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Abstract 

This thesis demonstrates an observational predominantly retrospective study of 

nearly 2000 consecutive relapsing remitting multiple sclerosis (RRMS) patients 

recruited after initiating disease modifying therapies (DMTs); glatiramer acetate, 

dimethyl fumarate, fingolimod, natalizumab or ocrelizumab, in the National Health 

Service at the National Hospital for Neurology and Neurosurgery and followed up for 

a period of two years.  

Due to the heterogeneity of onset, diagnosis, classification, treatment response and 

prognosis, it is difficult to predict outcomes in MS patients. Machine learning has 

been evolving in the medical field over the last two decades and we have therefore 

reviewed the literature on the use of machine learning (ML) in MS diagnosis, 

classification, progression and prediction. Despite the enormous application on ML 

in the field of MS in the last 10 years, we found limited studies that have focused on 

predicting the response to DMTs that could assist clinicians in choosing the best 

treatment for MS patients. We therefore explored the association of routinely 

available clinical and radiological variables in predicting NEDA (no evidence of disease 

activity) at the group-level in our separate cohorts. We found that baseline variables 

including older age at MS onset, lower number of previous DMTs, lower number of 

relapses in the previous 12 months, lower number of new and/or Gd-enhancing MRI 

brain lesions, and lower EDSS score showed significant association of achieving NEDA 

in most cohorts.  

Whilst these factors are associated with clinical response at the group-level, we are 

unable to make clinically useful predictions of treatment response at the individual-

level. We therefore built a Bayesian modelling framework optimal for estimating 

individual-level uncertainty in predicting NEDA. We combined all cohorts and built 

five predicting models with increasing complexity. The most comprehensive model 

with 12 clinical and radiological predictors showed the best accuracy, reaching 73% 

and 69%, in predicting individualised NEDA at 1 and 2 years, respectively.  
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Finally, since there have been no head-to-head phase III clinical trials comparing 

multiple DMTs with variable efficacy, we conducted a pilot study to compare the 

clinical and radiological effectiveness of five different DMTs in our real-world cohort 

using propensity score adjustment. Although ocrelizumab showed slightly better 

outcomes, considering the limitations of this study, including the observational and 

retrospective nature of the study, different therapies used over two decades and the 

small sample size, further larger studies and using propensity score matching are 

needed in the absence of randomised controlled trials.     
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Chapter 1. Multiple Sclerosis  

1.1 Introduction: 

Multiple Sclerosis (MS) is a chronic inflammatory condition of the central nervous 

system (CNS) that causes disability with major impact on physical ability, cognition 

and employment. (1) There are more than 2.8 million MS patients worldwide (2) and, 

according to the MS society and Mackenzie et al. more than 130,000 people in the 

United Kingdom (UK) have MS. (3) MS has three main clinical types; relapsing 

remitting MS (RRMS), primary progressive MS (PPMS) and secondary progressive MS 

(SPMS). (4) The majority of people with MS (pwMS) present with RRMS (85%) and 

the rest (15%) present with PPMS. (1, 5, 6)  

In about 10-20% of cases, RRMS patients develop a phase of insidious irreversible 

worsening of neurological function independent of relapses that is called SPMS. (7-9) 

This is much lower than what was previously reported, (10-12) and this could reflect 

the changes in the natural history of the disease and the effect of disease modifying 

therapies. The time from the first clinical presentation of MS to the onset of SPMS is 

variable, however the median time is approximately 20 years in untreated patients. 

(13, 14) In a large cohort of RRMS patients, where 62% were treated with DMTs, only 

11.3% transitioned to SPMS after a 17‐year period. (15) 

The clinical phenotypes were revised in 2014 to include disease activity, both clinical 

and radiological, and disease progression. (16) This was important to improve 

communication, prognostication, design and recruitment of clinical trials, and 

therapy decisions. This is summarised in Figure 1: Multiple Sclerosis phenotype 

description of relapsing and progressive disease.  
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Figure 1: Multiple Sclerosis phenotype description of relapsing and progressive 
disease.  
Activity is determined by clinical relapses assessed at least annually and/or MRI activity 
(contrast-enhancing lesions; new and enlarging T2 lesions). Progression is measured by 
clinical evaluation, assessed at least annually. 
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1.2 Causes of MS 

Despite the extensive research into the risk factors that cause MS, the exact cause 

remains unknown. Multiple risk factors have shown to play a role in developing MS; 

both environmental and genetics. Many environmental factors have been researched 

and found to affect the incidence of MS, including Infectious Mononucleosis (Epstein-

Barr virus infection) (17), vitamin D level (18, 19), smoking (20, 21), and latitude (22). 

The lifetime risk of developing MS in the general population is estimated to be 0.2% 

and sibling of affected people have up to 20-fold higher risk of developing MS (2-4%), 

but this risk drops down to 1% in second degree relatives.  (1, 6, 23) The concordance 

rate in monozygotic twins is significantly higher, 30%. (24) In the 1970s, the 

association between alleles of the major histocompatibility complex and MS was 

discovered, including DR15, DQ6, and the DRB1*1501, DRB5*0101, DQA1*0102, and 

DQB2*0602 genotypes. (25, 26) HLADRB1*17 (less pathogenic than HLA-DRB1*15) 

and HLA-DRB1*08 (more than doubles the risk associated with a single copy of HLA-

DRB1*15) were also found to increase the risk of MS. Over the last decade, more 

alleles have been found as inherited risk factor of MS including alleles of interleukin-

2 receptor alpha gene (IL2RA) and interleukin-7 (IL7RA). (27) On the other hand, the 

following have been suggested to be protective against MS: HLADRB1*14, 

HLADRB1*01, and HLADRB1*10. (28) 
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1.3 Pathology of MS 

The hallmark of MS pathology are demyelinating plaques. According to autopsy 

studies these plaques are found in all types of MS. Loss of myelin and reduction of 

oligodendrocytes, which are responsible for myelin sheaths production and 

maintenance, are seen in MS plaques. (29, 30) Active inflammatory white matter 

lesions are the hallmark in RRMS, whereas cortical demyelination and diffuse injury 

in the normal appearing white matter dominate progressive MS. (30, 31)  

The pathological process in MS starts with the loss of regulatory pathways across the 

blood-brain barrier, causing autoreactive lymphocytes to migrate across, leading to 

an immune response in the brain. Failure of local regulatory mechanisms with 

infiltration of perivascular CD8+ T-cells were found to be responsible in developing 

the MS plaques. (1) Subtypes of T-cells secreting interleukin-17 drive the 

inflammatory reaction. T-helper 17 cells penetrate the blood-brain barrier when 

damaged by interleukin 17 and 22, causing death of neurons. (32, 33) The immune 

response is amplified by the accumulation of T and B cells (lymphocytes), 

macrophages, plasma cells and pro-inflammatory cytokines recruiting naïve 

microglia. A deadly signal by cell surface bound tumour necrosis factor α is activated 

when the activated microglia and oligodendrocyte-myelin unit come together, 

causing extensive axonal injury typically seen in the acute demyelinating plaques. (29, 

34) 

Cortical involvement with increasing lesions volume and cortical atrophy is seen in all 

types of MS, and more extensively in PPMS. Meningeal inflammation is also found in 

all types of MS, but the most structured form, lymphoid follicles, has not been found 

in PPMS. (1, 6, 35, 36) This could potentially explain progression clinically despite 

reduced cerebral inflammation radiologically. (30) 
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1.4 Pathophysiology of MS 

The mechanisms by which MS symptoms arise secondary to the pathological 

processes are partially understood. Investigators have used data from animal models 

of MS, both in vitro and in vivo, pathological and magnetic resonance imaging (MRI) 

data in humans to hypothesise the mechanisms that lead to relapses, intermittent 

symptoms and clinical progression.  

 

1.4.1 Relapse-related neurological impairment 

Inflammation, demyelination and neuroaxonal transection are processes seen in the 

acute MS lesions which lead to neurological deficit during a relapse. (37, 38)  

The healthy myelin sheath in the white matter acts as insulation that helps the action 

potential to propagate rapidly. However, acutely demyelinated internodes, which 

have low level of voltage gated sodium channels, cause a conduction block in the 

affected axons. This is because the nodal sodium currents being inadequate to 

depolarise the demyelinated axon, causing breakdown in the associated pathways. 

(39, 40)  

 

1.4.2 Regaining neurological function 

During remission (recovery of neurological function), despite restoration of 

conduction as the acute inflammation settles with the reduction of oedema and 

damaging inflammatory products, (41) there appears to be ongoing delay in the 

electrophysiological conduction. (39) Immunological studies showed that Voltage 

gated sodium channels in the demyelinated axons may reallocate and proliferate 

leading to enhancement in propagation of the action potential. (42) Partial 

remyelination plays a part in restoration of normal axonal conduction in the new MS 

lesions. (43) In addition, previous studies using functional MRI investigating cortical 

reorganisation after optic neuritis have demonstrated dynamic processes within the 

occipital cortex during recovery suggestive of adaptive brain plasticity. (44) 
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1.4.3 Paroxysmal neurological symptoms 

Intermittent positive neurological symptoms in MS are thought to be caused by 

ectopic activity and/or mechanosensitive discharges at the affected axons. (45)  Tonic 

spasms and neurogenic pain are examples of paroxysmal ectopic activity. Visual 

phosphenes and Lhermitte’s phenomenon are examples of mechanosensitive 

activities. (46) 

Temporary conduction block in the previously impaired pathways cause intermittent 

neurological symptoms. For example, Uhthoff’s phenomenon, which is neurological 

symptoms experienced in heat, is caused by the malfunction of sodium channel 

opening caused by increase in body temperature and leading to failure of membrane 

depolarisation. (47) 

Exercise induced symptoms and signs are linked to the sustained electrical activity 

inducing membrane hyperpolarisation via the induction of the electrogenic Na/K 

ATPase pump causing depolarisation dysfunction. (40, 48) 

 

1.4.4 Disability progression  

The progression of neurological deficits arises from the accumulation of focal 

demyelinating lesions and the gradual neuroaxonal loss over time. (49) 

Pathological studies in progressive MS have shown diffuse axonal loss in the normal 

appearing white matter, axonal transection in focal lesions, and generalised brain 

atrophy. (31, 37, 50) The extent of brain atrophy in progressive MS is much greater 

compared to the atrophy seen at the initial stages of MS. (31) This tends to correlate 

with the extent of neurological impairment and disability. (51) As well as the acute 

lesions, which contain damaged axons that degenerate overtime, the chronically 

demyelinated axons degenerate overtime too, leading to progressive neurological 

disability. (38)    
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1.5 Measuring neurological impairment  

Quantifying MS related neurological deficit based on function, disability and quality 

of life have led to the development of a variety of clinical scales which have been 

widely used in MS research. It is essential to be familiar with these scales to 

understand the studies being published and interpret the data accurately as most of 

the scales have their own limitation.  

The Expanded Disability Status Scale (EDSS) is the most commonly used parameter 

for the assessment of neurological impairment. (52) During the assessment of EDSS, 

the clinician assesses the following functional systems; 1. visual, 2. brainstem, 3. 

pyramidal, 4. cerebellar, 5. sensory, 6. bowel/bladder, 7. cerebral and 8. ambulatory 

function. A total score of 0-10 (0 = no detectable neurological deficit and 10 = death 

secondary to MS) is given depending on the scores given for each functional system, 

as demonstrated in Table 1: EDSS Score. It is important to note that EDSS is an ordinal 

scale and not normally distributed as transitions between levels are not equal, the 

lower values of impairments (0-4.0) are based on neurological examination and the 

higher values (≥4.5) are heavily reliant on walking abilities and loss of independence.  

EDSS is widely used as it is easily performed and intuitively interpreted by any 

clinician familiar with the standard neurological examination. It is therefore the main 

scale used in this thesis. However, it is important to note that one of the main 

limitations of EDSS is that it is regarded as heavily weighted on mobility and not very 

sensitive to cognitive impairment or upper limb dysfunction. (53)  

The following scales have also been used widely in MS research; SDMT (Symbol 

Digital Modalities Test), BVMT-R (Brief Visuospatial Memory Test - Revised) and CVLT-

II (California Verbal Learning Test – Edition II). Patient reported outcome measures 

(PROMS) are validated outcome measures that describe the patient’s health status, 

function and experience through direct reporting. PROMS have been used 

increasingly in MS clinical trials and practice as they are important for exploring the 

effects that MS and DMTs have on patients’ lives. However, there are some 

limitations to the use of PROMS as primary outcome in clinical trials due to the lack 
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of a set of standard measures. (54) PROMS that have been used in MS research 

including; MS Quality of Life (MSQOL-54), Multiple Sclerosis Impact Scale (MSIS29), 

Eq5d5I, Modified Fatigue Impact Scale (MFIS) and the Work Productivity and Activity 

Impairment Question. These scales have not been discussed further as they are not 

routinely included in clinical practice and have not been included in this thesis. 

Table 1: EDSS Score 

Score Description 

0 Normal neurological exam, no disability in any functional score 

1 No disability, minimal signs in one functional score 

1.5 No disability, minimal signs in more than one functional score 

2 Minimal Disability in one functional score 

2.5 Mild disability in one functional score or minimal disability in two functional scores 

3 Moderate disability in one FS, or mild disability in three or four functional scores. No 
impairment to walking 

3.5 Moderate disability in one FS and more than minimal disability in several others. No 
impairment to walking 

4 Significant disability but self-sufficient and up and about some 12 hours a day. Able to 
walk without aid or rest for 500 metres 

4.5 Significant disability but up and about much of the day, able to work a full day, may 
otherwise have some limitation of full activity or require minimal assistance. Able to walk 
without aid or rest for 300m 

5 Disability severe enough to impair full daily activities and ability to work a full day without 
special provisions. Able to walk without aid or rest for 200 metres 

5.5 Disability severe enough to preclude full daily activities. Able to walk without aid or rest 
for 100 metres 

6 Requires a walking aid – cane, crutch, etc. – to walk about 100 metres with or without 
resting 

6.5 Requires two walking aids – pair of canes, crutches, etc. – to walk about 20 metres 
without resting 

7 Unable to walk beyond approximately 5 metres even with aid. Essentially restricted to 
wheelchair; though wheels self in standard wheelchair and transfers alone. Up and about 
in wheelchair some 12 hours a day 

7.5 Unable to take more than a few steps. Restricted to wheelchair and may need aid in 
transferring. Can wheel self but cannot carry on in standard wheelchair for a full day and 
may require a motorised wheelchair 

8 Essentially restricted to bed or chair or pushed in wheelchair. May be out of bed itself 
much of the day. Retains many self-care functions. Generally, has effective use of arms 

8.5 Essentially restricted to bed much of day. Has some effective use of arms retains some 
self-care functions 

9 Confined to bed. Can still communicate and eat 

9.5 Confined to bed and totally dependent. Unable to communicate effectively or 
eat/swallow 

10 Death due to MS 
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1.6 MRI in MS 

MRI has provided critical information for researchers in detecting and quantifying 

pathology leading to further understanding of the natural history of MS. The 

introduction of MRI in clinical practice for more than three decades has deepened 

our knowledge regarding the natural history and pathological processes that lead to 

neurological impairment in MS. Since it is safe and radiation free, it has been an 

integral part and the gold standard imaging technique in the diagnosis, longitudinal 

monitoring and evaluation of therapeutic response in MS. Despite this conventional 

MRI scans have low specificity in distinguishing between the different diseases and 

their evolution. This has since directed researchers to develop various techniques and 

modalities to recognise the different disease processes and therefore led to the 

production of new therapies. (55)  

In the field of MS, the most common MRI sequences used in clinical practice are: T1-

weighted (T1w), T2-weighted (T2w), fluid attenuation inversion recovery (FLAIR) and 

contrast enhancing T1w imaging. 

1.6.1 T1-weighted Imaging 

T1w imaging show that MS lesions have different intensities with hypo-intense 

lesions, otherwise known as black holes, indicating more destructive lesions with 

greater myelin and axonal loss. (38, 56) Higher number of black holes tend to be 

associated with increased MS progression and disability. (57) This is demonstrated in 

Figure 2: MRI sequences commonly used in MS 

This modality has been shown to be challenging when used without contrast in 

assessing lesion load due to the similarity in the intensity between lesions and normal 

appearing white matter (NAWM). Studies of the correlation between clinical 

outcomes (cognitive outcomes and physical disability) and lesion volume 

measurement in this modality has been inconsistent with more evidence toward lack 

of correlation. (58) 

  



29 
 

1.6.2 T2-weighted Imaging 

T2w imaging is sensitive for detecting white matter lesions (Figure 2: MRI sequences 

commonly used in MS) which are crucial for the diagnosis of RRMS and PPMS. (59) 

They are more sensitive in detecting MS lesions that are not visible on T1w 

sequences. However, the appearance of the lesions seen in this modality are not 

specific and cannot differentiate between the MS pathological phases such as 

demyelination, axonal loss or remyelination. (60) 

T2w sequences are commonly used in MS to measure total brain lesion volume to 

assess the extent of disease burden. They are also used to assess the conversion of 

clinically isolated syndrome (CIS) to MS, inflammatory activity, disease progression 

and response to medication particularly when serial scans are performed at different 

time points. However, the clinical correlation between disability scores and brain T2 

lesion load has not been high as it does not take into account the anatomical location 

of lesions in the brain, whereas T2 lesions in the spinal cord have been highly 

associated with MS disability. (58) 

1.6.3 Fluid attenuated inversion-recovery 

Fluid attenuated inversion-recovery (FLAIR) is a T2w modality which demonstrates 

subtle periventricular white matter lesions more clearly in relation to dark cerebral 

spinal fluid (CSF) and hypointense white matter (Figure 2: MRI sequences commonly 

used in MS). In this sequence MS lesions tend to have the highest intensity followed 

by grey matter, white matter and CSF. The relative sensitivity of FLAIR images for 

detecting pathologically confirmed white matter lesions is about 71% at 1.5T MRIs, 

which is higher compared to the sensitivity of T2w for detecting lesions, 63%. (61) 

Spinal cord lesions can also be detected using this modality and differentiating 

plaques with equivocal signal intensity on T2w sequence. (62)  
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Figure 2: MRI sequences commonly used in MS.  
These are the typical sequences used in routine clinical practice. The images have been 
obtained from an RRMS patient who is taking dimethyl fumarate. 

1.6.4 Contrast enhanced T1-weighted Imaging 

Contrast enhanced T1w imaging has been used to detect and monitor MS activity. 

The contrast agent, Gadolinium (Gd), crosses the blood-brain-barrier (BBB) and, 

during T1 relaxation, enhances active lesions. (41) Gd-enhanced T1w imaging has 

been central to MS diagnosis, particularly in confirming dissemination in time after 

one clinical attack or CIS. (63) MS lesions that show Gd enhancement have also been 

used in assessing the effectiveness of DMTs in both RRMS and in SPMS. (64) This 

modality is also commonly used to look for MS mimics, for example cerebral 

sarcoidosis and progressive multifocal leukoencephalopathy (PML), which can be a 

consequence of MS DMTs such as Natalizumab. (65, 66)  

Although Gd is considered largely safe in people with normal kidney function, there 

remain to be low risk of possible side effects and allergic reactions. The reported 

frequency of all adverse events after Gd administration range from 0.07-2.4%, severe 

allergic reactions 0.004-0.7% and life-threatening anaphylactic reactions 0.001-

0.01%. (67) Also, considering the concern regarding Gd deposition in brain the 

European Medicines Agency suspended the use of linear Gd based contrast agent for 

CNS MRI examinations and recommended the use of the lowest Gd dose only when 

essential. The recent guidance on MRI and Gd use published in the lancet neurology 

will be discussed in the next section. (68) 

Many other modalities have been used in the field of MS but not necessarily in 

routine clinical practice and are therefore not discussed in more details in this thesis. 
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1.6.5 MRI Guidance for Clinicians 

In the most recent international consensus, guidelines on how and when to use MRI 

for diagnosis, prognosis, and treatment monitoring of MS were updated and 

published by a collective effort from the following groups; Magnetic Resonance 

Imaging in MS (MAGNIMS), Consortium of MS Centres (CMSC) and North American 

Imaging in MS (NAIMS). (68) This focused on the use of standardised MRI protocols 

and the use of Gadolinium. This is summarised in  

Table 2: The 2021 MAGNIMS-CMSC-NAIMS consensus on the use of MRI in MS (68) 

. 

Table 2: The 2021 MAGNIMS-CMSC-NAIMS consensus on the use of MRI in MS (68) 

MRI in MS diagnosis: 
➢ Initial MRI brain protocol: 

• At least 1.5 Tesla (magnetic field strength) 

• Core sequences include T2w 3D-FLAIR, axial T2w, and T1w with Gadolinium 
contrast 

 
➢ Initial spinal cord MRI protocol: 

• At least 1.5T MRI 

• At least two of: sagittal T2w sequences, proton density-weighted, or short 
tau inversion recovery (STIR) 

• Sagittal T1w sequences post Gadolinium contrast 
 

➢ Follow up MRI if diagnostic criteria not fulfilled: 

• MRI brain every 6-12 months in clinically isolated syndrome (CIS) and 
radiologically isolated syndrome (RIS) with risk factors for conversion to and 
paraclinical features of MS 

• Spinal cord MRI and the use of Gadolinium are not routinely recommended. 

MRI in MS for monitoring disease activity and treatment effectiveness: 

• 3D T2w FLAIR and optional Gadolinium enhanced T1w sequences can be 
sufficient 

• The use of Gadolinium is optional and not recommended for all clinical 
situations. For example, new or enlarging T2 lesions can be used when a 
recent scan performed within 1 year is available. However, Gadolinium 
enhanced MRI can be obtained after treatment initiation in the absence of a 
new baseline scan 
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1.7 Brain atrophy in MS 

According to pathological findings, it has been shown that MS causes significant 

atrophy in the brain and spinal cord which tends to be more obvious in the 

progressive types of MS. (31) Researchers have historically used brain and spinal cord 

atrophy on T1w MRI sequences to investigate the impact of atrophy on disability. 

Investigators have shown that, regardless of the method used, pwMS have a higher 

rate of cerebral atrophy when compared to healthy controls (HCs). (69) Even at the 

earliest stage of MS, people with CIS have shown to develop more brain atrophy in 

those who develop MS after 1-3 years compared to those who didn’t develop MS. 

(70, 71)  

Studies have shown that pwMS who develop higher disease progression tend to also 

have higher central cerebral atrophy, regional atrophy and whole brain atrophy at 

baseline, and continue development atrophy over time. (72-74) Grey matter atrophy 

has also been of interest since the early 2000s, as this has been observed in all stages 

of MS including CIS, RRMS, SPMS and PPMS. (70, 75-77) Moreover, grey matter 

atrophy, especially in the cingulate cortex and thalamus, has been shown to be 

associated with higher neurological impairment scored by both EDSS and MS 

functional composite, more significantly than white matter atrophy (71, 77)  

Brain atrophy measures correlate with neurological impairment and appear to be 

reproducible, they have therefore been frequently included as endpoint outcomes 

when assessing therapies. In this thesis we aim to use brain volume measures to 

assess the impact on prediction of treatment response.   
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1.8 MS diagnosis 

Clinical symptoms, signs and investigations, such as MRI brain/spine scans and 

lumbar puncture, are required to diagnose MS and exclude other possibilities. The 

McDonald Criteria was first introduced in 2001 to aid diagnosis and has since been 

revised 3 times to not only improve MS diagnosis but also make the diagnosis much 

earlier. (63, 78-81). See Table 3: The McDonald Criteria for MS Diagnosis 2017 for 

more details. The latest revision applying the McDonald criteria of 2017 have shown 

higher sensitivity (68-100%) in diagnosing MS after the first clinical attack (clinically 

isolated syndrome) compared to the 2010 criteria. However, the specificity was low 

(14-63%) which is expected considering the limitations of the studies including the 

low number of patients and the short follow-up period. (81-85)  

The first neurological episode is referred to as clinically isolated syndrome (CIS) 

where patient symptoms and clinical findings relate to a focal or multifocal 

inflammatory demyelinating episode in the central nervous system. This develops 

acutely or sub-acutely, for at least 24 hours, with or without recovery. This is 

considered in the absence of fever or infection. CIS can be mono-focal or multi-focal 

depending on whether the pathology is in one or more locations. Typical CIS 

presentations include unilateral optic neuritis, focal supratentorial syndrome, focal 

brainstem or cerebellar syndrome, or partial myelopathy. These presentations are 

also referred to as relapses, exacerbations or attacks if they occur in patients with a 

previous history of CIS or those already known to have MS. (16, 80) 

MRI brain and spinal cord imaging have played a significant part in the diagnostic 

criteria as they can establish dissemination in space through multifocal involvement 

of the central nervous system and/or dissemination in time by showing new and old 

lesions. Dissemination in space (DIS) can be demonstrated by one or more T2-

hyperintense lesions that are characteristic of multiple sclerosis in two or more of 

four areas of the CNS: periventricular, cortical or juxta-cortical, and infratentorial 

brain regions, and the spinal cord. Dissemination in time (DIT) can be demonstrated 

by the simultaneous presence of gadolinium-enhancing and non-enhancing lesions 

at any time or by a new T2-hyperintense or gadolinium-enhancing lesion on follow-
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up MRI, with reference to a baseline scan, irrespective of the timing of the baseline 

MRI.  

