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Abstract

Recently, flat-minima optimizers, which seek to find parameters in low-loss neigh-
borhoods, have been shown to improve a neural network’s generalization perfor-
mance over stochastic and adaptive gradient-based optimizers. Two methods have
received significant attention due to their scalability: 1. Stochastic Weight Aver-
aging (SWA), and 2. Sharpness-Aware Minimization (SAM). However, there has
been limited investigation into their properties and no systematic benchmarking of
them across different domains. We fill this gap here by comparing the loss surfaces
of the models trained with each method and through broad benchmarking across
computer vision, natural language processing, and graph representation learning
tasks. We discover several surprising findings from these results, which we hope
will help researchers further improve deep learning optimizers, and practitioners
identify the right optimizer for their problem.

1 Introduction

Stochastic gradient descent (SGD) methods are central to neural network optimization [6]. Recently,
one class of algorithms has focused on biasing SGD methods towards so-called ‘flat’ minima, which
are located in large weight space regions with very similar low loss values [43]. Theoretical and
empirical studies [21, 77, 9, 55, 49, 5, 12] postulate that such flatter regions generalize better than
sharper minima, e.g., due to the flat minimizer’s robustness against loss function shifts between
train and test data, as illustrated in Fig. 1. Two popular flat-minima optimization approaches are: 1.
Stochastic Weight Averaging (SWA) [48], and 2. Sharpness-Aware Minimization (SAM) [22].

While both strategies aim to find flatter minima, they operate much differently. On the one hand, SWA
is based on the intuition that, near a flat minimum, gradients are smaller, leaving many iterates in that
flat region. Therefore, averaging iterates will produce a solution that is pulled towards these flatter
regions, see Fig. 1, top. On the other hand, SAM minimizes the maximum loss around a neighborhood
of the current iterate. This way, a region around the iterate is designed to have uniformly low loss;
see Fig. 1, bottom. Crucially, SAM requires an additional forward/backward pass for each parameter
update, making it more expensive than SWA.

Despite the successes [76, 3, 51, 12, 4] of SWA and SAM in some domains, we are unaware of a
systematic comparison between them that would help practitioners to choose the right optimizer
for their problem and researchers to develop better optimizers. The SWA [48] paper was published
in 2018, and the SAM [22] paper in 2021; however, the SAM paper, and its most noticeable
follow-ups [65, 12, 103], do not compare against SWA. Further, there is very limited overlap in
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terms of the model architecture and dataset used in the experiments among both papers, which are
likely further confounded by other differences in the training procedures (e.g. data augmentations,
hyper-parameters, etc.).
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Figure 1: The mechanics behind
SWA and SAM, whose solution
is denoted by + and ×, respec-
tively. SWA produces a solution
θ that is pulled towards flatter re-
gions, while SAM approximates
sharpness within the parameters’
neighborhood (arrows).

Contributions

1. In-depth comparison of minima found by SWA and
SAM: We visualize linear interpolations between differ-
ent models and quantify the minimizers’ flatnesses. This
analysis yields 4 insights, e.g., despite SAM finding flatter
solutions than SWA as quantified by Hessian eigenvalues,
they can be close to sharp directions, a phenomenon that has
been overlooked in the previous SAM literature. Averaging
SAM iterates leads to the flattest among all minima.

2. Rigorous comparison of SWA and SAM’s performance
over 42 tasks: We empirically compare the optimizers with
a rigorous model selection procedure on a broad range of
tasks across different domains (CV, NLP, and GRL), model
types (MLPs, CNNs, Transformers) and tasks (classifica-
tion, self-supervised learning, open-domain question answer-
ing, natural language understanding, and node/graph/link
property prediction). We discuss 9 findings, e.g., that both
dataset and architecture impact their effectiveness, that for
NLP tasks, SAM improves over SWA in most cases, and
that the converse holds for GRL tasks. When flat-minima
optimizers do not help, we notice clear discrepancies be-
tween the shapes of loss and accuracy curves. To assist
future work, we open-source the code for all pipelines and
hyper-parameters to reproduce the results.

2 Background and Related Work

2.1 Stochastic Gradient Descent (SGD)

The classic optimization framework of machine learning is empirical risk minimization

L (θ) = 1

N

N∑
i=1

` (xi;θ) (1)

where θ ∈ Rd is a vector of parameters, {x1, . . . ,xN} is a training set of inputs xn ∈ RD, and
`(x;θ) is a loss function quantifying the performance of parameters θ on x. SGD samples a
minibatch S ⊂ {1, . . . , N} of size |S| � N from the training set and updates the parameters through

θSGD
t+1 = θt − ηg (θt) , where g (θ) =

1

|B|
∑
i∈B
∇` (θ;xi) , (2)

for a length specified by η, the learning rate.

2.2 Stochastic Weight Averaging (SWA)

The idea of averaging weights dates back to accelerating the convergence speed of SGD [78, 51].
SWA’s motivation is based on the following observation about SGD’s behavior when training neural
networks: it often traverses regions of the weight space that correspond to high-performing models
but rarely reaches the central points of this optimal set. Averaging the parameter values over iterations
moves the solution closer to the centroid of this space of points.

The SWA update rule is the cumulative moving average

θSWA
t+1 ←

θSWA
t · l + θSGD

t

l + 1
, (3)
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Algorithm 1 Stochastic Weight Averaging [48]

Input: Loss function L, training budget in
number of iterations b, training dataset D :=
∪ni=1{xi}, mini-batch size |B|, averaging start
epoch E, averaging frequency ν, (scheduled)
learning rate η, initial weights θ0.
for k ← 1, . . . , b do

Sample a mini-batch B from D
Compute gradient g ← ∇L (θt)
Update parameters θt+1 ← θt − ηg
if k ≥ E and mod(k, ν) = 0 then
θSWA
t+1 =

(
θSWA
t · l + θSWA

t+1

)
/ (l + 1)

end if
end for
return θSWA

Algorithm 2 Sharpness-Aware Minimization [22]

Input: Loss function L, training budget in
number of iterations b, training dataset D :=
∪ni=1{xi}, mini-batch size |B|, neighborhood
radius ρ, (scheduled) learning rate η, initial
weights θ0.
for k ← 1, . . . , b do

Sample a mini-batch B from D
Compute worst-case perturbation

ε̂← ρ
∇L(θ)
‖∇L(θ)‖2

Compute gradient g ← ∇L
(
θSAM
t +ε̂

)
Update parameters θSAM

t+1 ← θSAM
t − ηg

end for
return θSAM

where l is the number of distinct parameters averaged so far and t is the SGD iteration number.2

SWA has two hyper-parameters: the update frequency ν and starting epoch E. When using a constant
learning rate, Izmailov et al. [48] suggests updating the parameters once after each epoch, i.e.,
ν ≈ N

|B| , and starting at E ≈ 0.75T , where T is the training budget required to train the model until
convergence with conventional SGD training.

He et al. [39] argue that SWA may always improve generalization, regardless of the loss function’s
geometry. Kaddour [51] show that averaging a specific range of weights can speed up training
convergence. Cha et al. [8] argue that tuning ν and E carefully is necessary to make it work
effectively in domain generalization (DG) tasks. Besides DG tasks, a list of tuned hyper-parameters
based on a fair model selection procedure across different architectures and tasks has been missing in
the literature. To the best of our knowledge, Cha et al. [8] is the only study that compares SWA and
SAM over the same experiments, but it focuses on domain generalization tasks which we, therefore,
leave out in this work.

