
When Do Flat Minima Optimizers Work?

Jean Kaddour∗
Centre for Artificial Intelligence

University College London

Linqing Liu∗
Centre for Artificial Intelligence

University College London

Ricardo Silva
Department of Statistical Science

University College London

Matt J. Kusner
Centre for Artificial Intelligence

University College London

Abstract

Recently, flat-minima optimizers, which seek to find parameters in low-loss neigh-
borhoods, have been shown to improve a neural network’s generalization perfor-
mance over stochastic and adaptive gradient-based optimizers. Two methods have
received significant attention due to their scalability: 1. Stochastic Weight Aver-
aging (SWA), and 2. Sharpness-Aware Minimization (SAM). However, there has
been limited investigation into their properties and no systematic benchmarking of
them across different domains. We fill this gap here by comparing the loss surfaces
of the models trained with each method and through broad benchmarking across
computer vision, natural language processing, and graph representation learning
tasks. We discover several surprising findings from these results, which we hope
will help researchers further improve deep learning optimizers, and practitioners
identify the right optimizer for their problem.

1 Introduction

Stochastic gradient descent (SGD) methods are central to neural network optimization [6]. Recently,
one class of algorithms has focused on biasing SGD methods towards so-called ‘flat’ minima, which
are located in large weight space regions with very similar low loss values [43]. Theoretical and
empirical studies [21, 77, 9, 55, 49, 5, 12] postulate that such flatter regions generalize better than
sharper minima, e.g., due to the flat minimizer’s robustness against loss function shifts between
train and test data, as illustrated in Fig. 1. Two popular flat-minima optimization approaches are: 1.
Stochastic Weight Averaging (SWA) [48], and 2. Sharpness-Aware Minimization (SAM) [22].

While both strategies aim to find flatter minima, they operate much differently. On the one hand, SWA
is based on the intuition that, near a flat minimum, gradients are smaller, leaving many iterates in that
flat region. Therefore, averaging iterates will produce a solution that is pulled towards these flatter
regions, see Fig. 1, top. On the other hand, SAM minimizes the maximum loss around a neighborhood
of the current iterate. This way, a region around the iterate is designed to have uniformly low loss;
see Fig. 1, bottom. Crucially, SAM requires an additional forward/backward pass for each parameter
update, making it more expensive than SWA.

Despite the successes [76, 3, 51, 12, 4] of SWA and SAM in some domains, we are unaware of a
systematic comparison between them that would help practitioners to choose the right optimizer
for their problem and researchers to develop better optimizers. The SWA [48] paper was published
in 2018, and the SAM [22] paper in 2021; however, the SAM paper, and its most noticeable
follow-ups [65, 12, 103], do not compare against SWA. Further, there is very limited overlap in

∗Equal contribution, correspondence to {jean.kaddour,linqing.liu}.20@ucl.ac.uk

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
2.

00
66

1v
5

 [
cs

.L
G

]
 2

7
Ja

n
20

23

terms of the model architecture and dataset used in the experiments among both papers, which are
likely further confounded by other differences in the training procedures (e.g. data augmentations,
hyper-parameters, etc.).

<latexit sha1_base64="pYM132qgRhMHaU/a61ywLFbdrWg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh6l9Xafa1Sv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/puWPMQ==</latexit>

✓

Train
Test

×

SAM

<latexit sha1_base64="KIBUPXdFc9jbwGmlyaMi3aNFjHE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevks5F3busNx4ateZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4PzkWs=</latexit>

L

+

SWA

<latexit sha1_base64="KIBUPXdFc9jbwGmlyaMi3aNFjHE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevks5F3busNx4ateZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4PzkWs=</latexit>

L

Figure 1: The mechanics behind
SWA and SAM, whose solution
is denoted by + and ×, respec-
tively. SWA produces a solution
θ that is pulled towards flatter re-
gions, while SAM approximates
sharpness within the parameters’
neighborhood (arrows).

Contributions

1. In-depth comparison of minima found by SWA and
SAM: We visualize linear interpolations between differ-
ent models and quantify the minimizers’ flatnesses. This
analysis yields 4 insights, e.g., despite SAM finding flatter
solutions than SWA as quantified by Hessian eigenvalues,
they can be close to sharp directions, a phenomenon that has
been overlooked in the previous SAM literature. Averaging
SAM iterates leads to the flattest among all minima.

2. Rigorous comparison of SWA and SAM’s performance
over 42 tasks: We empirically compare the optimizers with
a rigorous model selection procedure on a broad range of
tasks across different domains (CV, NLP, and GRL), model
types (MLPs, CNNs, Transformers) and tasks (classifica-
tion, self-supervised learning, open-domain question answer-
ing, natural language understanding, and node/graph/link
property prediction). We discuss 9 findings, e.g., that both
dataset and architecture impact their effectiveness, that for
NLP tasks, SAM improves over SWA in most cases, and
that the converse holds for GRL tasks. When flat-minima
optimizers do not help, we notice clear discrepancies be-
tween the shapes of loss and accuracy curves. To assist
future work, we open-source the code for all pipelines and
hyper-parameters to reproduce the results.

2 Background and Related Work

2.1 Stochastic Gradient Descent (SGD)

The classic optimization framework of machine learning is empirical risk minimization

L (θ) = 1

N

N∑
i=1

` (xi;θ) (1)

where θ ∈ Rd is a vector of parameters, {x1, . . . ,xN} is a training set of inputs xn ∈ RD, and
`(x;θ) is a loss function quantifying the performance of parameters θ on x. SGD samples a
minibatch S ⊂ {1, . . . , N} of size |S| � N from the training set and updates the parameters through

θSGD
t+1 = θt − ηg (θt) , where g (θ) =

1

|B|
∑
i∈B
∇` (θ;xi) , (2)

for a length specified by η, the learning rate.

2.2 Stochastic Weight Averaging (SWA)

The idea of averaging weights dates back to accelerating the convergence speed of SGD [78, 51].
SWA’s motivation is based on the following observation about SGD’s behavior when training neural
networks: it often traverses regions of the weight space that correspond to high-performing models
but rarely reaches the central points of this optimal set. Averaging the parameter values over iterations
moves the solution closer to the centroid of this space of points.

The SWA update rule is the cumulative moving average

θSWA
t+1 ←

θSWA
t · l + θSGD

t

l + 1
, (3)

2

Algorithm 1 Stochastic Weight Averaging [48]

Input: Loss function L, training budget in
number of iterations b, training dataset D :=
∪ni=1{xi}, mini-batch size |B|, averaging start
epoch E, averaging frequency ν, (scheduled)
learning rate η, initial weights θ0.
for k ← 1, . . . , b do

Sample a mini-batch B from D
Compute gradient g ← ∇L (θt)
Update parameters θt+1 ← θt − ηg
if k ≥ E and mod(k, ν) = 0 then
θSWA
t+1 =

(
θSWA
t · l + θSWA

t+1

)
/ (l + 1)

end if
end for
return θSWA

Algorithm 2 Sharpness-Aware Minimization [22]

Input: Loss function L, training budget in
number of iterations b, training dataset D :=
∪ni=1{xi}, mini-batch size |B|, neighborhood
radius ρ, (scheduled) learning rate η, initial
weights θ0.
for k ← 1, . . . , b do

Sample a mini-batch B from D
Compute worst-case perturbation

ε̂← ρ
∇L(θ)
‖∇L(θ)‖2

Compute gradient g ← ∇L
(
θSAM
t +ε̂

)
Update parameters θSAM

t+1 ← θSAM
t − ηg

end for
return θSAM

where l is the number of distinct parameters averaged so far and t is the SGD iteration number.2

SWA has two hyper-parameters: the update frequency ν and starting epoch E. When using a constant
learning rate, Izmailov et al. [48] suggests updating the parameters once after each epoch, i.e.,
ν ≈ N

|B| , and starting at E ≈ 0.75T , where T is the training budget required to train the model until
convergence with conventional SGD training.

He et al. [39] argue that SWA may always improve generalization, regardless of the loss function’s
geometry. Kaddour [51] show that averaging a specific range of weights can speed up training
convergence. Cha et al. [8] argue that tuning ν and E carefully is necessary to make it work
effectively in domain generalization (DG) tasks. Besides DG tasks, a list of tuned hyper-parameters
based on a fair model selection procedure across different architectures and tasks has been missing in
the literature. To the best of our knowledge, Cha et al. [8] is the only study that compares SWA and
SAM over the same experiments, but it focuses on domain generalization tasks which we, therefore,
leave out in this work.

2.3 Sharpness-Aware Minimization (SAM)

While SWA is implicitly biased towards flat minima, SAM explicitly approximates the flatness around
parameters θ to guide the parameter update. It first computes the worst-case perturbation ε that
maximizes the loss within a given neighborhood ρ, then minimizes the loss w.r.t. the perturbed
weights θ + ε. Formally, SAM finds θ by solving the minimax problem:

min
θ

max
||ε||2≤ρ

L(θ + ε), (4)

where ρ ≥ 0 is a hyperparameter.

To find the worst-case perturbation ε∗ efficiently in practice, Foret et al. [22] approximates Eq. (4)
via a first-order Taylor expansion of L(θ + ε) w.r.t. ε around 0, obtaining

ε∗ ≈ argmax
‖ε‖2≤ρ

ε>∇θL(θ) ≈ ρ ·
∇θL(θ)
‖∇θL(θ)‖︸ ︷︷ ︸

=:ε̂

. (5)

In words, ε̂ is simply the scaled gradient of the loss function w.r.t to the current parameters θ. Given
ε̂, the altered gradient used to update the current θt (in place of g(θt)) is

∇θ max
||ε||2≤ρ

L(θ + ε) ≈ ∇θL(θ)|θ+ε̂.

Due to Eq. (5), SAM’s computational overhead consists of an additional forward and backward pass
per parameter update step compared to SWA and non-flat optimizers.

2SWA parameters are constant between averaging steps.

3

SAM’s performance strongly depends on the neighborhood radius ρ. For example, Chen et al.
[12], Wu et al. [93] show that ρ should be set to values outside the originally considered ranges by
Foret et al. [22]. Analogously to Sec. 2.2, this lack of coherence among hyper-parameter tuning
protocols in the SAM literature makes it tricky to determine SAM’s comparative effectiveness.

2.4 Other Flat-Minima Optimizers

There are several extensions of SWA [36, 8] and SAM [65, 103, 101]. For simplicity, we do not
consider them in this work. Besides SWA and SAM, other flat-minima optimizers include e.g., [9, 84].
However, due to their computational cost and/or lack of performance gains, we do not include them
in this work. Chaudhari et al. [9] requires [5, 20] forward and backward passes per parameter update.
Sankar et al. [84] similarly requires [5, 10] forward and backward passes to estimate the Hessian trace
and 6 of 7 experiments yield minimal improvement of ≤ 0.27%, see Table 1 in Sankar et al. [84]. In
contrast, SWA and SAM have been shown to increase performance by multiple percentage points in
some cases [8, 12] while requiring fewer computational resources.

3 How do minima found by SWA and SAM differ?

In this section, we investigate SWA and SAM solutions in two prototypical deep learning tasks,
where these optimizers improve over the baseline. Our goal is to understand better their geometric
properties (instead of their generalization performance, which is the focus of Sec. 4).