There are some limitations to the latest diagnostic criteria, particularly in patients 

presenting with atypical presentations of MS and non-specific MRI brain lesions that 

could potentially lead to misdiagnosis. It is crucial that the criteria should only be 

applied to patients who present with a typical clinically isolated syndrome suggestive 

of an inflammatory demyelinating episode, and when alternative diagnoses have 

been excluded. Another limitation to the criteria is the inability to identify the 

secondary progressive phase of MS objectively, as this is generally diagnosed on the 

basis of irreversible disability progression that is independent of relapses. One of the 

first objective definitions was introduced in 2016 defining SPMS as a disability 

progression by 1 EDSS step in patients with EDSS ≤5.5 or 0.5 EDSS steps in patients 

with EDSS ≥6 in the absence of a relapse, a minimum EDSS score of 4 and pyramidal 

functional system score of 2 and confirmed progression over ≥3 months. This 

definition reached accuracy of 87% compared to a consensus diagnosis by three 

independent (neurologists) raters. (86) 
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Table 3: The McDonald Criteria for MS Diagnosis 2017 

Number of clinical 

episodes 

Number of MRI lesions with 

objective clinical evidence 

Additional data required for diagnosis 

CIS 

1 ≥ 0 symptoms and examination reflecting a 

focal or multifocal inflammatory 

demyelinating episode, developing acutely 

or sub-acutely, duration of at least 24 h, 

with or without recovery, and in the 

absence of fever or infection 

RRMS 

≥ 2 ≥ 2 Nil 

≥ 2 1 DIS shown by another clinical episode at a 

different CNS location or by MRI 

1 ≥ 2 DIT shown by another clinical episode, MRI, 

or unmatched OCBs in CSF. 

1 1 DIS shown by another clinical episode at a 

different CNS location or by MRI and DIT 

shown by another clinical episode or by MRI 

or presence of unmatched OCBs in CSF. 

PPMS 

Disability progression over 1 year independent of clinical episode. 

Plus 2 of the following: 

• 1 or more T2-hyperintense lesions typical of MS in 1 or more of the following brain 

lesions: periventricular, cortical or juxta-cortical, or infratentorial 

• 2 or more T2-hyperintense lesions in the spinal cord 

• Presence of unmatched OCBs in CSF 

Abbreviations: CIS = clinical isolated syndrome, DIS = dissemination in space, DIT = dissemination 

in time, OCBs = oligoclonal bands, CSF = cerebrospinal fluid. PPMS = primary progressive MS 

Adapted with permission from Professor Alan Thompson. (80) 
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1.9 MS treatment and response 

MS management requires a multidisciplinary team approach. This is because it 

includes the management of an acute relapse, the use of disease modifying therapies 

(DMTs) to reduce frequency of or stop relapses, medication for symptom control, 

psychological support, comorbidity management, and lifestyle adjustments.  

Acute moderate to severe relapses are usually managed with high dose oral or 

intravenous steroids for 3-5 days to speed up recovery. Oral steroids were shown to 

be non-inferior to intravenous methylprednisolone and had a similar safety profile 

when used for the management of an acute MS relapse. (87, 88) The current 

guidelines by the national institute for health and care excellence (NICE) recommends 

at least daily oral methylprednisolone 500 mg for 5 days. (89)  NICE recommends 

consideration of intravenous methylprednisolone 1000 mg for 3-5 days in patients 

who previously failed to respond or were intolerant to oral steroids and in those of 

severe symptoms that require hospitalisation and monitoring. (89) Plasma exchange 

may be considered for relapses that are severe and refractory to steroids. (90)  

 PwMS suffer a wide range of symptoms that are important to treat and control for 

maintaining function and quality of life. The most common symptoms experienced 

by pwMS and their possible management options are summarised in Table 4: 

Common symptoms experienced by pwMS and their management. (91) 

Prior to the approval of DMTs in MS, several immunosuppressive therapies were 

frequently given including corticosteroids and steroid-sparing agents: Methotrexate, 

Azathioprine, Mycophenolate Mofetil, and intravenous immunoglobulin. However, 

the effectiveness of these immunosuppressants were not studied extensively and did 

not show significant outcomes. Therefore, they have been used much less often since 

the approval of DMTs.  
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Interferon beta-1b was the first DMT approved in 1993. Since then, there has been 

over a dozen DMTs approved in the UK not only for RRMS but also for PPMS and, 

more recently, SPMS. The rest of the DMTs that have been developed and used in 

the last two decades are summarised in Table 5: DMTs; effectiveness, mode of 

administration, monitoring, and adverse events. (91) 

  

Table 4: Common symptoms experienced by pwMS and their management 

Symptoms Prevalence Pharmacological 
management 

Quality of evidence 
from clinical trials* 

Non-pharmacological 
management 

Fatigue 78-94% (92, 93) Amantadine, 

Modafinil 

Low-moderate (94) CBT, relaxation therapy, 

aerobic exercises 

Gait impairment 50-91% (93) Dalfampridine Low-moderate (95) Physiotherapy 

Urinary dysfunction 90% (96) Anticholinergics, 

Botulinum injections 

Low (97) Pelvic floor exercises, 

intermittent self-

catheterisation 

Spasticity 84% (98)  Baclofen, Tizanidine, 

benzodiazepines, 

botulinum injections 

Low-moderate (99) Exercise, physiotherapy 

Bowel dysfunction 52-68% (100) Stool softeners, 

stimulants, laxatives 

Low (101) Timed bowel evacuation, 

dietary fibre, hydration, 

physical activity 

Neuropathic pain 40% (102) TCAs, SSRIs, 

Anticonvulsants 

Low (103) Exercise, physiotherapy, 

psychological therapy, nerve 

blocks 

Abbreviations: pwMS = people with multiple sclerosis, CBT = cognitive behavioural therapy, TCAs = tricyclic 

antidepressants, SSRIs = selective serotonin reuptake inhibitors,  

* Based on the number of clinical trials, the number of participants per trial, and the results obtained in the different trials 
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Table 5: DMTs; effectiveness, mode of administration, monitoring, and adverse events 

DMT ARR 
reduction* 

Route and 
frequency of 

administration 

Baseline 
investigations 

Monitoring Common 
adverse 
events 

Rare but serious 
adverse events 

Interferon 
beta 

28-34% (104-
107) 

S/C: alternate 
days or 

x3/week; 
IM: x1/week 

or x1/fortnight 

FBC and LFTs FBC and LFTs 
every 6 months 

Headache 
Flu-like 

symptoms 
Leukopenia 

Liver toxicity 

Glatiramer 
Acetate 

29% (108) S/C: once daily 
or x3/week 

Nil Nil Injection site 
reaction 

Skin necrosis 

Teriflunomide  31% (109) Orally, once 
daily 

FBC, LFTs, blood 
pressure, 

QuantiFERON-TB 
gold, PPD 

LFTs monthly 
for first 6 
months, 6 

monthly then 
after. 

Headache, 
deranged 

LFTs, 
diarrhoea, 

nausea, 
alopecia 

Hepatotoxicity, 
teratogenicity 

Dimethyl 
Fumarate  

44% (110) Orally, twice 
daily 

FBC and LFTs FBC and LFTs 
every 6 months 

Skin flushing, 
diarrhoea, 

nausea, 
abdominal 

pain, vomiting 

Infections, liver 
toxicity, lymphopenia, 

PML 

Fingolimod  54% (111) Orally, once 
daily 

FBC, LFTs, VZV 
antibodies, 

fundoscopy, ECG, 
FDO 

FBC and LFTs 6 
monthly. 

Fundoscopy 3-4 
months after 

initiation. 
Regular skin 

checks 

Headache, 
deranged 
LFTs, back 

pain, 
Hypertension 

Infections, PML, 
Macular oedema, liver 
toxicity, hypertension, 

bradyarrhythmia, 
heart block, skin 

cancer 

Natalizumab  68% (112) IV or S/C, 4-6 
weekly 

FBC, LFTs, JCV 
serology, MRI brain 

JCV serology 3-
6 monthly, MRI 
brain yearly if 
JCV-negative 

Headache, 
fatigue, 

arthralgia, 
UTI, 

respiratory 
tract infection 

PML, Hepatotoxicity, 
herpes infections, 
hypersensitivity 

reactions 

Alemtuzumab  55% vs 
Interferons 

(113) 

IV, 2 courses 
12 months 

apart 

FBC, UEs, TFTs, 
LFTs, hepatitis 

panel, VZV 
antibodies, 
urinalysis, 

QuantiFERON-TB 
gold, PPD 

FBC, UEs, and 
LFTs monthly 

for 48 months. 
TFTs every 3 

months for 48 
months, skin 
examination 

yearly 

Rash, 
headache, 

infusion 
reaction, 
thyroid 

disorder, 
herpes 

infection 

Autoimmune 
disorders, HPV 

infection, stroke, TB, 
PML 

Cladribine  58% (114) Two treatment 
courses orally 

12 months 
apart 

FBC, LFTs, blood 
pressure, 

QuantiFERON-TB 
gold, PPD, hepatitis 

panel, age-
appropriate cancer 

screening 

FBC and Age-
appropriate 

cancer 
screening 2 and 
6 months after 
initiating each 

course 

Respiratory 
tract 

infection, 
headache, 

lymphopenia, 
nausea 

Malignancy, 
pulmonary 

tuberculosis, herpes 
infections, PML 

Ocrelizumab  47% vs 
Interferons 

(115) 

IV, every 6 
months 

FBC, LFTs, hepatitis 
panel 

QuantiFERON-
TB gold, PPD at 
baseline, FBC 

and LFTs yearly 

Infusion 
reactions, 

respiratory 
tract 

infection, 

Hepatitis B 
reactivation, PML 
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herpes 
infection 

Ofatumumab  59% vs 
teriflunomide 

(116) 

S/C, monthly Hepatitis panel, 
serum 

immunoglobulins 

Nil Infections, 
injection 
reaction, 
headache 

Hepatitis B 
reactivation, PML, 

reduction in 
immunoglobulins 

Ponesimod 30.5% vs 
teriflunomide 

(117)  

Orally, once 
daily 

FBC, LFTs, VZV 
antibodies, 

fundoscopy, ECG 

FBC and LFTs 6 
monthly. 

Fundoscopy 3-4 
months after 

initiation. 
Regular skin 

checks 

Viral 
infections, 
deranged 

LFTs, 
headache, 

hypertension 

Bradycardia, macular 
oedema, seizures, skin 

cancer 

Siponimod  Orally, once 
daily 

CYP2C9 genotype, 
FBC, LFTs, VZV 

antibodies, 
fundoscopy, ECG, 

FDO 

FBC and LFTs 6 
monthly. 

Fundoscopy 3-4 
months after 

initiation. 
Regular skin 

checks 

Headache, 
hypertension, 
deranged LFTs 

Bradycardia, heart 
block, liver toxicity, 

macular oedema, skin 
cancer 

Abbreviations: ARR = Annual relapse rate, S/C = subcutaneous, IM = Intramuscular, IV = intravenously, FBC = full blood count, LFTs = 
liver function tests, TFTs = thyroid function tests, UEs = urea and electrolytes, ECG = electrocardiogram, FDO = first does 
observations, PPD = purified protein derivative, VZV = varicella zoster virus, JCV = John Cunningham virus, HPV = human 
papillomavirus, TB = tuberculosis, UTI = urinary tract infection.  
*ARR reduction versus placebo unless otherwise stated. 

 

In general, DMTs primarily aim to minimise MS activity caused by neuroinflammation, 

hence the majority have been tested in and licensed for RRMS. It is well established 

that regardless of which therapy, starting any DMT reduces MS activity; clinical 

relapses and new lesions on MRI, and subsequently reduces long-term disability. 

(118, 119) Choosing the first DMT can be hard and challenging as the more potent 

the DMT, the higher the potential risk of severe adverse events.  The decision 

therefore must be based at an individual patient level and taking into consideration 

several factors including the number of relapses, MRI activity, the efficacy of the 

DMT, side effects profile, route of administration, and the patient’s life circumstances 

and family planning.  

There are two ways of initiating DMTs in MS; the escalation method, where a less 

effective DMT is started first and then switched to a high-efficacy drug if disease 

activity persists. This method aims to identify the best control of MS activity with the 

least risky therapy. The induction method uses high efficacy DMT at onset aiming to 

control MS activity as early as possible. With the availability of multiple high-efficacy 

DMTs, routine screening and growing evidence of improved outcomes when used 
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early are driving the latter method to becoming used more frequently. Trials 

assessing these therapeutic approaches are in progress, but results will only be seen 

in years to come. However, retrospective registry studies already suggest that early 

use of high-efficacy versus lower-efficacy DMT may delay disability progression or 

transition to SPMS. (119-121) This is potentially explained by the ongoing clinical and 

subclinical MS activity when using a low efficacy DMT which may lead to irreversible 

disability and disease progression that could have otherwise been stopped or 

minimised earlier. 

Despite the presence of many therapies, RRMS patients tend to change DMTs within 

the first couple of years due to poor effectiveness and/or intolerance of side effects. 

First line injectable and oral therapies, such has interferon beta, glatiramer acetate, 

dimethyl fumarate and teriflunomide, have a moderate efficacy of 30-40% in 

reducing relapses, a high rate of immediate adverse events and are less well 

tolerated. (see Table 5: DMTs; effectiveness, mode of administration, monitoring, 

and adverse events). In a large retrospective analysis of more than 10,000 RRMS 

patients in the French nationwide health data system, Vermersch et al found that 

treatment compliance with dimethyl fumarate, teriflunomide and 

interferons/glatiramer acetate were 55%, 60% and 39% respectively at 2 years. (122)  

They also found that 22%, 20% and 25% of patients experienced at least one relapse 

within the year of commencing dimethyl fumarate, teriflunomide and injectables 

respectively. In a multicentre retrospective Italian study by Sacca et al. they 

investigated nearly 3,000 RRMS patients who commenced DMT and showed nearly 

half of patients switched DMT at least once in 3 years, the majority switching due to 

lack of effectiveness judged by disease activity, defined as further relapses, new MRI 

brain MS lesions and/or EDSS progression. (123) Moreover, switching was more 

frequently observed in those taking lower efficacy injectables compared with those 

treated with higher efficacy therapies such as fingolimod and natalizumab. Maurer 

et al. also looked at nearly 600 RRMS patients in Germany across 50 sites 

commencing first line injectable and oral therapies between 2014-2017 and found 

that more than 60% of patients had at least one relapse in the first year before 
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switching to a higher efficacy therapy. (124) More than half of patients switched due 

to lack of effectiveness and one in five patients switched due to adverse events.  

Second line or highly effective therapies (60-80%), including natalizumab, 

alemtuzumab, cladribine and ocrelizumab, are more effective in reducing MS activity, 

and although some are associated with infusion related reactions, they are generally 

well tolerated. However, they carry higher risk of serious adverse events, as 

summarised in Table 5: DMTs; effectiveness, mode of administration, monitoring, 

and adverse events. What makes it more difficult is the lack of head to head 

comparisons of effectiveness of different therapies, particularly in the highly effective 

group of DMTs. This is why clinicians constantly have to balance the efficacy of 

treatment versus the risks for each MS patient.  

Studies have shown that DMTs also reduce disability progression in MS. (125, 126) In 

clinical trials, disability progression is commonly defined as an EDSS ≥1.5-points 

increase in patients with a baseline EDSS 0, EDSS ≥1.0-point increase in patients with 

baseline EDSS ≥1.0 or ≥0.5-point increase for patients with a baseline EDSS ≥5.5 that 

persisted for at least 12 weeks. In placebo-controlled trials, first line therapies, 

interferons for example, have shown a significant reduction of disease progression in 

RRMS patients at 48 weeks versus placebo (HR 0.62 95%CI 0.40–0.97, p = 0.03). (106) 

RRMS patients receiving glatiramer acetate, the proportion of patients with 

improved, unchanged, or worsened EDSS by ≥1.0 at 2 years, were significantly more 

than those receiving placebo (p = 0.03). (108) In another trial, the proportion of RRMS 

patients with confirmed disability progression was higher with placebo versus 

teriflunomide at 2 years (27.3% vs 20.2%, p=0.03). (109) On the other hand, RRMS 

patients taking dimethyl fumarate did not show a significant reduction in disability 

progression compared to glatiramer acetate or placebo at 2 years. (110)  

Higher-efficacy therapies have also shown reduction in disability progression in RRMS 

in randomised placebo-controlled trials. RRMS patients taking fingolimod showed 

significantly reduced risk of disability progression over 2 years versus placebo (HR 

0.70; p=0.02). (111) Natalizumab reduced the risk of disability progression in RRMS 
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patients by 42% over 2 years (HR 0.58; 95%CI 0.43-0.77; p<0.001). (112) RRMS 

patients taking interferons had significantly higher disability progression compared 

to those taking alemtuzumab (HR 0.58, 95% CI 0.38-0.87, p=0.008). (127) Cladribine 

showed significantly lower risk of disability progression in RRMS patients (HR 0.67; 

95% CI 0.48-0.93, p=0.02) at 96 weeks compared to placebo. (114) Ocrelizumab 

showed a significantly lower percentage of RRMS patients with disability progression 

versus interferons at 96 weeks (9.1% versus 13.6%; HR 0.60; 95%CI 0.45-0.81; 

p<0.001). (115) Most recently, ofatumumab showed a lower percentage of RRMS 

patients with disability progression compared to teriflunomide (10.9% versus 15.0%; 

HR 0.66, p=0.002). (116) Ponesimod on the other hand showed no significant 

difference in reducing disability progression in RRMS patients at 2 years when 

compared to teriflunomide. (117) 

DMTs have also shown reduction in progression in progressive MS patients, clinically 

and radiologically.  In 2019, ocrelizumab was approved to be the only DMT for active 

PPMS, as it showed a modest reduction of confirmed disability progression at 12 

weeks (32.9% versus 39.3%; HR 0.76, 95%CI 0.59-0.98, p=0.03) and 24 weeks (29.6% 

versus 35.7%, HR 0.75, 95%CI, 0.58-0.98, p=0.04) compared to placebo. (128)  In a 

sub-group analysis with PPMS patients with active MRI, the treatment effect with 

confirmed disability progression at 12 weeks reached statistical significance (HR 0.68, 

95%CI 0.46-0.99, p=0.04), but did not reach statistical significance at 24 weeks (HR 

0.71, 95%CI 0.47-1.06, p=0.09). NICE has therefore recommended the following 

eligibility criteria for PPMS patient to commence ocrelizumab; aged 18-55 years old, 

EDSS <7.0, disease duration of less than 15 years, if EDSS >5.0, or less than 10 years 

if EDSS ≤5.0, with evidence of MRI activity; presence of T1 Gd-enhancing lesions or 

new T2 lesions. (129) Such restrictive criteria meant that the majority of patients are 

not eligible and therefore will not benefit.   

Most recently siponimod was approved for the management of SPMS. In a double-

blind, randomised, phase 3 trial 26% of patients receiving siponimod and 32% of 

patients receiving placebo had confirmed disability progression (HR 0.79, 95%CI 0.65-

0.95; relative risk reduction 21%; p=0.013). (130) Considering the modest 
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effectiveness, NICE has recommended siponimod for treating SPMS patients with 

active disease evidenced by relapses or the presence of inflammatory activity on 

imaging. (131) This again means a large number of patients would not be eligible nor 

benefit. 
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1.10  Conclusion 

MS is a chronic inflammatory disease of the nervous system associated with physical 

and cognitive impairment and other symptoms that affect quality of life. The cause 

of MS remains largely unknown however multiple environmental and genetic factors 

have found to play a role in developing MS. Inflammatory demyelinating plaques in 

the brain and spinal cord are the hallmark of pathology in MS, the accumulation of 

which causes neurological impairment. This is usually assessed using clinical and 

radiological evaluations which have allowed clinicians and researchers to measure 

neurological function, disability and the impact on quality of life.  

The McDonald Criteria was developed in 2001 to help with the diagnosis of MS and 

has since been revised 3 times, the last of which occurred in 2017, to improve the 

sensitivity and specificity of diagnosing MS. In the latest version MS diagnosis can be 

made earlier and therefore DMTs can be commenced much quicker resulting in a 

better chance of reducing disease activity and accumulation of disability.  

DMTs were first approved in the 1990s and to date there are more than a dozen DMTs 

approved in the UK for the management of MS. This has given clinicians and patients 

a varied range of options to consider according to efficacy, risks and life style choices. 

Together with the earlier diagnosis this has improved the management of MS 

significantly.  

Despite the large number of DMTs currently available we are still unable to predict 

whether a patient with MS will respond to a particular therapy. Patient and 

neurologist specific factors of preference (for example, the mode of administration 

of the drug), disease type and activity and access to medications play a role in the 

decision-making process of choosing therapy for the individual MS patient. However, 

there is currently no tool to guide patients and clinicians in selecting the optimum 

DMT for a particular patient. To date it has been challenging to predict which DMT 

will be most effective whilst minimising side effects due to the complex number of 

factors needed to be considered. In recent years however, machine learning has been 

used in studying vast quantities of complex information, developing algorithms to 
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find patterns and identifying answers to complex questions. In the next chapters of 

this thesis the emphasis is going to be on developing a better understanding of 

predictors in MS diagnosis and management, including the use of machine learning, 

and working towards personalised medicine and customising therapies for the 

individuals with MS.  

  



46 
 

Chapter 2. Machine learning in MS 

2.1 Introduction  

Standard care of MS patients generates a wealth of clinical data including clinical 

symptoms and signs, imaging data, and laboratory data. Due to the heterogeneity of 

onset, diagnosis, classification, treatment response and prognosis, it is difficult to 

predict outcomes in those with MS. Historically an older age at the onset of MS, as 

well as being of the male sex, have been associated with poor prognosis. (132) Early 

clinical and radiological predictors associated with poor prognosis include spinal cord 

presentation, higher EDSS at baseline, a greater number and larger volume of T2w 

lesions, and brain atrophy. (133) Other factors which may have value in clinical 

practice to predict the risk of MS activity and disability are summarised in Error! 

Reference source not found.. These include demographics, clinical characteristics, 

MRI measures and laboratory investigations.  

This extensive amount of work has been invaluable for understanding the course of 

the disease and has led to the development of a continually changing treatment 

landscape over the last three decades. Despite this, disease mechanisms and the 

RRMS course continue to be heterogeneous and unpredictable. This unpredictability 

has provoked the introduction of artificial intelligence and machine learning in the 

field of MS over the past two decades. Therefore, the focus of this chapter will be to 

review the literature on the use of machine learning in MS. However, firstly we will 

discuss the basics of machine learning, types and methods of evaluation, and then 

we will review the literature.  
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Table 6: Features associated with poorer clinical outcomes in MS 

 Features Outcome measures 

Demographics Age at MS 
onset 

Disability as per EDSS: Those aged 20-29 years at MS onset reached EDSS 6.0 earlier 

compared to those aged 40-49; HR 0.55 (0.42-0.73) vs 0.13 (0.10-0.19), 95%CI, p<0.001 
(134) 

Sex The median time from MS onset to reaching disabling EDSS was significantly longer in 
females; e.g. reaching EDSS 6.0:  19.2 (11.6-31.7) years in males vs 24.3 (14.5-36.0) 
years in females, p-value <0.0001. (135) 

Ethnicity MENA-MS descent showed greater disability progression versus EUR-MS over time 
(EDSS change = 0.24 vs. 0.06, p = 0.01) and a higher MSSS (3.12 vs. 2.67, p = 0.04). (136) 

Cardiovascular 
co-morbidities 

The median time from MS diagnosis and needing ambulatory assistance was 18.8 years 
in patients without and 12.8 years in patients with vascular co-morbidities. (137) 

Psychiatric co-
morbidities 

The presence of psychiatric co-morbidities was associated with a higher EDSS score (β 
coefficient = 0.28, p = 0.0002, adjusted for disease duration and course, age, sex, 
socioeconomic status, physical comorbidity count, and DMT exposure) (138) 

Clinical Number of 
relapses in the 
early years of 
MS onset 

≥2 relapses in the first year of MS was significantly associated with a shorter time until 
reaching EDSS 6.0; HR 2.8 (1.60-4.93), 95%CI, p<0.001. (139)  

Frequent 
attacks with 
slow recovery 

Attack frequencies, in the first 2 years, of 1 versus >or=3, gave differences of 7.6, 12.8 
and 20.3 years in times from MS onset to EDSS 6.0, 8.0 and 10, respectively. (140) 

Spinal cord 
presentation 
at onset 

Spinal cord presentation at MS onset was predictive of higher risk progression to SPMS 
(adjusted OR=2.01; p=0.06) (141) 

MRI Gadolinium-
enhancing, 
infratentorial 
and spinal 
cord lesions 

Baseline gadolinium-enhancing (OR 3.16, p<0.01) and spinal cord lesions (OR 4.71, P < 
0.01) in CIS are independently associated with SPMS at 15 years. (7) 
≥2 infratentorial lesions predict long-term disability (HR 6.3), reaching EDSS ≥ 3.0. (142) 
Spinal cord lesions are associated with more relapses and worse outcomes, EDSS, at 
mean follow up 37.2 months (143) 

Laboratory 
test 

Presence of 
unmatched 
OCBs at 
presentation  

Increased the risk of CDMS [adjusted HR 1.3 (1.0-1.8)] and disability [adjusted HR 2.0 
(1.2-3.6)], reaching EDSS ≥ 3.0. (144) 

Abbreviations: MS = multiple sclerosis, EDSS = expanded disability status scale, HR = hazard ration, MSSS = MS Severity 
Score, MENA-MS = MS patients of Middle Eastern and North African descent, EUR-MS = MS patients of European descent, 
DMT = disease modifying therapy, OR=Odds Ratio, SPMS = secondary progressive MS, CIS = clinically isolated syndrome, 
OCBs = oligoclonal bands, CDMS = clinically definite MS. 
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2.1.1 Artificial intelligence and machine learning   

Artificial intelligence (AI) and machine learning (ML) algorithms are able to detect and 

compactly represent important patterns within large and complex clinical data. This 

ability can be used to develop data-driven tools to stratify patients with possible 

consequences for their care including diagnosis, management, monitoring and 

response to therapy. (145) 

AI and ML are loosely defined. Here, we consider AI to be a set of methods that can 

emulate smart human behaviour, such as making decisions under uncertain 

conditions. ML, which is a branch of the wider field of AI, studies algorithms that 

enable performing special tasks and inferring patterns from data. (146) It is 

particularly useful when working with very large datasets such as MRI scan images. It 

works well in performing tasks that require repetitive routine activity (such as 

interpreting MRI images) and, depending on the task, can possibly complete tasks 

faster and more accurately than a human interpreter. However, ML relies on 

sufficiently abundant data to ensure the model is robust and generalisable to other 

unseen data.  