2.3 Sharpness-Aware Minimization (SAM)

While SWA is implicitly biased towards flat minima, SAM explicitly approximates the flatness around
parameters θ to guide the parameter update. It first computes the worst-case perturbation ε that
maximizes the loss within a given neighborhood ρ, then minimizes the loss w.r.t. the perturbed
weights θ + ε. Formally, SAM finds θ by solving the minimax problem:

min
θ

max
||ε||2≤ρ

L(θ + ε), (4)

where ρ ≥ 0 is a hyperparameter.

To find the worst-case perturbation ε∗ efficiently in practice, Foret et al. [22] approximates Eq. (4)
via a first-order Taylor expansion of L(θ + ε) w.r.t. ε around 0, obtaining

ε∗ ≈ argmax
‖ε‖2≤ρ

ε>∇θL(θ) ≈ ρ ·
∇θL(θ)
‖∇θL(θ)‖︸ ︷︷ ︸

=:ε̂

. (5)

In words, ε̂ is simply the scaled gradient of the loss function w.r.t to the current parameters θ. Given
ε̂, the altered gradient used to update the current θt (in place of g(θt)) is

∇θ max
||ε||2≤ρ

L(θ + ε) ≈ ∇θL(θ)|θ+ε̂.

Due to Eq. (5), SAM’s computational overhead consists of an additional forward and backward pass
per parameter update step compared to SWA and non-flat optimizers.

2SWA parameters are constant between averaging steps.
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SAM’s performance strongly depends on the neighborhood radius ρ. For example, Chen et al.
[12], Wu et al. [93] show that ρ should be set to values outside the originally considered ranges by
Foret et al. [22]. Analogously to Sec. 2.2, this lack of coherence among hyper-parameter tuning
protocols in the SAM literature makes it tricky to determine SAM’s comparative effectiveness.

2.4 Other Flat-Minima Optimizers

There are several extensions of SWA [36, 8] and SAM [65, 103, 101]. For simplicity, we do not
consider them in this work. Besides SWA and SAM, other flat-minima optimizers include e.g., [9, 84].
However, due to their computational cost and/or lack of performance gains, we do not include them
in this work. Chaudhari et al. [9] requires [5, 20] forward and backward passes per parameter update.
Sankar et al. [84] similarly requires [5, 10] forward and backward passes to estimate the Hessian trace
and 6 of 7 experiments yield minimal improvement of ≤ 0.27%, see Table 1 in Sankar et al. [84]. In
contrast, SWA and SAM have been shown to increase performance by multiple percentage points in
some cases [8, 12] while requiring fewer computational resources.

3 How do minima found by SWA and SAM differ?

In this section, we investigate SWA and SAM solutions in two prototypical deep learning tasks,
where these optimizers improve over the baseline. Our goal is to understand better their geometric
properties (instead of their generalization performance, which is the focus of Sec. 4).

First, we investigate the behavior of the loss landscape along the line between non-flat and flat
solutions (Sec. 3.1). Previous studies successfully used such linear interpolations to gain novel
insights, e.g., for training dynamics [32, 25], regularization [69, 28], and network pruning [26].
Second, motivated by findings in Sec. 3.1, we average SAM iterates and visualize interpolations
between averaged and non-averaged solutions (Sec. 3.2). Interestingly, the averaged SAM solution
is less susceptible to asymmetric directions. Third, we compare quantitative measurements of all
solutions’ flatnesses (Sec. 3.3). Here, we compute dominant Hessian eigenvalues, as commonly used
in the flat minima literature [9, 98, 12, 22]. Lastly, in Appendix A.1, we further compute CKA [61]
and cosine similarities between SWA/SAM’s network output logits.

We choose the following two disparate learning settings: (i) a well-known image classification task,
widely used for evaluation in flat-minima optimizer papers, and (ii) a novel, challenging Python code
summarization task, on which state-of-the-art models achieve only around 16% F1 score on the test
set (which is higher than its commonly achieved accuracy on the more challenging training set),
and that has not been explored yet in the flat-minima literature. Specifically, for (i), we investigate
the loss/accuracy surfaces of a WideResNet28-10 [99] model on CIFAR-100 [63] (baseline non-flat
optimizer: SGD with momentum (SGD-M)) [83]. For (ii), we use the theoretically-grounded Graph
Isomorphism Network [95] model on OGB-Code2 [45] (baseline optimizer: Adam [56]).

All optimizers start from the same initialization. We denote the minimizer produced by the non-flat
methods (SGD-M and Adam) by θNF and the flat ones by θSWA and θSAM.

3.1 What is between non-flat and flat solutions?

We start by comparing the similarity of flat and non-flat minimizers through linear interpolations.
This analysis allows us to understand if they are in the same basin and how close they are to a region
of sharply-increasing loss, where we expect loss/accuracy to differ widely between train and test.
Further, for each of our four observations, we recommend a future work direction.

To linearly interpolate between two sets of parameters θ and θ′, we parameterize the line connecting
these two by choosing a scalar parameter α and defining the weighted average θ(α) = (1−α)θ+αθ′.
If there exists no high-loss barrier between two networks θ,θ′ along the linear interpolation, we
say that they are located in the same basin, i.e., {θ,θ′} ∈ Ω. [75, 102]. A basin is an area in the
parameter space where the loss function has relatively low values. Due to NN non-linearities, the
linear combination of the weights of two accurate models does not necessarily define an accurate
model. Hence, we generally expect high-loss barriers along the linear interpolation path.

While there are alternative distance measures that could be used to compare two networks, they
typically either (a) do not offer clear interpretations, as pointed out by Frankle et al. [26], or (b) yield
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trivial network connectivity results, such as non-linear low-loss paths, which can be found for any
two network minimizers [20, 27, 33, 23].
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Figure 2: Training (blue) and test (red) losses (—) and accuracies ( ) of linear interpolations
θ(α) = (1− α)θ + αθ′ (for α ∈ [−1, 1.5]) between SWA (+) and SAM (×) solutions (α = 0.0)
and non-flat baseline solutions (•, α = 1.0).

Obs. 1: {θSWA,θNF} ∈ ΩNF. θSWA and θNF are in the same basin, as can be seen in Figures 2a and
2e. Additionally, θNF is near the periphery of a sharp increase in loss, as can be seen when moving
in the direction from θSWA to θNF (i.e., α > 1). Conversely, θSWA finds flat regions that change
slowly in the loss. This bias of SWA to flatter loss beneficially transfers to the accuracy landscape
too: Figures 2b and 2f show the accuracy/F1 score rapidly dropping off approaching and beyond θNF.
Interestingly, in Figures 2e and 2f, we see that for Code2, for α < 0, there exist solutions with even
better training loss/accuracy but worse test loss/accuracy. However, θSWA

GIN is close to the test accuracy
maximizer along this interpolation. Future work may inspect why the cross entropy loss function
used for GIN/Code2 seems less well correlated with its accuracy compared to WRN/CIFAR100.

