS

scores. Baseline SWRwas negatively correlatedwithMD in the genuof

the corpus callosumand left anterior corona radiata. Therewereno sig-

nificant correlations betweenanyDTImetric anddisease burden score,

SDMT, TFC, or cUHDRS in TrackOn-HD.

For the PADDINGTON cohort, there was a significant, counterin-

tuitive positive correlation between FA in the right posterior corona

radiata and baseline TMS scores, indicating that larger decreases in FA

were associated with lower TMS scores (less severe motor signs) at

baseline in a single cluster of 854 voxels (Figure S4). There were also

widespread correlations in the predicted positive direction between

baseline TMS scores with MD (Figure 4) and AD (Figure S4) and a

positive association between RD and baseline TMS limited to the left

anterior corona radiata (Figure S4). Baseline SDMT correlated nega-

tively with MD and AD in the corpus callosum and corona radiata and

baseline TFC with AD only in the genu of the corpus callosum, indi-

cating that larger scores in these scales were associated with smaller

decreases in structural connectivity.

Similarly, the cUHDRS also correlated negatively with MD and AD

in the corpus callosum, corona radiata and subcortical WM tracts

(Figure 4). A also suggesting that more severe symptoms at baseline

were associated with larger longitudinal increases in diffusivity. There

were no correlations between any of the DTI metrics and disease

burden score and SWR in PADDINGTON.

4 DISCUSSION

In the current study, we have shown robust, longitudinal changes

in WM organization across the time course of HD comparing HD

expansion-carriers and controls. Using diffusion MRI, we applied a

whole-brain approach, optimized for longitudinal analysis, to twowell-

characterized HD cohorts: TrackOn-HD, with mainly pre-HD gene

expansion carriers followed over 2 years; and PADDINGTON, with

higher disease burden consisting of manifest HD gene expansion car-

riers investigated over 15 months. TrackOn-HD revealed longitudinal

decreases in FA specific to the superior longitudinal fasciculus, with

widespread increases in MD. These WM changes extended to the

external capsules, corona radiata, and bilateral subcortical WM in

the manifest HD group across all diffusivity measures examined. Our

findings suggest a trajectory of progressiveWMmicrostructural disor-

ganization in HD. This is important not only in terms of understanding

the mechanisms underlying WM change in HD, but also with a view to

diffusion measures acting as biomarkers for drug efficacy and safety in

clinical trials.

Evidencing a significant deterioration in a given biomarker with

disease progression is essential to show a hypothetical improvement

following the administration of a therapy. However, it is challenging

to recruit large cohorts of HD participants with available longitudi-

nal DWI data. Among the few HD studies evaluating diffusion metrics

longitudinally, most used a region of interest (ROI)-based approach

also showing longitudinal decreases in anisotropy and increases in
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ESTEVEZ-FRAGA ET AL. 7 of 13

F IGURE 3 Longitudinal changes inMD, AD, and RD betweenHD expansion carriers and controls in the PADDINGTON cohort. Data shown
are areas with significant increases inMD, AD, and RD in HD expansion-carriers compared to healthy controls. Results are shown on the FA
skeleton (green), overlaid on theMNI standard brain template. All analyses presented are adjusted by age, sex, and study site; thresholded at
p< .05 (TFCE cluster-corrected). The color bar (yellow: red, higher: lower) represents p-values above the statistical threshold for significance. AD,
axial diffusivity; FA, fractional anisotropy; HD, Huntington’s disease;MD, mean diffusivity; RD, radial diffusivity; TBSS, tract-based spatial
statistics; TFCE, threshold-free cluster enhancement.

diffusivity in the corpus callosumofHDpatientswithout significant dif-

ferences before motor onset (Domínguez et al., 2016; Gregory et al.,

2015; Harrington et al., 2016; Sritharan et al., 2010; Weaver et al.,

2009). However, ROI studies require selection in advance of the areas

being investigated. In contrast, newer drugs targetingHTTnucleic acids

have different HTT-lowering potential across brain areas. For example,

intrathecally administered antisense oligonucleotides reach maximum

concentrations in the cortex with decreased concentrations in deeper

brain areas, while microRNAs in clinical development are injected into

the striatum with lower concentrations in the cortex and subcortical

WM (Tabrizi et al., 2019).

Moreover, mHTT aggregates and neuronal loss do not entirely co-

localize with atrophy, suggesting the interaction of cell autonomous

and non-autonomous factors alongside different protein isoforms,

underlying neuronal death (Ast et al., 2018; Hackam, 1999; Raj & Pow-

ell, 2021; Ross et al., 2014). Therefore, unbiased whole-brain imaging

analysis can detect alterations in WMmicrostructure in areas a priori

not expected to change.

The main limitations of whole-brain longitudinal analyses of DWI

data are registration failures between baseline and final visit scans

leading to misalignment and potential spurious results. However, our

use of a midspace template minimizes registration failures. Subse-

quently, detailed quality control in our analyses showed excellent

alignment of baseline and follow-up DTI maps with the midspace

templates.