2.1.2 Machine learning types 

There are many types of ML, two of the most common types are supervised and 

unsupervised learning, demonstrated in Figure 3: Machine learning algorithms. 

In supervised ML an algorithm is trained on a training cohort to learn patterns 

associated with the specific category, such as healthy control or treated cohorts. 

Once patterns are learnt from the data given, ML algorithms assign categories to an 

unseen test cohort. Supervised ML algorithms are commonly used for two types of 

questions; classification and regression. Classification is used to predict which group 

an observation belongs to, for example patients vs healthy controls. Regression is 

used to predict a continuous measure, for example time to diagnosis/disability. 

Examples of supervised ML techniques include: neural networks, decision trees, 
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random forest and support vector machine. This is summarised in Table 7: Common 

Supervised ML techniques (147) 

In unsupervised ML, training data are not categorised or labelled. Instead the 

algorithm attempts to find patterns in the data by identifying clusters created from 

the similarity in the data. Examples of unsupervised ML methods include hierarchical 

clustering.  

 

 

 

 

 

 

 

  

Table 7: Common Supervised ML techniques 

Random forest Grows a large number of decision trees, each sees only a subset of data, and 
learns output from input by combining the predictions 

Decision tree Learns outputs from inputs given by a series of yes/no questions in a tree-like 
structure where internal nodes represent the variables of a dataset, branches 
represent the decision rules and each leaf node represents the outcome. 

Support vector 
machine 

A binary classification technique that can be modified to multiclass classification 
or regression. They look to split the predictor space into two, so that data points 
from each class are concentrated on one side of the decision boundary 

Neural 
networks 

learns outputs from inputs through a series of nested nonlinear function, 
encoded in a network of "neurons", which may vary in its topology.  

Figure 3: Machine learning algorithms. 
A. Supervised machine learning (ML) in which the training step includes training data with labels 
to create a predictive model. The testing step includes showing unlabelled data to the predictive 
model to identify, in this example, hearts from other shapes. 
B. Unsupervised ML in which unlabelled data are processed by the model to see what patterns 
can be shown, grouping red shapes in this example.  
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2.1.3 Artificial neural networks 

Artificial neural networks (ANNs) are biologically-inspired programming paradigm, 

resembling the networked neurons in the human brain. They are built by three types 

of layers: An input layer, whose neurons connect into any number of hidden layers, 

which in turn feed forward to an output layer, as demonstrated in Figure 4: A simple 

artificial neural network. Neurons have multiple connections with neurons in the 

other layers with different weights depending on their connections. The neurons and 

layers have a fixed structure, but the networks learn by adjusting the weights 

depending on the outcomes. Backpropagation is a method commonly used for 

adjusting weights depending on the amount of error between the ANN outcome and 

the actual outcome, termed prediction error. Strengthening or weakening the 

weights depends on whether the true outcome was unexpectedly positive or 

negative. Therefore, the size of prediction error guides how weights are changed. 

(148) 

 

 

 

 

 

 

  

Figure 4: A simple artificial neural network 
Artificial neural networks (ANNs) contain neurons (squares) that are organised into an input 
(yellow), output (brown) and any number of hidden (pin) layers, one layer in this example. 
The blue lines represent the different weights of connecting different neurones, 
demonstrated by the thickness of the lines. 
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Slight variations in the structure of an ANN can help in performing different tasks. 

Adding connections, to and from the same neurons, within a hidden layer create 

recurrent neural networks. These address sequences of information to help in tasks 

such as speech analysis. Convolutional neural networks (CNNs) are used to capture 

relevant features from an input, as they filter and simplify complex inputs into the 

most important features that can allow for more efficient data processing. Another 

form of ANNs includes deep learning algorithms that have many hidden layers, which 

allow them to perform more complex operations. 

2.1.4 Machine learning model evaluation 

ML models are situation specific and dependent on size, type, and dimensionality of 

data. There are many ways of evaluating models’ performances, as summarised in 

Table 8: ML model evaluation. (147) ML models are complicated and require 

optimisation of parameters to capture the best relationship between parameters and 

outcome. Capturing many errors from the training data points and failing to find the 

underlying trend of the data cause poor performances, known as “underfitting”. On 

the other hand, “overfitting” is an example of a model that captures no errors in the 

training data because the model is built on each deviation in the data point and 

becomes too sensitive as it captures patterns that only present in the training 

dataset. Such model would not perform well in testing external datasets, i.e. not 

generalisable. It is therefore essential for any ML method to account for this by 

training the model on a large training dataset and test the model generalisability in 

an external independent dataset. This process is often difficult as it requires extensive 

collaboration, standardisation of variables and approval for data sharing across 

different institutions and countries. This is why most studies use cross validation. 

Cross validation is a technique that involves splitting the data into a training dataset 

and a testing dataset. (149) A training dataset is used to train and optimise the model 

and subsequently the model performance is evaluated on the unseen testing dataset. 

There are many methods used to perform cross validation including leave-one-out-

cross-validation (LOOCV) which reserves one data point from the dataset and train 

the model on the remaining data. This process is repeated for each data point. 
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Although this method helps is making use of most data points and minimise bias, it 

can take a long time to process if there are many data points and can give a high 

variation in testing model effectiveness, as the testing is performed on and influenced 

by one data point only. K-fold cross validation is another method that works by 

splitting the dataset into k”folds”. (150) For each k-fold in the dataset, the model is 

built on k-1 folds of the dataset. The mode is then tested to check the effectiveness 

for kth fold. The error on each prediction is recorded during this process. This process 

is repeated until each of the k-folds is used as the test dataset. The average of the k 

recorded errors is known as the cross-validation error, which is used as a 

performance value for the model. It is worth noting that a lower number of k can lead 

to more bias and therefore not desirable, while higher number of k means less bias, 

the model can suffer from large variability.  

Table 8: ML model evaluation 

Accuracy is the percentage of correct predictions 

Balanced Accuracy is a measure of the total number of correct predictions in either class, 
taking into account an unbalanced dataset 

Area under the 
receiver-operator curve 
(AUC) 

is used for binary classification problems, using a plot of sensitivity 
versus specificity to determine model performance at various threshold 
settings. 

Precision is equivalent to positive predictive value 

Recall or Sensitivity identifies true positives correctly 

F-score is an accuracy measure calculated using precision and recall 

R2 Is a statistical measure that represent the proportion of variance in the 
dependent variable that is explained by the independent variable(s) in 
the regression model. 
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2.1.5 Frequentist and Bayesian statistics 

Complex computational models can have different forms and focus and can be 

categorised along different axes. Some are principled and based on probability theory 

(Probabilistic) or even full probability distributions (Bayesian). Others focus on 

algorithms that try to find the best answer in a possible search space without regard 

for uncertainty. Machine learning algorithms typically fall int the latter category, but 

some types of machine learning can be Bayesian. The same regression model can be 

estimated using a standard (frequentist) statistical algorithm (e.g ordinary least 

squares), a more complex non-linear machine learning algorithm (such as a support 

vector machine) or a fully probabilistic Bayesian algorithm (such as Markov chain 

Monte Carlo). It is therefore important to understand the differences and when to 

choose different methods – here we focus on Bayesian methods. This requires a brief 

review of the Probability theory which lies at the foundation of many methods.  

Probability measures the uncertainty of outcomes of a random variable. In most 

studies there are many random variables used that can interact in complex ways. The 

probability of two variables can be mathematically related in a number of ways using 

joint, marginal and conditional probability rules. The probability of two events 

occurring at the same time (even A=a and event B=b) is their joint probability. 

Marginal probability is the probability of an event irrespective of the outcome of 

another variable (event A=a, averaged over all variations of B=b). The probability of 

one event occurring in the presence of a second event (event A=a given we know that 

event B=b) is conditional probability. (151) Complex predictive probabilistic models 

are derived from these principles.   

Frequentist statistics estimates the probability of an event occurring when the 

experiment is repeated in controlled conditions to assess the outcome. It is often 

used to test if the null hypothesis can be rejected or not. In clinical trials, the most 

common frequentist decision procedure uses p-values, typically needed to be lower 

than a pre-set arbitrary cut-off (e.g. alpha = 0.05) given a particular sample and 

design. One of the common problems with the traditional frequentist approach is the 

statistical decision is tied to the final sample size. More complex statistical 
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procedures are required if the sample size changes after the start of the experiment. 

Similarly, if the results were positive, it is not possible to know if the results could 

have been reached with a smaller sample size (post hoc power calculation) but this 

data can be used to estimate the power of future trials. (152)  

Bayesian statistics is a mathematical method that applies probabilities to statistical 

questions. (153) It provides the tools to update beliefs in the presence of new 

evidence or data. It is important to understand conditional probability, which is the 

probability of an event, A, given another event, B, equals the probability of B and A 

happening together (joint) divided by the marginal probability of B; (154) 

P(A|B) = P(A∩B)/P(B) 

The joint probability P(A∩B) in this equation can be re-written as another conditional 

probability using a re-arrangement of the same equation; 

P(A|B) = [P(B|A) X P(A)]/P(B) 

The marginal probability of B can be calculated as: 

              n 

P(B) = ∑ P(B∩Ai) 

             i=1 

Since P(B∩Ai ) = P(B|Ai) X P(Ai) 

The equation of conditional probability is therefore; 

                           n 

P(Ai|B) = (P(B|Ai) X P(Ai))/(∑(P(B|Ai) X P(Ai))) 
                             i=1 

 

The Bayesian framework contains the following steps: using available knowledge for 

a given parameter in a statistical model, before data collection, through the prior 

distribution; using the information about the parameters in the observed data to 
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determine the likelihood function; and using the combination of the prior distribution 

and the likelihood function to determine the posterior distribution. (154)  

Since P(A|B) is the posterior probability, P(A) is the prior probability, P(B|A) is the 

likelihood and P(B) is the evidence, The Bayes Theorem equation is therefore; 

Posterior probability = Likelihood X Prior probability / Evidence 

This helps in updating one’s knowledge by combining prior knowledge and observed 

data to reach inferences. This is one of the main differences compared to frequentist 

statistics, using p-values and confidence intervals, as frequentist inferences do not 

quantify what is known about the parameters.  

The need for prior distribution is the focus of the argument against the Bayesian 

approach. This argument becomes not significant when the sample size increases. 

However, it is important to understand that choosing the best available data leads to 

optimistic priors that can influence outcomes.  

Both frequentist statistics and Bayesian statistics will be implemented later in this 

thesis, chapter three and four, respectively. However, having discussed the use of 

model building using machine learning, the literature review in the next section will 

demonstrate the use of machine learning methods in the field of MS that would be 

of interest to neurologists.  
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2.2 Methods 

As part of this detailed, non-systematic, literature review PubMed was used to select 

the appropriate studies of interest with the following terms: “multiple sclerosis” and 

“artificial intelligence” or “machine learning” in the title or abstract. Up to April 2021 

a total of 7204 studies were initially identified. After exclusions 702 studies were 

reviewed and only articles deemed relevant to MS neurologists were included. 

Studies not written in English, or those that had a technical overview and were not 

applied to MS, were excluded. Included articles were divided and summarised, as per 

Figure 5: Literature search summary flowchart, in the following sub-sections. 

  

Figure 5: Literature search summary flowchart 

AI = artificial intelligence, ML = machine learning, insufficient clinical data = data 
provided was not clinically relevant, e.g. using AI/ML on health records and insurance 
claims.  
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2.3 Results 

2.3.1 ML application in MS diagnosis 

2.3.1.1 Using MRI 

Patients with MS are difficult to assess due to the heterogeneous clinical 

presentation, symptoms and progression over time. Combining copious amounts of 

data and ML opens up great opportunities for understanding and monitoring MS 

using MRI. (155) ML algorithms using MRI metrics have been used in the field of MS 

diagnosis over the last decade and more extensively in the last 5 years. They aimed 

to classify MS patients versus healthy controls (HCs), although in most cases they 

included patients with already established MS diagnosis. The studies that focussed 

on the use of MRI are summarised in Table 9: ML application in MS diagnosis using 

MRI.  

Initially Weygandt et al.  trained a Support Vector Machine (SVM) to predict 

diagnostic accuracy of 41 RRMS patients and 26 age and gender matched HCs using 

their MRI (T2w) images. (156) They found that among regions containing lesions a 

posterior parietal white matter area was more informative with 96% accuracy, after 

LOO-CV. Among the normal appearing grey matter, the cerebellar regions were more 

informative with an accuracy of 84%. Finally, among the normal appearing white 

matter areas, a posterior brain area was most informative with an accuracy of 91%. 

This study identified vital areas of MS associated tissue changes using ML technique 

utilising standard MRI sequences. The main limitation of this study is the small sample 

size and the lack of an external validation cohort.  

In 2012 Richiardi et al. used resting state functional MRI (rsfMRI) to develop a 

predictive model of connectivity alterations in MS. (157) They included 22 MS 

patients and 14 HCs to build a whole brain connectivity matrix from slow oscillations 

of region-averaged time series and a discriminant function to indicate which 

connections are most affected by MS. Strict cross-validation was used as a 

classification performance which provided a sensitivity of 82% and specificity of 86% 

to differentiate between MS and HCs. Subcortical and temporal regions, and 
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contralateral compared to ipsilateral connections, were found to show the most 

discriminative connectivity. Although the findings suggest that predictive models 

using rsfMRI can identify changes caused by MS, due to the small sample size this 

requires further testing before any consideration of potential new markers are 

utilised clinically. The main limitations for this study are the small sample size and the 

use of LOO-CV, which gives limited generalisability to an external cohort. This process 

is also difficult to apply since rsfMRI is not currently used in routine clinical practice.  

In 2016 Eshaghi et al. used random-forest classification to differentiate MS from 

neuromyelitis optica (NMO) and HCs using brain grey matter imaging. (158) They 

included 90 patients from Iran (25 MS patients, 30 NMO patients, and 35 HCs) and 54 

patients from Italy (24 MS patients, 20 NMO patients, and 10 HCs). The volume, 

thickness and surface of 50 cortical grey matter regions were extracted from T1 and 

T2/FLAIR MRIs alongside volumes of the deep grey matter nuclei to generate 3 

random forest models to differentiate MS, NMO and HC groups. For validation they 

randomly assigned participants from both centres to either the training or test set, 

so that each set contained half of the participants. Initially they performed the 

training step and then the cross-validation on the remaining half (with 5,000 

repetitions). The accuracy was compared to the final clinical diagnosis. The model 

was able to differentiate MS patients from NMO with 74% accuracy. MS patients 

showed greater atrophy in deep grey matter. Using thalamic volume and white 

matter lesion volume, the accuracy of the model improved to 80% in distinguishing 

MS from NMO patients. The model achieved even higher accuracy when classifying 

MS versus HCs (92%) and NMO versus HCs (88%). This study highlighted that grey 

matter can be used as a possible biomarker to diagnose MS and differentiate it from 

NMO using ML and clinical MRI scans. It is important to note that the NMO group 

were significantly older than the MS group which may have impact on grey and white 

matter volumes. Although they used participants from two different centres with a 

more robust validation step, the final model was not tested against an unseen 

external cohort.  
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In 2018 Yoo et al. looked at combining myelin and T1-weighted (T1w) MRI features 

in the NAWM to differentiate pwMS from healthy subjects. (159) Using unsupervised 

deep learning techniques they extracted myelin maps from 3D image patches and 

corresponding T1w MRIs and developed a joint myelin-T1w feature representation. 

The resulting features were used to train a random forest classifier using 55 RRMS 

patients and 44 healthy subjects in an 11-fold cross-validation test. This method 

showed an accuracy of nearly 88% in distinguishing MS from HC, which is a higher 

accuracy compared to assessing T1w (70%) or myelin (84%) images alone. This 

highlighted a possibility in identifying MRI features in the NAWM that are more 

sensitive and specific to MS pathology. The main limitations of this study include the 

small sample size and the application of this model on patients with an already 

confirmed MS diagnosis. Since the model is based on white and grey matter changes, 

other neuro-inflammatory conditions may not be differentiated. Finally, the utility of 

this model is limited due to the lack of testing on an unseen cohort. 

Zurita et al. used SVM classifications as a ML technique to characterise RRMS patients 

from healthy controls using diffusion and functional MRI scans in 2018. (160) They 

used a novel method to find relevant brain areas and connectivity measures to 

identify pwMS by extracting fractional anisotropy maps, structural and functional 

connectivity from diffusion tensor imaging (DTI) and resting state functional MRI 

(rsfMRI) scans. These in turn created SVM classifiers from 104 RRMS patient and 46 

healthy controls. These classifiers were able to differentiate MS from healthy controls 

with an accuracy of 89%. Importantly, the brain areas that were most helpful to the 

classification were medial frontal cortices, lingual gyrus, right occipital and left frontal 

orbital. This method therefore provided better understanding of MS through 

identifying relevant brain regions with structural and functional connections. One of 

the main limitations of this study was including RRMS with low disability, median 

EDSS 1.5, and therefore the model couldn’t distinguish between those with higher 

EDSS. It is also important to note that DTI and rsfMRI scans are not routinely 

undertaken in clinical practice and it is therefore difficult to assess this model in an 

external unseen group.  
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In 2019 Sacca et al. evaluated ML techniques for diagnosing MS using a rsfMRI 

connectivity data. (161) SVM, Random Forest, Artificial Neural Network, K-nearest-

neighbour and Naïve-Bayes were the evaluated algorithms. The independent 

Component Analysis was used to look at the rsfMRI and select the relevant brain 

networks evaluated from 18 untreated RRMS patients and 19 matched for 

demographic variables healthy controls. Fifteen networks were detected and the 

mean signals were used for the classification. Feature selection tasks were used to 

choose the relevant variables from all the algorithms and identify the best 

discriminant network between MS and HCs. SVM and Random Forest were found to 

be the best approaches with similar accuracies of nearly 86%. This was a positive step 

towards the application of ML techniques using rsfMRI for clinical diagnosis of MS. 

The main limitations of this study include the small sample size and the use of rsfMRI, 

which is not available in routine clinical practice, and makes this method difficult to 

evaluate in an external independent cohort.  

Azarmi et al. also used task-related fMRI modality to investigate the brain’s neural 

substrate and compare them between MS and HCs using ML in 2019. (162).  Blood-

oxygen level dependent (BOLD) fMRI data during paced auditory serial addition test 

(PASAT) were collected for 20 participants (8 RRMS patients and 12 HCs). Granger 

causality analysis (GCA) was used in brain regions’ time series on all participants to 

create a brain network. A combination of Wilcoxon rank-sum test and Fisher score 

were used to classify MS from HCs using SVM (and LOOCV method) with an accuracy 

reaching 95%. This was the first study to show a significant difference in the global 

flow coefficient between MS patients and HCs in several brain regions including 

Hippocampus, Para Hippocampal, Thalamus, Superior temporal gyrus, Caudate, 

Medial Frontal Superior Gyrus, Fusiform, Pallidum, and many parts of Cerebellum. 

This experiment showed a promising ML classification technique in identifying MS 

patients using task-related fMRI. The main limitation of the study is the small sample 

size. It is also difficult to reproduce or implement considering fMRI and PASAT are not 

routinely performed in clinical practice. 
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Neeb et al. investigated the use of different multivariate supervised ML algorithms 

for MS diagnosis using quantitative MRI in 2019. (163) They included 52 MS patients 

and 45 HCs where all participants were scanned using a 3T scanner and the average 

of T1, T2*, total water content and myelin bound water content were evaluated in 

grey and white matter. T1 in grey matter and myelin water content in white matter 

were the best differentiating variables in the multivariate analysis, with cross 

validated multivariate model reaching accuracy of nearly 84%. However, the 

performance dropped to around 74% accuracy when artefacts were included. This 

demonstrated that quantitative MRI sequences can help in automated prediction of 

MS diagnosis. The limitations of this study included the use of a small sample size and 

the lack of external validation. Importantly, one of the potential confounding factors 

was the significant difference in male to female ratio between the MS and HC groups 

despite being age-matched.   
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Table 9: ML application in MS diagnosis using MRI  
Reference Population Markers Methods Accuracy 

1 Weygandt 
et al. 2011 

42 RRMS 
and 26 HCs 

Standard MRI 
brain (T2w) 

SVM Posterior parietal (96%),  
Cerebellar areas among normal 
appearing grey matter (84%) 

2 Richiardi et 
al. 2012 

22 MS and 
14 HCs 

rsfMRI – 
functional 
connections 

Discriminative 
connectivity 

Subcortical and temporal 
regions showed highest 
discriminative connectivity 
changes, 86% 

3 Eshaghi et 
al. 2016 

From Iran: 
25 MS, 30 
NMO and 
35 HCs. 
From Italy: 
24 MS, 20 
NMO, 10 
HCs 

MRI brain: 50 
cortical grey 
matter regions 
and volumes 
of the deep 
grey matter 
nuclei 
extracted 

Random forest MS Vs HC 92% 
MS Vs NMO – 80% using 
thalamic and white matter 
lesion volumes 

4 Yoo et al. 
2018 

55 RRMS 
and 44 HCs 

MRI brain - 
combining 
myelin and 
T1w MRI 
features in 
NAWM 

Random forest 88% 

5 Zurita et al. 
2018 

104 RRMS 
and 46 HCs 

Diffusion 
tensor imaging 
(DTI) and 
rsfMRI 

SVM 89%. 
Medial frontal cortices, lingual 
gyrus, right occipital and left 
frontal orbital – most helpful 

6 Sacca et al. 
2019 

18 RRMS 
and 19 HCs 

rsfMRI SVM, Random 
forest, Neural 
network, K-
nearest-
neighbour and 
Naïve-Bayes  

SVM & random forest – 86% 

7 Azarmi et 
al. 2019 

8 RRMS 
and 12 HCs 

task-related 
fMRI  

SVM 95% 

8 Neeb et al. 
2019 

52 MS and 
45 HCs 

Quantitative 
MRI; T1, T2*, 
myeling bound 
water content 
in grey and 
white matter. 

Multivariate 
supervised 
analysis 

T1 in grey and myelin water 
content in white matter were 
the best differentiating 
variables – 84% 

Abbreviations: ML = machine learning, MS = multiple sclerosis, MRI = magnetic resonance imaging, RRMS = relapsing 
remitting MS, HC = health control, T2w = T2 weighted, SVM = support vector machine, rsfMRI = resting state 
functional MRI, NMO = neuromyelitis optica, NAWM = normal appearing white matter. 
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2.3.1.2 Using optical coherence tomography (OCT) 

Retinal OCT is a non-invasive, rapid, objective and reproducible method used for 

measuring the retinal CNS layers, which appear to be affected in CNS diseases. Pérez 

del Palomar et al. used ML methods to detect damage in the retinal nerve fibre layer 

(RNFL) and the complex Ganglion cell Layer-Inner plexiform layer (GCL+) in people 

with MS in 2019. (164) The eyes of 80 age-matched RRMS patients and 180 HCs were 

assessed and decision trees, multilayer perceptron and SVM were the ML techniques 

used for the analysis of the RNFL and GCL+ thickness loss between the two groups. 