Obs. 2: θSAM ∈ ΩSAM 6= ΩNF. θSAM and θNF are not in the same basin: Figures 2c and 2g show
that there is a high loss barrier between them, respectively. Figures 2d and 2h show that θSAM and
even nearby points in parameter space achieve higher accuracies/F1 scores (i.e., generalize better)
than θNF and points around it. This is an interesting result because we expect different basins to
produce qualitatively different predictions, one of the motivations behind combining models, even if
they exhibit different performances [46, 67]. Grewal & Bui [34] successfully combine models yielded
by different optimizers, and we think future work should study ensembling SAM and non-SAM
solutions.

Obs. 3: SAM finds a saddle point. Figure 2g shows θSAM
GIN being located in a sharp training loss

minimum whose loss is much higher than θNF. Yet, its test loss is slightly higher, and its F1 score
is better. We visualize 2D plots moving along random directions (not shown here due to space) to
confirm that θSAM

GIN is a saddle point (Appendix A.2). A common pathology among curvature-based
methods is that they attract saddle points [16]. Since SAM takes some form of curvature into account,
too, we believe that future work should investigate SAM’s propensity to find saddle points and
potential remedies.

Obs. 4: θSAM is closer to sharper directions than θSWA, as can be seen by Ltr/te(θ
SAM(0.1)) ≈

2 · Ltr/te(θ
SAM(−0.1)), while Ltr/te(θ

SWA(0.1)) ≈ Ltr/te(θ
SWA(−0.1)), where L(·)tr/te refers to both

training and test loss functions. A possible explanation for SAM being closer to sharp sides is that
while it finds different basins than SGD/SWA by smoothing the loss surface (as illustrated in Fig. 1),
within a local basin, it may oscillate around the minimizer similarly as SGD. One cause for this can
be that ΩSAM’s hypersphere is larger than SAM’s radius ρ. If that holds, then given a small enough
learning rate, we expect it to oscillate around θ∗ ∈ ΩSAM (the smaller the learning rate, the less
likely it escapes the basin due to that stochasticity). Two possible remedies are: (1) adapt/schedule
ρ, or (2) average SAM iterates to bias its solution towards the flatter side. (1) has been explored by
[103, 101]. We try (2) in the next subsection. Future work may study SAM’s basin escape time, e.g.,
using convolutions [58] or stochastic differential equations [102].
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3.2 What happens if we average SAM iterates?

Based on observation 4: “θSAM is closer to sharper directions than θSWA”, averaging SAM iterates
may further improve generalization, referred to as Weight-Averaged Sharpness-Aware Minimization
(WASAM) 3. The reason is that while SAM finds better-performing basins, within the basin, its final
iterate may still be near a side that increases sharply in the loss.

GIN on Code2WRN on CIFAR100

(a) (b) (c) (d)

AccuracyLoss F1Loss
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Figure 3: Training (blue) / test (red) losses (—) / accuracies ( ) between non-flat baseline (•)↔
SWA (+), SAM (×)↔WASAM (?).

Starting with the first of the two previously analyzed settings (WRN/CIFAR100), Figures 3a, and 3b
show that θSWA+SAM

WRN (marker: F) achieves the lowest test loss and highest test accuracy, respectively.
What stands out in comparison to the previous plots is θSAM

WRN’s (×) proximity to sharp sides, surpris-
ingly similar to θNF

WRN (•) here and in Figures 2c and 2e. As we hoped, θSWA+SAM
WRN is indeed closer to

a flatter region, as can be seen by Ltr/te(θ
SWA+SAM
WRN (−0.2)) ≈ Ltr/te(θ

SWA+SAM
WRN (0.2)).

In GIN/OGB-Code2, one unanticipated finding is that θSWA+SAM
GIN escapes the (previously discussed)

saddle point of θSAM
GIN , appearing here as a maximum in Figure 3c. A likely reason is that SAM

traversed nearby flatter regions before arriving at the saddle point, especially if it is a non-strict saddle.
In terms of F1 score, Figure 3d shows that while θSWA

GIN (+) and θSAM
GIN perform about equally well, the

flatter region found by θSWA+SAM
GIN improves over both.

3.3 How “flat” are the found minima?

We now quantify the flatnesses of all four optimizers over both tasks by computing the median of
the dominant Hessian eigenvalue across all training set batches using the Power Iteration algorithm
[74, 98]. This metric measures the worst-case loss landscape curvature. We choose this metric as it is
very commonly used in the minima flatness literature, e.g., [9, 12, 22, 97, 18, 62, 85].

Table 1 shows that SAM leads to flatter minima than SWA in both cases. Interestingly λmax(θ
NF
WRN) ≈

2.5 · λmax({θSWA,θSAM}), while λmax(θ
NF
WRN) ≈ 5.75λmax(θ

SWA+SAM
WRN ), indicating room for im-

provement in terms of flatness for both SWA and SAM. The relative differences are less dramatic
for GIN/Code2, although surprisingly λmax(θ

NF
GIN) ≈ λmax(θ

SWA
GIN ). In sum, averaging SAM iterates

leads to the flattest minima and best-performing minima in both cases (see Sec. 4).

Table 1: Median λmax of Hessian over all training set batches.
Task Baseline SWA SAM WASAM

WRN on CIFAR100 673 265 237 117
GIN on Code2 16.65 16.79 11.31 9.96

4 How do SWA and SAM perform on a broad set of experiments?

As we point out in the introduction, there is almost no overlap and consistency regarding reported SWA
and SAM results in the literature. This section addresses this gap. For example, Bahri et al. [4], Chen
et al. [12] illustrate that the flat minima found by SAM improve generalization on Transformer [90]
architectures compared to non-flat optimizers, but they do not compare against SWA. Hence, it is
unclear if the computationally cheaper SWA may provide better or similar performance.

We compare flat minimizers SWA, SAM, and averaged SWA iterates (WASAM) over the non-flat
minimizers across a range of different tasks in the domains of computer vision, natural language

3A code implementation can be found here: https://github.com/jeankaddour/WASAM
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Table 2: CV test results: Supervised Classification (SC), and Self-Supervised Learning (SSL) tasks.
Task Model Baseline SWA SAM WASAM

SC:
CIFAR10

WRN-28-10 96.78±0.03 −0.05±0.04 + 0.34±0.09 + 0.25±0.05
PN-272 96.73±0.14 + 0.22±0.14 + 0.42±0.06 + 0.41±0.02
ViT-B-16 98.95±0.02 −0.04±0.04 + 0.07±0.01 + 0.10±0.01
Mixer-B-16 96.65±0.03 + 0.02±0.03 + 0.19±0.05 + 0.22±0.06

SC:
CIFAR100

WRN-28-10 80.93±0.19 + 1.62±0.06 + 1.82±0.14 + 2.24±0.14
PN-272 80.86±0.12 + 1.88±0.04 + 2.33±0.08 + 2.60±0.09
ViT-B-16 92.77±0.07 −0.12±0.05 + 0.19±0.09 + 0.13±0.07
Mixer-B-16 83.77±0.08 + 0.45±0.06 + 0.52±0.15 + 0.97±0.12