First, we investigate the behavior of the loss landscape along the line between non-flat and flat
solutions (Sec. 3.1). Previous studies successfully used such linear interpolations to gain novel
insights, e.g., for training dynamics [32, 25], regularization [69, 28], and network pruning [26].
Second, motivated by findings in Sec. 3.1, we average SAM iterates and visualize interpolations
between averaged and non-averaged solutions (Sec. 3.2). Interestingly, the averaged SAM solution
is less susceptible to asymmetric directions. Third, we compare quantitative measurements of all
solutions’ flatnesses (Sec. 3.3). Here, we compute dominant Hessian eigenvalues, as commonly used
in the flat minima literature [9, 98, 12, 22]. Lastly, in Appendix A.1, we further compute CKA [61]
and cosine similarities between SWA/SAM’s network output logits.

We choose the following two disparate learning settings: (i) a well-known image classification task,
widely used for evaluation in flat-minima optimizer papers, and (ii) a novel, challenging Python code
summarization task, on which state-of-the-art models achieve only around 16% F1 score on the test
set (which is higher than its commonly achieved accuracy on the more challenging training set),
and that has not been explored yet in the flat-minima literature. Specifically, for (i), we investigate
the loss/accuracy surfaces of a WideResNet28-10 [99] model on CIFAR-100 [63] (baseline non-flat
optimizer: SGD with momentum (SGD-M)) [83]. For (ii), we use the theoretically-grounded Graph
Isomorphism Network [95] model on OGB-Code2 [45] (baseline optimizer: Adam [56]).

All optimizers start from the same initialization. We denote the minimizer produced by the non-flat
methods (SGD-M and Adam) by θNF and the flat ones by θSWA and θSAM.

3.1 What is between non-flat and flat solutions?

We start by comparing the similarity of flat and non-flat minimizers through linear interpolations.
This analysis allows us to understand if they are in the same basin and how close they are to a region
of sharply-increasing loss, where we expect loss/accuracy to differ widely between train and test.
Further, for each of our four observations, we recommend a future work direction.

To linearly interpolate between two sets of parameters θ and θ′, we parameterize the line connecting
these two by choosing a scalar parameter α and defining the weighted average θ(α) = (1−α)θ+αθ′.
If there exists no high-loss barrier between two networks θ,θ′ along the linear interpolation, we
say that they are located in the same basin, i.e., {θ,θ′} ∈ Ω. [75, 102]. A basin is an area in the
parameter space where the loss function has relatively low values. Due to NN non-linearities, the
linear combination of the weights of two accurate models does not necessarily define an accurate
model. Hence, we generally expect high-loss barriers along the linear interpolation path.

While there are alternative distance measures that could be used to compare two networks, they
typically either (a) do not offer clear interpretations, as pointed out by Frankle et al. [26], or (b) yield

4

trivial network connectivity results, such as non-linear low-loss paths, which can be found for any
two network minimizers [20, 27, 33, 23].

°1.0 °0.5 0.0 0.5 1.0 1.5

Æ
0.05

0.10

0.15

0.20

0.25

0.30

0.970

0.975

0.980

°1.0 °0.5 0.0 0.5 1.0 1.5

Æ
0.75

0.80

0.003

0.004

°1.0 °0.5 0.0 0.5 1.0 1.5

Æ

0.0004

0.0005

0.97

0.98

°1.0 °0.5 0.0 0.5 1.0 1.5

Æ
0.75

0.80

0.0030

0.0035

0.0040

°1.0 °0.5 0.0 0.5 1.0 1.5
Æ

0.0004

0.0005

50

100

°1.0 °0.5 0.0 0.5 1.0 1.5

Æ

4

6

80.25

0.30

°1.0 °0.5 0.0 0.5 1.0 1.5

Æ
0.14

0.15

0.16

10

20

°1.0 °0.5 0.0 0.5 1.0 1.5

Æ
2.7

2.8

2.9

3.0

SAMSWA
G

IN
 o

n
C

od
e2

W
R

N
 o

n
C

IF
A

R
10

0

(a) (b) (c) (d)

(e) (f) (g) (h)

Accuracy/F1Loss Accuracy/F1Loss

Figure 2: Training (blue) and test (red) losses (—) and accuracies () of linear interpolations
θ(α) = (1− α)θ + αθ′ (for α ∈ [−1, 1.5]) between SWA (+) and SAM (×) solutions (α = 0.0)
and non-flat baseline solutions (•, α = 1.0).

Obs. 1: {θSWA,θNF} ∈ ΩNF. θSWA and θNF are in the same basin, as can be seen in Figures 2a and
2e. Additionally, θNF is near the periphery of a sharp increase in loss, as can be seen when moving
in the direction from θSWA to θNF (i.e., α > 1). Conversely, θSWA finds flat regions that change
slowly in the loss. This bias of SWA to flatter loss beneficially transfers to the accuracy landscape
too: Figures 2b and 2f show the accuracy/F1 score rapidly dropping off approaching and beyond θNF.
Interestingly, in Figures 2e and 2f, we see that for Code2, for α < 0, there exist solutions with even
better training loss/accuracy but worse test loss/accuracy. However, θSWA

GIN is close to the test accuracy
maximizer along this interpolation. Future work may inspect why the cross entropy loss function
used for GIN/Code2 seems less well correlated with its accuracy compared to WRN/CIFAR100.

Obs. 2: θSAM ∈ ΩSAM 6= ΩNF. θSAM and θNF are not in the same basin: Figures 2c and 2g show
that there is a high loss barrier between them, respectively. Figures 2d and 2h show that θSAM and
even nearby points in parameter space achieve higher accuracies/F1 scores (i.e., generalize better)
than θNF and points around it. This is an interesting result because we expect different basins to
produce qualitatively different predictions, one of the motivations behind combining models, even if
they exhibit different performances [46, 67]. Grewal & Bui [34] successfully combine models yielded
by different optimizers, and we think future work should study ensembling SAM and non-SAM
solutions.

Obs. 3: SAM finds a saddle point. Figure 2g shows θSAM
GIN being located in a sharp training loss

minimum whose loss is much higher than θNF. Yet, its test loss is slightly higher, and its F1 score
is better. We visualize 2D plots moving along random directions (not shown here due to space) to
confirm that θSAM

GIN is a saddle point (Appendix A.2). A common pathology among curvature-based
methods is that they attract saddle points [16]. Since SAM takes some form of curvature into account,
too, we believe that future work should investigate SAM’s propensity to find saddle points and
potential remedies.

Obs. 4: θSAM is closer to sharper directions than θSWA, as can be seen by Ltr/te(θ
SAM(0.1)) ≈

2 · Ltr/te(θ
SAM(−0.1)), while Ltr/te(θ

SWA(0.1)) ≈ Ltr/te(θ
SWA(−0.1)), where L(·)tr/te refers to both

training and test loss functions. A possible explanation for SAM being closer to sharp sides is that
while it finds different basins than SGD/SWA by smoothing the loss surface (as illustrated in Fig. 1),
within a local basin, it may oscillate around the minimizer similarly as SGD. One cause for this can
be that ΩSAM’s hypersphere is larger than SAM’s radius ρ. If that holds, then given a small enough
learning rate, we expect it to oscillate around θ∗ ∈ ΩSAM (the smaller the learning rate, the less
likely it escapes the basin due to that stochasticity). Two possible remedies are: (1) adapt/schedule
ρ, or (2) average SAM iterates to bias its solution towards the flatter side. (1) has been explored by
[103, 101]. We try (2) in the next subsection. Future work may study SAM’s basin escape time, e.g.,
using convolutions [58] or stochastic differential equations [102].

5

3.2 What happens if we average SAM iterates?

Based on observation 4: “θSAM is closer to sharper directions than θSWA”, averaging SAM iterates
may further improve generalization, referred to as Weight-Averaged Sharpness-Aware Minimization
(WASAM) 3. The reason is that while SAM finds better-performing basins, within the basin, its final
iterate may still be near a side that increases sharply in the loss.

GIN on Code2WRN on CIFAR100

(a) (b) (c) (d)

AccuracyLoss F1Loss

0.002

0.003

0.004

0.005

°1.0 °0.5 0.0 0.5 1.0 1.5 2.0

Æ
0.00030

0.00035

0.00040

0.970

0.975

0.980

°1.0 °0.5 0.0 0.5 1.0 1.5 2.0

Æ
0.80

0.82

0.2

0.3

°1.0 °0.5 0.0 0.5 1.0 1.5 2.0

Æ

0.14

0.16

20

40

60

°1.0 °0.5 0.0 0.5 1.0 1.5 2.0

Æ

3.00

3.25

3.50

(a) (b) (c) (d)

Figure 3: Training (blue) / test (red) losses (—) / accuracies () between non-flat baseline (•)↔
SWA (+), SAM (×)↔WASAM (?).

Starting with the first of the two previously analyzed settings (WRN/CIFAR100), Figures 3a, and 3b
show that θSWA+SAM

WRN (marker: F) achieves the lowest test loss and highest test accuracy, respectively.
What stands out in comparison to the previous plots is θSAM

WRN’s (×) proximity to sharp sides, surpris-
ingly similar to θNF

WRN (•) here and in Figures 2c and 2e. As we hoped, θSWA+SAM
WRN is indeed closer to

a flatter region, as can be seen by Ltr/te(θ
SWA+SAM
WRN (−0.2)) ≈ Ltr/te(θ

SWA+SAM
WRN (0.2)).

In GIN/OGB-Code2, one unanticipated finding is that θSWA+SAM
GIN escapes the (previously discussed)

saddle point of θSAM
GIN , appearing here as a maximum in Figure 3c. A likely reason is that SAM

traversed nearby flatter regions before arriving at the saddle point, especially if it is a non-strict saddle.
In terms of F1 score, Figure 3d shows that while θSWA

GIN (+) and θSAM
GIN perform about equally well, the

flatter region found by θSWA+SAM
GIN improves over both.

3.3 How “flat” are the found minima?

We now quantify the flatnesses of all four optimizers over both tasks by computing the median of
the dominant Hessian eigenvalue across all training set batches using the Power Iteration algorithm
[74, 98]. This metric measures the worst-case loss landscape curvature. We choose this metric as it is
very commonly used in the minima flatness literature, e.g., [9, 12, 22, 97, 18, 62, 85].

Table 1 shows that SAM leads to flatter minima than SWA in both cases. Interestingly λmax(θ
NF
WRN) ≈

2.5 · λmax({θSWA,θSAM}), while λmax(θ
NF
WRN) ≈ 5.75λmax(θ

SWA+SAM
WRN), indicating room for im-

provement in terms of flatness for both SWA and SAM. The relative differences are less dramatic
for GIN/Code2, although surprisingly λmax(θ

NF
GIN) ≈ λmax(θ

SWA
GIN). In sum, averaging SAM iterates

leads to the flattest minima and best-performing minima in both cases (see Sec. 4).

Table 1: Median λmax of Hessian over all training set batches.
Task Baseline SWA SAM WASAM

WRN on CIFAR100 673 265 237 117
GIN on Code2 16.65 16.79 11.31 9.96

4 How do SWA and SAM perform on a broad set of experiments?

As we point out in the introduction, there is almost no overlap and consistency regarding reported SWA
and SAM results in the literature. This section addresses this gap. For example, Bahri et al. [4], Chen
et al. [12] illustrate that the flat minima found by SAM improve generalization on Transformer [90]
architectures compared to non-flat optimizers, but they do not compare against SWA. Hence, it is
unclear if the computationally cheaper SWA may provide better or similar performance.