Decision trees provided the best prediction of MS (97%) using RNFL data in the 

macular area with 10-fold cross-validation. When a wider protocol was used in the 

extended area between the macula and papilla the accuracy reached 95%. Using SVM 

the accuracy of differentiating the two groups was only 91%. This study provided 

evidence that RNFL thickness measurements, particularly at the macula, can 

differentiate between MS and HCs using ML. One of the main limitations of this study 

was the inclusion of only Caucasian participants. Another limitation being the average 

disease duration of 7 years at assessment and the fact it is important to include those 

with early disease onset if OCT is to be used as part of the diagnostic tools. An EDSS 

score was not included in the analysis which could have a relation between MS 

disability and RNFL or GCL+ thickness.  

 

Cavaliere et al. also looked at the use of OCT in diagnosing MS through ML. (165) They 

performed OCT on 48 MS patients without a previous history of optic neuritis, and 48 

HCs, and the mean of the macular thickness and peripheral areas were calculated and 

compared between the two groups. A confusion matrix was obtained by SVM as an 

automatic classifier. The total Ganglion cell layer thickness was the most dominant 

variable, measured using the peripapillary area and macular retina thickness in the 

nasal quadrant of the outer and inner rings. After applying LOOCV, the results showed 

an accuracy of 91%. This study highlighted the possibility of identifying MS patients 

using OCT with ML techniques that can potentially learn the structural 

neurodegeneration in the retina. One limitation of this study is the inclusion of only 

20% of treatment-naïve patients, which could have a confounding effect on the level 
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on neurodegeneration in different parts of the retina. Another limitation is that the 

possible correlation between OCTs findings and MRI results were not studied. Finally, 

this was a single centre study and was not validated in an external unseen cohort. 

2.3.1.3 Using metabolic biomarkers 

In 2017 Lötsch et al. used unsupervised ML to analyse lipid markers, pursuing the 

theory of the most relevant markers that are associated with the MS diagnosis. (166) 

Three main classes of lipid markers were identified including ceramides, eicosanoids, 

and lyosophosphatidic acids. ML algorithms identified distinct ceramides serum 

concentration data structures that separate MS from healthy controls with an 

accuracy of 94%. This preliminary study provided a possible biomarker in MS. A 

couple of years later, Lötsch et al. used further unsupervised ML techniques including 

self-organising maps of neuronal networks to identify 43 serum concentrations of 

various lipid-markers from 102 MS patients and 301 HCs which provided a basis for a 

classifier (biomarker). (167) This led to the development of supervised ML algorithms 

using random forests and computed ABC analysis-based feature selection. Bayesian 

statistics, used in creating a marker to map diagnostic groups of MS versus HCs, 

identified a complex classifier comprising of eight serum lipid-biomarkers 

differentiating pwMS from HCs with an accuracy of 95% in training and test data. This 

was further supportive to the development of MS serum lipid biomarkers. It is 

important to note that in this study the use of contraceptives was not considered, 

which could be a confounding factor to lipid patterns. There was also a significant age 

difference in the MS group versus the HCs. Finally, the results also needed to be 

validated in an unseen dataset.  

 

Andersen et al. used blood metabolites to develop biomarkers in diagnosing MS in 

2019. (168) Age and body mass index matched 12 white, male, treatment-naïve MS 

patients and 13 white, male, healthy controls were included. Random forests as a 

supervised ML technique was used to evaluate 325 metabolites that are important 

for MS classification. Using logistic regression, they found 12 metabolites to be 

associated with the diagnosis of MS, of which only 6 achieved an accuracy (AUC) of 

80% or more including pyroglutamate, laurate, acylcarnitine C14:1, N-
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methylmaleimide, and 2 phosphatidylcholines. Using multivariable regression 

models, the associations of the top metabolites and the whole-genome expression 

data were investigated and interestingly, HLA-DRB1*15:01, which is the predominant 

MS genetic risk allele, was associated with one of the six important metabolites. This 

study identified important metabolic changes in serum associated with MS, having 

included genomic and genetic data.  This was one of the first studies looking at 

possibly developing serum metabolite biomarkers for the diagnosis of MS using ML. 

The main limitations of this study include the small sample size and although the 

cohort was homogenous for sex, BMI, disease duration and smoking status, there 

could be associations of these variables that were overlooked. The findings were also 

not tested on an external cohort.  

2.3.1.4 Using immunological markers 

In 2017 Ostmeyer et al. applied ML to B lymphocytes repertoires collected from CSF 

to help in differentiating RRMS from other immune-related neurological diseases 

(OND). (169) Applying the maximum likelihood optimisation techniques, B cell 

receptor heavy chain genes in each patient repertoire was used as a classifier to 

detect RRMS. Using LOOCV, the classifier had an accuracy of 87% in the training 

cohort (23 participants; 11 with RRMS and 12 with OND). However, using an unseen 

cohort (102 participants; 60 with RRMS and 42 with OND) from a separate study, the 

classifier accuracy was 72%. This was a novel technology which paved the way for 

statistical classifiers to map immune repertoire sequence data to a single diagnosis 

with a high degree of diagnostic capability. The main limitation of this study is the 

sample size and that when tested on a larger group of patients the accuracy falls. Not 

including healthy controls in this study can be an important limitation considering 

these findings may not be confined to neurological disease. Finally, due to the 

increasing sensitivity and specificity of clinical findings and radiological investigations, 

the use of lumbar puncture as an invasive procedure in the diagnosis of MS is no 

longer commonly used. 

In 2019 Goyal et al. used ML methods to differentiate pwMS versus HCs based on 

serum cytokines. (170) Serum levels of 8 cytokines (IL-1β, IL-2, IL-4, IL-8, IL-10, IL-13, 
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IFN-γ, and TNF-α) were analysed to predict the diagnosis of MS from two different 

studies of USA (859 MS patients and 128 HCs) and Russian (92 MS patients and 71 

HCs) populations. Further models were developed to classify RRMS from non-RRMS 

with the addition of further variables including age, gender, disease duration, EDSS 

and Multiple Sclerosis Severity Score (MSSS). After splitting the data into training 

(70%) and testing (30%), random forest was the best model (Out of the 4 different 

models used (SVM, decision tree, random forest, and neural networks)) for MS 

diagnosis with accuracy reaching 91% after performing 6-fold cross validation. 

However, the accuracy in differentiating RRMS from non-RRMS only reached 70%. 

This study highlighted the potential application of ML using serum cytokines levels as 

predictors of MS diagnosis. Although using different populations, splitting the data 

into training and testing data and performing cross validation are ways to reduce 

overfitting. The study remains suboptimal as the ideal test would be to apply this 

method on an external independent cohort. 

2.3.1.5 Using genetics 

In 2020 Ghafouri-Fard et al. used artificial neural network (ANN) to predict the risk of 

MS based on single nucleotide polymorphism (SNP) genotypes. (171) They evaluated 

genetic data of 401 MS patients and 390 age-/sex-matched HCs where 23 SNPs within 

11 genes were assessed in all participants. The DD genotype of the ACE rs1799752 

had the most prominent risk of MS, while the TT genotype of the GAS5 rs2067079 

was the most protective against MS. This ANN based model provided an accuracy of 

65% following 5-fold cross-validation, which is suboptimal, however this is a 

preliminary study creating ANN on genomic data to predict risk of MS using SNP 

genotypes. Although the diagnostic power may be improved with incorporation of 

further genomic data, it is important to test this model in an external unseen cohort.  

2.3.1.6 Using gut microbiota 

In 2018 Forbes et al. conducted a pilot experiment to explore the association of the 

gut microbiota with immune mediated inflammatory diseases (IMIDs) such as MS, 

ulcerative colitis (UC), Rheumatoid Arthritis (RA) and Crohn’s disease (CD). (172) They 
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used random forests method to identify common taxonomic biomarkers specific to 

IMIDs versus HCs. They found significantly higher abundances of unclassified 

Erysipelotrichaceae in MS and Intestinibacter in CD, whereas significantly lower 

abundances of Dialister were found in MS. The ML approach showed best accuracy 

in classifying disease versus HC for CD (AUC 0.95) and MS (AUC 0.94) followed by RA 

and UC. The use of ML here highlighted important differentially abundant taxa in 

different IMIDs which suggest there may be a common element to the aetiology of 

IMIDs. These different taxa amongst IMIDs may also serve as biomarkers for 

identifying and diagnosing MS and other IMIDs. The main limitation for this study is 

the small number of MS patients and the patients being unmatched for both age and 

sex with HCs.  It is also important to note that specific patient data was lacking, 

including the phenotype, activity and duration of a disease, lifestyles factors such as 

smoking and diet or the recent use of antibiotics and/or steroids, which are 

commonly prescribed to the IMIDs group. All these factors are important to consider 

in future studies as they may have a significant impact on the gut microbiota.  

In 2019 Bang et al. suggested that gut microbiome could be classified using ML in six 

diseases including MS, stroke, juvenile idiopathic arthritis, chronic fatigue syndrome, 

colorectal cancer and acquired immune deficiency syndrome. (173) They assessed 

the abundance of microorganisms at five taxonomy levels as features in 696 samples 

collected from 1079 participants (29 of which had MS) in different studies, to 

evaluate different prediction models. The models evaluated included SVM, K nearest 

neighbour (KNN), logistic model tree (LMT) and LogitBoost. They found that using the 

average accuracies of all four models, the highest classification performance at five 

taxonomy levels was observed at the genus level (90%). Using 10-fold cross-

validation, the performance of classifiers at the genus level reached best accuracy 

using LogitBoost (94%) and lowest accuracy using KNN (82%). This study showed that 

selected gut microbiome features could be used to differentiate and diagnose various 

diseases, including MS, using ML. The main limitations in this study include the small 

number of MS patients tested and the lack of further validation using external 

independent cohorts. Obtaining gut microbiome is not performed routinely in clinical 
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settings and would make the evaluation of this challenging which is an additional 

limitation. 

2.3.1.7 Using electroencephalogram (EEG) 

In 2019 Ahmadi et al. used EEG signals to diagnose MS through phase to amplitude 

coupling in covert visual attention. (174) They used ML methods to detect whether 

the signals collected indicated MS or not in 5 MS patients (average disease duration 

of 2.9 years), and 7 healthy controls matched for age and educational level. T-test 

and Bhattacharyya distance criteria were used to select the relevant and efficient 

features. LOOCV was used to assess the model validity. Based on phase to amplitude 

features, this system achieved an accuracy of 91%. This study showed a promising 

result in ML application using EEG signals during attentional tasks to diagnose MS at 

an early stage. The main limitations of this study include the sample size and the lack 

of validation in an external unseen cohort. They also did not include any clinical and 

radiological features that may be of importance to assess disability and cognition 

level. 

The use of markers other than MRI in MS diagnosis is summarised in Table 10: ML 

application in MS diagnosis using markers other than MRI. It is interesting to note 

that there has been a number of studies applying ML in MS diagnosis using different 

populations, markers and methods of analysis. Many studies have used MRI 

sequences and tests that are not routinely available in clinical practice and are 

expensive to perform, which makes further evaluation difficult. It is clear that most 

studies have used a limited number of participants from a single population and used 

LOOCV as a method of cross-validation due to the difficulty of assessing methods in 

external independent cohorts. Therefore, using routinely applied imaging and 

laboratory tests in the diagnosis of MS through ML and validated in unseen 

population continues to be an unmet need. 
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Table 10: ML application in MS diagnosis using markers other than MRI 

  Reference Population Markers Methods Accuracy 

1 Lötsch et 
al. 2017 

102 MS and 301 HCs Lipid markers: 
ceramides, 
eicosanoids, and 
lyosophosphatidic 
acids 

Unsupervised 
method 

94% 

2 Ostmeyer 
et al. 2017 

Training: 11 RRMS 
and 12 OND. 
Testing: 60 RRMS 
and 42 OND 

B lymphocytes 
genetic repertoires  

Maximum likelihood 
optimisation  

72% 

3 Forbes et 
al. 2018 

19 MS, 19 UC, 21 RA, 
20 CD and 23 HCs 

Gut microbiota  Random forest MS Vs HCs 94% 

4 Bang et al. 
2019 

MS and 6 other 
diseases  

Gut microbiota: five 
taxonomy levels  

LogitBoost 
SVM 
Logistic model tree 
K nearest neighbour 

94% 
92% 
92% 
82% 

5 Ahmadi et 
al. 2019 

MS and non-MS EEG Extreme machine 
learning 

91% 

6 Lötsch et 
al. 2019 

102 MS and 301 HCs Lipid markers: 8 
serum lipid-
biomarkers  

Unsupervised and 
supervised, through 
Bayesian statistics 

95% 

7 Pérez del 
Palomar et 
al. 2019 

80 RRMS and 180 
HCs 

OCT: RNFL and GCL+ Decision trees, 
multilayer 
perceptron and SVM  

Macular area – 
97% 
Macular + Papilla 
– 95% 

8 Cavaliere 
et al. 2019 

48 MS and 48 HCs OCT: the mean of 
the macular 
thickness and 
peripheral areas  

SVM 91% 

9 Andersen 
et al. 2019 

12 MS and 13 HCs Blood-based 
metabolites 

Supervised ML 6 metabolites 
achieved 
accuracy of 80% 

10 Goyal et al. 
2019 

From USA: 859 MS 
and 128 HCs 
From Russia: 92 MS, 
71 HCs 

Serum levels of 8 
cytokines (IL-1β, IL-
2, IL-4, IL-8, IL-10, IL-
13, IFN-γ, and TNF-
α) 

SVM, decision tree, 
random forest, and 
neural networks 

MS vs HCs, using 
RF -> 91% 
RRMS vs. non-
RRMS, using RF -> 
70% 

11 Ghafouri-
Fard et al. 
2020 

401 MS and 390 HCs SNP genotype Neural network 65% 

Abbreviations: ML = machine learning, MS = multiple sclerosis, MRI = magnetic resonance imaging, RRMS = relapsing remitting 
MS, HC = health control, OND = other immune-related neurological diseases, UC = ulcerative colitis, RA = rheumatoid arthritis, 
CD = crohn’s disease, SVM = support vector machine, EEG = electroencephalogram, RNFL = retinal nerve fibre layer, GCL = 
ganglion cell layer, OCT = Optical coherence tomography, IL = Interleukins, IFN-γ = Interferon gamma, TNF-α = Tumour necrosis 
factor α, RF = random forest, SNP = Single nucleotide polymorphisms.  
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2.3.2 ML application in MS classification: 

Having reviewed the literature it is clear that ML has been used to classify MS into 

different groups and stages. These include radiologically isolated syndrome (RIS), CIS 

and RRMS, using MRI and clinical parameters. These studies have shown accuracies 

ranging between 69 – 96%, which indicate that different ML techniques in different 

studies using different variables can impact the level of accuracy. This highlights that 

ML algorithms can achieve a high level of accuracy in differentiating subtypes of MS, 

which can potentially improve patient stratification for future studies looking into 

treatment response to a variety of therapies. The following section describes studies 

of ML applications in classifying pwMS. 

2.3.2.1 Using MRI 

Studies have demonstrated the use of ML application in MS classification using MRI 

since 2012. These studies are summarised in Table 11: ML application in MS 

classification using MRI. 

Approximately ten years ago Bendfeldt et al. used ML techniques to differentiate 

between different groups of MS patients using grey matter analysis. (175) They used 

multivariate SVM analysis to separate grey matter segmentations using 3D-heavily 

T1w gradient echo images (magnetization-prepared rapid gradient echo ‘MP-RAGE’) 

and Transaxial contiguous 3-mm dual-echo T2w images using turbo spin echo in age- 

and sex-matched groups of MS patients. The groups were divided into early (n=17) 

or late (n=17) onset MS, low (n=20) or high (n=20) white matter lesion load, and 

benign (n=13) or non-benign (n=13) MS. This technique showed promising results in 

detecting MS groups with sensitivity and specificity of 85%, 83%, and 77% 

respectively after LOOCV. This was one of the first studies into ML application to 

explore spatial patterns of grey matter segmentations in classifying MS patients, 

which can potentially be of use in clinical practice. The main limitations include 

sample size and the lack of validation in an external unseen cohort. A further 

limitation is the use of non-conventional MRI sequences which would make it difficult 

to replicate in clinical practice.  
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In 2014 Crimi et al. proposed a novel characterisation of CIS patients using MRI lesion 

patterns. (176) They prospectively included 25 CIS patients from multiple centres in 

France with 3T MRI scans performed within 3 months of disease onset and including 

T1w, T2w, FLAIR, and pre and post Gadolinium injection sequences. The spatio-

temporal lesion patterns identified were used to separate patients in different groups 

which could potentially undergo a more severe course. An unsupervised clustering 

algorithm was used and highlighted 3 statistically significant clusters of different 

lesion patterns at baseline. These clusters also correlated with chronic hypointense 

lesion volumes by follow up with an R2 score (a measure of the goodness of fit for the 

regression model) of 0.90 after LOOCV. This ML methodology helped in classifying 

MS patients and may lead to better prognostic accuracy at the onset of MS using 

largely routine clinical MRI sequences. The main limitations of this study were the 

small sample size and the lack of external validation. It is also worth noting that none 

of the recruited patients received steroids and the mean EDSS was 1.7 at baseline 

which indicates a cohort with minimal disability and possibly not reflecting those 

presenting with spinal cord or brainstem CIS.  

In 2015 Weygandt et al. used conventional MRI based ML algorithms to detect early 

(<12 years) and late (>/= 12 years) onset paediatric MS (EOPMS and LOPMS). (177) 

They used classification techniques to grey and white matter tissue probability 

parameters of small brain areas taken from T2w MRI scans of 8 EOPMS, 12 LOPMS 

and 20 HCs. The paediatric MS group was age-, lesion load- and disease duration-

matched to the HCs. It was identified that white matter areas containing lesions 

differentiated paediatric MS patients from HCs with an accuracy reaching 87%. The 

prefrontal cortex was found to be specific for EOPMS and had the maximal diagnostic 

accuracy (77%) after LOOCV using SVM. This study showed that conventional MRI 

contains good diagnostic features and that grey matter involvement can be used to 

identify pathognomonic processes specific for EOPMS. The main limitation to this 

study was the small sample size, which is expected considering the low prevalence of 

paediatric MS. It is also important to note that there was a significant difference in 

age between the paediatric MS subgroups which could have a significant impact 

when using grey and white matter analysis.  
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In 2016 Kocevar et al. used ML algorithms in combination with graph-derived metrics 

to differentiate MS clinical profiles. (178) Twelve CIS, 24 RRMS, 24 SPMS, 17 PPMS 

and 26 age- and sex-matched HCs had 1.5T MRI scans with T1 and diffusion tensor 

imaging (DTI) sequences. These sequences were used to obtain structural brain 

connectivity metrics automatically followed by the use of SVM with radical basic 

function kernel to classify patients. This method showed variable accuracies after 10-

fold cross-validation when comparing different groups using binary classification 

including CIS versus HC (92%), CIS versus RRMS (92%) and RRMS versus PPMS (75%). 

However, the accuracy dropped (70%) when comparing various subtypes (CIS-RRMS-

SPMS). This study showed the possibility of ML to classify MS clinical profiles using 

T1w and DTI sequences and automatic structural brain connectivity analysis. The 

main limitations to this study include the small sample size in individual groups and 

the use of 1.5T MRI scans, which is of less details, and DTI sequences, which are not 

currently performed in routine clinical practice.   

Muthuraman et al. used brain structural network characteristics to differentiate CIS 

from early RRMS using ML. (179) They identified grey and white matter structural 

networks in 53 patients (20 CIS and 33 RRMS) and 40 age-matched HCs, using 3T MRI 

with 3D T1-w MP-RAGE, 3D T2 FLAIR, and DTI sequences. They applied probabilistic 

tractography and fractional anisotropy maps for white matter and cortical thickness 

correlation analysis for grey matter. This generated structural connectivity patterns 

and a network topology analysis was obtained to characterise the network at 

different community levels (modularity, clustering coefficient, global, and local 

efficiencies). SVM was used to differentiate between CIS and early RRMS 

automatically and achieved 97% accuracy using clustering coefficient as a classifier 

obtained from grey matter. This study demonstrated a ML technique that may help 

in the early diagnosis of RRMS and may be used to complement the dissemination in 

time criteria in clinical practice. The main limitations in this study include the small 

sample size and the fact that RRMS patients were defined according to the 2010 

McDonald criteria, which has since been revised. When using the revised 2017 

McDonald criteria many of the patients diagnosed with CIS could have been 

diagnosed as RRMS instead. A further limitation is that DTI and MP-RAGE sequences 
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are not performed routinely in clinical practice and are therefore difficult to validate 

externally and subsequently include in the assessment of new patients.  

In 2017 Zhong et al. combined structural and functional patterns to classify pwMS 

according to upper limb motor disability using ML algorithms. (180) Seventy-one age- 

and sex-matched participants (26 motor function preserved (MP), 25 motor function 

impaired (MI) and 21 HCs) were included and had 3T MRI with T1w sequences and 

rsfMRI. Using SVM, discriminant functions indicated regions where grey matter 

metrics and inter-regional functional connections were identified. The model was 

able to correctly differentiate and classify upper limb MP and MI. When using grey 

matter metrics and functional connections measurements the classifier yielded the 

best accuracy (85%) following LOOCV. This was the first study to identify specific 

neural substrates which are essential to preserve upper motor function in pwMS, 

using ML techniques through combining structural and functional features. The main 

limitation of this study is the relatively small sample size. It is also important to note 

that a proportion of patients were taking a range of DMTs with various efficacy which 

could have influenced the pattern of structure and functional connectivity observed.  

Ion-Märgineanu et al. used ML techniques to classify the course of MS in combining 

clinical data with lesion load and magnetic resonance metabolic features. (181) 

Longitudinal data was obtained from 105 participants (12 CIS, 30 RRMS, 28 SPMS, 17 

PPMS and 18 HCs) including clinical measures (Age, EDSS and disease duration) and 

conventional and spectroscopic MRI scans. The spectroscopic imaging provided the 

metabolites concentrations data including N-acetyl-aspartate (NAA), Choline (Cho), 

and Creatine (Cre). They analysed 3 features for each metabolic grid by averaging 

their ratios over good quality voxels. Linear mixed-effects models were generated to 

establish differences amongst MS groups. Combining clinical features, lesion load and 

metabolic data, they found significant differences between MS clinical types using 4 

different variables: Lesion Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios, through 

SVM. Using clinical and lesion load gave an accuracy of 71-72% when comparing CIS 

versus RRMS and CIS versus RRMS and SPMS. Better classification was achieved using 

clinical and metabolic ratios when comparing RRMS versus PPMS (85%). The highest 
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accuracy was achieved using clinical, metabolic ratios and lesion load when 

comparing RRMS versus SPMS (87%). This study was the first to describe the use of 

clinical data in combination with MRI lesion load and spectroscopic metabolic 

features to improve discrimination between RRMS and PMS through ML. The main 

limitations include a small sample size and not taking into account the use of DMTs 

in the cohort, which could have an impact on results including metabolic rations. It is 

also difficult to standardise metabolic quantification using MR spectroscopy, as this 

requires measuring of T1 and T2 relaxation of water for each patient, which would 

not be possible in clinical practice.  

In 2019 Mato-Abad et al. used ML to classify RIS and CIS using multimodal 3T MRI 

scans with diffusion weighted images to combine cortical thickness, cortical and 

subcortical grey matter volume and white matter integrity. (182) Seventeen RIS and 

17 CIS patients were included. The Naïve Bayes model, using 3 features: the left 

rostral middle frontal gyrus volume and the fractional anisotropy values in both the 

right amygdala and right lingual gyrus, achieved the best accuracy (78%) in detecting 

RIS and CIS. This study highlighted the potential use of ML using MRI to detect early 

stages of MS; RIS and CIS. The main limitations of this study include the small sample 

size and the lack of validation in a larger independent cohort. 

In 2019 Gonzalez-Campo et al. used ML to differentiate MS patients with fatigue (F-

MS) from those without fatigue (nF-MS) or HCs who were age-, gender- and 

education-matched. (183) They included 49 participants (27 MS patients and 22 HCs), 

who were assessed for fatigue levels using Modified Fatigue Impact Scale (MFIS) and 

brain structural and functional connectivity profiles using 3D MRI and rsfMRI. Only F-

MS patients showed decreased interoceptive accuracy with decreased grey matter 

volume and increased functional connectivity in core interoceptive regions, the 

insula, and the anterior cingulate cortex. These alterations were positively associated 

with fatigue. Using supervised ML models with SVM, classification between HCs and 

F-MS patients were achieved with high accuracy (92%). However, the accuracy 

dropped (69%) when classifying nF-MS and F-MS groups. This study showed a new 

evidence that fatigue is a potential signature of interoceptive disruptions in MS. The 
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main limitations for this study include a small sample size and the use of self-reported 

fatigue scales, which may not be as accurate as other more objective cognitive or 

motor scales. 