SSL:
CIFAR10

MoCo 89.25±0.07 −0.03±0.10 −0.25±0.06 −0.17±0.10
SimCLR 88.66±0.08 −0.05±0.06 + 0.05±0.04 −0.13±0.06
SimSiam 89.86±0.22 + 0.12±0.26 + 0.07±0.10 + 0.11±0.10
BarlowTwins 86.34±0.24 −0.09±0.19 + 0.09±0.15 + 0.14±0.05
BYOL 90.32±0.14 + 0.70±0.05 + 0.14±0.03 + 0.21±0.07
SwaV 87.28±0.05 + 0.09±0.06 + 0.07±0.12 + 0.02±0.06

SSL:
ImageNette

MoCo 81.74±0.18 + 0.97±0.10 + 0.91±0.32 + 1.40±0.10
SimCLR 83.28±0.22 + 0.95±0.25 + 0.18±0.24 + 1.07±0.13
SimSiam 81.77±0.14 + 0.20±0.37 + 0.33±0.28 + 0.18±0.26
BarlowTwins 77.49±0.36 + 0.20±0.16 + 0.47±0.27 + 0.66±0.57
BYOL 84.16±0.14 + 0.76±0.08 + 0.15±0.25 + 0.31±0.19
SwaV 88.16±0.31 + 1.04±0.27 + 0.03±0.10 + 1.03±0.09

processing, and graph representation learning. We average all runs at least three times across random
seeds (more often for experiments with higher variability, see details in Appendix B), and we report
the corresponding standard error. We bold the best-performing approach and any approach whose
average performance plus standard error overlaps it.

Hyper-parameters. For all architectures and datasets, we set hyperparameters shared by all meth-
ods (e.g., learning rate) mostly to values cited in prior work 4 As explained in Secs. 2.2 and 2.3, the
effectiveness of flat-minima optimizers is highly sensitive to their additional hyper-parameters. We
select hyper-parameters using a grid search over a held-out validation set. Specifically, for SWA we
follow Izmailov et al. [48] and hold the update frequency ν constant to once per epoch and tune the
start time E ∈ {0.5T, 0.6T, 0.75T, 0.9T} (T is the number of baseline training epochs). Izmailov
et al. [48] argue that a cyclical learning rate starting from E helps to encourage exploration of the
basin. For the sake of simplicity, we average the iterates of the baseline directly but include even ear-
lier starting times (i.e., 0.5T, 0.6T ). In Appendix A.8, we compare against using a constant learning
rate at the end of training. For SAM, we tune its neighborhood size ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.2},
as in previous work [22, 4].

Appendix B contains the values of all hyper-parameters and additional training details (including pub-
lic model checkpoints, hardware infrastructure, software libraries, etc.) to ensure full reproducibility
alongside open-sourcing our code.

4.1 Computer Vision

Supervised Classification (SC). We evaluate the CNN architectures WideResNets [99] with 28
layers and width 10, and PyramidNet (PN) with 110 layers and widening factor 272 [38] as well as
Vision Transformer (ViT) [19] and MLP-Mixer [87] on CIFAR{10, 100} [63]. All experiments use
basic data augmentations: horizontal flip, padding by four pixels, random crop, and cutout [17]. In
Appendix A.7, we experiment with different data augmentation schemes.

Self-Supervised Learning (SSL). We consider the following methods on CIFAR10 and Ima-
geNette5: Momentum Contrast [41], a Simple framework for Contrastive Learning (SimCLR) [10],
Simple Siamese representation learning (SimSiam) [11], Barlow Twins [100], Bootstrap your own
Latent (BYOL) [35], and Swapping Assignments between multiple Views of the same image (SwAV)
[7]. All SSL methods use a ResNet-18 [40] as backbone network. To test the frozen representa-
tions, we use k-nearest-neighbor classification with a memory bank [94]. We choose k=200 and

4Sometimes with minor modifications, e.g., adjusting per-device batch sizes to be compatible with our GPU
infrastructure.

5https://github.com/fastai/imagenette
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Figure 4: (a) NLP test results: Open-Domain Question Answering and Natural Language Understand-
ing (GLUE) including paraphrase, sentiment analysis, and textual entailment. (b) GRL test results:
Node Property Prediction (NPP), Graph Property Prediction (GPP), Link Property Prediction (LPP).

Task Model Baseline SWA SAM WASAM

NQ FiD 49.35±0.44 −0.20±0.33 + 0.33±0.19 + 0.48±0.21

TriviaQA FiD 67.74±0.29 + 0.40±0.24 + 0.89±0.03 + 0.92±0.10

COLA RoBERTa 60.41±0.22 + 0.09±0.08 + 1.57±1.20 + 1.41±1.14

SST RoBERTa 94.95±0.13 −0.30±0.27 −0.23±0.40 + 0.19±0.14

MRPC RoBERTa 89.14±0.57 + 0.08±0.49 +0.73±0.43 + 0.81±0.38

STSB RoBERTa 90.40±0.02 +0.00±0.05 +0.38±0.17 + 0.35±0.16

QQP RoBERTa 91.36±0.07 +0.01±0.06 +0.08±0.07 +0.06±0.08

MNLI RoBERTa 87.41±0.09 +0.08±0.11 +0.39±0.02 +0.35±0.03
QNLI RoBERTa 92.96±0.06 −0.08±0.11 +0.09±0.01 +0.11±0.06

RTE RoBERTa 80.09±0.23 −0.23±0.20 +0.70±0.65 −0.46±0.12

(a)

Task Model Baseline SWA SAM WASAM

NPP:
Proteins

SAGE 77.79±0.18 −0.17±0.22 −0.02±0.13 −0.11±0.15
DGCN 85.42±0.17 + 0.11±0.08 −0.14±0.05 −0.08±0.07

NPP:
Products

SAGE 78.92±0.08 + 0.39±0.10 + 0.13±0.08 + 0.57±0.03
DGCN 73.88±0.13 + 0.44±0.14 + 0.08±0.09 + 0.53±0.05

GPP:
Code2

GCN 16.04±0.09 + 0.73±0.11 + 0.36±0.08 + 0.93±0.15
GIN 15.73±0.11 + 0.83±0.11 + 0.57±0.09 + 1.10±0.09

GPP:
Molpcba

GIN 28.10±0.11 + 0.40±0.18 −0.33±0.14 + 0.33±0.16
DGCN 25.65±0.13 + 1.90±0.20 −0.13±0.18 + 1.34±0.12

LPP:
Biokg

CP 84.06±0.00 + 0.07±0.01 0.00±0.03 + 0.08±0.02
ComplEx 84.94±0.01 + 0.14±0.01 −0.02±0.01 + 0.12±0.02

LPP:
Citation2

GCN 79.52±0.41 −0.05±0.52 + 1.32±0.06 + 1.50±0.13
SAGE 81.95±0.02 + 1.15±0.02 −0.31±0.07 + 0.86±0.04

(b)

temperature τ = 0.1 to reweight similarities. Compared to learning a linear model on top of the
representations, this evaluation procedure is more robust to hyperparameter changes [59].

4.2 Natural Language Processing

We consider the task of open domain question answering (ODQA) using a T5-based model Fusion-
In-Decoder (FiD) [47]. We evaluate FiD-base on the test sets of Natural Questions (NQ) [64]
and TriviaQA [50]. We also consider natural language understanding tasks included in the GLUE
benchmark [91], which cover acceptability, sentiment, paraphrase, similarity, and inference. We
fine-tune RoBERTa-base [72] for each task individually and report the results on the GLUE dev set.