We compare flat minimizers SWA, SAM, and averaged SWA iterates (WASAM) over the non-flat
minimizers across a range of different tasks in the domains of computer vision, natural language

3A code implementation can be found here: https://github.com/jeankaddour/WASAM

6

https://github.com/jeankaddour/WASAM

Table 2: CV test results: Supervised Classification (SC), and Self-Supervised Learning (SSL) tasks.
Task Model Baseline SWA SAM WASAM

SC:
CIFAR10

WRN-28-10 96.78±0.03 −0.05±0.04 + 0.34±0.09 + 0.25±0.05
PN-272 96.73±0.14 + 0.22±0.14 + 0.42±0.06 + 0.41±0.02
ViT-B-16 98.95±0.02 −0.04±0.04 + 0.07±0.01 + 0.10±0.01
Mixer-B-16 96.65±0.03 + 0.02±0.03 + 0.19±0.05 + 0.22±0.06

SC:
CIFAR100

WRN-28-10 80.93±0.19 + 1.62±0.06 + 1.82±0.14 + 2.24±0.14
PN-272 80.86±0.12 + 1.88±0.04 + 2.33±0.08 + 2.60±0.09
ViT-B-16 92.77±0.07 −0.12±0.05 + 0.19±0.09 + 0.13±0.07
Mixer-B-16 83.77±0.08 + 0.45±0.06 + 0.52±0.15 + 0.97±0.12

SSL:
CIFAR10

MoCo 89.25±0.07 −0.03±0.10 −0.25±0.06 −0.17±0.10
SimCLR 88.66±0.08 −0.05±0.06 + 0.05±0.04 −0.13±0.06
SimSiam 89.86±0.22 + 0.12±0.26 + 0.07±0.10 + 0.11±0.10
BarlowTwins 86.34±0.24 −0.09±0.19 + 0.09±0.15 + 0.14±0.05
BYOL 90.32±0.14 + 0.70±0.05 + 0.14±0.03 + 0.21±0.07
SwaV 87.28±0.05 + 0.09±0.06 + 0.07±0.12 + 0.02±0.06

SSL:
ImageNette

MoCo 81.74±0.18 + 0.97±0.10 + 0.91±0.32 + 1.40±0.10
SimCLR 83.28±0.22 + 0.95±0.25 + 0.18±0.24 + 1.07±0.13
SimSiam 81.77±0.14 + 0.20±0.37 + 0.33±0.28 + 0.18±0.26
BarlowTwins 77.49±0.36 + 0.20±0.16 + 0.47±0.27 + 0.66±0.57
BYOL 84.16±0.14 + 0.76±0.08 + 0.15±0.25 + 0.31±0.19
SwaV 88.16±0.31 + 1.04±0.27 + 0.03±0.10 + 1.03±0.09

processing, and graph representation learning. We average all runs at least three times across random
seeds (more often for experiments with higher variability, see details in Appendix B), and we report
the corresponding standard error. We bold the best-performing approach and any approach whose
average performance plus standard error overlaps it.

Hyper-parameters. For all architectures and datasets, we set hyperparameters shared by all meth-
ods (e.g., learning rate) mostly to values cited in prior work 4 As explained in Secs. 2.2 and 2.3, the
effectiveness of flat-minima optimizers is highly sensitive to their additional hyper-parameters. We
select hyper-parameters using a grid search over a held-out validation set. Specifically, for SWA we
follow Izmailov et al. [48] and hold the update frequency ν constant to once per epoch and tune the
start time E ∈ {0.5T, 0.6T, 0.75T, 0.9T} (T is the number of baseline training epochs). Izmailov
et al. [48] argue that a cyclical learning rate starting from E helps to encourage exploration of the
basin. For the sake of simplicity, we average the iterates of the baseline directly but include even ear-
lier starting times (i.e., 0.5T, 0.6T). In Appendix A.8, we compare against using a constant learning
rate at the end of training. For SAM, we tune its neighborhood size ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.2},
as in previous work [22, 4].

Appendix B contains the values of all hyper-parameters and additional training details (including pub-
lic model checkpoints, hardware infrastructure, software libraries, etc.) to ensure full reproducibility
alongside open-sourcing our code.

4.1 Computer Vision

Supervised Classification (SC). We evaluate the CNN architectures WideResNets [99] with 28
layers and width 10, and PyramidNet (PN) with 110 layers and widening factor 272 [38] as well as
Vision Transformer (ViT) [19] and MLP-Mixer [87] on CIFAR{10, 100} [63]. All experiments use
basic data augmentations: horizontal flip, padding by four pixels, random crop, and cutout [17]. In
Appendix A.7, we experiment with different data augmentation schemes.

Self-Supervised Learning (SSL). We consider the following methods on CIFAR10 and Ima-
geNette5: Momentum Contrast [41], a Simple framework for Contrastive Learning (SimCLR) [10],
Simple Siamese representation learning (SimSiam) [11], Barlow Twins [100], Bootstrap your own
Latent (BYOL) [35], and Swapping Assignments between multiple Views of the same image (SwAV)
[7]. All SSL methods use a ResNet-18 [40] as backbone network. To test the frozen representa-
tions, we use k-nearest-neighbor classification with a memory bank [94]. We choose k=200 and

4Sometimes with minor modifications, e.g., adjusting per-device batch sizes to be compatible with our GPU
infrastructure.

5https://github.com/fastai/imagenette

7

https://github.com/fastai/imagenette

Figure 4: (a) NLP test results: Open-Domain Question Answering and Natural Language Understand-
ing (GLUE) including paraphrase, sentiment analysis, and textual entailment. (b) GRL test results:
Node Property Prediction (NPP), Graph Property Prediction (GPP), Link Property Prediction (LPP).

Task Model Baseline SWA SAM WASAM

NQ FiD 49.35±0.44 −0.20±0.33 + 0.33±0.19 + 0.48±0.21

TriviaQA FiD 67.74±0.29 + 0.40±0.24 + 0.89±0.03 + 0.92±0.10

COLA RoBERTa 60.41±0.22 + 0.09±0.08 + 1.57±1.20 + 1.41±1.14

SST RoBERTa 94.95±0.13 −0.30±0.27 −0.23±0.40 + 0.19±0.14

MRPC RoBERTa 89.14±0.57 + 0.08±0.49 +0.73±0.43 + 0.81±0.38

STSB RoBERTa 90.40±0.02 +0.00±0.05 +0.38±0.17 + 0.35±0.16

QQP RoBERTa 91.36±0.07 +0.01±0.06 +0.08±0.07 +0.06±0.08

MNLI RoBERTa 87.41±0.09 +0.08±0.11 +0.39±0.02 +0.35±0.03
QNLI RoBERTa 92.96±0.06 −0.08±0.11 +0.09±0.01 +0.11±0.06

RTE RoBERTa 80.09±0.23 −0.23±0.20 +0.70±0.65 −0.46±0.12

(a)

Task Model Baseline SWA SAM WASAM

NPP:
Proteins

SAGE 77.79±0.18 −0.17±0.22 −0.02±0.13 −0.11±0.15
DGCN 85.42±0.17 + 0.11±0.08 −0.14±0.05 −0.08±0.07

NPP:
Products

SAGE 78.92±0.08 + 0.39±0.10 + 0.13±0.08 + 0.57±0.03
DGCN 73.88±0.13 + 0.44±0.14 + 0.08±0.09 + 0.53±0.05

GPP:
Code2

GCN 16.04±0.09 + 0.73±0.11 + 0.36±0.08 + 0.93±0.15
GIN 15.73±0.11 + 0.83±0.11 + 0.57±0.09 + 1.10±0.09

GPP:
Molpcba

GIN 28.10±0.11 + 0.40±0.18 −0.33±0.14 + 0.33±0.16
DGCN 25.65±0.13 + 1.90±0.20 −0.13±0.18 + 1.34±0.12

LPP:
Biokg

CP 84.06±0.00 + 0.07±0.01 0.00±0.03 + 0.08±0.02
ComplEx 84.94±0.01 + 0.14±0.01 −0.02±0.01 + 0.12±0.02

LPP:
Citation2

GCN 79.52±0.41 −0.05±0.52 + 1.32±0.06 + 1.50±0.13
SAGE 81.95±0.02 + 1.15±0.02 −0.31±0.07 + 0.86±0.04

(b)

temperature τ = 0.1 to reweight similarities. Compared to learning a linear model on top of the
representations, this evaluation procedure is more robust to hyperparameter changes [59].

4.2 Natural Language Processing

We consider the task of open domain question answering (ODQA) using a T5-based model Fusion-
In-Decoder (FiD) [47]. We evaluate FiD-base on the test sets of Natural Questions (NQ) [64]
and TriviaQA [50]. We also consider natural language understanding tasks included in the GLUE
benchmark [91], which cover acceptability, sentiment, paraphrase, similarity, and inference. We
fine-tune RoBERTa-base [72] for each task individually and report the results on the GLUE dev set.

4.3 Graph Representation Learning

We use a subset of the Open Graph Benchmark (OGB) datasets [45]. The tasks are node property
prediction (NPP), graph property prediction (GPP), and link property prediction (LPP). For each
task, we use two of the following GNN architectures and matrix factorization methods: GCN [57],
DeeperGCN (DGCN) [68], SAGE [37], GIN [95], ComplEx [89], and CP [66]. We use popular
training schemes, such as virtual nodes, cluster sampling [14], or relation prediction as auxiliary
training objective [13]. The reported metrics are ROC-AUC for Proteins, Accuracy for Products, F1
score for Code2, Average precision for Molpcba, and Mean Reciprocal Rank for Biokg/Citation2.

4.4 9 Findings

We use G(·) to describe the generalization accuracy/F1/ROCAUC/AP/MRR of all optimizers
{Non-flat baseline(NF),SWA,SAM,WASAM}.

1. Datasets matter. For example, for node property prediction (Proteins), we see that no flat
optimizer improves over the baseline optimizer; however, for (Products), flat-minima optimizers
on the same architectures significantly improve over the baseline. We further explore the impact
of different data augmentation strategies in Appendix A.7.

2. Architectures matter, e.g., there is a vast difference across model architectures for link property
prediction on the Citation2 dataset: using a GNN with GCN layers, SAM achieves a statistically
significant boost of >1.30% and SWA slightly hurts the performance. When we replace the GCN
layers with SAGE layers (and fix everything else), we see a boost of > 1.15% for SWA, while
SAM hurts the performance by −0.31%.

3. SWA underperforms on NLP tasks. SAM achieves the best performance in 7/10 experiments
on NLP tasks, consistent with the findings of Bahri et al. [4], which show that SAM can boost
performance across a wide range of NLP tasks. However, SWA never performs best, only
improving the results in 1/10 cases, and even hurting the performance on 4 tasks. Surprisingly,
G(WASAM) > G(SAM) for {SST, QNLI} while SWA decreases performance in these cases.

4. SWA beats SAM on GRL tasks. G(SWA) > G(NF) in 10/12 experiments, while G(SAM) >
G(NF) only in 4. We examine why SAM under-performs in Appendix A.4.