  



76 
 

Table 11: ML application in MS classification using MRI 

  Reference Population Markers Methods Accuracy 

1 Bendfeldt et 
al. 2012 

17 Early Vs 17 Late onset 
MS 
20 High Vs 20 low WM 
lesion load MS 
13 Benign Vs 13 non-
benign MS 

MRI: GM SVM 85% 
83% 
77% 

2 Crimi et al. 
2014 

25 CIS: severe course 
pattern 

MRI: spatio-
temporal lesion 
patterns 

Unsupervised 
clustering 

90% 

3 Weygandt et 
al. 2015 

8 Early Vs 12 Late onset 
paediatric MS Vs 20 HCs 

MRI: GM and 
WM  

SVM Prefrontal cortex specific 
for EOPMS 77% 

4 Kocevar et 
al. 2016 

12 CIS, 24 RRMS, 24 
SPMS, 17 PPMS, 26 HCs 

MRI: T1w + DTI SVM CIS Vs HC 92%,  
CIS Vs RRMS 92%, 
RRMS Vs PPMS 75%,  
CIS Vs RRMS Vs SPMS 70% 

5 Muthuraman 
et al. 2016 

20 CIS Vs 33 RRMS MRI: DTI  SVM 97% 

6 Zhong et al. 
2017 

26 motor function 
preserved Vs 25 motor 
function impaired Vs 21 
HCs 

T1w + rsfMRI SVM 85% 

7 Ion-
Märgineanu 
et al. 2017 

12 CIS, 30 RRMS, 28 
SPMS, 17 PPMS, 18 HCs 

MRI 
spectroscopy 
 

 

SVM Clinical + lesion loads: CIS 
Vs RRMS and CIS Vs RRMS 
and SPMS 72%  
Clinical + metabolic ratios:  
RRMS Vs PPMS 85%.  
Clinical + metabolic ratios + 
lesion loads: RRMS Vs SPMS 
87%  

8 Mato-Abad 
et al. 2019 

17 RIS Vs 17 CIS MRI: cortical 
thickness, GM 
volume and WM 
integrity 

Naïve Bayes 78% 

9 Gonzalez-
Campo et al. 
2019 

27 MS (F-MS Vs nF-MS) 
or 22 HCs 

rsfMRI SVM F-MS Vs HCs 92% 
F-MS Vs nF-MS 69% 

Abbreviations: ML = machine learning, MS = multiple sclerosis, MRI = magnetic resonance imaging, RRMS = relapsing remitting MS, 
HC = health control, GM = grey matter, WM = white matter, SVM = support vector machine, CIS = clinically isolated syndrome, 
EOPMS = early onset paediatric MS, SPMS = secondary progressive MS, PPMS = primary progressive MS, T1w = T1-weighted, DTI = 
diffusion tensor imaging, rsfMRI = resting state functional MRI, RIS = radiologically isolated syndrome, F-MS = MS patients with 
fatigue, nF-MS = MS patients without fatigue. 
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2.3.2.2 Using clinical scales 

In 2015 Fiorini et al. used ML to detect 5 different courses of MS including RRMS, 

PPMS, SPMS, progressive relapsing and benign MS from inexpensive and non-

invasive measures such as clinical scales and patient-reported outcomes. (184) The 

data was collected from 457 MS patients (170 RRMS, 205 SPMS, 68 PPMS, 8 

progressive relapsing MS, and 6 benign MS) and 91 variables were described 

including fatigue, mobility, emotional status, cognition, bladder incontinence and 

quality of life. The initial data exploration stage, using principle component analysis, 

found that RRMS patients can be identified and separated from the other clinical 

courses. Supervised ML techniques, using linear discriminant analysis, were then 

used to complete feature selection and course classification with modest accuracy of 

78%. This was the first study to use clinical scales and patient-reported outcomes to 

predict RRMS from other courses of MS through ML. The main limitations of this 

study include the unbalanced data with the majority of patients have RRMS and the 

lack of clinical data including EDSS that could be of importance in differentiating MS 

patients of different types or stage. 

2.3.2.3 Using genetics  

In 2018 Lopez et al. used unsupervised ML technique to identify MS patients’ clusters 

using genomic makeup without providing input parameters a priori. (185) They 

included 191 patients with MS with over 25,482 single nucleotide polymorphisms 

(SNPs). This method was able to group 96.3% of patients in the same clusters when 

both the complete dataset and the different data subsets were used, with accuracy 

reaching 96% after a 10-fold cross-validation. The identification of distinct genetic 

subtypes of patients shows the potential use of this method to lead personalised 

medicine of heterogenous conditions with heritable components, such as MS. This 

finding is important to explore and validate in a much larger, independent dataset.  

Once again, this section has demonstrated that routine clinical data used in the field 

of ML to classify MS has been limited. Within these limited studies, most have 

focused on one aspect, such as MRI, clinical characteristics, or genetics, rather than 
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a combination or a holistic approach. Most studies have lacked the inclusion of large 

cohorts from different populations, e.g. participants from multiple centres, and 

validation in an external and independent dataset. This is ultimately much needed 

and would be more reliable in the field of ML when identifying clinically meaningful 

outcomes in the classification and management of MS. 

 

2.3.3 ML application in MS prediction 

The application of ML in MS prediction has been investigated for nearly 15 years. 

Most studies have focused on two aspects including predicting the possible 

progression of disability and the response to the rapidly evolving therapies in order 

to help clinicians to choose the best treatment for MS patients. In both cases, ML 

algorithms have shown variable accuracies across different studies. For predicting 

disease progression, ML methods have reported accuracies ranging 61-92%, whereas 

ML methods in predicting treatment response have reported accuracies ranging 68-

89%. The following are summaries of the reported studies in the literature, as 

demonstrated in Table 12: ML application in MS prediction. 

2.3.3.1 Predicting conversion of CIS to MS 

In 2008 Corvol et al. used supervised ML to build predictive models of CIS conversion 

to MS using microarrays studying gene expression in naïve CD4+ T cells. (186) 

Including 66 participants (37 CIS patients and 29 HCs matched for age and gender), 

they generated 1,718 genes which showed clear segregation between CIS and HCs 

samples, using a hierarchical clustering with 99.8% accuracy. Furthermore, 975 genes 

showed expressions that differentiated CIS patients into 4 subgroups with >80% 

accuracy using a supervised ML algorithm, Integrated Bayesian Inference System. 

One subset showed 108 genes that further differentiated CIS patients with 92% of 

them converted to MS. The robustness of this group over time was measured using 

SVM with 10-fold LOOCV, with 100% accuracy at baseline. However, this became a 

less powerful predictor after 12 months with 86% accuracy. This is one of the first 

studies to show that ML methods can potentially be used to classify CIS patients into 
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different groups and differentiate them from HCs. The main limitations for this study 

include a limited sample size and the lack of clinical information, such as the OCBs 

status which are important in the diagnosis of MS for CIS patients, and radiological 

data.  

No further studies were noted until 2014 when Wottschel et al. showed that ML 

algorithms can predict a second relapse leading to the diagnosis of MS in CIS patients. 

(187) They used conventional MRI (T2w and proton density (PD)) features (number 

of lesions) and clinical characteristics (gender, age, EDSS, clinical phenotype at onset) 

of 74 CIS patients collected retrospectively. Using SVM they predicted conversion to 

MS with 71% accuracy at 1 year and 68% accuracy at 3 years after LOOCV. It was 

noted that the use of a combination of features always predicted outcome better 

than any single feature.  This study highlighted that ML has the potential to predict 

the conversion of CIS to MS in individuals using baseline clinical features and 

conventional MRI scans and can therefore be potentially used to support clinical 

practice. The main limitations for this study include a small sample size and the lack 

of additional radiological (such as brain volumes) and clinical (such as the presence 

of OCBs) features. It is also important to validate these results in an independent and 

larger multicentre cohort.  

In 2019 Zhang et al. predicted the conversion of CIS to MS using ML methods based 

on baseline MRI images (3-D FLAIR and T1w). (188) They evaluated 84 CIS patients, 

from a prospective observational single centre cohort, with a follow up of at least 3 

years. They developed brain lesion masks by a computer assisted manual 

segmentation and produced automatic segmentations using Lesion Segmentation 

Toolbox for SPM (Statistical Parametric Mapping) to assess different segmentation 

methods. They predicted the conversion of CIS to MS, or non-conversion, using 

random forest methods with accuracy reaching 85% at best, after 3-fold cross-

validation, based on shape features produced by the segmentation masks. This study 

showed that shape parameters of lesions can predict the conversion of CIS to MS at 

an early stage with good accuracy, which can be of significant importance in starting 

early treatment. The main limitations to this study include a small sample size and 
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the fact that clinical features such as demographics and EDSS were not included in 

the predicting models, which would be of importance in clinical practice. It is also 

worth mentioning that basing prediction models on lesion shape can be difficult in 

2D images in case of small MS lesions. 

Wottschel et al. used another ML technique in 2019 to predict relapses in the short 

term for CIS patients, and converting to MS, using MRI brain at baseline with T1w 

sequences. (189) They evaluated 400 CIS patients retrospectively, from 6 MAGNIMS 

(Magnetic Resonance Imaging in MS) centres, with clinical (age, sex, EDSS, clinical 

phenotype of CIS onset) and brain MRI characteristics at baseline. For each patient 

they assessed MRI brain features including grey matter probability, white matter 

lesion load, cortical thickness, and volume of specific cortical and white matter 

regions. They used recursive feature elimination and weight averaging with SVM to 

distinguish CIS converters versus non-converters at one year follow up. SVM showed 

that the most relevant MRI features in predicting a further relapse were white matter 

lesions, grey matter probability in the thalamus and the precuneus or cortical 

thickness in the cuneus and inferior temporal gyrus. The model’s accuracy in 

distinguishing both groups across centres using LOOCV varied between 73-93% 

depending on the site being assessed.  The higher accuracy sites were associated with 

a lower number of data sets, which possibly indicates overfitting or selection bias. 

Understandably, due to the heterogeneity of the data, assessing all centres together 

provided a lower accuracy of 70.8%. The main limitations of this study include the 

retrospective nature of the data collected and the lack of imaging harmonisation. The 

accuracy of this model may improve with the addition of other factors such as 

genetics and environmental factors which could be informative for individualised 

prognosis.  

2.3.3.2 Predicting conversion of RRMS to SPMS 

There have not been many ML studies in this field, however in 2020 Seccia et al. 

assessed the impact of routine clinical records using ML methods in predicting the 

conversion of RRMS to SPMS. (190) They interrogated 1624 outpatients’ clinical 

records, including 207 SPMS patients, and divided predictors at 6, 12 and 24 months. 
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They compared 4 ML methods (SVM, RF, K-Nearest Neighbours and AdaBoost) in the 

visit-oriented setting or a Recurrent Neural Network model for history-oriented 

setting. The classifiers were assessed by Recall (sensitivity) and Precision (positive 

predictive value). The Recall of the visit-oriented setting reached 70-100%, whereas 

the Precision was low (5-10%). In comparison the history-oriented setting reached 

Recall of 67% and Precision of 42% at 2 years. For the first time this study showed 

that clinical data can be used to predict the course of MS which could be useful to 

guide therapy for those at increased risk of conversion. The main limitation of this 

study is the unbalanced data with a small number of patients converting to SPMS in 

the history-oriented setting, which may have compromised the performance of the 

models. It is also important to mention that such findings would need to be tested 

and compared in an external independent large cohort.  

2.3.3.3 Predicting disability and progression  

This section of ML has been of interest over the last five years due to its importance 

of identifying patients at high risk of increased disability, which could potentially be 

targeted for future therapeutic trials.   

In 2017 Zhao et al. used ML algorithms to predict disability progression in MS 

patients. (191) They analysed 1693 patients from the CLIMB study and classified 

patients as disease progression with increased EDSS by ≥1.5 or not at five years follow 

up after baseline assessment. They collected data, including demographics (age, sex, 

ethnicity, family history of MS, smoking), clinical (EDSS) and MRI findings (whole brain 

T2 lesion volume (T2LV) and normalised whole brain volume), at year one and two. 

They subsequently applied SVM and logistic regression to predict the EDSS score at 

five years. They found that, using SVM, baseline information alone had little 

predictive value. However, adding data at one year improved the overall sensitivity 

(62%) and specificity (65%) in predicting EDSS progressing patients. Further 

improvement was noticed with the addition of MRI data at one year with sensitivity 

(71%) and specificity (68%) after 10-fold cross-validation. SVM performed better than 

logistic regression in most cases. Family history of MS, ethnicity and brain 

parenchymal fraction had the highest prediction for the non-progressing group. 
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Whereas T2LV were the highest predictor of EDSS worsening. This study highlighted 

a promising step towards the use of ML in predicting MS disease course using clinical 

and imaging data which can help in potentially selecting more aggressive therapies 

for the most suitable patients at an early stage. One of the limitations of this study 

includes the use of EDSS as a scale of progression which is less sensitive to upper 

limbs function and cognitive decline. Another limitation includes not using DMTs as 

predictors which could have effects on disease course. 

In 2018 Kiiski et al. used ML to predict cognitive functioning and processing speed at 

the individual level. (192) They used EEG over a 2 year follow up period in 35 MS 

patients versus 43 age-matched HCs. Recording event-related potentials (ERPs) using 

EEG and a neuropsychological battery at different intervals gave an objective 

assessment of cognitive function and processing speed. They used penalised linear 

regression modelling and internal 10-fold cross-validation using all spatio-temporal 

ERP to predict cognitive functioning and information processing speed at baseline 

and a year later. They compared EEG and non-EEG models where non-EEG variables 

included age, handedness, occupational status and years of education. They found 

that ERPs during visual oddball tasks predicted cognitive functioning and information 

processing speed best (EEG only model r = 0.27, EEG + non-EEG model r = 0.37). 

However, ERPs during auditory tasks were not predictive. This study showed that 

EEG, although not commonly used in the field of MS, and ML show an exciting outlook 

in predicting outcomes, which can be of use in individualised management plans 

considering early cognitive impairment is associated with poorer outcomes. (193) 

The main limitations of this study include the small sample size and the lack of 

external validation.  

In 2019 Law et al. used ML to predict short term disability progression in SPMS 

patients. (194) They evaluated 485 SPMS patients as progressors if a 6-month 

sustained EDSS worsening was noted. They included the following features; age, sex, 

disease duration, T2 lesion volume and multiple sclerosis functional composite 

component scores. They built models using decision tree (DT) and compared to 

logistic regression and SVM for predicting disease disability progression. DT was 
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found to be the best model for prediction with accuracy reaching 62% after internal 

10-fold cross-validation. Although showing poor level of accuracy, this was the first 

study to use ML techniques to predict SPMS patients with highest risk of short-term 

progression and can potentially help SPMS investigators to select such cohorts for 

potential therapies in the future. One of the main limitations of this study includes 

the imbalance between those who progressed versus those who didn’t. The other 

limitation includes the use of EDSS as a measure of progression which fails to account 

for cognition. 

In 2020 a genetic model of MS severity to predict future disability was first used by 

Jackson et al. (195) They evaluated genetic modifiers of MS severity in training 

(n=205) and validation (n=94) cohorts acquired prospectively. They assessed 113 

genetic variants related to MS severity and used an MS disease severity scale (MS-

DSS). Random forest was used as a ML method to formulate a single genetic model 

of MS severity (GeM-MSS). They found that GeM-MSS correlated significantly with 

MS-DSS (r = 0.214; p = 0.043) when assessed in a validation group, although of much 

lower strength compared to the training cohort (r = 0.969, p = 8.76 x 10-125), that was 

not involved in the modelling phase. This was the first independently validated study 

to apply ML in predicting MS severity and future disability using genetics. This has the 

potential to find therapeutic targets for stopping disability progression in MS. 

However, it would be essential to validate this method in a much larger cohort with 

more clinical dataset, such as EDSS. 

Using motor evoked potential (MEP) time series, Yperman et al. predicted MS 

progression through ML. (196) They included 419 MS patients and generated a total 

of 6219 MEP visits. They used random forest (RF) and logistic regression classifiers to 

predict disease progression at 2 years. RF achieved the best performance in 

predicting disease progression with accuracy reaching 75%.  This study highlighted 

the use of MEP time series in predicting MS disability progression through ML. 

However, this requires further validation in larger and multi-centre cohorts in the 

future. The prediction performance may also improve when adding further features 

such as MRI metrics and the use of DMTs which are important in clinical practice. 
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Meanwhile, Roca et al. built a ML algorithm that predicts EDSS score in pwMS at 2 

years based on age, sex and FLAIR MRI scans only. (197) They combined convolutional 

neural network (CNN) and classical ML predictors based on random forest regressors 

and manifold learning trained using the location of lesion load in relation to white 

matter tracts. They included 971 MS patients for the training dataset (including 10% 

used for validation) and tested 475 patients (with no known EDSS score). The 

resulting algorithm predicted EDSS score with a mean square error of 2.2 in the 

validation cohort and a mean square error of 3 (mean EDSS error = 1.7) in the test 

cohort. This method gave promising results in predicting EDSS at 2 years using MRI 

FLAIR and basic demographics. This however should be further validated in a larger 

external test group as it has the potential to be used for future prediction of disability 

and subsequently DMT evaluation.  
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Table 12: ML application in MS prediction  
Reference Population Prediction Markers Methods Accuracy 

1 Corvol et 
al. 2008 

37 CIS + 29 
HCs 

CIS -> MS gene expression in 
naïve CD4+ T cells 

Hierarchical 
clustering and 
Bayesian statistics 

92% 

2 Wottschel 
et al. 
2014 

74 CIS CIS -> MS MRI + clinical + 
sociodemographic 
features 

SVM 71% & 68% at 1 & 
3 years 
respectively 

3 Zhao et 
al. 2017 

1693 MS EDSS 
progression 
at 5 years 

Demographics, clinical 
and MRI measures 

SVM 86% 

4 Kiiski et 
al. 2018 

35 MS + 43 
HCs 

Cognitive 
functioning + 
processing 
speed 

EEG and a 
neuropsychological 
battery over a 2 year 
follow up  

Linear regression EEG only 
model r = 0.27. 
EEG + non-EEG 
model r = 0.37 

5 Zhang et 
al. 2019 

84 CIS CIS -> MS MRI (characteristics of 
lesions) 

Lesion 
Segmentation 
Toolbox for SPM 

85% 

6 Wottschel 
et al. 
2019 

400 CIS CIS -> MS MRI (WM lesion load, 
cortical thickness and 
volume of cortical and 
WM regions) 

SVM 73-93% 

7 Law et al. 
2019 

485 SPMS EDSS 
progression 
at 6 months 

age, sex, disease 
duration, T2 lesion 
volume and MS 
functional composite 
component scores 

Decision tree, 
logistic 
regression, SVM 

DT - 62% 

8 Seccia et 
al. 2020 

207 SPMS RRMS -> 
SPMS 

MRI + demographic, 
clinical, and 
treatments 

SVM, Random 
forest, K-Nearest 
Neighbours, 
AdaBoost, and 
Neural network 

History-oriented 
setting PPV 42% 
at 2 years 

9 Jackson 
et al. 
2020 

299 MS MS disability 
progression  

Genetic modifiers of 
MS severity: 113 
genetic variants  

Random forest Genetic model 
correlates with 
MS-DSS (r=0.214; 
p = 0.043) 

10 Yperman 
et al. 
2020 

419 MS  MS 
progression 
at 2 years 

Motor evoked 
potential (MEP) 

Random forest 
and logistic 
regression 

RF – 75% 

11 Roca et 
al. 2020 

971 MS EDSS score Age, sex and MRI Random Forest Mean EDSS error 
= 1.7 

Abbreviations: ML = machine learning, MS = multiple sclerosis, CIS = clinically isolated syndrome, HC = health control, MRI = 
magnetic resonance imaging, SVM = support vector machine, EDSS = expanded disability status scale, EEG = electroencephalogram, 
SPM = statistical parametric mapping, WM = white matter, SPMS = secondary progressive MS, RRMS = relapsing remitting MS, PPV 
= positive predictive value, MS-DSS = MS disease severity scale. 
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2.3.3.4 Predicting treatment response 

Predicting treatment response in MS using ML has been investigated for over five 

years. The studies available in the literature are summarised in Table 13: Prediction 

of treatment response in MS.  

Initially Baranzini et al. looked into prognostic biomarkers of response to 

subcutaneous beta interferon (IFN-β) therapy in RRMS patients using ML. (198) They 

evaluated 39 genetic biomarkers from 155 RRMS patients in the IMPROVE study with 

data including clinical assessment, blood samples and MRI scans. Random forest 

classification algorithm was used to evaluate combinations of baseline biomarkers 

that correlate with treatment response over time. Treatment response was defined 

by absence of new MRI lesions, relapses, and increase in EDSS over 1 year. They found 

that a combination of 3 genes at baseline was able to identify patients with poor 

therapeutic response with accuracies reaching up to 80% (with CASP2/IL10/12Rb1 

genes combination). This was the first study to look into predicting treatment 

response through ML using genetic biomarkers which can potentially be of prognostic 

value in future clinical practice. One of the main limitations of the study include the 

disproportion between responders and non-responders in a small sample size, which 

could cause direct consequences on the performance of the predictors.  

In 2017 Kalincik et al. used ML to predict treatment response to 7 DMTs in the large 

Australian MSBase by collecting a variety of data including 27 demographic, clinical 

and paraclinical predictors. (199) They analysed the response to treatment by 

assessing relapse frequency, disability progression, conversion to SPMS and 

treatment discontinuation. Generalised linear and multivariable survival models 

were implemented with principal component analysis (PCA). The main modifiers in 

the training data were age, disease duration, EDSS, previous relapses and previous 

treatment. For injectable therapies they found that higher disability worsening over 

time was associated with higher EDSS at therapy initiation and the use of previous 

DMTs. For other higher efficacy therapies, such as Fingolimod, Mitoxantrone and 

Natalizumab, it was predominantly associated with lower relapse activity prior to 

therapy initiation. The incidence of future relapses was associated with age and 



87 
 

relapse activity prior to starting therapy. The accuracy of the predictive models was 

above 80% for predicting relapses and disability outcome at year one, but reduced at 

year 2-4. The models had low accuracy (<50%) in predicting future conversion to 

SPMS and treatment discontinuation. Similar results were observed when performing 

external validation. This was one of the first studies to use real-world large data 

highlighting the importance of using clinical and paraclinical data. One of the main 

limitations of the study include the lack of detailed imaging data, which is essential in 

clinical practice and the potential future use to identify the right patients for the right 

therapy at the right time to maximise outcomes for pwMS. Another limitation 

includes the small sample size of some of the DMT cohorts including cladribine, 

alemtuzumab, teriflunomide and dimethyl fumarate, which affected the 

development of informative predictive models. 

In 2019 Kanber et al used ML to compare the ability of conventional models to 

identify imaging-based response to natalizumab against high-dimensional models 

integrating a variety of imaging factors. (200)  They included 124 natalizumab treated 

RRMS patients with routine standard of care MRI scans including T1w and FLAIR 

sequences. They used fully-automated image analysis to obtain 144 regional, 

longitudinal trajectories of pre- and post- therapy changes in brain volume and 

disconnection. They applied ML to build and evaluate low- and high- dimensional 

models of the correlation between natalizumab and the trajectories of change. Using 

AUC as a measure of accuracy, high-dimensional models were much better at 

detecting treatment response when compared to low-dimensional models (0.890 

[95% CI = 0.885–0.895] vs. 0.686 [95% CI = 0.679–0.693], P < 0.01]). This highlighted 

that high-dimensional models extracted from routine clinical imaging can 

significantly improve detection of treatment response which can potentially lead to 

a more accurate individual prediction. The main limitation of this study includes the 

use of a cohort of MS patients on one DMT. Future assessments of this method on 

other cohorts and on other DMTs would be of significant importance.  

Predicting response to natalizumab was also investigated through ML by Fagone et 

al. using a subset of genes of CD4+ T cells in RRMS patients prior to starting therapy. 
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(201) They included Swedish RRMS patients who were classified as low responders 

(LR, n=6) and high responders (HR, n=6) and were matched for gender, age, EDSS and 

disease duration. The parameter used to evaluate responsiveness was the relapse 

rate. All samples for gene expression analysis were obtained prior to starting 

natalizumab. Principle Component Analysis (PCA) and Hierarchical Clustering (HCL) 

were used to evaluate predictors. A total of 17 predictors of 45 probes were found 

following analysis of the transcriptomic differences between CD4+ T cells from the 

HR and LR groups. HCL and PCA were able to use the 17 predictors to accurately 

differentiate LR and HR patients with 89% accuracy. This was the first study to identify 

genes that can differentiate MS patients that are high or low responders in a small 

natalizumab cohort. Although this finding requires further investigation and 

validation in a larger cohort, it highlights that genetic biomarkers can potentially be 

used to predict treatment resistant MS patients which would lead to better 

understanding of therapeutic targets and outcomes. 

In 2020 Ebrahimkhani et al. used ML to predict MS activity in MS patients taking 

fingolimod using serum exosome microRNAs. (202) MS activity was assessed with the 

presence of gadolinium-enhanced MRI brain at baseline, 6, and 12 months post 

therapy initiation. Next-generation sequencing was used to profile serum exosome 

microRNAs collected at baseline and 6 months from 29 RRMS patients. Using logistic 

regression, 15 microRNAs were identified from post-fingolimod therapy patients 

which were differentially expressed in patients with active versus non-active MS. 