4.3 Graph Representation Learning

We use a subset of the Open Graph Benchmark (OGB) datasets [45]. The tasks are node property
prediction (NPP), graph property prediction (GPP), and link property prediction (LPP). For each
task, we use two of the following GNN architectures and matrix factorization methods: GCN [57],
DeeperGCN (DGCN) [68], SAGE [37], GIN [95], ComplEx [89], and CP [66]. We use popular
training schemes, such as virtual nodes, cluster sampling [14], or relation prediction as auxiliary
training objective [13]. The reported metrics are ROC-AUC for Proteins, Accuracy for Products, F1
score for Code2, Average precision for Molpcba, and Mean Reciprocal Rank for Biokg/Citation2.

4.4 9 Findings

We use G(·) to describe the generalization accuracy/F1/ROCAUC/AP/MRR of all optimizers
{Non-flat baseline(NF),SWA,SAM,WASAM}.

1. Datasets matter. For example, for node property prediction (Proteins), we see that no flat
optimizer improves over the baseline optimizer; however, for (Products), flat-minima optimizers
on the same architectures significantly improve over the baseline. We further explore the impact
of different data augmentation strategies in Appendix A.7.

2. Architectures matter, e.g., there is a vast difference across model architectures for link property
prediction on the Citation2 dataset: using a GNN with GCN layers, SAM achieves a statistically
significant boost of >1.30% and SWA slightly hurts the performance. When we replace the GCN
layers with SAGE layers (and fix everything else), we see a boost of > 1.15% for SWA, while
SAM hurts the performance by −0.31%.

3. SWA underperforms on NLP tasks. SAM achieves the best performance in 7/10 experiments
on NLP tasks, consistent with the findings of Bahri et al. [4], which show that SAM can boost
performance across a wide range of NLP tasks. However, SWA never performs best, only
improving the results in 1/10 cases, and even hurting the performance on 4 tasks. Surprisingly,
G(WASAM) > G(SAM) for {SST, QNLI} while SWA decreases performance in these cases.

4. SWA beats SAM on GRL tasks. G(SWA) > G(NF) in 10/12 experiments, while G(SAM) >
G(NF) only in 4. We examine why SAM under-performs in Appendix A.4.
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5. SWA does not work well with Transformers. SWA often does not improve and sometimes hurts
performances, as can be seen in the ViT results in Table 2, and NLP results in Fig. 4a. In contrast,
SAM has some positive effects in these settings. We explore this further in Appendix A.3.

6. SWA and SAM improve SSL task performance. This is non-trivial as the theoretical motivation
behind finding flat minima is linked to supervised learning losses [43, 77, 21]. Concurrently to
our work, Ramesh et al. [82] report that SAM helps for contrastive CLIP [79] models too.

7. Flat optimizers do not strictly improve over non-flat optimizers. The non-flat optimizer is
nearly always the best for NPP Proteins and SSL methods on CIFAR10. We investigate the NPP
Proteins solutions in the next subsection and recommend a more thorough investigation of the
landscapes of SSL objectives for future work.

8. Flat-minima optimizers offer asymmetric payoffs: at worst, they decreased performance by
−0.30%, at best, they increased it by 2.60%.

9. Averaging SAM iterates often improves over SWA or SAM alone. G(WASAM) >
min(G(SWA),G(SAM)) in 39/42 cases. We hypothesize that asymmetric payoffs are the reason:
when either SWA or SAM does not improve over the baseline (as discussed above), it does not
hurt (much) either, hence WASAM is more robust across all tasks.

4.5 Why do flat-minima optimizers fail?

Here, we audit one of the cases, where neither θSWA nor θSAM improves over θNF (this happens in 3
out of 42 cases): training a GraphSAGE [37] model on OGB-Proteins: a protein-protein interaction
graph where the goal is to predict the presence of protein functions (multi-label binary classification)
[45]. θSWA performs noticeably worse; θSAM performs about equally well.
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Figure 5: GraphSAGE on OGB-Proteins: Adam’s (•) solution performs about equally well as SAM
(×), and better than SWA (+).

Fig. 5 shows two linear interpolations: between θNF (ADAM) and (1) θSWA (Figures 5a and 5b), and
(2) θSAM (Figures 5c and 5d). In contrast to success cases in Fig. 2, here: (a) for both SWA and
SAM, the training loss minimizer is very uncorrelated with the test loss minimizer; (b) SAM and
ADAM seem to be contained in the same test loss/accuracy basin. More analyses can be found in the
Appendix.

5 Limitations and Future Work

First, some of the fixed, shared hyperparameter values we used from previous works may harm
the effect of flat optimizers. The ideal experimental design includes tuning all hyperparameters
independently for the non-flat optimizer, SWA, SAM, and WASAM. However, this forces the number
of required runs to grow exponentially in unique hyperparameters and quickly renders this benchmark
infeasible.

Second, despite our best efforts to evaluate the optimizers on a broad range of benchmark tasks, there
are still plenty of unexplored domains; especially some of which are known to be sensitive to careful
optimization. For example, bi-level optimization problems [24] are common in generative modeling
[31, 42], deep reinforcement learning [60, 44], meta-learning [81, 52], or causal machine learning
[53, 54]. We are unaware of an investigation of flat minima optimization for such problems.

Third, in general, we believe fruitful directions of research include (a) optimizers that explicitly
find basins where training loss flatness more directly corresponds to higher hold-out accuracy, (b)
post-processing methods for existing optimization runs to move into flatter regions of these basins
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[2], (c) loss functions whose contours more tightly align with accuracy contours, (d) the study of
flat-minima hyperparameter interactions (e.g., learning rate and neighborhood radius in SAM) (see
Appendices A.5 and A.6 for first results), (e) analyses of flat minima optimization on convergence
speed [51].

Our benchmark results point to which tasks would most benefit from improving these future work
directions: graph learning tasks would benefit from improvements in (a), as SAM is never among
the best-performing method, and language tasks would benefit if (b) is improved, as SWA is never
among the best performing method).

6 Conclusion

We investigated when flat minima optimizers work by conducting a fair comparison of two popular flat-
minima optimizers. We examined the behavior of SWA/SAM by analyzing their loss landscapes on
two representative deep learning tasks. Our next step was to evaluate their generalization performance
on a broad and diverse set of tasks (in data, learning settings, and model architectures). Based on
this benchmarking, we identified 9 findings, of which some directly guide future work directions.
Finally, when SWA/SAM did not improve over baselines, common assumptions seemed broken (i.e.,
train-to-test loss minimizers were not correlated).
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A Additional Analyses

A.1 CKA Similarities

We compute the CKA [61, 96] and cosine similarities of network output logits on train and test set,
respectively. Table 3 shows the results.

Table 3: Pairwise CKA [61] and cosine similarities between non-flat (NF) and SWA/SAM solutions.
SWA solutions produce predictions more similar to NF ones than SAM.