8

5. SWA does not work well with Transformers. SWA often does not improve and sometimes hurts
performances, as can be seen in the ViT results in Table 2, and NLP results in Fig. 4a. In contrast,
SAM has some positive effects in these settings. We explore this further in Appendix A.3.

6. SWA and SAM improve SSL task performance. This is non-trivial as the theoretical motivation
behind finding flat minima is linked to supervised learning losses [43, 77, 21]. Concurrently to
our work, Ramesh et al. [82] report that SAM helps for contrastive CLIP [79] models too.

7. Flat optimizers do not strictly improve over non-flat optimizers. The non-flat optimizer is
nearly always the best for NPP Proteins and SSL methods on CIFAR10. We investigate the NPP
Proteins solutions in the next subsection and recommend a more thorough investigation of the
landscapes of SSL objectives for future work.

8. Flat-minima optimizers offer asymmetric payoffs: at worst, they decreased performance by
−0.30%, at best, they increased it by 2.60%.

9. Averaging SAM iterates often improves over SWA or SAM alone. G(WASAM) >
min(G(SWA),G(SAM)) in 39/42 cases. We hypothesize that asymmetric payoffs are the reason:
when either SWA or SAM does not improve over the baseline (as discussed above), it does not
hurt (much) either, hence WASAM is more robust across all tasks.

4.5 Why do flat-minima optimizers fail?

Here, we audit one of the cases, where neither θSWA nor θSAM improves over θNF (this happens in 3
out of 42 cases): training a GraphSAGE [37] model on OGB-Proteins: a protein-protein interaction
graph where the goal is to predict the presence of protein functions (multi-label binary classification)
[45]. θSWA performs noticeably worse; θSAM performs about equally well.

0.88

0.89

0.0 0.5 1.0

Æ

0.74

0.76

0.78

0.0 0.5 1.0

Æ
0.2

0.3

0.4

0.5

0.6

0.890

0.895

°3 °2 °1 0 1 2 3 4

Æ
0.77

0.78

0.3

0.4

°3 °2 °1 0 1 2 3 4

Æ
0.22

0.23

0.24

Adam to SWA

(a) (b) (c) (d)

ROC-AUCLoss ROC-AUCLoss
Adam to SAM

Figure 5: GraphSAGE on OGB-Proteins: Adam’s (•) solution performs about equally well as SAM
(×), and better than SWA (+).

Fig. 5 shows two linear interpolations: between θNF (ADAM) and (1) θSWA (Figures 5a and 5b), and
(2) θSAM (Figures 5c and 5d). In contrast to success cases in Fig. 2, here: (a) for both SWA and
SAM, the training loss minimizer is very uncorrelated with the test loss minimizer; (b) SAM and
ADAM seem to be contained in the same test loss/accuracy basin. More analyses can be found in the
Appendix.

5 Limitations and Future Work

First, some of the fixed, shared hyperparameter values we used from previous works may harm
the effect of flat optimizers. The ideal experimental design includes tuning all hyperparameters
independently for the non-flat optimizer, SWA, SAM, and WASAM. However, this forces the number
of required runs to grow exponentially in unique hyperparameters and quickly renders this benchmark
infeasible.

Second, despite our best efforts to evaluate the optimizers on a broad range of benchmark tasks, there
are still plenty of unexplored domains; especially some of which are known to be sensitive to careful
optimization. For example, bi-level optimization problems [24] are common in generative modeling
[31, 42], deep reinforcement learning [60, 44], meta-learning [81, 52], or causal machine learning
[53, 54]. We are unaware of an investigation of flat minima optimization for such problems.

Third, in general, we believe fruitful directions of research include (a) optimizers that explicitly
find basins where training loss flatness more directly corresponds to higher hold-out accuracy, (b)
post-processing methods for existing optimization runs to move into flatter regions of these basins

9

[2], (c) loss functions whose contours more tightly align with accuracy contours, (d) the study of
flat-minima hyperparameter interactions (e.g., learning rate and neighborhood radius in SAM) (see
Appendices A.5 and A.6 for first results), (e) analyses of flat minima optimization on convergence
speed [51].

Our benchmark results point to which tasks would most benefit from improving these future work
directions: graph learning tasks would benefit from improvements in (a), as SAM is never among
the best-performing method, and language tasks would benefit if (b) is improved, as SWA is never
among the best performing method).

6 Conclusion

We investigated when flat minima optimizers work by conducting a fair comparison of two popular flat-
minima optimizers. We examined the behavior of SWA/SAM by analyzing their loss landscapes on
two representative deep learning tasks. Our next step was to evaluate their generalization performance
on a broad and diverse set of tasks (in data, learning settings, and model architectures). Based on
this benchmarking, we identified 9 findings, of which some directly guide future work directions.
Finally, when SWA/SAM did not improve over baselines, common assumptions seemed broken (i.e.,
train-to-test loss minimizers were not correlated).

Acknowledgements

We are very grateful to Kilian Q. Weinberger and Gao Huang for initial discussions and intuition,
Pontus Stenetorp for NLP experimental design advice, and Oscar Key for feedback on the draft. JK
and LL acknowledge support by the Engineering and Physical Sciences Research Council with grant
number EP/S021566/1. This research was supported through Azure resources provided by The Alan
Turing Institute and credits awarded by Google Cloud.

References
[1] Aghajanyan, A., Shrivastava, A., Gupta, A., Goyal, N., Zettlemoyer, L., and Gupta, S. Better

fine-tuning by reducing representational collapse. In International Conference on Learning
Representations, 2020.

[2] Andriushchenko, M. and Flammarion, N. Towards understanding sharpness-aware minimiza-
tion. In International Conference on Machine Learning, pp. 639–668. PMLR, 2022.

[3] Athiwaratkun, B., Finzi, M., Izmailov, P., and Wilson, A. G. There are many consistent
explanations of unlabeled data: Why you should average, 2019.

[4] Bahri, D., Mobahi, H., and Tay, Y. Sharpness-aware minimization improves language model
generalization, 2021.

[5] Bisla, D., Wang, J., and Choromanska, A. Low-pass filtering sgd for recovering flat optima
in the deep learning optimization landscape, 2022. URL https://arxiv.org/abs/2201.
08025.

[6] Bottou, L., Curtis, F. E., and Nocedal, J. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

[7] Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A. Unsupervised
learning of visual features by contrasting cluster assignments. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html.

[8] Cha, J., Chun, S., Lee, K., Cho, H.-C., Park, S., Lee, Y., and Park, S. SWAD: Domain
generalization by seeking flat minima. In Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=zkHlu_3sJYU.

10

https://arxiv.org/abs/2201.08025
https://arxiv.org/abs/2201.08025
https://proceedings.neurips.cc/paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html
https://openreview.net/forum?id=zkHlu_3sJYU

[9] Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes,
J. T., Sagun, L., and Zecchina, R. Entropy-sgd: Biasing gradient descent into wide valleys.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=B1YfAfcgl.

[10] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E. A simple framework for contrastive
learning of visual representations. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 1597–1607. PMLR, 2020. URL http://proceedings.
mlr.press/v119/chen20j.html.

[11] Chen, X. and He, K. Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

[12] Chen, X., Hsieh, C.-J., and Gong, B. When vision transformers outperform resnets without
pre-training or strong data augmentations, 2021.

[13] Chen, Y., Minervini, P., Riedel, S., and Stenetorp, P. Relation prediction as an auxiliary
training objective for improving multi-relational graph representations. In 3rd Conference on
Automated Knowledge Base Construction, 2021. URL https://openreview.net/forum?
id=Qa3uS3H7-Le.

[14] Chiang, W., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C. Cluster-gcn: An efficient algorithm
for training deep and large graph convolutional networks. In Teredesai, A., Kumar, V., Li,
Y., Rosales, R., Terzi, E., and Karypis, G. (eds.), Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage,
AK, USA, August 4-8, 2019, pp. 257–266. ACM, 2019. doi: 10.1145/3292500.3330925. URL
https://doi.org/10.1145/3292500.3330925.

[15] Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. Autoaugment: Learning
augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 113–123, 2019.

[16] Dauphin, Y. N., Pascanu, R., Gülçehre, Ç., Cho, K., Ganguli, S., and Bengio, Y. Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex optimiza-
tion. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pp. 2933–2941, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/
17e23e50bedc63b4095e3d8204ce063b-Abstract.html.

[17] Devries, T. and Taylor, G. W. Improved regularization of convolutional neural networks with
cutout. CoRR, abs/1708.04552, 2017. URL http://arxiv.org/abs/1708.04552.

[18] Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and Keutzer, K. HAWQ: hessian aware
quantization of neural networks with mixed-precision. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2,
2019, pp. 293–302. IEEE, 2019. doi: 10.1109/ICCV.2019.00038. URL https://doi.org/
10.1109/ICCV.2019.00038.

[19] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image
is worth 16x16 words: Transformers for image recognition at scale. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

[20] Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht, F. A. Essentially no barriers in
neural network energy landscape. In Dy, J. G. and Krause, A. (eds.), Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 1308–
1317. PMLR, 2018. URL http://proceedings.mlr.press/v80/draxler18a.html.

11

https://openreview.net/forum?id=B1YfAfcgl
https://openreview.net/forum?id=B1YfAfcgl
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=Qa3uS3H7-Le
https://openreview.net/forum?id=Qa3uS3H7-Le
https://doi.org/10.1145/3292500.3330925
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
http://arxiv.org/abs/1708.04552
https://doi.org/10.1109/ICCV.2019.00038
https://doi.org/10.1109/ICCV.2019.00038
https://openreview.net/forum?id=YicbFdNTTy
http://proceedings.mlr.press/v80/draxler18a.html

[21] Dziugaite, G. K. and Roy, D. M. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. In Elidan, G.,
Kersting, K., and Ihler, A. T. (eds.), Proceedings of the Thirty-Third Conference on Uncertainty
in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press, 2017.
URL http://auai.org/uai2017/proceedings/papers/173.pdf.

[22] Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. Sharpness-aware minimization for
efficiently improving generalization. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=6Tm1mposlrM.

[23] Fort, S. and Jastrzebski, S. Large scale structure of neural network loss landscapes. In
Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett, R.
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 6706–6714, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/48042b1dae4950fef2bd2aafa0b971a1-Abstract.html.

[24] Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil, M. Bilevel programming for
hyperparameter optimization and meta-learning. In International Conference on Machine
Learning, pp. 1568–1577. PMLR, 2018.

[25] Frankle, J. Revisiting "qualitatively characterizing neural network optimization problems".
CoRR, abs/2012.06898, 2020. URL https://arxiv.org/abs/2012.06898.

[26] Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M. Linear mode connectivity and the
lottery ticket hypothesis. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pp. 3259–3269. PMLR, 2020. URL http://proceedings.mlr.press/
v119/frankle20a.html.

[27] Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and Wilson, A. G. Loss surfaces, mode
connectivity, and fast ensembling of dnns. In Advances in Neural Information Processing
Systems, 2018.

[28] Geiping, J., Goldblum, M., Pope, P. E., Moeller, M., and Goldstein, T. Stochastic training is
not necessary for generalization. CoRR, abs/2109.14119, 2021. URL https://arxiv.org/
abs/2109.14119.

[29] Ghorbani, B., Krishnan, S., and Xiao, Y. An investigation into neural net optimization via
hessian eigenvalue density. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 2232–2241. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/ghorbani19b.html.