Random forest was used to predict combinations of multiple microRNAs as 

multivariate signatures of MS activity. The prediction of response using single 

microRNA was modest with an average of 77%. However, using combinations of 2-3 

microRNAs reached greater accuracy (90%) in distinguishing active versus non-active 

patients. This ML study emphasised the importance of serum exosome microRNAs as 

potential biomarkers of disease activity in RRMS patient. This requires further 

evaluation in a larger independent cohort.  
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Finally, Jin et al. used ML to predict response to IFN-β therapy in MS. (203) They 

generated a feature selection method from gene-to-gene interactions. They used this 

on a longitudinal microarray dataset from 25 German RRMS patients and assessed 

the treatment response over 2 years by identifying the gene pairs that correspond to 

responders versus non-responders. Using SVM, it reached a predictive accuracy of 

81% using 41 gene signatures. This study has shown the potential of ML in predicting 

response to treatment using genetics which is gaining more interest towards 

personalised response to DMTs in MS. The main limitation of this study includes the 

sample size and therefore a larger gene expression study is warranted to assess these 

findings. 
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Table 13: Prediction of treatment response in MS  
Reference Population Prediction Markers Method Accuracy 

1 Baranzini 
et al. 2015 

155 RRMS – 
IFN-β (RCT) 

Clinical and 
radiological 
response to 
treatment 

39 genetic 
biomarkers: 
Combination of 3 
genes at baseline  

Random 
forest 

63-80% 

2 Kalincik et 
al. 2017 

8513 MS;  
On 7 DMTs in 
Australian 
MSBase  

Relapse 
frequency, 
disability 
progression, 
conversion to 
SPMS, 
DMT 
discontinuation 

27 demographic 
and clinical 
predictors 

Generalised 
linear and 
multivariable 
survival 
models with 
principle 
component 
analysis 

Relapses + 
disability at year 
1 – 80%, lower 
at 2-4 years. 
conversion to 
SPMS & DMT 
discontinuation 
- <50% 

3 Kanber et 
al. 2019 

124 RRMS – 
Natalizumab 

Imaging 
treatment 
response 

Routine clinical 
MRI brain: High 
and low 
dimensional 
features 

SVM and 
extreme 
randomised 
trees 

High 
dimensional = 
89% 
Low dimensional 
= 68% 

4 Fagone et 
al. 2019 

12 RRMS - 
Natalizumab 

Low responder 
Vs high 
responder  

Subset of genes of 
CD4+ T cells + MRI 
and relapse rate 
data -> 17 
predictors 
generated 

PCA and 
Hierarchical 
Clustering 

89% 

5 Ebrahimk-
hani et al. 
2020 

29 RRMS - 
Fingolimod 

Active Vs non-
active MS: Gd-
enhanced MRI 
brain lesion at 6 
and 12 months 

15 serum 
exosome 
microRNAs 
identified  

Random 
forest 

Combinations of 
2-3 microRNAs - 
90% 

6 Jin et al. 
2020 

25 RRMS - 
IFN-β  

Responders Vs 
non-responders 
over 2 years 

Gene-to-gene 
interactions: 41 
gene signatures 

SVM 81% 

Abbreviations: MS = multiple sclerosis, RRMS = relapsing remitting MS, RCT = randomised controlled trial, DMTs = disease 
modifying therapies, SPMS = secondary progressive MS, SVM = support vector machine, PCA = principal component analysis, 
Gd = Gadolinium, IFN-β = interferon beta. 
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2.4 Conclusions 

In summary, ML application in MS has been used for diagnosis, classification, disease 

progression and treatment response for nearly two decades. Different aspects have 

been utilised in these applications including clinical, radiological, immunological and 

genetics among others, with different techniques reaching a high level of accuracy in 

many cases.  

It is important to note that comparisons between the different categories should be 

considered with caution due to the different techniques used, the number of 

variables included and the precision measures used, which are different amongst 

most studies. It is also clear that the studies reviewed above have mostly been novel, 

and despite showing promising results, they have often included a limited number of 

patients and in most cases require further testing and validation in independent and 

much larger external cohorts.  

Overall, we have highlighted the enormous applications of ML in the field of MS and 

new avenues of research are continuing to be explored, particularly in the field of 

treatment response to the various pharmacological therapies that currently exist. 

Although there is no substitute for ongoing randomised controlled trials in providing 

the best level of evidence, the application of the emerging vast real-world data is 

likely to help in developing ML applications in the future.  

Although one of the limitations to our review is that it is not systematic, we have 

conducted an extensive, detailed and step-by-step review of the literature using one 

of the most commonly used search engines, PubMed, by clinicians. We have tried to 

capture as many of the studies as possible to demonstrate the wide use of ML 

methods in MS. However, due to the use of one search engine, some studies may 

have been missed. We may have introduced bias as our studies were screened and 

selected by one reviewer, myself. In our methodology we did not include a specific 

method of analysis of results and sensitivity, but we included all studies and reported 

all outcomes, and provided source of possible bias and limitations.  
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Although recent studies have created a framework using possible predictors to 

identify treatment response, it is worth noting that these studies have focused their 

predictions at a population level rather than on the individual level. This is an area of 

increasing interest and will be the focus of ML in MS in the coming years considering 

increasing popularity of large real-world data. The importance of this is becoming 

apparent to investigators, from the promising evidence that already exists that 

potentially will lead the way towards personalised medicine which will help 

healthcare systems to implement ML tools in clinical practice.  

The next chapters of this thesis will focus on our work towards prediction of 

treatment responses in MS using mostly retrospective data collected from the 

electronic records at Queen Square Multiple Sclerosis Centre at the National Hospital 

for Neurology and Neurosurgery.  

 

  



93 
 

Chapter 3. Identifying predictors of MS treatment response in 

a single-centre cohort  

3.1 Introduction 

Highly effective DMTs are becoming widely available in the MS field which has led to 

the evolution of achievable treatment goals. No evidence of disease activity (NEDA) 

is widely accepted by MS neurologists as a comprehensive assessment of treatment 

outcome. NEDA-3 combines MRI activity and clinical progression (204, 205), as 

described in Table 14: NEDA-3: No evidence of disease activity parameters in MS. 

Brain atrophy has also been suggested to be included in the assessment and 

monitoring of pwMS on DMT (NEDA-4) (206), however this has not been part of 

routine clinical practice yet. NEDA in the remaining of this thesis will imply NEDA-3. 

Table 14: NEDA-3: No evidence of disease activity parameters in MS 

Clinical 1. No relapses 

2. No disability progression (EDSS progression) 

MRI 3. No MRI activity (new or enlarging T2 lesions or Gd-enhancing 
lesions) 

 

Predicting response to treatment in pwMS and achieving NEDA is much needed for 

many reasons. There are many different DMTs available to reduce clinical relapses 

and they have different efficacy and safety profiles. Also, individual patients respond 

to DMTs very differently and up to 60% of them have a new relapse within 2 years 

which may lead to an accumulation of disability and poor compliance to therapy. 

(207)  

The disease course and clinical outcomes in MS have been associated with clinical 

and radiological features. It was found that patients taking interferons, who 

continued to have relapses and MRI activity during the first year of therapy, have a 

high risk of disability. (208) Spinal cord presentation is fundamental as a diagnostic 

and a prognostic factor in MS as acquiring spinal cord lesions as an early presentation 

or during the disease course is associated with an increased risk of disability 
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accumulation and therefore progressing to secondary progressive MS. (209) It has 

also been shown that spinal cord lesions on MRI at onset are associated with a more 

aggressive MS and disability progression. (7) 

Recently, Sormani et al. predicted the risk of clinical disease activity and disability 

progression in patients treated with subcutaneous interferon beta-1a over a 14-year 

period using the MAGNIMS score at year 1. (210) The MAGNIMS score (0-2) considers 

clinical relapses and MRI brain activity (the number of new T2 lesions). (208) They 

found that those with a MAGNIMS score of 2 had a significantly higher risk of having 

clinical disease activity (relapses and EDSS worsening) compared to those with a score 

of 1, who in turn had a significantly higher risk of a clinical disease activity compared 

to those with a score of 0. Similarly, this trend was also observed on assessing the risk 

of EDSS progression. One of the main limitations to this study is the lack of MRI data 

over the period of evaluation hence NEDA was not feasible in this study. It would also 

be important to identify predictors at baseline for better early decision-making 

regarding management and long-term outcomes. 

Early brain and spinal cord imaging predictors of long-term (15 years) outcomes in 

RRMS including physical disability, cognitive performance and conversion to SPMS 

were investigated by Brownlee et al. (7) They found that baseline gadolinium 

enhancing lesions and spinal cord lesions were independently associated with 

conversion to SPMS at 15 years. Those measures showed a consistent association 

with EDSS at 15 years. Also, baseline gadolinium enhancing lesions were associated 

with worsening cognitive performance at 15 years. The main challenge in using these 

factors is that MRI with contrast and spinal cord MRI scans are not routinely 

performed in clinical practice in the NHS, unless clinically indicated or for a diagnostic 

purpose.  

Demographics, clinical and radiological predictors of 30-year outcomes in a group of 

120 CIS patients were investigated by Chung et al. (8) Sex and disease duration 

showed no association. Older patients at onset of CIS and an infratentorial (IT) 

presentation (compared to optic neuritis or spinal cord) were associated with a 
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greater risk of MS-related mortality. The change in EDSS over the first 5 years was 

also seen the most amongst those with an IT presentation. However, baseline EDSS 

scores were not associated with a 30-year outcome, including developing SPMS. Total 

lesions count and the presence of IT lesions at baseline were the early MRI predictors 

of 30-year EDSS of >3.5. The presence of IT lesions and deep white matter lesions at 

year 1 were also strong predictors of 30-year EDSS of >3.5 and developing SPMS. This 

is similar to previous reports of IT lesions linked with less favourable outcomes in MS 

patients. (211) Changes in lesion count and presence of new lesions were not 

predictive most likely due to missing data. The main limitation of this study is the fact 

that this cohort were recruited in the 1980s and MRI was a new technique with low 

image quality, limited to T1w sequences without contrast and therefore the 

assessment of new and/or active lesions was limited.  

Considering the value of clinical and radiological predictors, it is important to consider 

other patient aspects that may shape the individual response to treatment that can 

guide DMT selection. It is also important to note that DMTs have different efficacy 

and, although there has been no head to head comparisons particularly for similar 

efficacy therapies, higher efficacy therapies are expected to be more associated with 

NEDA. In this study we explore all the variables including demographics, clinical and 

imaging data available to the MS neurologist at our centre. Using frequentist 

statistics, multiple logistic regression, we aim to explore the variables that are 

significantly associated with NEDA at 1 and 2 years in five of our cohorts separately 

in this chapter.  
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3.2 Methods 

Initially, the focus was on studying a retrospective cohort of MS patients who have 

had DMTs at Queen Square Multiple Sclerosis Centre (QSMSC) at the NHNN. Another 

prospective cohort as part of the PITMS (Predicting Individual Treatment responses 

towards personalised medicine in Multiple Sclerosis) study was also included. PITMS 

is an observational prospective study which aims to recruit patients with MS initiating 

a DMT in the National Health Service (NHS). The plan was to investigate the baseline 

clinical and MRI characteristics of DMT responders and non-responders. A baseline 

was defined as the time of starting the index DMT. A responder was defined as a 

patient who achieved NEDA in the short and medium-term (12-24 months) of 

commencing a DMT. We conducted and reported this study according to STROBE 

(strengthening the reporting of observational studies in epidemiology) and a checklist 

has been provided in the appendix at the end of the thesis. This work had the ethical 

approval from the research ethics committee as per the NIHR PITMS study: 

19/WA/0157. PITMS was funded by the National Institute for Health Research (NIHR) 

and the UK MS Society.  

3.2.1 Subjects 

The retrospective cohorts were identified through the MS clinical nurse specialist 

(CNS) and pharmacist databases at QSMSC. I performed the data extraction through 

the electronic patient health record system (EPIC), which has been used at the NHNN 

since 2019. The patients’ records go as far back as 2008 with further historic letters 

scanned and filed into EPIC. Identifying patients through the pharmacy and MS 

speciality nurse databases therefore reduced selection bias. The data was collected 

using MS team letters, DMT MDT outcomes and notes from MS consultants, 

registrars and specialist nurses. Physiotherapy and rehabilitation assessments were 

helpful in working out EDSS scores when possible. Pharmacy notes were evaluated 

for medication compliance and adverse events. Using the electronic records have 

optimised our collection of data and minimised sampling bias. Patient were followed 

up on annual basis from DMT initiation (baseline), as per NHS routine clinical care.  
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Considering the large number of DMTs used in the last three decades, we identified 

four retrospective cohorts to analyse including two first line moderately effective 

therapies, glatiramer acetate (GA) and dimethyl fumarate (DMF), a second line more 

effective therapy, fingolimod, and a highly effective therapy for very active MS, 

natalizumab. These therapies were chosen because they have been used for over 10 

years and are still being used routinely today.  

A fifth, prospective, cohort was also included from the PITMS study. Data of RRMS 

patients who commenced ocrelizumab was collected considering it is a high efficacy 

DMT, one of the latest approved DMTs, frequently prescribed nowadays due to its 

effectiveness, relatively low risk profile, convenient administration and good 

availability, with less strict criteria to initiate. The data for the prospective cohort was 

stored anonymously in REDCap, which is a secure web platform for building and 

managing online databases and surveys. The data was stored securely in REDCap, 

accessed only by authorised personnel, and automatically exported for seamless data 

downloads to excel and common statistical packages, such as R.  

3.2.2 Inclusion/Exclusion criteria 

We included any RRMS patient, aged ≥ 16 years old, who commenced the specified 

DMTs at QSMSC from 2002 (as far as the records can be accessed) and last followed 

up in February 2022. Patients on DMTs for PPMS or SPMS were excluded.  

3.2.3 Analysis using combined multiple logistic regression 

In this chapter combined multiple logistic regression (LR) modelling is used to look 

for clinical predictors of NEDA in each of our cohorts.  

LR predicts a binomial outcome from one or more predictor variables. It assessed the 

impact of each variable observed on the outcome of interest and at the same time, 

so the resulting population-level effect estimates (odds-ratios) of each predictor 

variable are adjusted for each other.  This is also known as the frequentist method. 
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One model was designed, combining all available clinical variables, for each cohort to 

identify baseline predictors to the binomial outcome of NEDA at each time point. All 

analysis was performed using RStudio v1.4.1106 (2021). RStudio: Integrated 

Development for R. RStudio, Inc., Boston, MA http://www.rstudio.com/). 

All binary categorical variables were represented by single terms where 1 = presence 

and 0 = absence of the feature. DMTs, ethnicity and clinical phenotype at MS onset 

were all assigned into five categories each and so they were assigned as five individual 

categorical variables (represented as five terms for each variable). Only patients who 

commenced therapy before September 2021 and September 2020 were included in 

the NEDA analysis at 12 and 24 months respectively. Those who stopped therapy in 

less than 6 months and less than 18 months (for reasons other than disease activity) 

were not included in the NEDA prediction analysis at 1 and 2 years respectively. 

3.2.4 Missing Data 

Collecting data retrospectively from an electronic health record inevitably resulted in 

some missing data. Similarly, for the prospective cohort, due to the COVID-19 

pandemic and limited hospital visits and patient exposure, missing data was also 

unavoidable. Restricting analysis to only those with fully available datasets can cause 

bias as well as reducing study power. 

Multiple imputation was used to impute the missing data assuming that it was 

missing at random conditional on the other covariates measured. This was performed 

in the multiple imputation by chained equations (MICE) package in R (version 3.12.0). 

(212) This MICE package helps in imputing missing values with plausible data values 

drawn from a distribution specifically designed for each missing data point. The mice 

function takes care of the imputing process once the code is written correctly. We 

used the following code: mice (DMT, m=n, seed = 123), where “DMT” is the name of 

the therapy analysed, “m” is the number of imputations used and seed is the random 

parameter which is useful for reproducibility.  

  

http://www.rstudio.com/
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3.3 Clinical and MRI Data 

All cohorts had the following data collected at baseline (at time of starting the index 

DMT);  

• Demographics: sex, ethnic background and age at MS onset  

• Clinical history: the clinical phenotype at MS onset, previously used DMTs, 

disease duration prior to DMT initiation, number of relapses in the previous 

12 months, comorbidities (the presence of at least one past medical history) 

at baseline 

• Examination: EDSS at baseline 

• Investigations: the presence of unmatched OCBs in CSF, genetics (including 

the presence of one/two alleles to the gene coding for HLA-DRB1*15) 

• Imaging: number of new MS lesions on MRI brain reported by neuro-

radiologists. Baseline MRI features were collected from scans taken in the 

first 6 months of taking DMTs, unless scans from this time period were 

unavailable, in which case scans taken in the 6 months prior to initiating 

therapy were utilised. New MS lesions were defined as new T2 and/or 

Gadolinium enhancing MS lesions identified when compared to previous 

scans, performed in the previous 1-3 years. 

 

The following information was collected at one and two years from starting 

therapy; 

• Number of relapses; a relapse is defined by new/worsening neurological 

symptoms lasting more than 24 hours in the absence of another cause such 

as an infection. 

• Number of new MS lesions on the brain MRI scan compared to baseline scan 

• EDSS scores 

• Whether NEDA was achieved; defined as no evidence of relapses, no new 

MRI brain lesions and no significant increase to EDSS. NEDA at 12 and 24 

months are demonstrated in Table 15: No evidence of disease activity 

(NEDA) components. A significant increase in EDSS was defined as an 
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increase of EDSS by 1.5 or more if previous EDSS was 0, increase of EDSS by 

1.0 or more if EDSS was between 1.0 and 5.0, and an increase of EDSS by 0.5 

if previous EDSS was 5.5 or more.  

 

 

Table 15: No evidence of disease activity (NEDA) components 

NEDA components NEDA at 12 months NEDA at 24 months 

1. No. of Relapses in previous 
12 months 

0 1 

2. Any worsening of EDSS 
compared to previous 12 
months? 

No No 

3. No. of new MRI brain 
lesions compared to 
previous MRI brain 

0 0 

NEDA? Yes or No Yes No 
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3.4 Results 

Having collected data for all five cohorts, a total of 1986 patients have been 

evaluated. The following sections will demonstrate details of our cohorts in terms of 

demographics, clinical and radiological features, and the outcome of NEDA at 12 and 

24 months. 

3.4.1 Analysing demographics, clinical features and NEDA outcomes  

3.4.1.1 Dimethyl fumarate (DMF) 

DMF is a first line therapy, which had 670 patients initiating treatment between 

January 2012 and March 2020. This was the therapy with the largest number of 

patients included in the study. Error! Reference source not found.  

The majority of patients were female (72%), white (71%) and had no other past 

medical history (52%). The median age of MS onset was 30 years and the most 

common phenotype at presentation was a spinal cord presentation (35%). Only 33% 

of patients had a lumbar puncture, with the majority (93%) showing evidence of 

unmatched OCBs in the CSF as compared to the serum. Around 50% of patients were 

DMT naïve and 37% had one previous DMT prior to starting DMF. The median age at 

starting DMF was 40 years and the median disease duration prior to commencing 

DMF was 7 years.  The median number of relapses occurring in the 12 months prior 

to starting DMF was 1 relapse and the median number of new MS lesions on baseline 

MRI brain was 0 (range: 0-10). The median EDSS score at baseline was 2.0. Clinical 

and baseline demographic data are shown in Table 16: DMF: Demographics and 

baseline clinical details. 
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Table 16: DMF: Demographics and baseline clinical details. 

Sex 
Female (%) 
Male 

 
483 (72) 
187 

Age at DMT initiation (years) 
Median 
Mean 
Min 
Max 

  
40 
40.5 
16 
82 

Ethnic background 
White (%) 
Black 
Asian 
Mixed 
Other 

  
478 (71) 
29 
65 
24 
22 

No. of previous DMTs 
0 
1 
2 
3 
4 

  
335 (50) 
250 (37) 
62 
15 
8 

Presence of other 
comorbidities 
Yes (%) 
No 

  
 
324 (48) 
346 

Disease duration (years) 
Median 
Mean 
Min 
Max 

  
7 
8.6 
0 
40 

Age at MS onset 
(years) 
Median 
Mean 
Min 
Max 

  
 
30 
32 
10 
73 

No. Relapses in previous 12 
months 
0 
1 
2 
3 

  
 
236 
308 
104 
21 

Phenotype at MS 
onset 
Spinal cord (SC) (%) 
Optic neuritis (ON) 
Supratentorial (ST) 
Infratentorial (IT) 
Other 

  
 
236 (35) 
155 
111 
124 
9 

No. new MRI lesions at DMT 
initiation 
Median 
Mean 
Min 
Max 

  
 
0 
0.8 
0 
10 

Genetics (%) 
0 = no alleles 
1 = one allele 
2 = two alleles 
Pending phenotype 

106/670 (16) 
9 
13 
0 
84 

EDSS at DMT initiation 
Median 
Mean 
Min 
Max 

  
2.0 
2.6 
0.0 
7.5 

OCBs (%) 
Yes (%) 
No (%) 

221/670 (33) 
206/221 (93) 
15/221 (7) 

Duration on DMF 
Average years (range) 

 
2.5 (0-8) 
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Only 106 (16%) patients had undergone serum genetic analysis for HLA-DRB1*15 and 

the results of only 22 patients have been phenotyped to date. Further analysis of this 

data has been postponed due to a lack of laboratory analysis which was affected by 

the COVID-19 pandemic. Other missing data are summarised in Table 17: Missing 

data in the dimethyl fumarate cohort. Some variables are not included in the table as 

no missing data was recorded. 

 

Table 17: Missing data in the dimethyl fumarate cohort 

 Baseline (%) 12 months (%) 24 months (%) 

Ethnicity 52/670 (7) N/A N/A 

Phenotype at 
MS onset 

36/670 (5) N/A N/A 

OCBs 449/670 (67) N/A N/A 

Genetics 564/670 (84) N/A N/A 

Relapses 0 60 (9) 150 (22) 

EDSS 0 61 (9) 152 (22) 

MRI 15 (2) 139 (20) 227 (40) 

 

NEDA was calculated at 12 and 24 months for the DMF cohort and the results are 

summarised in Table 18: DMF: NEDA at 12 months and 24 months. Out of all the 

patients who initiated DMF, 76% achieved NEDA at 12 months and 58% achieved 

NEDA at 24 months. Approximately, 22% (148) and 29% (194) of patients stopped 

therapy by the end of year 1 and 2 respectively. The causes of patients stopping DMF 

in the first 2 years are summarised in Error! Reference source not found.. 
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Table 18: DMF: NEDA at 12 months and 24 months. 

NEDA at 12 months 
Yes (%) 
No (%) 

  
510/670 (76) 
160/670 (24)  

NEDA at 24 months 
Yes (%) 
No (%) 

 
387/670 (58)  
283/670 (42)  

 

Table 19: Causes of stopping DMF 

Causes Patients 
stopping 
DMT within 
6 months 

Patients 
stopping 
DMT within 
12 months 

Patients 
stopping 
DMT within 
18 months 

Patients 
stopping 
DMT within 
24 months 

Side effects 57 93 94 102 

Disease activity 2 26 29 39 

Lymphopenia 0 11 11 21 

Family planning 0 7 7 17 

Lost to follow up 1 11 11 15 

Total 60 148 152 194 

 

3.4.1.2 Fingolimod 

A total of 336 patients were initiated on fingolimod, a second line therapy, between 

2011 and February 2020. Clinical and baseline demographic data are shown in Table 

20: Fingolimod: Demographics and baseline clinical details.  

The majority of patients were female (75%), white (75%) and had a history of other 

comorbidities (60%). The median age of MS onset was 28 years and the most 

common clinical phenotype at MS onset was a spinal cord presentation (32%). Similar 

to DMF, only 36% of patients had a lumbar puncture and the majority (93%) showed 

evidence of unmatched OCBs in the CSF as compared to the serum. More than half 

of patients (55%) had trialled one DMT prior to commencing fingolimod and the 

majority of the remaining patients had trialled more than one DMT. This is to be 

expected as fingolimod is a second line therapy in the UK. The median age at starting 

fingolimod was 39 years and the median disease duration prior to commencing 

fingolimod was 9 years.  The median number of relapses occurred in the previous 12 

months of starting therapy was 1 relapse and the median number of new MS lesions 
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on baseline MRI brain was 0 (range: 0-13). The median EDSS score at baseline was 

2.5.  

 

Table 20: Fingolimod: Demographics and baseline clinical details. 