Task sCKA(θ
NF,θSWA) scosine(θ

NF,θSWA) sCKA(θ
NF,θSAM) scosine(θ

NF,θSAM)

WRN-CIFAR100 (Train) 0.9880 0.9812 0.9810 0.9240
WRN-CIFAR100 (Test) 0.9137 0.9732 0.8580 0.9045

GIN-Code2 (Train) 0.8522 0.9730 0.7276 0.9515
GIN-Code2 (Test) 0.8677 0.9750 0.7275 0.9516

RoBERTa-QNLI (Train) 0.9997 0.9991 0.9790 0.9510
RoBERTa-QNLI (Valid) 0.9830 0.9959 0.9550 0.9530

RoBERTa-RTE (Train) 0.9931 0.9891 0.9831 0.9628
RoBERTa-RTE (Test) 0.9314 0.9567 0.8808 0.8927

GIN-Molpcba (Train) 0.8886 0.9973 0.7441 0.9804
GIN-Molpcba (Test) 0.8772 0.9942 0.7232 0.9730

The results show that the SAM solutions produce predictions that are less similar to the non-flat
baseline than SWA solutions, as indicated by lower CKA and cosine similarities. This result is in line
with Observation 1 and 2 from Sec. 3.1.

A.2 Saddle point of SAM’s GIN solution
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(a) SAM solution.
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Figure 6: SAM and SWA solution in 2D random plane for GIN-Code2 task. We depict
θSAM,θSWA by ×,+, respectively, the test set F1 score maximizer by �, and the training loss
minimizer by �. The converged SAM solution is distant from the training loss minimizer in the
2D plane: Ltrain(θ

SAM) = 0.1779 � 0.0672 = Ltrain(θ
�). Further, losses (—) and F1 scores

( ) are not well-aligned. In contrast, the SWA solution is almost the training loss minimizer:
Ltrain(θ

SWA) = 0.0661 ≈ 0.0609 = Ltrain(θ
�). Also, losses and F1 scores are better aligned. Yet,

θSAM and θSWA perform about equally well on the test set, see Fig. 3d.

To gather further evidence on whether the SAM solution is a saddle point, we analyze its Hessian
eigenvalue density, following Ghorbani et al. [29] and using the Stochastic Lanczos Quadrature
algorithm [30]. Fig. 7 shows the density, including significant probability mass for both positive and
negative eigenvalues, indicating that the solution is a saddle point.

A.3 Why does SWA not work well on NLP tasks?

In Fig. 4a, we saw that SWA had only a mild effect on the generalization performance of NLP tasks,
sometimes even decreasing it. Here, we seek to investigate why that is.
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Figure 7: Hessian Eigenvalue Density [29] of SAM’s GIN-Code2 solution: We observe significant
probability mass around both positive and negative eigenvalues, indicating that this solution is a
saddle point.

We consider two tasks: (i) the RTE task, for which SWA decreases the performance by around
−0.23±0.20 compared to Adam, (ii) the QNLI task, for which SWA decreases the performance by
−0.08±0.11. In both cases, SAM improved the performance statistically significantly over Adam.

For the QNLI task in Fig. 8a, we observe that SWA finds a lower/higher training loss/accuracy than
Adam, respectively. However, the test loss/accuracy is higher/lower at the SWA solutions and the loss
functions seem less well correlated in between both solutions (i.e, for α ∈ [0, 1]).

For the RTE task in Fig. 8b, we note that SWA finds a solution that is closer to a sharply increasing
side. This may happen if the baseline optimizer skips or goes around sharper solutions (e.g., due to
large step sizes) and the average pulls it towards these suboptimal regions.

Further, in Table 3, we notice very high values of sCKA(θ
NF,θSWA), scosine(θ

NF,θSWA) for both
training and test sets, indicating that the predictions are indeed very similar. In contrast,
sCKA(θ

NF,θSAM), scosine(θ
NF,θSAM) is lower, especially for the test set.

A.4 Why does SAM not work well on GRL tasks?

Fig. 10 shows the interpolations between the Adam and SAM solution. We do not observe a
significant loss/accuracy difference between the two different basins. One possible explanation for
this phenomenon is that the loss surface for this task is “globally well-connected” [96], yielding many
basins with very similar geometric properties.
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(a) NLP: RoBERTa-QNLI
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Figure 8: Training (blue) and test (red) losses (—) and accuracies ( ) of linear interpolations
θ(α) = (1− α)θ + αθ′ between Adam solutions (•, α = 0.0) and SWA (+, α = 1.0).

Figure 9: GPP: Molpcba-GIN
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Figure 10: Training (blue) and test (red) losses (—) and accuracies ( ) of linear interpolations
θ(α) = (1− α)θ + αθ′ between Adam solutions (•, α = 0.0) and SAM (×, α = 1.0).
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A.5 Does changing SAM’s ρ result in different basins?

Here, we plot linear interpolations of solutions obtained by smaller and larger ρ values. Overall,
we find that all solutions seem to lie in different basins indicated by high loss barriers in between
(α = 0.5) them.

A.5.1 WRN-28-10

For the WRN-28-10 model investigated in Sec. 3.1 and Sec. 4, we set ρ = 0.1 (as determined by
hyper-parameter tuning on validation loss).

Figure 11: WRN-28-10: Changing SAM’s ρ result in different basins.

Accuracy Loss Train
Test

<latexit sha1_base64="8RYckGm5qEAGrVXSdBwpDxE8irk=">AAACLHicbVBbSwJBGJ3tanazeuxlSAJ9kV2RCkIQhOgpDPICrsjsOOrg7M4y820kiz+ol/5KED0k0Wu/o/FSlHZg4HDO+fjmO14ouAbbHlsrq2vrG5uJreT2zu7efurgsKZlpCirUimkanhEM8EDVgUOgjVCxYjvCVb3BuWJX79nSnMZ3MEwZC2f9ALe5ZSAkdqpsgvsAeIrJX08clVfFu2cg93LjEtE2CdFO4tnCQzyJ5A3AfydcLLtVNrO2VPgZeLMSRrNUWmnXtyOpJHPAqCCaN107BBaMVHAqWCjpBtpFhI6ID3WNDQgPtOteHrsCJ8apYO7UpkXAJ6qvydi4ms99D2T9An09aI3Ef/zmhF0L1oxD8IIWEBni7qRmBw+aQ53uGIUxNAQQhU3f8W0TxShYPpNmhKcxZOXSS2fc85yhdtCunQzryOBjtEJyiAHnaMSukYVVEUUPaJn9IbG1pP1ar1bH7PoijWfOUJ/YH1+AWFXpTk=</latexit>

From ⇢ = 0.1 (↵ = 0) to ⇢ = 0.2 (↵ = 1)

<latexit sha1_base64="AxKNGeIoRF5nBm0uJlHTBqrw/kE=">AAACLHicbVBdSwJBFJ21L7Mvq8dehiSoF9k1qSAEQYiewiBNcEVmx1EHZ3eWmbuRLP6gXvorQfSQRK/9jkbdoqwDA4dzzuXOPV4ouAbbHluphcWl5ZX0amZtfWNzK7u9U9cyUpTVqBRSNTyimeABqwEHwRqhYsT3BLv1BpWJf3vHlOYyuIFhyFo+6QW8yykBI7WzFRfYPcQXSvp45Kq+LNn5AnbPD10iwj4p2Ud4lsAgvwPHJoC/Es5RO5uz8/YU+C9xEpJDCart7LPbkTTyWQBUEK2bjh1CKyYKOBVslHEjzUJCB6THmoYGxGe6FU+PHeEDo3RwVyrzAsBT9edETHyth75nkj6Bvp73JuJ/XjOC7lkr5kEYAQvobFE3EpPDJ83hDleMghgaQqji5q+Y9okiFEy/GVOCM3/yX1Iv5J2TfPG6mCtfJXWk0R7aR4fIQaeojC5RFdUQRQ/oCb2isfVovVhv1vssmrKSmV30C9bHJ2ScpTs=</latexit>