[30] Golub, G. H. and Welsch, J. H. Calculation of gauss quadrature rules. Mathematics of
computation, 23(106):221–230, 1969.

[31] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

[32] Goodfellow, I. J. and Vinyals, O. Qualitatively characterizing neural network optimization
problems. In Bengio, Y. and LeCun, Y. (eds.), 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6544.

[33] Gotmare, A., Keskar, N. S., Xiong, C., and Socher, R. A closer look at deep learning heuristics:
Learning rate restarts, warmup and distillation. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
URL https://openreview.net/forum?id=r14EOsCqKX.

12

http://auai.org/uai2017/proceedings/papers/173.pdf
https://openreview.net/forum?id=6Tm1mposlrM
https://proceedings.neurips.cc/paper/2019/hash/48042b1dae4950fef2bd2aafa0b971a1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/48042b1dae4950fef2bd2aafa0b971a1-Abstract.html
https://arxiv.org/abs/2012.06898
http://proceedings.mlr.press/v119/frankle20a.html
http://proceedings.mlr.press/v119/frankle20a.html
https://arxiv.org/abs/2109.14119
https://arxiv.org/abs/2109.14119
https://proceedings.mlr.press/v97/ghorbani19b.html
https://proceedings.mlr.press/v97/ghorbani19b.html
http://arxiv.org/abs/1412.6544
https://openreview.net/forum?id=r14EOsCqKX

[34] Grewal, Y. and Bui, T. D. Diversity is all you need to improve bayesian model averaging. In
Bayesian Deep Learning Workshop at Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 2021.

[35] Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch, C.,
Pires, B. Á., Guo, Z., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos, R., and Valko, M.
Bootstrap your own latent - A new approach to self-supervised learning. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.
cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html.

[36] Guo, H., Jin, J., and Liu, B. Stochastic weight averaging revisited. CoRR, abs/2201.00519,
2022. URL https://arxiv.org/abs/2201.00519.

[37] Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation learning on large graphs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 1025–1035, 2017.

[38] Han, D., Kim, J., and Kim, J. Deep pyramidal residual networks. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pp. 6307–6315. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.668. URL
https://doi.org/10.1109/CVPR.2017.668.

[39] He, H., Huang, G., and Yuan, Y. Asymmetric valleys: Beyond sharp and flat local minima. In
Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett, R.
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 2549–2560, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/01d8bae291b1e4724443375634ccfa0e-Abstract.html.

[40] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi: 10.1109/CVPR.
2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

[41] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. Momentum contrast for unsupervised
visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 9726–9735.
Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00975. URL
https://doi.org/10.1109/CVPR42600.2020.00975.

[42] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

[43] Hochreiter, S. and Schmidhuber, J. Flat minima. Neural computation, 9(1):1–42, 1997.

[44] Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-timescale framework for bilevel optimiza-
tion: Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170,
2020.

[45] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. Open
graph benchmark: Datasets for machine learning on graphs. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

[46] Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and Weinberger, K. Q. Snapshot
ensembles: Train 1, get M for free. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=BJYwwY9ll.

13

https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://arxiv.org/abs/2201.00519
https://doi.org/10.1109/CVPR.2017.668
https://proceedings.neurips.cc/paper/2019/hash/01d8bae291b1e4724443375634ccfa0e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/01d8bae291b1e4724443375634ccfa0e-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR42600.2020.00975
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://openreview.net/forum?id=BJYwwY9ll

[47] Izacard, G. and Grave, É. Leveraging passage retrieval with generative models for open domain
question answering. In Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume, pp. 874–880, 2021.

[48] Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D. P., and Wilson, A. G. Averaging
weights leads to wider optima and better generalization. In Globerson, A. and Silva, R. (eds.),
Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI
2018, Monterey, California, USA, August 6-10, 2018, pp. 876–885. AUAI Press, 2018. URL
http://auai.org/uai2018/proceedings/papers/313.pdf.

[49] Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. Fantastic generalization
measures and where to find them. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=SJgIPJBFvH.

[50] Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1601–1611, 2017.

[51] Kaddour, J. Stop wasting my time! saving days of imagenet and bert training with latest
weight averaging. arXiv preprint arXiv:2209.14981, 2022. URL https://arxiv.org/abs/
2209.14981.

[52] Kaddour, J., Saemundsson, S., and Deisenroth (he/him), M. Probabilistic active meta-
learning. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 20813–20822. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
ef0d17b3bdb4ee2aa741ba28c7255c53-Paper.pdf.

[53] Kaddour, J., Zhu, Y., Liu, Q., Kusner, M., and Silva, R. Causal effect inference for structured
treatments. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Advances
in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=0v9EPJGc10.

[54] Kaddour, J., Lynch, A., Liu, Q., Kusner, M. J., and Silva, R. Causal machine learning: A
survey and open problems. arXiv preprint arXiv:2206.15475, 2022. URL https://arxiv.
org/abs/2206.15475.

[55] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. On large-
batch training for deep learning: Generalization gap and sharp minima. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/
forum?id=H1oyRlYgg.

[56] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In Bengio, Y.
and LeCun, Y. (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

[57] Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

[58] Kleinberg, B., Li, Y., and Yuan, Y. An alternative view: When does sgd escape local minima?
In International Conference on Machine Learning, pp. 2698–2707. PMLR, 2018.

[59] Kolesnikov, A., Zhai, X., and Beyer, L. Revisiting self-supervised visual representation learn-
ing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 1920–1929, 2019.

14

http://auai.org/uai2018/proceedings/papers/313.pdf
https://openreview.net/forum?id=SJgIPJBFvH
https://openreview.net/forum?id=SJgIPJBFvH
https://arxiv.org/abs/2209.14981
https://arxiv.org/abs/2209.14981
https://proceedings.neurips.cc/paper/2020/file/ef0d17b3bdb4ee2aa741ba28c7255c53-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ef0d17b3bdb4ee2aa741ba28c7255c53-Paper.pdf
https://openreview.net/forum?id=0v9EPJGc10
https://openreview.net/forum?id=0v9EPJGc10
https://arxiv.org/abs/2206.15475
https://arxiv.org/abs/2206.15475
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

[60] Konda, V. and Tsitsiklis, J. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

[61] Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. E. Similarity of neural network repre-
sentations revisited. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 3519–3529.
PMLR, 2019. URL http://proceedings.mlr.press/v97/kornblith19a.html.

[62] Krishnapriyan, A. S., Gholami, A., Zhe, S., Kirby, R. M., and Mahoney, M. W.
Characterizing possible failure modes in physics-informed neural networks. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
26548–26560, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
df438e5206f31600e6ae4af72f2725f1-Abstract.html.

[63] Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[64] Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein,
D., Polosukhin, I., Devlin, J., Lee, K., et al. Natural questions: A benchmark for question
answering research. Transactions of the Association for Computational Linguistics, 7:452–466,
2019.

[65] Kwon, J., Kim, J., Park, H., and Choi, I. K. Asam: Adaptive sharpness-aware minimization
for scale-invariant learning of deep neural networks. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 5905–5914. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/kwon21b.html.

[66] Lacroix, T., Usunier, N., and Obozinski, G. Canonical tensor decomposition for knowledge
base completion. In Dy, J. G. and Krause, A. (eds.), Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 2869–2878. PMLR,
2018. URL http://proceedings.mlr.press/v80/lacroix18a.html.

[67] Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Guyon, I., von Luxburg, U., Ben-
gio, S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pp. 6402–6413, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html.

[68] Li, G., Xiong, C., Thabet, A., and Ghanem, B. Deepergcn: All you need to train deeper gcns,
2020.

[69] Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. Visualizing the loss landscape of
neural nets. In Bengio, S., Wallach, H. M., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pp. 6391–6401, 2018. URL https://proceedings.neurips.
cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html.

[70] Li, Z., Cui, Z., Wu, S., Zhang, X., and Wang, L. Fi-gnn: Modeling feature interactions
via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 539–548, 2019.

[71] Liu, Q., Nickel, M., and Kiela, D. Hyperbolic graph neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

15

http://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.mlr.press/v139/kwon21b.html
http://proceedings.mlr.press/v80/lacroix18a.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html

[72] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
and Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[73] Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. In International Con-
ference on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

[74] Mises, R. and Pollaczek-Geiringer, H. Praktische verfahren der gleichungsauflösung. ZAMM-
Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik, 9(1):58–77, 1929.

[75] Neyshabur, B., Sedghi, H., and Zhang, C. What is being transferred in trans-
fer learning? In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin,
H. (eds.), Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
0607f4c705595b911a4f3e7a127b44e0-Abstract.html.

[76] Nikishin, E., Izmailov, P., Athiwaratkun, B., Podoprikhin, D., Garipov, T., Shvechikov, P.,
Vetrov, D., and Wilson, A. G. Improving stability in deep reinforcement learning with weight
averaging. In Uncertainty in artificial intelligence workshop on uncertainty in Deep learning,
2018.

[77] Petzka, H., Kamp, M., Adilova, L., Sminchisescu, C., and Boley, M. Relative flatness and
generalization. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.
URL https://openreview.net/forum?id=sygvo7ctb_.

[78] Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 30(4):838–855, 1992.

[79] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. Learning transferable visual models
from natural language supervision. In Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 2021.
URL http://proceedings.mlr.press/v139/radford21a.html.

[80] Rahman, M. K. Training sensitivity in graph isomorphism network. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp. 2181–2184,
2020.

[81] Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S. Meta-learning with implicit gradients.
Advances in neural information processing systems, 32, 2019.

[82] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[83] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning Representations by Back-
Propagating Errors, pp. 696–699. MIT Press, Cambridge, MA, USA, 1988. ISBN
0262010976.

[84] Sankar, A. R., Khasbage, Y., Vigneswaran, R., and Balasubramanian, V. N. A deeper look
at the hessian eigenspectrum of deep neural networks and its applications to regularization.
arXiv preprint arXiv:2012.03801, 2020.

[85] Stutz, D., Hein, M., and Schiele, B. Relating adversarially robust generalization to flat minima.
In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pp. 7787–7797. IEEE, 2021. doi: 10.1109/ICCV48922.2021.
00771. URL https://doi.org/10.1109/ICCV48922.2021.00771.

[86] Susmelj, I., Heller, M., Wirth, P., Prescott, J., and et al., M. E. Lightly. GitHub. Note:
https://github.com/lightly-ai/lightly, 2020.

16

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper/2020/hash/0607f4c705595b911a4f3e7a127b44e0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0607f4c705595b911a4f3e7a127b44e0-Abstract.html
https://openreview.net/forum?id=sygvo7ctb_
http://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.1109/ICCV48922.2021.00771

[87] Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung,
J., Steiner, A., Keysers, D., Uszkoreit, J., Lucic, M., and Dosovitskiy, A. Mlp-mixer: An
all-mlp architecture for vision. CoRR, abs/2105.01601, 2021. URL https://arxiv.org/
abs/2105.01601.

[88] Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., and Jégou, H. Going deeper with
image transformers. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17, 2021, pp. 32–42. IEEE, 2021. doi: 10.1109/
ICCV48922.2021.00010. URL https://doi.org/10.1109/ICCV48922.2021.00010.

[89] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and Bouchard, G. Complex embeddings for
simple link prediction. In Balcan, M. and Weinberger, K. Q. (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 2071–2080.
JMLR.org, 2016. URL http://proceedings.mlr.press/v48/trouillon16.html.