Sex 
Female (%) 
Male  

 
252 (75) 
84 

Age at DMT initiation (years) 
Median 
Mean 
Min 
Max 

  
39 
39.2 
16 
69 

Ethnic background 
White (%) 
Black 
Asian 
Mixed 
Other 

  
243 (75) 
16 
35 
15 
12 

No. of previous DMTs 
0 
1 
2 
3 
4 

  
12 
185 (55) 
106  
30 
2 

Presence of other 
comorbidities 
Yes (%) 
No 

  
 
200 (60) 
134 

Disease duration (years) 
Median 
Mean 
Min 
Max 

  
9 
10.6 
0 
48 

Age at MS onset (years) 
Median 
Mean 
Min 
Max 

  
28 
28.6 
8 
56 

No. Relapses in previous 12 
months 
0 
1 
2 
3 
4 

  
 
86 
160 
74 
10 
3 

Phenotype at MS onset 
SC = spinal cord (%) 
ON = optic neuritis 
ST = supratentorial 
IT = infratentorial 
Other 

  
106 (32) 
73 
48 
76 
2 

No. new MRI lesions at DMT 
initiation 
0 
1 
2 
3 
4 
5 or more 

 
 
438 
73 
55 
49 
20 
20 

Genetics (%) 
0 = no alleles 
1 = one allele 
2 = two alleles 
Pending phenotype 

73/336 (22) 
19 
8 
4 
42 

EDSS (T0) 
Median 
Mean 
Min 
Max 

  
2.5 
3.5 
0.0 
7.5 

OCBs (%) 
Yes (%) 
No (%) 

120/336 (36) 
112/120 (93) 
8/120 (7) 

Duration on fingolimod 
Average years (range) 

 
4.4 (0-10) 
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Only 73 (22%) patients had undergone serum genetic analysis for HLA-DRB1*15 and 

only 31 patients have been phenotyped to date. Further analysis of this data has 

therefore been postponed due to the lack of samples being processed in the 

laboratory since the impact of the COVID-19 pandemic. Other missing data are 

summarised in Table 21: Missing data in the fingolimod cohort. Some variables are 

not included in the table as no missing data was recorded. 

 

Table 21: Missing data in the fingolimod cohort 

 Baseline (%) 12 months (%) 24 months (%) 

Ethnicity 5/336 (2) N/A N/A 

Phenotype at 
MS onset 

32/336 (9) N/A N/A 

OCBs 216/336 (64) N/A N/A 

Genetics 263/336 (78) N/A N/A 

Relapses 3 19 (5) 51 (15) 

EDSS 0 24 (7) 53 (15) 

MRI 27 (8) 98 (29) 113 (33) 

 

The results for NEDA were calculated for this cohort at 12 and 24 months, the 

outcome is summarised in Table 22: Fingolimod: NEDA at 12 months and 24 months. 

For all patients who commenced fingolimod, 78% achieved NEDA at 12 months and 

61% achieved NEDA at 24 months. Approximately, 15% (49) and 25% (84) of patients 

stopped therapy by the end of year 1 and 2, respectively. The causes of patients 

stopping fingolimod in the first 2 years are summarised in Table 23: Causes of 

stopping Fingolimod 
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Table 23: Causes of stopping Fingolimod 

Causes Patients 
stopping 
DMT within 
6 months 

Patients 
stopping 
DMT within 
12 months 

Patients 
stopping 
DMT within 
18 months 

Patients 
stopping 
DMT within 
24 months 

Side effects 
- Deranged LFTs 
- Cardiac causes 
- Macular causes 
- Headaches 
- Infections 
- Other 

 
3 
7 
2 
2 
4 

 
7 
8 
4 
3 
6 

 
7 
8 
4 
3 
6 
1 

 
9 
10 
4 
3 
6 
5 

Disease activity 0 13 14 28 

Lymphopenia 0 1 1 3 

Family planning 0 2 2 6 

Lost to follow up 1 5 5 10 

Total 19 49 51 84 

 

 

  

Table 22: Fingolimod: NEDA at 12 months and 24 months. 

NEDA at 12 months 
Yes (%) 
No 

  
262/336 (78) 
74/336 (22) 

NEDA at 24 months 
Yes (%) 
No 

  
206/336 (61)  
130/336 (39)  
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3.4.1.3 Natalizumab 

Natalizumab is a highly effective DMT. Between 2007 and October 2019, 177 patients 

were started on natalizumab. The baseline demographic and clinical data can be seen 

in Table 24: Natalizumab: Demographics and baseline clinical details.  

The majority of patients in this cohort were female (64%), white (67%) and had other 

comorbidities (72%). The median age of MS onset was 27 years and there were three 

clinical phenotypes at MS onset with similar prevalence within the cohort; spinal cord 

(23%), optic neuritis (22%) and infratentorial (21%). Only 35% of patients had a 

lumbar puncture with OCBs results available and the majority of those (95%) showed 

evidence of unmatched OCBs in the CSF compared to the serum. As expected the 

majority of patients had tried at least one DMT prior to starting natalizumab, 

however, interestingly 25 (14%) patients were treatment naïve. The median age at 

starting natalizumab was 36 years and the median disease duration prior to 

commencing natalizumab was 7 years.  The median number of relapses occurring in 

the 12 months prior to starting natalizumab was 2 relapses and the median number 

of new MS lesion on baseline MRI brain was 1 (range: 0-8). The median EDSS score at 

baseline was 6.0. These features demonstrate a cohort with higher disability and 

more active MS compared to the previous cohorts. This is not unexpected considering 

natalizumab is typically prescribed for highly active RRMS and for those who have 

failed first- and second-line therapies. 
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Table 24: Natalizumab: Demographics and baseline clinical details. 

Sex 
Female (%) 
Male 

 

113 (64) 

64 

Age at DMT initiation (year) 
Median 
Mean 
Min 
Max 

  
36 
36 
15 
68 

Ethnic background 
White (%) 
Black 
Asian 
Mixed 
Other 

 
118 (67) 
20 
16 
6 
11 

No. of previous DMTs 
0 
1 
2 
3 
4 

  
25 
91 (51) 
38 
19 
3 

Presence of other 
comorbidities 
Yes (%) 
No 

  

 

128 (72) 

48 

Disease duration (years) 
Median 
Mean 
Min 
Max 

  
7 
8.4 
0 
41 

Age at MS onset (years) 
Median 
Mean 
Min 
Max 

  

27 

27.7 

10 

65 

No. Relapses 12m prior to 
DMT initiation 
Median 
Mean 
Min 
Max 

  
 
2 
1.9 
0 
6 

Phenotype at MS onset 
Spinal cord (%) 
Optic neuritis 
Supratentorial 
Infratentorial 
Other 

  
41 (23) 
38 (22) 
19 (11) 
37 (21) 
7 

No. new MRI lesions at DMT 
initiation 
Median 
Mean 
Min 
Max 

  
 
1 
1.7 
0 
8 

Genetics (%) 
0 = no alleles 
1 = one allele 
2 = two alleles 
Pending phenotype 

106/177 (60) 
28 
1 
7 
57 

EDSS at DMT initiation 
Median 
Mean 
Min 
Max 

  
6.0 
4.7 
1.0 
8.0 

OCBs 
Yes (%) 
No  

61/177 
58/61 (95) 
3/61 (5) 

Duration on natalizumab 
Average years (range) 

 
7 (0.5-15)  

 

Only 106/176 (60%) patients had undergone serum genetic analysis for HLA-DRB1*15 

to date and only 36 patients were phenotyped. Further analysis of this data has 

therefore been postponed due to the lack of sample processing and phenotyping 

since the impact of the COVID-19 pandemic. Other missing data is summarised in 



110 
 

Table 25: Missing data in the natalizumab cohort. Some variables are not included in 

the table as no missing data was recorded. 

Table 25: Missing data in the natalizumab cohort 

 Baseline (%) 12 months (%) 24 months (%) 

Ethnicity 5/177 (3) N/A N/A 

Phenotype at 
MS onset 

14/177 (8) N/A N/A 

OCBs 116/177 (65) N/A N/A 

Genetics 71/177 (40) N/A N/A 

Relapses 0 0 8 (4) 

EDSS 0 0 8 (4) 

MRI 15 (8) 9 (5) 9 (5) 

 

Having calculated NEDA for the natalizumab cohort at 12 and 24 months after 

commencing therapy, the results are summarised in Table 26: Natalizumab: NEDA at 

12 months and 24 months. Out of all the patients who received natalizumab, 81% 

(144) achieved NEDA at 12 months and 69% (123) achieved NEDA at 24 months.  

 

 

 

There was a variety of reasons why patients stopped therapy in the first year, 

however it was the expected increased risk of PML that influenced the majority of 

patients who discontinued therapy at 2 years. The causes of patients stopping 

natalizumab therapy by the end of year 1 and 2 are summarised in Table 27: Causes 

of stopping natalizumab 

  

Table 26: Natalizumab: NEDA at 12 months and 24 months. 

NEDA at 12 months 
Yes (%) 
No 

  
144/177 (81) – total cohort 
33/177 (19) 

NEDA at 24 months 
Yes (%) 
No 

  
123/177 (69) – total cohort 
54/177 (31)  
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Table 27: Causes of stopping natalizumab 

Causes Patients 
stopping 
DMT within 
6 months 

Patients 
stopping 
DMT within 
12 months 

Patients 
stopping 
DMT within 
18 months 

Patients 
stopping 
DMT within 
24 months 

Side effects 0 2 2 2 

PML risk 0 1 1 7 

Disease activity 0 0 0 2 

Compliance 0 2 2 2 

Family planning 0 2 2 2 

Lost to follow up 0 1 1 1 

Total 0 8 8 16 

 

 

3.4.1.4 Glatiramer acetate 

Within the study there were 547 patients starting glatiramer acetate therapy 

between 2002 and March 2021. Glatiramer acetate is a first line moderately effective 

DMT.  

The majority of patients were female (74%), white (78%) and had a history of other 

comorbidities (63%). The median age of MS onset was 30 years and the most 

common clinical phenotype at MS onset was a spinal cord presentation (38%). 

Similarly, only 35% of patients had a lumbar puncture with OCBs results available and 

the majority of these (92%) showed evidence of unmatched OCBs in the CSF as 

compared to the serum. The majority of patients (63%) were treatment naïve prior 

to starting glatiramer acetate (GA), which is expected considering GA is a first line 

therapy which has been approved in the UK for over two decades. The median age at 

starting GA was 37 years and the median disease duration prior to commencing GA 

was 5 years.  Three quarters of patients had no or one relapse in the previous 12 

months. The median number of new MS lesions on baseline MRI brain was 0. The 

median EDSS score at baseline was 2.0. These results identify that this cohort 

demonstrates low MS activity and disability, which is expected considering GA is only 

moderately effective. Clinical and baseline demographic data are shown in Table 28: 

Glatiramer acetate: Demographics and baseline clinical details. 
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Only 85 (16%) patients had undergone serum genetic analysis for HLA-DRB1*15 to 

date and only 22 patients were phenotyped. Further analysis of this data has been 

postponed due to the lack of samples being processed in the laboratory due to the 

Table 28: Glatiramer acetate: Demographics and baseline clinical details. 

Sex 
Female (%) 
Male  

 
407 (74) 
140 

Age at DMT initiation (years) 
Median 
Mean 
Min 
Max 

  
37 
38.7 
16 
72 

Ethnic background 
White (%) 
Black 
Asian 
Mixed 
Other 

  
425 (78) 
33 
43 
17 
15 

No. of previous DMTs 
0 
1 
2 
3 
4 

  
342 (63) 
150 
48 
6 
1 

Presence of other 
comorbidities 
Yes (%) 
No 

  
 
347 (63) 
186 

Disease duration (years) 
Median 
Mean 
Min 
Max 

  
5 
7.3 
0 
36 

Age at MS onset 
(years) 
Median 
Mean 
Min 
Max 

  
 
30 
31.4 
8 
67 

No. Relapses in previous 12 
months 
0 
1 
2 
3 
4 

  
 
149 
251 
116  
25 
3 

Phenotype at MS 
onset 
SC = spinal cord (%) 
ON = optic neuritis 
ST = supratentorial 
IT = infratentorial 

  
 
210 (38) 
128 
82 
98  

No. new MRI lesions at DMT 
initiation 
0 
1 
2 
3 
4 
5-9 

 
 
187 
41 
40 
31 
28 
36 

Genetics (%) 
0 = no alleles 
1 = one allele 
2 = two alleles 
Pending phenotype 

85/547 (16) 
7 
15 
0 
63 

EDSS (T0) 
Median 
Mean 
Min 
Max 

  
2.0 
2.5 
0 
7.0 

OCBs (%) 
Yes (%) 
No (%) 

191/547 (35) 
175/191 (92) 
16/191 (8) 

Duration on GA 
Average years (range) 

 
4.7 (0-20) 
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COVID-19 pandemic impact. Other missing data are summarised in Table 29: Missing 

data in the glatiramer acetate cohort. Some variables are not included in the table as 

no missing data was recorded. It is also clear that there is a significant amount of MRI 

scans missing in this cohort. This is mainly due to the fact that previously patients on 

this therapy were not scanned regularly, unless symptomatic, due to the high safety 

profile and the lack of DMTs available for radiological activity in the absence of clinical 

relapses or deterioration. The guidance has changed in the last few years, as all MS 

patients on DMTs are routinely having annual MRI scans. 

 

Table 29: Missing data in the glatiramer acetate cohort 

 Baseline (%) 12 months (%) 24 months (%) 

Ethnicity 14/547 (2) N/A N/A 

Phenotype at 
MS onset 

29/547 (5) N/A N/A 

OCBs 356/547 (65) N/A N/A 

Genetics 462/547 (84) N/A N/A 

Relapses 0 40/547 (7) 111/532 (20) 

EDSS 0 44/547 (8) 117/532 (22) 

MRI 184/547 (33) 367/547 (67) 370/532 (69) 

 

Having calculated NEDA for this cohort at 12 and 24 months, the results are 

summarised in Table 30: Glatiramer acetate: NEDA at 12 months and 24 months. Out 

of all the patients who commenced GA (547), 65% achieved NEDA at 12 months. Out 

of all the patients who initiated therapy before September 2020 and were eligible for 

NEDA assessment at 24 months (532), 248 patients (46%) achieved NEDA.  

Approximately, 22% (119) of patients stopped GA by the end of the first year and 34% 

(180) of patients stopped GA by the end of the second year. The causes of patients 

stopping GA in the first 2 years are summarised in Table 31: Causes of stopping 

glatiramer acetate. It was noted that 20 patients discontinued therapy in the first two 

years for family planning. This number is expected to be lower in recent years 

considering recent data and UK consensus developed through the association of 
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British neurologists in 2019 reporting that GA is safe during conception, pregnancy 

and breastfeeding. (213) 

 

 

 

 

 

 

Table 31: Causes of stopping glatiramer acetate 

Causes Patients 
stopping 
DMT within 
6 months 

Patients 
stopping 
DMT within 
12 months 

Patients 
stopping 
DMT within 
18 months 

Patients 
stopping 
DMT within 
24 months 

Side effects 31 63 67 76 

Disease activity 0 34 34 55 

Compliance 0 3 3 8 

Family planning 1 10 13 20 

Lost to follow up 2 9 9 21 

Total 34 119 126 180 

 

  

Table 30: Glatiramer acetate: NEDA at 12 months and 24 months. 

NEDA at 12 months 
Yes (%) 
No 

  
358/547 (65)  
189/547 (35)  

NEDA at 24 months 
Yes (%) 
No 

  
248/532 (46.6)  
284/532 (53.4)  
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3.4.1.5 Ocrelizumab 

Ocrelizumab is a highly effective DMT. Between July 2019 and February 2021, 256 

patients commenced ocrelizumab in the PITMS prospective study.  

The majority of patients were female (63%), white (75%) and had a history of other 

comorbidities (56%). The median age of MS onset was 30 years and the most 

common clinical phenotype at MS onset was a spinal cord presentation (40%). The 

median age at starting ocrelizumab was 38 years and the median disease duration 

prior to commencing treatment was 5 years. Interestingly, the majority of patients 

(54%) were treatment naïve prior to starting ocrelizumab, however, 70% had relapses 

in the previous 12 months. Just under half of the patients had no new MS lesions on 

baseline MRI brain, whereas the other half had a range of 1-13 new MS lesions. The 

median EDSS score at baseline was 2.0. These results show a variety of patients with 

low and high MS activity and disability, this is likely due to the fact that ocrelizumab 

has a much wider eligibility criteria due to its high efficacy and relatively low risk 

profile. Clinical and baseline demographic data are shown in Table 32: Ocrelizumab: 

Demographics and baseline clinical details. 

Having calculated NEDA for this cohort at 12 and 24 months, out of all the prospective 

PITMS patients who commenced ocrelizumab (256), 92% achieved NEDA at 12 

months. Ocrelizumab appears to be well tolerated with only one patient stopping 

therapy during cycle one due to infusion-related-reactions. For NEDA assessment at 

24 months, we only included 120 patients who initiated therapy up to August 2020; 

87/120 (72.5%) achieved NEDA. The results are summarised in Table 33: 

Ocrelizumab: NEDA at 12 months and 24 months.  
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Table 32: Ocrelizumab: Demographics and baseline clinical details 

Sex 
Female (%) 
Male  

 
160 (63) 
96 

Age at DMT initiation (years) 
Median 
Mean 
Min 
Max 

  
38 
38.8 
18 
68 

Ethnic background 
White (%) 
Black 
Asian 
Mixed 
Other 

  
193 (75) 
16 
27 
14 
6 

No. of previous DMTs 
0 
1 
2 
3 
4 or more 

  
138 (54) 
54 
40 
15 
9 

Presence of other 
comorbidities 
Yes (%) 
No 

  
 
144 (56) 
112 

No. Relapses in previous 12 
months 
0 
1 
2 
3 

  
 
75 
120  
53 
8 

Age at MS onset (years) 
Median 
Mean 
Min 
Max 

  
30 
31.7 
11 
65 

No. new MRI lesions at DMT 
initiation 
0 
1 
2 
3 
4 
5-9 
10 or more 

 
 
119 (46) 
39 
27 
13 
16 
19 
3 

Phenotype at MS onset 
SC = spinal cord (%) 
ON = optic neuritis 
ST = supratentorial 
IT = infratentorial 

  
102 (40) 
61 
23 
60 

EDSS (T0) 
Median 
Mean 
Min 
Max 

  
2.0 
2.7 
0 
8.0 

Disease duration (years) 
Median 
Mean 
Min 
Max 

  
5 
7.1 
0 
30 

Duration on ocrelizumab 
Average months (range) 

 
26.7(0-31) 
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In total, seven (3%) patients stopped therapy by the end of year one. Out of all the 

patients (120) who were eligible for NEDA assessment at 2 years, five patients 

stopped therapy within 18 months; due to infusion-related-reactions (1), undergoing 

cancer investigations (1), elected to have stem cell transplant (1), family planning (1), 

and lost to follow up (1). None of the patients stopped therapy due to disease activity. 

Causes of all patients in the ocrelizumab cohort stopping within 24 months are 

summarised in Table 34: Causes of stopping ocrelizumab. 

 

Missing data are summarised in Table 35: Missing data in the ocrelizumab cohort. 

One of the major reasons to the significant number of missing scans was the COVID 

pandemic and many patients could not attend for their MRI appointments. 

 

Table 35: Missing data in the ocrelizumab cohort 

 Baseline (%) 12 months (%) 24 months (%) 

Ethnicity 0 N/A N/A 

Phenotype at 
MS onset 

10/256 (4) N/A N/A 

OCBs N/A N/A N/A 

Genetics N/A N/A N/A 

Relapses 0 1 5/107 (5) 

EDSS 0 4/256 (2) 6/107 (6) 

MRI 20/256 (8) 65/256 (25) 35/107 (32) 

Table 33: Ocrelizumab: NEDA at 12 months and 24 months 

NEDA at 12 months 
Yes (%) 
No 

  
235/256 (92) – total cohort 
21/256 (8)  

NEDA at 24 months 
Yes (%) 
No 

  
87/120 (72.5%) – eligible cohort 
33/120 (27.5%)  

Table 34: Causes of stopping ocrelizumab 

< 6 months Side effects = 1 (infusion-related-reaction on dose 1a) 

0-12 
months 

Side effects = 1, family planning = 3, lost to follow up = 1, others = 2  
[Total = 7] 

0-24 
months  

Side effects = 1, family planning = 3, lost to follow up = 2, others = 3  
[Total = 9] 
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3.4.2 Predicting NEDA using combined multiple logistic regression 

3.4.2.1 Dimethyl fumarate (DMF) Cohort: 

In modelling NEDA at 12 months, we used most baseline variables and excluded those 

with missing data of more than 10% including genetics and OCBs. In our prediction 

model we only included patients who received therapy for ≥6 months; 610/670 

patients (91%). This is summarised in Table 36: Number of patients assessed at 1 and 

2 years. 

Logistic regression (LR) coefficient estimates give the change in the log-odds of the 

outcome for a one unit increase in the predictor variable, assuming all other variables 

are constant at a certain value. This is summarised in Table 37: Dimethyl fumarate 

predictors for NEDA at 12 months. Notably, the number of relapses in the previous 

12 months, the number of new MS lesions on the baseline MRI brain and the EDSS 

score at baseline were significantly associated with achieving NEDA at 12 months. 

Importantly, these coefficients are negative and can therefore be interpreted as any 

increase in these variables will reduce the chances of achieving NEDA. A 

supratentorial (ST) clinical presentation at MS onset showed a statistically significant 

strongly positive coefficient estimate in achieving NEDA compared to an 

infratentorial (IT) presentation. 

The model findings for NEDA at 24 months is shown in Table 38: DMF predictors for 

NEDA at 24 months. In our prediction model we only included patients who received 

therapy for ≥18 months; 547/670 patients (82%). This is summarised in Table 36: 

Number of patients assessed at 1 and 2 years. Compared to predictors at one year, 

relapses in the previous 12 months of initiating DMF, number of new MS lesions at 

baseline, and EDSS score at baseline continued to be statistically significant predictor 

of achieving NEDA at 24 months. This shows the importance of these predictors for 

achieving NEDA at short and medium terms. It is also interesting to note that age at 

DMF initiation, the number of previous DMTs and the presence of other 

comorbidities were also statistically significant and are therefore important NEDA 

predictors to be considered in the longer term.  
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Overall, these findings show that in our cohort DMF has a greater chance of achieving 

NEDA in patients with certain baseline demographics; low number of relapses in the 

preceding 12 months, low number of new MS lesions on the baseline MRI brain scan, 

and low EDSS at baseline. It is also important to consider age, comorbidities and being 

treatment naïve, at least in the medium term, for achieving NEDA. 

 

 

Table 37: Dimethyl fumarate predictors for NEDA at 12 months  
Coefficient 
(logOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) 1.65 0.65 2.56 0.01 

Age at DMF initiation 0.02 0.01 1.27 0.21 

Sex: Male 0.11 0.26 0.44 0.66 

Ethnicity: Black 0.11 0.57 0.19 0.85 

Ethnicity: Mixed 1.21 0.84 1.45 0.15 

Ethnicity: Other 0.17 0.66 0.26 0.79 

Ethnicity: White 0.28 0.34 0.83 0.41 

Phenotype: Optic neuritis -0.05 0.33 -0.14 0.89 

Phenotype: Spinal cord -0.02 0.32 -0.08 0.94 

Phenotype: Supratentorial 0.94 0.46 2.05 0.04* 

Phenotype: other -1.31 0.80 -1.64 0.10 

Presence of other comorbidities -0.32 0.24 -1.34 0.18 

No. of previous DMTs -0.12 0.15 -0.79 0.43 

Disease duration 0.04 0.02 1.80 0.07 

No. of relapses in previous 12m -0.44 0.15 -3.00 0.003** 

No. of new MRI lesions at DMT 
initiation 

-0.16 0.073  -2.24 0.03* 

EDSS at DMT initiation -0.20 0.07 -2.77 0.005** 

Table 36: Number of patients assessed at 1 and 2 years 

 Glatiramer 
Acetate 

Dimethyl 
fumarate 

Fingolimod Natalizumab Ocrelizumab Total 
number 

Number of patients 
initiated DMT 

547 670 336 177 256 1986 

Eligible for assessment 
at 1 year (%) 

514 (94) 610 (91) 317 (94) 177 (100) 255 (99) 1873 

Number of patients at 2 
years 

532 670 336 177 120 1835 

Eligible for assessment 
at 2 years (%) 

458 (86) 547 (82) 299 (89) 169 (95) 115 (96) 1588 
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Table 38: DMF predictors for NEDA at 24 months  
Coefficient 
(LogOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) 0.711 0.57 1.25 0.21 

Age DMT initiation 0.04 0.01 3.25 0.001** 

Sex: Male -0.20 0.22 -0.87 0.38 

Ethnicity: Black 0.14 0.51 0.28 0.78 

Ethnicity: Mixed 0.50 0.63 0.80 0.43 

Ethnicity: Other -0.32 0.53 -0.60 0.55 

Ethnicity: White 0.17 0.31 0.56 0.58 

Phenotype: Optic neuritis -0.25 0.30 -0.84 0.40 

Phenotype: Spinal cord -0.30 0.28 -1.07 0.28 

Phenotype: Supratentorial 0.28 0.35 0.81 0.42 

Phenotype: Other -1.35 0.78 -1.75 0.08 

Presence of other comorbidities -0.51 0.20 -2.50 0.01* 

No. of previous DMTs -0.32 0.13 -2.37 0.02* 

Disease duration 0.02 0.02 0.97 0.33 

No. of relapses in previous 12 
months 

-0.47 0.13 -3.66 0.0003*** 

No. of new MRI lesions at DMT 
initiation 

-0.13 0.07 -2.02 0.04* 

EDSS at DMT initiation -0.17 0.07 -2.65 0.01* 

3.4.2.2 Fingolimod Cohort: 

The outcome of modelling NEDA at 12 months for Fingolimod using most variables 

and excluding those with missing data of more than 10%, including genetics and 

OCBs, is summarised in Table 39: Fingolimod predictors for NEDA at 12 months. In 

our prediction model we only included patients who received therapy for ≥6 months; 

317/336 patients (94%). This is summarised in Table 36: Number of patients assessed 

at 1 and 2 years. Notably, although none of the coefficients in our model reached 

statistical significance, the coefficients for age at fingolimod initiation only just 

missed the statistically significant cut off. Again, although it did not reach statistical 

significance, it is interesting to see that the coefficient of the number of new MRI 

lesions at baseline is now positive. This can be interpreted that NEDA was more likely 

to be achieved in those starting fingolimod with radiologically active MS. However, 

this was not replicated at 24 months. 
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In our prediction model for NEDA at 24 months, we only included patients who 

received therapy for ≥18 months; 299/336 patients (89%). This is summarised in 

Table 36: Number of patients assessed at 1 and 2 years. The outcome of modelling 

NEDA at 24 months is summarised in Table 40: Fingolimod predictors for NEDA at 24 

months. It highlighted that the number of relapses in the previous 12 months of 

starting fingolimod is statistically significant in predicting NEDA at 24 months. 