Importantly, here, we have applied the same longitudinal pipeline

to two populations with different disease burden suggesting progres-

sive decreases in structural connectivity as the disease develops. The

changesweobserved are largely consistentwith those previously iden-

tified in WM studies for both pre-HD (Harrington et al., 2016) and

manifest HD (Gregory et al., 2015; Poudel et al., 2015; Weaver et al.,

2009), in addition to previous pathological findings (Vonsattel et al.,

2011). Interestingly, FA decreases over time were present only in the

pre-HD cohort (at our chosen statistical threshold), perhaps indicating

that FAmay be less sensitive than other DTImetrics to change inmani-

festHD (Hobbs et al., 2015; Sritharan et al., 2010; Sweidan et al., 2020).

These results may be caused by further degeneration of specific WM

tracts after clinical motor onset, reducing the complexity of fiber archi-

tecture in areas with complex configurations and crossing fibers such

as the corona radiata.

FA decreases in TrackOn-HD were present exclusively in the

left hemisphere, while diffusion changes in manifest participants

were bilateral and more confluent. Lateralized findings have also

been reported in previous HD diffusion studies (McColgan et al.,
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8 of 13 ESTEVEZ-FRAGA ET AL.

F IGURE 4 Associations between baseline UHDRS-TMS and change inmean diffusivity (A and B) and between baseline composite UHDRS and
change inmean diffusivity (C andD) in HD expansion-carriers in the PADDINGTON cohort. (A) TBSS results showing areas with significant positive
correlations between change inmean diffusivity and baseline scores in the UHDRS-TMS. (B) Scatterplot, linear trend, and 95% confidence interval
depicting the association between baseline scores in UHDRS-TMS and change inmean diffusivity within the largest significant cluster from (A). (C)
TBSS results showing areas with significant negative correlations between change inmean diffusivity and baseline scores in the composite
UHDRS. (D) Scatterplot, linear trend, and 95% confidence interval depicting the association between baseline composite UHDRS and change in
mean diffusivity within the largest significant cluster from (C). TBSS results are shown on the FA skeleton (green), overlaid on theMNI standard
brain template. All analyses presented are adjusted by age, sex, and study site; thresholded at p< .05 (TFCE cluster-corrected). The color bar
(yellow: red, higher: lower) represents p-values above the statistical threshold for significance. HD, Huntington’s disease; TBSS, tract-based spatial
statistics; TFCE, threshold-free cluster enhancement; UHDRS-TMS, Unified Huntington’s Disease Rating Scale—total motor score

2017; Odish et al., 2015) suggesting that initially subtle changes in

microstructural disorganization may be asymmetric although these

tend to coalesce with disease progression. Importantly, these changes

expanded toward neighboring areas, becoming bilateral when applying

lower statistical thresholds.

To understand the impact of WMmicrostructural change over time

on function and behavior, we correlated baseline clinical scores and

change in diffusion measures. Increased pathological burden is a likely

explanation for the progressive changes that we identified. We found

that TMS was routinely associated with longitudinal changes in WM

across both cohorts, indicating increased levels of WM disorganiza-

tion as motor symptoms worsened. Even for the pre-HD group, where

motor symptoms were less discernable, TMS was a good predictor of

WM change. This is consistent with previous studies showing signifi-

cant relationships between WMmicrostructure and TMS (Harrington

et al., 2016;Hong et al., 2018)withmotor scores being able to differen-

tiate pre-HD from healthy controls (Georgiou-Karistianis et al., 2013).

There were counterintuitive correlations between the TMS and FA in

the PADDINGTON cohort suggesting that in this population milder

motor symptoms at baseline are associated with larger longitudinal

decreases in FA. However, FA was the only DTI metric that did not

show significant longitudinal change in PADDINGTON in our analysis,

indicating that it may not be particularly sensitive in manifest par-

ticipants. In addition, the significant area was very localized and not

associated with other clinical scales suggesting that the positive corre-

lation between FA and the TMS may be a consequence of longitudinal

changes in crossing fibers caused by volumetric decreases. Crossing

fibers are not modeled through DTI indices but may be present in 90%

of brain voxels, being particularly problematic in areas with complex

WM configurations such as the corona radiata, where counterintuitive

associations were found in our study (Jeurissen et al., 2013).

Newer advanced multishell diffusion images and myelin-sensitive

modalities such as quantitative magnetization transfer (qMT) imag-

ing have shown myelin impairments from premanifest stages of the
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disease. Similarly, quantitative susceptibility mapping is sensitive as

a myelin marker and could provide further insights into structural

connectivity in these areas (Casella et al., 2020, 2022; Heath et al.,

2018). In contrast, neurite orientation dispersion and density imaging

(NODDI) analysis showeddecreased neurite density and increased ori-

entation dispersion in expansion carriers compared to healthy controls

(H. Zhang et al., 2012). These techniques could overcome some of the

limitations fromDTImetrics in future studies investigating longitudinal

change in large observational cohorts.

Interestingly, there were no correlations between disease burden

score andWMmicrostructure, indicating that for future studies TMS is

a more robust predictor of change (Gregory et al., 2015, 2020; Poudel

et al., 2015).