[90] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. In Advances in neural information processing systems,
pp. 5998–6008, 2017.

[91] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. Glue: A multi-task
benchmark and analysis platform for natural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,
pp. 353–355, 2018.

[92] Wolf, T., Chaumond, J., Debut, L., Sanh, V., Delangue, C., Moi, A., Cistac, P., Funtowicz, M.,
Davison, J., Shleifer, S., et al. Transformers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 38–45, 2020.

[93] Wu, Y., Bojchevski, A., and Huang, H. Adversarial weight perturbation improves gener-
alization in graph neural networks, 2022. URL https://openreview.net/forum?id=
hUr6K4D9f7P.

[94] Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised feature learning via non-
parametric instance discrimination. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 3733–
3742. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00393. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_
Unsupervised_Feature_Learning_CVPR_2018_paper.html.

[95] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
ryGs6iA5Km.

[96] Yang, Y., Hodgkinson, L., Theisen, R., Zou, J., Gonzalez, J. E., Ramchandran, K., and Ma-
honey, M. W. Taxonomizing local versus global structure in neural network loss landscapes.
In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Advances in Neu-
ral Information Processing Systems, 2021. URL https://openreview.net/forum?id=
P6bUrLREcne.

[97] Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. LARGE BATCH SIZE TRAINING
OF NEURAL NETWORKS WITH ADVERSARIAL TRAINING AND SECOND-ORDER
INFORMATION, 2019. URL https://openreview.net/forum?id=H1lnJ2Rqt7.

[98] Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. Pyhessian: Neural networks through
the lens of the hessian. In Wu, X., Jermaine, C., Xiong, L., Hu, X., Kotevska, O., Lu,
S., Xu, W., Aluru, S., Zhai, C., Al-Masri, E., Chen, Z., and Saltz, J. (eds.), 2020 IEEE
International Conference on Big Data (IEEE BigData 2020), Atlanta, GA, USA, December
10-13, 2020, pp. 581–590. IEEE, 2020. doi: 10.1109/BigData50022.2020.9378171. URL
https://doi.org/10.1109/BigData50022.2020.9378171.

17

https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601
https://doi.org/10.1109/ICCV48922.2021.00010
http://proceedings.mlr.press/v48/trouillon16.html
https://openreview.net/forum?id=hUr6K4D9f7P
https://openreview.net/forum?id=hUr6K4D9f7P
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.html
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=P6bUrLREcne
https://openreview.net/forum?id=P6bUrLREcne
https://openreview.net/forum?id=H1lnJ2Rqt7
https://doi.org/10.1109/BigData50022.2020.9378171

[99] Zagoruyko, S. and Komodakis, N. Wide residual networks. In Wilson, R. C., Hancock,
E. R., and Smith, W. A. P. (eds.), Proceedings of the British Machine Vision Conference
2016, BMVC 2016, York, UK, September 19-22, 2016. BMVA Press, 2016. URL http:
//www.bmva.org/bmvc/2016/papers/paper087/index.html.

[100] Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. Barlow twins: Self-supervised
learning via redundancy reduction. In Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 12310–12320. PMLR, 2021.
URL http://proceedings.mlr.press/v139/zbontar21a.html.

[101] Zhao, Y., Zhang, H., and Hu, X. Ss-sam: Stochastic scheduled sharpness-aware minimization
for efficiently training deep neural networks. arXiv preprint arXiv:2203.09962, 2022.

[102] Zhou, P., Feng, J., Ma, C., Xiong, C., Hoi, S. C. H., et al. Towards theoretically understanding
why sgd generalizes better than adam in deep learning. Advances in Neural Information
Processing Systems, 33:21285–21296, 2020.

[103] Zhuang, J., Gong, B., Yuan, L., Cui, Y., Adam, H., Dvornek, N. C., sekhar tatikonda, s Duncan,
J., and Liu, T. Surrogate gap minimization improves sharpness-aware training. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=edONMAnhLu-.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Sec. 5
(c) Did you discuss any potential negative societal impacts of your work? [No] We consider

this work to be an investigation into optimization algorithms that are central to modern
ML systems. As these systems can be used in vastly different ways, we believe that it
is intractable to isolate the societal impact of novel insights into optimization.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Supplemental
material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Sec. 4

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

18

http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://proceedings.mlr.press/v139/zbontar21a.html
https://openreview.net/forum?id=edONMAnhLu-
https://openreview.net/forum?id=edONMAnhLu-

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

19

A Additional Analyses

A.1 CKA Similarities

We compute the CKA [61, 96] and cosine similarities of network output logits on train and test set,
respectively. Table 3 shows the results.

Table 3: Pairwise CKA [61] and cosine similarities between non-flat (NF) and SWA/SAM solutions.
SWA solutions produce predictions more similar to NF ones than SAM.

Task sCKA(θ
NF,θSWA) scosine(θ

NF,θSWA) sCKA(θ
NF,θSAM) scosine(θ

NF,θSAM)

WRN-CIFAR100 (Train) 0.9880 0.9812 0.9810 0.9240
WRN-CIFAR100 (Test) 0.9137 0.9732 0.8580 0.9045

GIN-Code2 (Train) 0.8522 0.9730 0.7276 0.9515
GIN-Code2 (Test) 0.8677 0.9750 0.7275 0.9516

RoBERTa-QNLI (Train) 0.9997 0.9991 0.9790 0.9510
RoBERTa-QNLI (Valid) 0.9830 0.9959 0.9550 0.9530

RoBERTa-RTE (Train) 0.9931 0.9891 0.9831 0.9628
RoBERTa-RTE (Test) 0.9314 0.9567 0.8808 0.8927

GIN-Molpcba (Train) 0.8886 0.9973 0.7441 0.9804
GIN-Molpcba (Test) 0.8772 0.9942 0.7232 0.9730

The results show that the SAM solutions produce predictions that are less similar to the non-flat
baseline than SWA solutions, as indicated by lower CKA and cosine similarities. This result is in line
with Observation 1 and 2 from Sec. 3.1.

A.2 Saddle point of SAM’s GIN solution

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

0.06

0.1

0.14

0.18

0.22

0.26

0.3

0.34

0.38

0.42

(a) SAM solution.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

0.06

0.1

0.14

0.18

0.22

0.26

0.3

0.34

(b) SWA solution (for comparison).

Figure 6: SAM and SWA solution in 2D random plane for GIN-Code2 task. We depict
θSAM,θSWA by ×,+, respectively, the test set F1 score maximizer by �, and the training loss
minimizer by �. The converged SAM solution is distant from the training loss minimizer in the
2D plane: Ltrain(θ

SAM) = 0.1779 � 0.0672 = Ltrain(θ
�). Further, losses (—) and F1 scores

() are not well-aligned. In contrast, the SWA solution is almost the training loss minimizer:
Ltrain(θ

SWA) = 0.0661 ≈ 0.0609 = Ltrain(θ
�). Also, losses and F1 scores are better aligned. Yet,

θSAM and θSWA perform about equally well on the test set, see Fig. 3d.

To gather further evidence on whether the SAM solution is a saddle point, we analyze its Hessian
eigenvalue density, following Ghorbani et al. [29] and using the Stochastic Lanczos Quadrature
algorithm [30]. Fig. 7 shows the density, including significant probability mass for both positive and
negative eigenvalues, indicating that the solution is a saddle point.

A.3 Why does SWA not work well on NLP tasks?

In Fig. 4a, we saw that SWA had only a mild effect on the generalization performance of NLP tasks,
sometimes even decreasing it. Here, we seek to investigate why that is.

20

0 5000

Eigenvalue

10 5

10 2

D
en

si
ty

 (L
og

 S
ca

le
)

Figure 7: Hessian Eigenvalue Density [29] of SAM’s GIN-Code2 solution: We observe significant
probability mass around both positive and negative eigenvalues, indicating that this solution is a
saddle point.

We consider two tasks: (i) the RTE task, for which SWA decreases the performance by around
−0.23±0.20 compared to Adam, (ii) the QNLI task, for which SWA decreases the performance by
−0.08±0.11. In both cases, SAM improved the performance statistically significantly over Adam.

For the QNLI task in Fig. 8a, we observe that SWA finds a lower/higher training loss/accuracy than
Adam, respectively. However, the test loss/accuracy is higher/lower at the SWA solutions and the loss
functions seem less well correlated in between both solutions (i.e, for α ∈ [0, 1]).

For the RTE task in Fig. 8b, we note that SWA finds a solution that is closer to a sharply increasing
side. This may happen if the baseline optimizer skips or goes around sharper solutions (e.g., due to
large step sizes) and the average pulls it towards these suboptimal regions.

Further, in Table 3, we notice very high values of sCKA(θ
NF,θSWA), scosine(θ

NF,θSWA) for both
training and test sets, indicating that the predictions are indeed very similar. In contrast,
sCKA(θ

NF,θSAM), scosine(θ
NF,θSAM) is lower, especially for the test set.

A.4 Why does SAM not work well on GRL tasks?

Fig. 10 shows the interpolations between the Adam and SAM solution. We do not observe a
significant loss/accuracy difference between the two different basins. One possible explanation for
this phenomenon is that the loss surface for this task is “globally well-connected” [96], yielding many
basins with very similar geometric properties.

21

(a) NLP: RoBERTa-QNLI

°3 °2 °1 0 1 2 3 4

Æ

0.91

0.92

0.93

0.94

0.95

SWA

ADAM

°3 °2 °1 0 1 2 3 4

Æ

0.020

0.025

0.030

SWA

ADAM

RoBERTa-QNLI: Adam to SWA Train Test
Loss Accuracy

(b) NLP: RoBERTa-RTE

RoBERTa-RTE: Adam to SWA Train Test
Loss Accuracy

0.990

0.995

°3 °2 °1 0 1 2 3 4

Æ

0.78

0.80

SWA

ADAM

0.105

0.110

0.115

°3 °2 °1 0 1 2 3 4

Æ

0.002

0.004

SWA

ADAM

Figure 8: Training (blue) and test (red) losses (—) and accuracies () of linear interpolations
θ(α) = (1− α)θ + αθ′ between Adam solutions (•, α = 0.0) and SWA (+, α = 1.0).

Figure 9: GPP: Molpcba-GIN

GIN-Molpcba: Adam to SAM Train Test
Loss Accuracy

°3 °2 °1 0 1 2 3 4

Æ

0.1

0.2

0.3

0.4

0.5

SAM

ADAM

°3 °2 °1 0 1 2 3 4

Æ

0.1

0.2

0.3

0.4

SAM

ADAM

Figure 10: Training (blue) and test (red) losses (—) and accuracies () of linear interpolations
θ(α) = (1− α)θ + αθ′ between Adam solutions (•, α = 0.0) and SAM (×, α = 1.0).

22

A.5 Does changing SAM’s ρ result in different basins?

Here, we plot linear interpolations of solutions obtained by smaller and larger ρ values. Overall,
we find that all solutions seem to lie in different basins indicated by high loss barriers in between
(α = 0.5) them.

A.5.1 WRN-28-10

For the WRN-28-10 model investigated in Sec. 3.1 and Sec. 4, we set ρ = 0.1 (as determined by
hyper-parameter tuning on validation loss).