From ⇢ = 0.2 (↵ = 0) to ⇢ = 0.3 (↵ = 1)

<latexit sha1_base64="Nz4hyPiZnomJRygXx+UeZR4YhQo=">AAACLHicbVDLSgMxFM34rPVVdekmWIR2U2a0qCCFQkFcSQX7gE4pmTRtQzOTIbkjlqEf5MZfEcSFRdz6HaYPRVsPBA7nnMvNPV4ouAbbHllLyyura+uJjeTm1vbObmpvv6plpCirUCmkqntEM8EDVgEOgtVDxYjvCVbz+qWxX7tnSnMZ3MEgZE2fdAPe4ZSAkVqpkgvsAeIrJX08dFVPFuzcKXYvMy4RYY8U7CyeJjDIn0DeBPB3wsm2Umk7Z0+AF4kzI2k0Q7mVenHbkkY+C4AKonXDsUNoxkQBp4INk26kWUhon3RZw9CA+Ew348mxQ3xslDbuSGVeAHii/p6Iia/1wPdM0ifQ0/PeWPzPa0TQuWjGPAgjYAGdLupEYnz4uDnc5opREANDCFXc/BXTHlGEguk3aUpw5k9eJNWTnHOWy9/m08WbWR0JdIiOUAY56BwV0TUqowqi6BE9ozc0sp6sV+vd+phGl6zZzAH6A+vzC2fhpT0=</latexit>

From ⇢ = 0.3 (↵ = 0) to ⇢ = 0.4 (↵ = 1)

23



A.5.2 GIN-Code2

For the GIN model investigated in Sec. 3.1 and Sec. 4, we set ρ = 0.15 (as determined by hyper-
parameter tuning on validation loss).

Figure 12: GIN-Code2: Changing SAM’s ρ result in different basins.
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A.6 Does changing the base optimizer impact SWA’s and SAM’s effectiveness?

The influence of the base optimizer on SWA/SAM’s effectiveness is under-explored. In the previous
experiments, we use the default base optimizers from existing code repositories or, as reported in
previous works. Here, we want to conduct an initial investigation into its effect on SWA and SAM.

In the following experiments, we only switch the base optimizer and keep everything else fixed
(including hyper-parameters such as learning rate, etc.). We train (i) a ResNet-34 (similar to WRN-28-
10 but smaller) on CIFAR100, once per SGD with momentum and AdamW [73], and (ii) a GIN model
on Code2, as in Sec. 3, but using RMSprop instead of Adam. We choose AdamW and RMSProp,
since they are commonly used in image classification [73, 19, 88] and graph representation learning
(GRL) [71, 70, 80], respectively.

Due to time constraints, we only report results obtained with one random seed (except for GIN-Code2
with Adam, which we already evaluated across three random seeds in our initial submission, see
Fig. 4b). Further, again due to time constraints, for the ResNet-34 task, we do not conduct a hyper-
parameter search of SAM’s ρ but set it to ρ = 0.05, as this value has been reported to be a good
default value [22].

Table 4 show the test performances with switched base optimizers. First, discussing task (i), we note
that AdamW under-fits the model and generalizes poorly compared to SGD. Here, SAM exacerbates
the performance even further, performing even worse than the AdamW baseline. The reasons for that
are unclear, and we leave an investigation into them for future work.

For task (ii) using RMSprop, we observe that both flat-minima optimizers improve over the baseline
performance. However, compared to when using Adam, they perform even more similarly, with SAM
only being 0.03% better. Interestingly, the combination WASAM again performs best.

Table 4: Test accuracies/F1 score of switched base optimizers.
Task Baseline SWA SAM WASAM

ResNet34 on CIFAR100 (SGD) 76.14 + 1.50 +1.91 + 2.60
ResNet34 on CIFAR100 (AdamW) 72.14 + 0.57 -2.29 -1.11

GIN on Code2 (Adam) 15.73±0.11 + 0.83±0.11 + 0.57±0.09 + 1.10±0.09
GIN on Code2 (RMSprop) 15.30 + 0.67 + 0.70 + 1.62

A.7 Does changing the data augmentation impact SWA’s and SAM’s effectiveness?

In this ablation, we want to understand whether different amounts and data augmentation strategies
impact SWA’s or SAM’s effectiveness. As an experimental setup, we consider training a ResNet18 on
CIFAR100 for 200 epochs with SGD with a momentum of 0.9, initial learning rate 0.1, and cosine
learning rate schedule. The three data augmentation strategies are (i) none, (ii) basic (random crop,
random horizontal flipping), and (iii) AutoAugment following the CIFAR10 policy [15].

Table 5 shows the results. We find that with no data augmentation used, SWA, SAM and WASAM
improve the baseline results by about the same amount, while SAM improves over SWA when data
augmentation is used, and WASAM performs best.

Table 5: Test accuracies of ResNet18 on Cifar100 with different data augmentation schemes.
Data Augmentation Baseline SWA SAM WASAM

None 60.78 + 2.23 + 2.20 + 2.24
Basic 76.40 + 0.13 + 0.74 + 1.01
AA [15] 67.59 + 3.03 + 3.35 + 4.17

A.8 Does using a constant learning rate at the end of training improve SWA?

In this ablation, we aim to understand the impact of a constant learning rate at the end of the training,
as originally suggested by [48]. We follow the same experimental setup as in Table 5 and choose
the Basic Data Augmentation. At the last 25% of training (starting from epoch 150), we set the
learning rate to 0.05. We find that this slightly worsens the SWA performance by −0.66% compared
to running SWA without changing the learning rate schedule, as explained in Sec. 4.
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B Experimental details

B.1 Computer Vision

We mostly adopt the hyper-parameter values from Foret et al. [22] for WRN-28-10 and PyramidNet-
272, from Dosovitskiy et al. [19] for ViT, and from [87] for MLP-Mixer models. We average all
results across three random seeds.

B.1.1 Supervised Classification

We train WideResNets [99] with 28 layers and width 10 (WRN28-10) and PyramidNet [38]
with 110 layers and widening factor α = 272 (PyramidNet-272) from scratch. The Vision
Transformer (ViT) base model with input patch size 16 (ViT-B/16) and MLP-Mixer base model
with input patch size 16 (MLP-Mixer-B/16) start from pre-trained checkpoints available at
https://console.cloud.google.com/storage/vit_models/. The reason for using pre-trained checkpoints
for the ViT and MLP-Mixer models is that, due to their lack of some inductive biases inherent to
CNNs, such as translation equivariance and locality, they do not generalize well when trained on
insufficient amounts of data [19]. Table 6 shows the hyper-parameters for each architecture.