The cUHDRS is a multidomain measure that was generated using

data from1600earlyHDparticipants. It has good test–retest reliability

and longitudinal signal-to-noise ratio (Schobel et al., 2017). In addition,

it is associated with clinically meaningful change (Trundell et al., 2019),

and it has been used—alongside the TFC—as the primary outcome

measure in GENERATION-HD1, an HTT-lowering phase 3 clinical trial

(Hoffman-La Roche, 2019). In the present study, correlations between

baseline cUHDRS andWMchange overlapped considerablywith those

tracts in which we identified TMS associations. This would appear to

suggest that as a key component of cUHDRS, the TMS may be driving

these findings. Although cUHDRS scores have been shown to corre-

late with measures of WM microstructure at the cross-sectional level

in the TrackHD cohort (Estevez-Fraga et al., 2021), here we found

no such associations in the TrackOn-HD cohort for longitudinal WM

change, being consistent with the lower TMS alongside maximum

TFC scores among premanifest participants. However, for manifest

HD gene expansion carriers from the PADDINGTON cohort, lower

baseline cUHDRS scores did predict increases in diffusivity (Schobel

et al., 2017) supporting the use of this score in clinical trials including

symptomatic HD participants.

Changes in WM reflect the distribution of pathology from post-

mortem histological studies, with alterations starting in deep brain

areas and progressing toward the cortex during pre-HD stages (Von-

sattel et al., 2011). Therapies that potentially decrease the pathological

load of HD, such as mHTT lowering therapies, may also slow WM dis-

organization, which can be tested in an exploratory fashion as part of a

clinical trial. ROI-based approaches bear sufficient effect sizes to show

treatment benefit over a clinical trial period but require a preselection

of the structures being analyzed (Hobbs et al., 2015; Rosas et al., 2006;

Georgiou-Karistianis, Scahill et al., 2013).

Here, we have shown that a reproducible, unbiased whole-brain

methodology could detect change over a clinical trial period without

the need for an a priori selection of brain regions. In consequence,

thismethodology could be applied to investigate treatment effects.We

considered it important to apply this longitudinal pipeline to investi-

gate the changes in standard DTI metrics, as these have been exten-

sively in cross-sectional studies (Estevez-Fraga, Scahill, Rees et al.,

2021). However, longitudinal change in newer diffusion metrics such

as fixel-based analysis or NODDI metrics could be explored in future

analyses.

A whole-brain approach is a significant advantage since invasive

delivery of newer mHTT lowering therapies will influence the spatial

distribution of neuronal changes in response to it. Avoiding preselec-

tion of brain areas for investigation could increase the likelihood of

detecting significant results without introducing selection bias.

There are some limitations to our study. Although the TrackOn-HD

cohort focusedon (andwaspredominantly composedof) pre-HD, there

was a small proportion of participants after clinical motor onset. How-

ever, the distinction between pre-HD and manifest HD is based on the

diagnostic confidence level scale, being highly subjective (Oosterloo

et al., 2021). In contrast, newer classifications of HD include objec-

tive measures in clinical scores and from imaging biomarkers and are

focused on the initial stages of the disease (Tabrizi et al., 2021). In addi-

tion, the progression of HD from the imaging perspective is continuous

rather than dichotomous (Tabrizi, 2009) The disease burden score dif-

fered between both cohorts in our study, with higher disease severity

in PADDINGTON. The disease burden score depends on age and CAG

repeat length, the main determinants of disease severity and age at

onset (Wexler et al., 2004) being therefore more appropriate to esti-

mate the severity of the disease than the proportion of pre-HD and

manifest HD participants. Therefore, our results indicate progressive

WMdisorganization across the disease time course.

In addition, longitudinal follow-up was shorter in PADDINGTON

(15 months) compared to TrackOn-HD (24 months). Shorter obser-

vation time frames are associated with smaller changes. Therefore, a

longer follow-up period in PADDINGTON would possibly show even

more extensive changes, also supporting increasing alterations in dif-

fusion imaging as the disease progresses. A notable proportion of

participants in TrackOn-HD were excluded because of insufficient

data at baseline or follow-up or failed quality control. This could be

improved with more rigorous data collection. However, only five par-

ticipants were excluded due to failures in longitudinal registration,

suggesting that this longitudinal pipeline can be applied in further

datasets.

Our technical approach sought to minimize misalignment between

scans, but there may be minor residual registration errors. However,

weperformeddetailedquality control at eachprocessing stage toavoid

suchmisalignment registration errors. Furthermore, TBSS studies have

proven to be reliable and reproducible in HD, differentiating patients

from controls and exhibiting progressive WM change in HD (Della

Nave et al., 2010; Gregory et al., 2020; J. Zhang et al., 2018).

5 CONCLUSION

To conclude, we have shown progressive widespread longitudinal

changes in diffusivity and FA in two cohortswith different disease load.

These changes parallel the distribution of pathology in HD and are

associated with clinical outcomes, including the cUHDRS in manifest

participants, being currently used in clinical trials with HTT-lowering

therapies. In consequence, our methodology could be applied in future

clinical trials and may be relevant for the development of future

therapies directly targeting disease-causingmechanisms.
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