Figure 11: WRN-28-10: Changing SAM’s ρ result in different basins.

Accuracy Loss Train
Test

<latexit sha1_base64="8RYckGm5qEAGrVXSdBwpDxE8irk=">AAACLHicbVBbSwJBGJ3tanazeuxlSAJ9kV2RCkIQhOgpDPICrsjsOOrg7M4y820kiz+ol/5KED0k0Wu/o/FSlHZg4HDO+fjmO14ouAbbHlsrq2vrG5uJreT2zu7efurgsKZlpCirUimkanhEM8EDVgUOgjVCxYjvCVb3BuWJX79nSnMZ3MEwZC2f9ALe5ZSAkdqpsgvsAeIrJX08clVfFu2cg93LjEtE2CdFO4tnCQzyJ5A3AfydcLLtVNrO2VPgZeLMSRrNUWmnXtyOpJHPAqCCaN107BBaMVHAqWCjpBtpFhI6ID3WNDQgPtOteHrsCJ8apYO7UpkXAJ6qvydi4ms99D2T9An09aI3Ef/zmhF0L1oxD8IIWEBni7qRmBw+aQ53uGIUxNAQQhU3f8W0TxShYPpNmhKcxZOXSS2fc85yhdtCunQzryOBjtEJyiAHnaMSukYVVEUUPaJn9IbG1pP1ar1bH7PoijWfOUJ/YH1+AWFXpTk=</latexit>

From ⇢ = 0.1 (↵ = 0) to ⇢ = 0.2 (↵ = 1)

<latexit sha1_base64="AxKNGeIoRF5nBm0uJlHTBqrw/kE=">AAACLHicbVBdSwJBFJ21L7Mvq8dehiSoF9k1qSAEQYiewiBNcEVmx1EHZ3eWmbuRLP6gXvorQfSQRK/9jkbdoqwDA4dzzuXOPV4ouAbbHluphcWl5ZX0amZtfWNzK7u9U9cyUpTVqBRSNTyimeABqwEHwRqhYsT3BLv1BpWJf3vHlOYyuIFhyFo+6QW8yykBI7WzFRfYPcQXSvp45Kq+LNn5AnbPD10iwj4p2Ud4lsAgvwPHJoC/Es5RO5uz8/YU+C9xEpJDCart7LPbkTTyWQBUEK2bjh1CKyYKOBVslHEjzUJCB6THmoYGxGe6FU+PHeEDo3RwVyrzAsBT9edETHyth75nkj6Bvp73JuJ/XjOC7lkr5kEYAQvobFE3EpPDJ83hDleMghgaQqji5q+Y9okiFEy/GVOCM3/yX1Iv5J2TfPG6mCtfJXWk0R7aR4fIQaeojC5RFdUQRQ/oCb2isfVovVhv1vssmrKSmV30C9bHJ2ScpTs=</latexit>

From ⇢ = 0.2 (↵ = 0) to ⇢ = 0.3 (↵ = 1)

<latexit sha1_base64="Nz4hyPiZnomJRygXx+UeZR4YhQo=">AAACLHicbVDLSgMxFM34rPVVdekmWIR2U2a0qCCFQkFcSQX7gE4pmTRtQzOTIbkjlqEf5MZfEcSFRdz6HaYPRVsPBA7nnMvNPV4ouAbbHllLyyura+uJjeTm1vbObmpvv6plpCirUCmkqntEM8EDVgEOgtVDxYjvCVbz+qWxX7tnSnMZ3MEgZE2fdAPe4ZSAkVqpkgvsAeIrJX08dFVPFuzcKXYvMy4RYY8U7CyeJjDIn0DeBPB3wsm2Umk7Z0+AF4kzI2k0Q7mVenHbkkY+C4AKonXDsUNoxkQBp4INk26kWUhon3RZw9CA+Ew348mxQ3xslDbuSGVeAHii/p6Iia/1wPdM0ifQ0/PeWPzPa0TQuWjGPAgjYAGdLupEYnz4uDnc5opREANDCFXc/BXTHlGEguk3aUpw5k9eJNWTnHOWy9/m08WbWR0JdIiOUAY56BwV0TUqowqi6BE9ozc0sp6sV+vd+phGl6zZzAH6A+vzC2fhpT0=</latexit>

From ⇢ = 0.3 (↵ = 0) to ⇢ = 0.4 (↵ = 1)

23

A.5.2 GIN-Code2

For the GIN model investigated in Sec. 3.1 and Sec. 4, we set ρ = 0.15 (as determined by hyper-
parameter tuning on validation loss).

Figure 12: GIN-Code2: Changing SAM’s ρ result in different basins.

Accuracy Loss Train
Test

<latexit sha1_base64="tII/1Z8pbFTvK4L1E0a2OgltWrg=">AAACLnicbVDLSgMxFM34rPVVdekmWAS7KTNSHyCFgiiupIJthU4pmTS1oZnJkNwRy9AvcuOv6EJQEbd+hpl2FLUeCBzOOZebe7xQcA22/WxNTc/Mzs1nFrKLS8srq7m19bqWkaKsRqWQ6sojmgkesBpwEOwqVIz4nmANr3+c+I0bpjSXwSUMQtbyyXXAu5wSMFI7d+ICu4X4VEkfD13Vk2W7aO9h92jHJSLskbJdwOMIBvmdcJIE/oo4hXYub8ZGwJPESUkepai2c49uR9LIZwFQQbRuOnYIrZgo4FSwYdaNNAsJ7ZNr1jQ0ID7TrXh07hBvG6WDu1KZFwAeqT8nYuJrPfA9k/QJ9PRfLxH/85oRdA9bMQ/CCFhAx4u6kUguT7rDHa4YBTEwhFDFzV8x7RFFKJiGs6YE5+/Jk6S+W3T2i6WLUr5yntaRQZtoC+0gBx2gCjpDVVRDFN2hB/SCXq1768l6s97H0SkrndlAv2B9fAJvzaW1</latexit>

From ⇢ = 0.05 (↵ = 0) to ⇢ = 0.15 (↵ = 1)

<latexit sha1_base64="OSNyvMbGuy6s4iITeFJD9+Ly98s=">AAACLnicbVBdSwJBFJ3t0+zL6rGXIQnsRXbLPiAEIYqewiA1cEVmxzEHZ3eWmbuRLP6iXvor9RBURK/9jEbdorQDA4dzzuXOPV4ouAbbfrGmpmdm5+ZTC+nFpeWV1czaelXLSFFWoVJIde0RzQQPWAU4CHYdKkZ8T7Ca1z0Z+LVbpjSXwRX0QtbwyU3A25wSMFIzc+oCu4P4TEkf913VkUU77+xj9zjnEhF2SNHewaMIBvmT2LNNAn9HnJ1mJmvn7SHwJHESkkUJys3Mk9uSNPJZAFQQreuOHUIjJgo4FayfdiPNQkK75IbVDQ2Iz3QjHp7bx9tGaeG2VOYFgIfq74mY+Fr3fM8kfQIdPe4NxP+8egTto0bMgzACFtDRonYkBpcPusMtrhgF0TOEUMXNXzHtEEUomIbTpgRn/ORJUt3NOwf5wmUhW7pI6kihTbSFcshBh6iEzlEZVRBF9+gRvaI368F6tt6tj1F0ykpmNtAfWJ9fbM6lsw==</latexit>

From ⇢ = 0.15 (↵ = 0) to ⇢ = 0.30 (↵ = 1)

<latexit sha1_base64="b3qL3MFqxpJu9XuAF3xzcVzhybI=">AAACLnicbVBdSwJBFJ3t0+zL6rGXIQn0RXbLPiAEIYqewiBLcEVmxzEHZ3eWmbuRLP6iXvor9RBURK/9jEbdorQDA4dzzuXOPV4ouAbbfrGmpmdm5+ZTC+nFpeWV1cza+pWWkaKsSqWQquYRzQQPWBU4CFYLFSO+J9i11z0e+Ne3TGkug0vohazhk5uAtzklYKRm5sQFdgfxqZI+7ruqI0t2YdfG7lHOJSLskJKdx6MIBvmTKO6ZBP6OOPlmJmsX7CHwJHESkkUJKs3Mk9uSNPJZAFQQreuOHUIjJgo4FayfdiPNQkK75IbVDQ2Iz3QjHp7bx9tGaeG2VOYFgIfq74mY+Fr3fM8kfQIdPe4NxP+8egTtw0bMgzACFtDRonYkBpcPusMtrhgF0TOEUMXNXzHtEEUomIbTpgRn/ORJcrVTcPYLxYtitnye1JFCm2gL5ZCDDlAZnaEKqiKK7tEjekVv1oP1bL1bH6PolJXMbKA/sD6/AHEhpbY=</latexit>

From ⇢ = 0.30 (↵ = 0) to ⇢ = 0.45 (↵ = 1)

24

A.6 Does changing the base optimizer impact SWA’s and SAM’s effectiveness?

The influence of the base optimizer on SWA/SAM’s effectiveness is under-explored. In the previous
experiments, we use the default base optimizers from existing code repositories or, as reported in
previous works. Here, we want to conduct an initial investigation into its effect on SWA and SAM.

In the following experiments, we only switch the base optimizer and keep everything else fixed
(including hyper-parameters such as learning rate, etc.). We train (i) a ResNet-34 (similar to WRN-28-
10 but smaller) on CIFAR100, once per SGD with momentum and AdamW [73], and (ii) a GIN model
on Code2, as in Sec. 3, but using RMSprop instead of Adam. We choose AdamW and RMSProp,
since they are commonly used in image classification [73, 19, 88] and graph representation learning
(GRL) [71, 70, 80], respectively.

Due to time constraints, we only report results obtained with one random seed (except for GIN-Code2
with Adam, which we already evaluated across three random seeds in our initial submission, see
Fig. 4b). Further, again due to time constraints, for the ResNet-34 task, we do not conduct a hyper-
parameter search of SAM’s ρ but set it to ρ = 0.05, as this value has been reported to be a good
default value [22].

Table 4 show the test performances with switched base optimizers. First, discussing task (i), we note
that AdamW under-fits the model and generalizes poorly compared to SGD. Here, SAM exacerbates
the performance even further, performing even worse than the AdamW baseline. The reasons for that
are unclear, and we leave an investigation into them for future work.

For task (ii) using RMSprop, we observe that both flat-minima optimizers improve over the baseline
performance. However, compared to when using Adam, they perform even more similarly, with SAM
only being 0.03% better. Interestingly, the combination WASAM again performs best.

Table 4: Test accuracies/F1 score of switched base optimizers.
Task Baseline SWA SAM WASAM

ResNet34 on CIFAR100 (SGD) 76.14 + 1.50 +1.91 + 2.60
ResNet34 on CIFAR100 (AdamW) 72.14 + 0.57 -2.29 -1.11

GIN on Code2 (Adam) 15.73±0.11 + 0.83±0.11 + 0.57±0.09 + 1.10±0.09
GIN on Code2 (RMSprop) 15.30 + 0.67 + 0.70 + 1.62

A.7 Does changing the data augmentation impact SWA’s and SAM’s effectiveness?