Table 6: Hyper-parameters for Supervised Classification (SC): CIFAR-{10, 100} (Table 2)
Hyper-Parameter WRN28-10 PyramidNet-272 ViT-B/16 MLP-Mixer-B/16
Base Optimizer SGD SGD SGD SGD
Batch size 256 256 100 170
Data augmentation Inception-style + Cutout [17]
Dropout rate 0.0
Epochs 200 200 – –
Gradient clipping norm – – 1.0 1.0
Learning rate schedule cosine
Peak learning rate 0.1 0.05 0.03 0.03
Steps – – 12500 12500
SGD Momentum 0.9
Warmup steps – – 500 500
Weight decay 5e− 4 5e− 4 0.0 0.0

CIFAR-10
SAM ρ 0.05 0.05 0.1 0.02
Averaging start E (SWA) 60% 60% 75% 90%
Averaging start E (WASAM) 90% 75% 75% 90%

CIFAR-100
SAM ρ 0.1 0.1 0.2 0.05
Averaging start E (SWA) 60% 60% 75% 90%
Averaging start E (WASAM) 90% 75% 75% 90%

B.1.2 Self-Supervised Learning

Table 7 shows the hyper-parameters for each SSL method. We use implementations from the lightly
package, available at https://github.com/lightly-ai/lightly [86].

B.2 Natural Language Processing

For the task of Open Domain Question Answering, we adapt the hyper-parameter values and the 25
retrieved passages for each question from 47. We report the Exact Match score of FiD-base model on
Natural Questions (NQ) and TriviaQA test sets. For GLUE benchmark, we report Matthew’s Corr for
CoLA, Pearson correlation coefficient for STSB, and accuracy for the the rest of the datasets. Results
are all evaluated on the dev set of GLUE benchmark. We use the RoBERTa-base as our backbone
language model, implemented with Huggingface Transformers [92]. Most of the task-specific
hyper-parameter values are adapted from 1.

B.3 Graph Representation Learning

We mostly adapt the hyper-parameter values from Hu et al. [45] for GCN [57], SAGE [37], and GIN
[95], from Chen et al. [13] for [66] and ComplEx [89], and from Li et al. [68] for DGCN. Due to
high standard errors, we averaged the results of a few tasks more than three times, as mentioned in
the following tables.
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Table 7: Hyper-parameters for Self-Supervised Learning (SSL): CIFAR-10, ImageNette, results in
(Table 2)

Hyper-Parameter MoCo SimCLR SimSiam BarlowTwins BYOL SwaV
Backbone Network ResNet-18
Base Optimizer SGD Adam
Data augmentation SimCLR [10] Multi-Crop [7]
Dropout rate 0.0
Epochs 800
Embedding dimensions 512
KNN memory bank size 4096
Learning rate schedule cosine
Peak learning rate 6e− 2 1e− 3
SGD Momentum 0.9 –
Weight decay 5e− 4 1e− 6

CIFAR-10
Batch size 512
Crop size – 32
Gaussian blur 0%
SAM ρ 0.01 0.01 0.01 0.05 0.01 0.05
Averaging start E (SWA) 75% 90% 75% 90% 60% 60%
Averaging start E (WASAM) 90% 90% 90% 90% 75% 90%

ImageNette
Batch size 256
Crop size – 128, 64
Gaussian blur 50%
SAM ρ 0.01 0.01 0.02 0.05 0.05 0.01
Averaging start E (SWA) 50% 90% 75% 75% 90% 50%
Averaging start E (WASAM) 50% 50% 90% 75% 90% 50%

Table 8: Hyper-parameters for NPP tasks, results in Fig. 4b.
Hyper-Parameter SAGE DGCN

NPP: OGB-Proteins
Aggregation method Mean Softmax
Base optimizer Adam Adam
Convolution layer SAGE DyResGEN
Dropout rate 0.0 0.1
Hidden dimensions 256 64
Learning rate 0.01 0.001
Normalization layer – Layer norm
Number of epochs 2000 1000
Number of layers 3 112
Number of random seeds 5 3
Training cluster number 1 15
Weight decay 0.0 0.0

SAM ρ 0.01 0.02
Averaging start E (SWA) 90% 90%
Averaging start E (WASAM) 90% 90%

NPP: OGB-Products
Aggregation method Mean Softmax
Base optimizer Adam Adam
Batch size 20000 –
Convolution layer SAGE Gen
Dropout rate 0.5 0.5
Evaluation cluster number – 8
Learning rate 0.01 0.001
Hidden dimensions 256 128
Normalization layer – Batch norm
Number of epochs 30 50
Number of layers 3 14
Number of random seeds 5 3
Training cluster number – 10
Weight decay 0.0 0.0

SAM ρ 0.01 0.02
Averaging start E (SWA) 90% 60%
Averaging start E (WASAM) 75% 90%
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Table 9: Hyper-parameters for GPP: OGB-Code2, results in Fig. 4b.
Hyper-Parameter GCN GIN

GPP: OGB-Code2
Aggregation method Mean Mean
Base optimizer Adam Adam
Batch size 128 128
Convolution layer GCN GIN
Dropout rate 0.0 0.0
Learning rate 0.001 0.001
Hidden dimensions 300 300
Normalization layer Batch norm Batch norm
Number of random seeds 3 3
Number of epochs 15 30
Number of layers 5 5
Virtual node embeddings True True
Vocabulary size 5000 5000
Weight decay 0.0 0.0

SAM ρ 0.2 0.15
Averaging start E (SWA) 50% 50%
Averaging start E (WASAM) 50% 50%

Table 10: Hyper-parameters for GPP: OGB-Molpcba, results in Fig. 4b.
Hyper-Parameter GIN DGCN

GPP: OGB-Molpcba
Aggregation method Mean Mean
Batch size 512 512
Base optimizer Adam Adam
Convolution layer GIN GEN
Dropout rate 0.0 0.2
Learning rate 0.001 0.001
Normalization layer Batch norm Batch norm
Number of epochs 100 50
Number of layers 5 14
Number of random seeds 3 3
Hidden dimensions 300 256
Virtual node embeddings False True
Weight decay 0.0 0.0

SAM ρ 0.01 0.15
Averaging start E (SWA) 90% 75%
Averaging start E (WASAM) 90% 50%

Table 11: Hyper-parameters for LPP: OGB-Biokg, results in Fig. 4b.
Hyper-Parameter CP ComplEx

GPP: OGB-Biokg
Base optimizer Adam Adam
Batch size 500 500
Learning rate 0.1 0.1
Number of random seeds 3 3
Number of epochs 30 50
Rank 1000 1000
Regularizer N3 N3
Weight decay 0.0 0.0

SAM ρ 0.1 0.05
Averaging start E (SWA) 50% 50%
Averaging start E (WASAM) 90% 50%
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Table 12: Hyper-parameters for LPP: OGB-Citation2, results in Fig. 4b.
Hyper-Parameter GCN SAGE

GPP: OGB-Citation2
Aggregation method Mean Mean
Base optimizer Adam Adam
Batch size 256 512
Convolution layer GCN SAGE
Dropout rate 0.0 0.2
Hidden dimensions 256 256
Number of epochs 300 300
Number of layers 3 3
Number of random seeds 3 3
Normalization layer – –
Learning rate 0.001 0.0005
Virtual node embeddings False False
Weight decay 0.0 0.0

SAM ρ 0.02 0.01
Averaging start E (SWA) 75% 90%
Averaging start E (WASAM) 60% 90%
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