In this ablation, we want to understand whether different amounts and data augmentation strategies
impact SWA’s or SAM’s effectiveness. As an experimental setup, we consider training a ResNet18 on
CIFAR100 for 200 epochs with SGD with a momentum of 0.9, initial learning rate 0.1, and cosine
learning rate schedule. The three data augmentation strategies are (i) none, (ii) basic (random crop,
random horizontal flipping), and (iii) AutoAugment following the CIFAR10 policy [15].

Table 5 shows the results. We find that with no data augmentation used, SWA, SAM and WASAM
improve the baseline results by about the same amount, while SAM improves over SWA when data
augmentation is used, and WASAM performs best.

Table 5: Test accuracies of ResNet18 on Cifar100 with different data augmentation schemes.
Data Augmentation Baseline SWA SAM WASAM

None 60.78 + 2.23 + 2.20 + 2.24
Basic 76.40 + 0.13 + 0.74 + 1.01
AA [15] 67.59 + 3.03 + 3.35 + 4.17

A.8 Does using a constant learning rate at the end of training improve SWA?

In this ablation, we aim to understand the impact of a constant learning rate at the end of the training,
as originally suggested by [48]. We follow the same experimental setup as in Table 5 and choose
the Basic Data Augmentation. At the last 25% of training (starting from epoch 150), we set the
learning rate to 0.05. We find that this slightly worsens the SWA performance by −0.66% compared
to running SWA without changing the learning rate schedule, as explained in Sec. 4.

25

B Experimental details

B.1 Computer Vision

We mostly adopt the hyper-parameter values from Foret et al. [22] for WRN-28-10 and PyramidNet-
272, from Dosovitskiy et al. [19] for ViT, and from [87] for MLP-Mixer models. We average all
results across three random seeds.

B.1.1 Supervised Classification

We train WideResNets [99] with 28 layers and width 10 (WRN28-10) and PyramidNet [38]
with 110 layers and widening factor α = 272 (PyramidNet-272) from scratch. The Vision
Transformer (ViT) base model with input patch size 16 (ViT-B/16) and MLP-Mixer base model
with input patch size 16 (MLP-Mixer-B/16) start from pre-trained checkpoints available at
https://console.cloud.google.com/storage/vit_models/. The reason for using pre-trained checkpoints
for the ViT and MLP-Mixer models is that, due to their lack of some inductive biases inherent to
CNNs, such as translation equivariance and locality, they do not generalize well when trained on
insufficient amounts of data [19]. Table 6 shows the hyper-parameters for each architecture.

Table 6: Hyper-parameters for Supervised Classification (SC): CIFAR-{10, 100} (Table 2)
Hyper-Parameter WRN28-10 PyramidNet-272 ViT-B/16 MLP-Mixer-B/16
Base Optimizer SGD SGD SGD SGD
Batch size 256 256 100 170
Data augmentation Inception-style + Cutout [17]
Dropout rate 0.0
Epochs 200 200 – –
Gradient clipping norm – – 1.0 1.0
Learning rate schedule cosine
Peak learning rate 0.1 0.05 0.03 0.03
Steps – – 12500 12500
SGD Momentum 0.9
Warmup steps – – 500 500
Weight decay 5e− 4 5e− 4 0.0 0.0

CIFAR-10
SAM ρ 0.05 0.05 0.1 0.02
Averaging start E (SWA) 60% 60% 75% 90%
Averaging start E (WASAM) 90% 75% 75% 90%

CIFAR-100
SAM ρ 0.1 0.1 0.2 0.05
Averaging start E (SWA) 60% 60% 75% 90%
Averaging start E (WASAM) 90% 75% 75% 90%

B.1.2 Self-Supervised Learning

Table 7 shows the hyper-parameters for each SSL method. We use implementations from the lightly
package, available at https://github.com/lightly-ai/lightly [86].

B.2 Natural Language Processing

For the task of Open Domain Question Answering, we adapt the hyper-parameter values and the 25
retrieved passages for each question from 47. We report the Exact Match score of FiD-base model on
Natural Questions (NQ) and TriviaQA test sets. For GLUE benchmark, we report Matthew’s Corr for
CoLA, Pearson correlation coefficient for STSB, and accuracy for the the rest of the datasets. Results
are all evaluated on the dev set of GLUE benchmark. We use the RoBERTa-base as our backbone
language model, implemented with Huggingface Transformers [92]. Most of the task-specific
hyper-parameter values are adapted from 1.

B.3 Graph Representation Learning

We mostly adapt the hyper-parameter values from Hu et al. [45] for GCN [57], SAGE [37], and GIN
[95], from Chen et al. [13] for [66] and ComplEx [89], and from Li et al. [68] for DGCN. Due to
high standard errors, we averaged the results of a few tasks more than three times, as mentioned in
the following tables.

26

https://console.cloud.google.com/storage/vit_models/
https://github.com/lightly-ai/lightly

Table 7: Hyper-parameters for Self-Supervised Learning (SSL): CIFAR-10, ImageNette, results in
(Table 2)

Hyper-Parameter MoCo SimCLR SimSiam BarlowTwins BYOL SwaV
Backbone Network ResNet-18
Base Optimizer SGD Adam
Data augmentation SimCLR [10] Multi-Crop [7]
Dropout rate 0.0
Epochs 800
Embedding dimensions 512
KNN memory bank size 4096
Learning rate schedule cosine
Peak learning rate 6e− 2 1e− 3
SGD Momentum 0.9 –
Weight decay 5e− 4 1e− 6

CIFAR-10
Batch size 512
Crop size – 32
Gaussian blur 0%
SAM ρ 0.01 0.01 0.01 0.05 0.01 0.05
Averaging start E (SWA) 75% 90% 75% 90% 60% 60%
Averaging start E (WASAM) 90% 90% 90% 90% 75% 90%

ImageNette
Batch size 256
Crop size – 128, 64
Gaussian blur 50%
SAM ρ 0.01 0.01 0.02 0.05 0.05 0.01
Averaging start E (SWA) 50% 90% 75% 75% 90% 50%
Averaging start E (WASAM) 50% 50% 90% 75% 90% 50%

Table 8: Hyper-parameters for NPP tasks, results in Fig. 4b.
Hyper-Parameter SAGE DGCN

NPP: OGB-Proteins
Aggregation method Mean Softmax
Base optimizer Adam Adam
Convolution layer SAGE DyResGEN
Dropout rate 0.0 0.1
Hidden dimensions 256 64
Learning rate 0.01 0.001
Normalization layer – Layer norm
Number of epochs 2000 1000
Number of layers 3 112
Number of random seeds 5 3
Training cluster number 1 15
Weight decay 0.0 0.0

SAM ρ 0.01 0.02
Averaging start E (SWA) 90% 90%
Averaging start E (WASAM) 90% 90%

NPP: OGB-Products
Aggregation method Mean Softmax
Base optimizer Adam Adam
Batch size 20000 –
Convolution layer SAGE Gen
Dropout rate 0.5 0.5
Evaluation cluster number – 8
Learning rate 0.01 0.001
Hidden dimensions 256 128
Normalization layer – Batch norm
Number of epochs 30 50
Number of layers 3 14
Number of random seeds 5 3
Training cluster number – 10
Weight decay 0.0 0.0

SAM ρ 0.01 0.02
Averaging start E (SWA) 90% 60%
Averaging start E (WASAM) 75% 90%

27

Table 9: Hyper-parameters for GPP: OGB-Code2, results in Fig. 4b.
Hyper-Parameter GCN GIN

GPP: OGB-Code2
Aggregation method Mean Mean
Base optimizer Adam Adam
Batch size 128 128
Convolution layer GCN GIN
Dropout rate 0.0 0.0
Learning rate 0.001 0.001
Hidden dimensions 300 300
Normalization layer Batch norm Batch norm
Number of random seeds 3 3
Number of epochs 15 30
Number of layers 5 5
Virtual node embeddings True True
Vocabulary size 5000 5000
Weight decay 0.0 0.0

SAM ρ 0.2 0.15
Averaging start E (SWA) 50% 50%
Averaging start E (WASAM) 50% 50%

Table 10: Hyper-parameters for GPP: OGB-Molpcba, results in Fig. 4b.
Hyper-Parameter GIN DGCN

GPP: OGB-Molpcba
Aggregation method Mean Mean
Batch size 512 512
Base optimizer Adam Adam
Convolution layer GIN GEN
Dropout rate 0.0 0.2
Learning rate 0.001 0.001
Normalization layer Batch norm Batch norm
Number of epochs 100 50
Number of layers 5 14
Number of random seeds 3 3
Hidden dimensions 300 256
Virtual node embeddings False True
Weight decay 0.0 0.0

SAM ρ 0.01 0.15
Averaging start E (SWA) 90% 75%
Averaging start E (WASAM) 90% 50%

Table 11: Hyper-parameters for LPP: OGB-Biokg, results in Fig. 4b.
Hyper-Parameter CP ComplEx

GPP: OGB-Biokg
Base optimizer Adam Adam
Batch size 500 500
Learning rate 0.1 0.1
Number of random seeds 3 3
Number of epochs 30 50
Rank 1000 1000
Regularizer N3 N3
Weight decay 0.0 0.0

SAM ρ 0.1 0.05
Averaging start E (SWA) 50% 50%
Averaging start E (WASAM) 90% 50%

28

Table 12: Hyper-parameters for LPP: OGB-Citation2, results in Fig. 4b.
Hyper-Parameter GCN SAGE

GPP: OGB-Citation2
Aggregation method Mean Mean
Base optimizer Adam Adam
Batch size 256 512
Convolution layer GCN SAGE
Dropout rate 0.0 0.2
Hidden dimensions 256 256
Number of epochs 300 300
Number of layers 3 3
Number of random seeds 3 3
Normalization layer – –
Learning rate 0.001 0.0005
Virtual node embeddings False False
Weight decay 0.0 0.0

SAM ρ 0.02 0.01
Averaging start E (SWA) 75% 90%
Averaging start E (WASAM) 60% 90%

29

	1 Introduction
	2 Background and Related Work
	2.1 Stochastic Gradient Descent (SGD)
	2.2 Stochastic Weight Averaging (SWA)
	2.3 Sharpness-Aware Minimization (SAM)
	2.4 Other Flat-Minima Optimizers

	3 How do minima found by SWA and SAM differ?
	3.1 What is between non-flat and flat solutions?
	3.2 What happens if we average SAM iterates?
	3.3 How ``flat'' are the found minima?

	4 How do SWA and SAM perform on a broad set of experiments?
	4.1 Computer Vision
	4.2 Natural Language Processing
	4.3 Graph Representation Learning
	4.4 9 Findings
	4.5 Why do flat-minima optimizers fail?

	5 Limitations and Future Work
	6 Conclusion
	A Additional Analyses
	A.1 CKA Similarities
	A.2 Saddle point of SAM's GIN solution
	A.3 Why does SWA not work well on NLP tasks?
	A.4 Why does SAM not work well on GRL tasks?
	A.5 Does changing SAM's result in different basins?
	A.5.1 WRN-28-10
	A.5.2 GIN-Code2

	A.6 Does changing the base optimizer impact SWA's and SAM's effectiveness?
	A.7 Does changing the data augmentation impact SWA's and SAM's effectiveness?
	A.8 Does using a constant learning rate at the end of training improve SWA?

	B Experimental details
	B.1 Computer Vision
	B.1.1 Supervised Classification
	B.1.2 Self-Supervised Learning

	B.2 Natural Language Processing
	B.3 Graph Representation Learning