Although other variables did not reach significance, most variables had similar 

coefficient directions (positive/negative).  
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Table 39: Fingolimod predictors for NEDA at 12 months  
Coefficient 
(LogOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) 2.95 0.87 3.37 0.001 

Age at DMT initiation -0.03 0.02 -1.66 0.09 

Sex: Male -0.03 0.37 -0.08 0.94 

Ethnicity: Black 1.89 1.16 1.63 0.10 

Ethnicity: Mixed -1.15 0.75 -1.52 0.13 

Ethnicity: Other 1.02 1.14 0.90 0.37 

Ethnicity: White 0.73 0.46 1.57 0.12 

Phenotype: Optic neuritis 0.21 0.44 0.48 0.63 

Phenotype: Spinal cord 0.38 0.41 0.92 0.35 

Phenotype: Supratentorial 0.85 0.58 1.46 0.14 

Presence of other comorbidities -0.46 0.34 -1.33 0.18 

No. of previous DMTs -0.20 0.22 -0.90 0.37 

Disease duration 0.03 0.03 1.22 0.22 

No. of relapses in previous 12 months -0.36 0.20 -1.81 0.07 

No. of new MRI lesions at DMT 
initiation 

0.09 0.10 0.91 0.37 

EDSS at DMT initiation -0.12 0.09 -1.26 0.21 
 

Table 40: Fingolimod predictors for NEDA at 24 months  
Coefficient 
(LogOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) 1.37 0.73 1.87 0.06 

Age at DMT initiation 0.02 0.02 1.10 0.27 

Sex: Male -0.01 0.31 -0.03 0.98 

Ethnicity: Black 0.26 0.72 0.37 0.71 

Ethnicity: Mixed -0.95 0.74 -0.129 0.20 

Ethnicity: Other 0.64 0.88 0.73 0.46 

Ethnicity: White 0.18 0.42 0.43 0.67 

Phenotype: Optic neuritis -0.38 0.37 -1.02 0.31 

Phenotype: Spinal cord -0.22 0.36 -0.61 0.54 

Phenotype: Supratentorial 0.28 0.47 0.59 0.55 

Presence of other comorbidities -0.25 0.28 -0.89 0.37 

No. of previous DMTs -0.16 0.19 -0.86 0.39 

Disease duration -0.003 0.02 -0.15 0.87 

No. of relapses in previous 12 
months 

-0.32 0.16 -1.95 0.05* 

No. of new MRI lesions at DMT 
initiation 

-0.02 0.09 -0.20 0.84 

EDSS at DMT initiation -0.13 0.08 -1.62 0.11 
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3.4.2.3 Natalizumab Cohort:  

The outcome of modelling NEDA at 12 months for the Natalizumab cohort using most 

variables and excluding those with missing data of more than 10%, including genetics 

and OCBs, is summarised in Table 41: Natalizumab predictors for NEDA at 12 months. 

In our prediction model we included all 177 patients (100%). Our model showed that 

number of relapses in the previous 12 months and EDSS score reached statistical 

significance. Interestingly, the coefficient direction of the number of relapses in the 

previous 12 months was positive. This possibly reflects the reality that natalizumab is 

usually given to those with more active MS (with higher number of relapses), but 

again more likely to achieve NEDA in those with low disability (lower EDSS score). This 

was also replicated at 24 months. 

In our prediction model for NEDA at 24 months, we only included patients who 

received therapy for ≥18 months; 169/177 patients (95%). This is summarised in 

Table 36: Number of patients assessed at 1 and 2 years. The outcome of modelling 

NEDA at 24 months is summarised in Table 42: Natalizumab predictors for NEDA at 

24 months. This showed that age at starting natalizumab, MS duration prior to 

starting therapy and EDSS at therapy initiation were statistically significant predictors 

of reaching NEDA at 24 months in this cohort.  
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Table 41: Natalizumab predictors for NEDA at 12 months  
Coefficient 
(LogOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) 2.85 1.54 1.85 0.07 

Age at DMT initiation -0.03 0.02 -1.31 0.20 

Sex: Male -0.04 0.45 -0.10 0.93 

Ethnicity: Black 0.43 0.98 0.44 0.66 

Ethnicity: Mixed 15.91 1497 0.01 0.99 

Ethnicity: Other 0.44 1.16 0.38 0.70 

Ethnicity: White 0.21 0.80 0.27 0.80 

Phenotype: Optic neuritis 0.50 0.60 0.81 0.42 

Phenotype: Spinal cord 0.84 0.63 1.33 0.18 

Phenotype: Supratentorial -0.16 0.65 -0.25 0.81 

Presence of other comorbidities -0.20 0.51 -0.40 0.70 

No. of previous DMTs -0.20 0.25 -0.75 0.45 

Disease duration 0.04 0.04 1.04 0.30 

No. of relapses in previous 12 
months 

0.48 0.25 1.92 0.05* 

No. of new MRI lesions at DMT 
initiation 

0.17 0.12 1.48 0.14 

EDSS at DMT initiation -0.34 0.13 -2.63 0.01* 
 

Table 42: Natalizumab predictors for NEDA at 24 months  
Coefficient 
(LogOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) 4.02 1.50 2.70 0.01 

Age at DMT initiation -0.06 0.02 -2.65 0.01* 

Sex: Male 0.31 0.42 0.73 0.46 

Ethnicity: Black -0.03 1.12 -0.03 0.98 

Ethnicity: Mixed -0.60 1.53 -0.40 0.70 

Ethnicity: Other -1.34 1.16 -1.15 0.25 

Ethnicity: White -0.87 0.93 -0.93 0.35 

Phenotype: Optic neuritis 0.56 0.53 1.06 0.30 

Phenotype: Spinal cord 1.04 0.56 1.86 0.06 

Phenotype: Supratentorial 0.33 0.62 0.53 0.60 

Presence of other comorbidities -0.47 0.47 -1.01 0.31 

No. of previous DMTs -0.35 0.23 -1.52 0.13 

Disease duration 0.08 0.04 2.17 0.03* 

No. of relapses in previous 12 months 0.30 0.21 1.40 0.16 

No. of new MRI lesions at DMT 
initiation 

0.10 0.10 1.03 0.30 

EDSS at DMT initiation -0.23 0.11 -2.13 0.03* 
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3.4.2.4 Glatiramer acetate cohort: 

The outcome of modelling NEDA at 12 months for the glatiramer acetate (GA) cohort 

using most variables and excluding those with missing data of more than 50%, 

including genetics and OCBs, is summarised in Table 43: Glatiramer acetate 

predictors for NEDA at 12 months. In our prediction models we only included patients 

who received therapy for ≥6 months; 513/547 patients (94%), and ≥18 months; 

458/532 patients (86%) for predicting NEDA at 12 and 24 months respectively. This is 

summarised in Table 36: Number of patients assessed at 1 and 2 years. 

Our model showed that age at GA initiation, all clinical phenotypes compared to 

infratentorial (IT) presentation, number of previous DMTs used, number of relapses 

in the previous 12 months, number of new MRI lesions and EDSS score at therapy 

initiation were all statistically significant predictors for achieving NEDA at 12 months 

in this GA group. Although not all reached statistical significance, those predictors 

had similar trends at predicting NEDA at 24 months. Once again, in this first-line 

therapy cohort, the probability of achieving NEDA was more likely to occur in those 

with low MS activity; treatment naïve, lower number of relapses, lower number of 

new MRI lesions and lower EDSS score.  
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Table 43: Glatiramer acetate predictors for NEDA at 12 months  
Coefficient 
(LogOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) 0.17 0.64 0.26 0.80 

Age at DMT initiation 0.04 0.01 2.55 0.01* 

Sex: Male 0.43 0.25 1.74 0.08 

Ethnicity: Black -0.80 0.53 -1.51 0.13 

Ethnicity: Mixed -0.80 0.63 -1.26 0.21 

Ethnicity: Other 0.33 0.68 0.50 0.63 

Ethnicity: White 0.17 0.36 0.47 0.64 

Phenotype: Optic neuritis 0.66 0.32 2.10 0.04* 

Phenotype: Spinal cord 0.65 0.30 2.28 0.02* 

Phenotype: Supratentorial 1.30 0.38 3.41 0.0006** 

Presence of other comorbidities -0.12 0.23 -0.53 0.60 

No. of previous DMTs -0.32 0.16 -1.97 0.05* 

Disease duration 0.002 0.02 0.11 0.91 

No. of relapses in previous 12 
months 

-0.27 0.13 -2.14 0.03* 

No. of new MRI lesions at DMT 
initiation 

-0.15 0.05 -2.77 0.005** 

EDSS at DMT initiation -0.27 0.07 -4.07 0.0001*** 

 

Table 44: Glatiramer acetate predictors for NEDA at 24 months  
Coefficient 
(LogOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) -0.22 0.66 -0.33 0.74 

Age at DMT initiation 0.03 0.01 2.16 0.03* 

Sex: Male 0.34 0.23 1.47 0.14 

Ethnicity: Black -0.65 0.57 -1.12 0.26 

Ethnicity: Mixed -0.65 0.68 -0.95 0.34 

Ethnicity: Other 0.16 0.90 0.18 0.86 

Ethnicity: White -0.37 0.40 -0.91 0.36 

Phenotype: Optic neuritis 0.44 0.32 1.40 0.16 

Phenotype: Spinal cord 0.62 0.29 2.13 0.03* 

Phenotype: Supratentorial 0.88 0.35 2.54 0.01* 

Presence of other comorbidities 0.17 0.22 0.74 0.46 

No. of previous DMTs -0.12 0.17 -0.70 0.50 

Disease duration -0.02 0.02 -0.88 0.38 

No. of relapses in previous 12 months -0.11 0.13 -0.83 0.41 

No. of new MRI lesions at DMT 
initiation 

-0.13 0.05 -2.43 0.01* 

EDSS at DMT initiation -0.21 0.07 -3.11 0.002** 
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3.4.2.5 Ocrelizumab cohort: 

The outcome of modelling NEDA at 12 months for the ocrelizumab cohort using most 

variables is summarised in Table 45: Ocrelizumab predictors for NEDA at 12 months. 

In our prediction model we only included patients who received therapy for ≥6 

months 255/256 patients. Our model showed that age at ocrelizumab initiation, 

number of previously used DMTs, disease duration and number of new MRI lesions 

were statistically significant predictors of NEDA at 12 months. This can be interpreted 

that NEDA in this cohort was most likely to be achieved in those who were older, 

treatment naïve, initiated treatment early and had no or low MRI brain activity at 

baseline. It also showed those with high relapse rate were more likely to achieve 

NEDA, however this variable only just missed the cut off for statistical significance.  

The outcome of modelling NEDA at 24 months is summarised in Table 46: 

Ocrelizumab predictors for NEDA at 24 months. In our prediction model we only 

included patients who received therapy for ≥18 months 115/120 patients (96%). This 

is summarised in Table 36: Number of patients assessed at 1 and 2 years. Our model 

showed that there were no statistically meaningful results or conclusions that can be 

drawn. This is most likely due to the limited sample size compared to the number of 

variables used. This will be re-run when more patients in the PITMS study reach their 

study visit timelines and more cohorts will be analysed in due course. 
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Table 45: Ocrelizumab predictors for NEDA at 12 months  
Coefficient 
(LogOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) 1.82 1.53 1.20 0.23 

Age at DMT initiation 0.10 0.04 2.21 0.03* 

Sex: Male 0.40 0.63 0.63 0.53 

Ethnicity: Black -1.61 1.13 -1.43 0.15 

Ethnicity: Mixed 16.82 1569 0.01 0.99 

Ethnicity: Other -0.30 1.91 -0.15 0.88 

Ethnicity: White 0.60 0.92 0.64 0.52 

Phenotype: Optic neuritis 0.52 0.85 0.60 0.54 

Phenotype: Spinal cord -1.01 0.73 -1.37 0.17 

Phenotype: Supratentorial 2.21 1.42 1.56 0.12 

Presence of other comorbidities -0.56 0.62 -0.90 0.37 

No. of previous DMTs -0.50 0.24 -2.03 0.04* 

Disease duration -0.17 0.06 -2.91 0.004** 

No. of relapses in previous 12 months 0.70 0.40 1.73 0.08 

No. of new MRI lesions at DMT 
initiation 

-0.22 0.11 -1.90 0.05* 

EDSS at DMT initiation -0.12 0.15 -0.82 0.41 
 

Table 46: Ocrelizumab predictors for NEDA at 24 months  
Coefficient 
(LogOdds) 

Std. Error Z value Pr(>|Z|) 

(intercept) 40.46 766 0.006 0.99 

Age at DMT initiation -0.01 0.05 -0.16 0.87 

Sex: Male 1.22 0.97 1.25 0.21 

Ethnicity: Black -20.32 695 -0.00 0.99 

Ethnicity: Mixed -0.13 10000 0.00 1.00 

Ethnicity: Other -60.23 1299 -0.01 0.99 

Ethnicity: White -19.32 695 -0.00 0.99 

Phenotype: Optic neuritis -21.03 3209 -0.01 0.99 

Phenotype: Spinal cord -21.26 321 -0.01 0.99 

Phenotype: Supratentorial -21.54 3209 -0.01 0.99 

Presence of other comorbidities -0.70 0.83 -0.85 0.40 

No. of previous DMTs 0.17 0.41 0.42 0.67 

Disease duration -0.01 0.01 -1.03 0.30 

No. of relapses in previous 12 months -0.32 0.50 -0.65 0.51 

No. of new MRI lesions at DMT 
initiation 

0.25 0.32 0.77 0.44 

EDSS at DMT initiation -0.17 0.21 -0.79 0.43 
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3.5 Discussion 

In this chapter, we first described demographics, clinical features and NEDA 

outcomes in patients who have taken first- and second-line therapies at our centre. 

The basic demographics appeared to be similar in all cohorts including female: male 

ratio (approximately 3:1), ethnicity (white dominant), and age at CIS onset (late 20s 

and early 30s).  Spinal cord clinical presentation at onset was the commonest 

phenotype. Disease duration was 5 – 7 years prior to starting therapy, with 

fingolimod reaching 9 years, likely because it is a second line therapy and usually 

given to patients who failed one or more first line therapies.  

Most patients in our cohorts had low disability with median EDSS of 2.0-2.5, except 

in the natalizumab cohort where the median EDSS score was 6.0. This is likely because 

natalizumab is one of the highest efficacy therapies available for patients with highly 

active MS or those who have failed multiple other therapies with ongoing disease 

activity. Another observation is that many of our patients had no new MRI brain 

lesions at baseline, particularly so for first line therapies, but most patients had 

relapses in the previous 12 months of starting therapies. This can be explained for 

first line therapies as only one clinical relapse is required for commencing therapy. 

Another possible reason is that patients with spinal cord relapses may not have been 

accounted for through brain imaging. Finally, as expected, patients commenced on 

highly effective DMTs were more likely to achieve NEDA at 12 and 24 months 

compared to those initiated moderately effective DMTs.  

The rate of achieving NEDA in our cohorts where comparable to other observational 

cohorts in the literature. The rate of NEDA in our DMF cohort was 76% and 58% at 1 

and 2 years, respectively. Similarly, in a multicentre Italian cohort of 587 RRMS 

patients taking DMF, 80% achieved NEDA at 1 year and in a slightly larger 

retrospective American cohort of 737 RRMS patients, 61.2% reached NEDA at 2 years. 

(214, 215) In our fingolimod cohort, 61% achieved NEDA at 2 years, which was 

comparable (60%) to an Italian cohort of 201 RRMS patients. (216) The rate of NEDA 

in our natalizumab cohort was 69% at 2 years, which is similar to a smaller 

retrospective Norwegian cohort of 66 RRMS patients (68%). (217) Remarkably, 92% 
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of our ocrelizumab cohort achieved NEDA at 1 year, which is a similar finding (91.2%) 

reported in a Spanish retrospective multicentre cohort of 144 RRMS patients. (218) 

This rate dropped to 72.5% at 2 years, but remains higher than what was reported in 

an observational single centre cohort of 93 RRMS patients (62.1%). (219)  

In the second part of this chapter, using frequentist analysis, we aimed to determine 

the impact of each variable, observed in our population, on the outcome, NEDA, by 

investigating each DMT cohort separately. We identified some statistically significant 

variables, mostly found in first line therapies, dimethyl fumarate and glatiramer 

acetate. Lower number of statistically significant variables were identified in the 

highly effective therapies, natalizumab and ocrelizumab, and hardly any in the 

fingolimod cohort. It is important to note however that both first-line therapies had 

the largest number of patients and the most variability (lower percentage) in 

achieving NEDA at 1 and 2 years, which usually helps predicting models.  

Most of the statistically significant coefficients were negative, particularly in first line 

therapies, which in turn potentially indicates that such DMTs are more likely to work 

in patients with low MS activity. This reflects our current practice although highly 

effective therapies are also better used for those with low MS activity, they are 

associated with higher risks, such as PML with natalizumab, and are therefore usually 

reserved for patients with more MS activity. This is reflected with the positive 

coefficients of the number of relapses in the previous year of starting natalizumab 

and ocrelizumab and number of new MRI lesions at starting natalizumab and 

fingolimod.  

It is also interesting to note that ethnicity appear to show no significance in achieving 

NEDA in any of the cohorts. It is widely observed in clinical practice and documented 

in literature that patients of African descent have greater baseline lesion burden, are 

at greater risk of disability progression and may not respond as well to some DMTs 

compared to patients of European descent. (220, 221) This is possibly due to our 

population being white dominant, reaching 78% in the GA cohort, which potentially 

reduces the impact of this variable. 
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Reviewing the baseline variables across all cohorts; older age at MS onset, lower 

number of previous DMTs, lower number of relapses in the previous 12 months, 

lower number of new and/or enhancing MRI brain lesions, and lower EDSS score 

appear to show significant association of achieving NEDA at 1 and 2 years for most 

cohorts. Lower number of previous DMTs was associated with NEDA in a cohort of 

RRMS patient taking ocrelizumab reported by Cellerino et al. (219) The number of 

relapses in the previous 12 months prior to starting fingolimod was found to be 

significantly associated with NEDA at 2 years by Giuliani et al. (216) Lower EDSS was 

also associated with reaching NEDA at 2 years in a cohort of 171 patients taking 

natalizumab, however age, previous relapses, and disease duration did not show 

significant associations. (222) Similarly, in the evaluation of a cohort of 215 RRMS 

patients, age, ethnicity, and disease duration at baseline, regardless of the type of 

DMT used, did not reach a statistical significance in reaching NEDA at 2 years. (223) 

Finally, in a large cohort (1032) of RRMS patient taking injectables (glatiramer acetate 

or interferons) 52.4% achieved NEDA at 2 years, and age and EDSS were significantly 

associated with reaching NEDA. (224)  

Our study has identified a variety of baseline predictors of NEDA at 1 and 2 years 

which in most cases have been shown in separate other studies in the past years. It 

is also worth noting that sex and clinical phenotype at MS presentation appear to 

show no significant association. This could be due to the majority of MS patients 

being female and only a limited number of studies have considered the clinical 

phenotype at MS onset.    

One of the main limitations to our study is that most of our data is retrospective and 

observational which was collected prospectively in a single centre. Ocrelizumab is the 

only prospective cohort in our population, which comprises 13% of the total data. All 

retrospective data was collected by me and was standardised so any variations in 

scoring that could potentially introduce bias, for example EDSS and relapses, were 

minimised. Larger data from existing international registries with greater number of 

patients and follow-ups could have greater power and generalisability. However, one 

of the commonest problems with international registries is the selection bias and the 
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neurologists’ and patients’ preference of certain DMTs. We have minimised such a 

problem by including all patients initiating DMTs in a single centre, where all patients 

who are going on treatment are discussed at our MDT clinics, thereby making 

treatment approach more homogeneous. 

In our study we did not include enlarging lesions as per the NEDA definition. However, 

these are well known to be rare and unreliable, and most automatic lesion 

segmentation programmes, which are used in clinical trials to estimate lesion activity, 

report exclusively new lesions, which represent a more robust measure than 

enlarging lesions. It is likely that the definition of NEDA will evolve with technological 

innovations and clinical practice (225), and in the future it may include patient-

related outcomes (PROMS) and brain atrophy, and drop enlarging lesions. 

Although we included the number of prior DMTs taken before the index therapy as 

one of the variables, which can represent disease activity and/or intolerance, we did 

not include prior DMT potency and duration in our analysis. This can be included in 

future analysis to investigate the possible impact of such variables. Considering our 

median duration of being on DMTs is 3.8 years, we could explore longer-term NEDA, 

at 3 and 4 years, in future analysis and prediction. 

It is difficult to apply similar conclusions on external cohorts in view of the outcomes 

being estimated, and the observed predictions are valid only for the range of data 

used to estimate the model. In addition to the known limitations of a linear 

regression, such as the sensitivity to outliers and the assumption of normality, there 

is no estimation of the uncertainty of the prediction. This is one of the limitations of 

standard, also known as frequentist, logistic regression models. This will be 

addressed in the next chapter which describes the use of Bayesian statistics to 

explore a different approach to explain the explicit use of probability for quantifying 

uncertainty in inferences based on statistical data analysis. This is an essential step 

towards developing and validating a personalised tool which can potentially be used 

in routine clinical practice.   
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Chapter 4. Bayesian prediction of individualised treatment 

response in MS 

4.1 Introduction 

The disease course, mechanisms and treatment response of MS are heterogenous, 

which makes it challenging to predict outcome at the group-level, and even harder 

to predict outcome at the individual level. (199) But this task is important. A variety 

of DMTs have shown to improve clinical outcomes and quality of life at the group 

level, but if we are to pursue a personalised approach to DMT selection, we need the 

ability to forecast treatment response in any given individual.  

Individual-level treatment responses can be forecasted by incorporating individual-

level characteristics within predictive models of treatment effect. Accurate 

predictions will assist in choosing the correct therapy for an individual candidate and 

will minimise treatment failures and multiple therapy switches. Identifying the 

correct therapy for the right person at an early stage leads to reduced risk of relapses, 

accumulation of disability and adverse events. (226, 227) 

Whilst factors including DMT type, number of relapses and new MRI lesions are 

associated with clinical response at the group-level, we do not have a tool that 

combines this information to make clinically useful predictions of treatment response 

at the individual-level. (228) Our objectives in this study are to predict NEDA, defined 

as no relapses, no MRI brain activity and no EDSS increase, in RRMS patients starting 

DMTs using routinely available clinical and radiological data, and a Bayesian 

modelling framework optimal for estimating individual-level uncertainty. This creates 

the basis for a future provision to support clinicians and patients when a treatment 

is needed for new RRMS patients and those who fail therapy and need to switch. 

We applied a multi-level Bayesian framework which optimally estimates group-level 

and population-level coefficients in the context of data imbalance and limited 

participant subgroup numbers that typically occur in clinical settings.   
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4.2 Methods 

4.2.1 Inclusion/Exclusion criteria 

We analysed the final combination of our five cohorts described earlier 

(observational data from RRMS patients, aged ≥16 years old, who initiated glatiramer 

acetate, dimethyl fumarate, fingolimod, natalizumab or ocrelizumab between 2002–

2022 at our centre). Patients started DMTs for PPMS or SPMS were excluded. We 

predicted NEDA (a binary variable) at 1 and 2 years from baseline, defined as the time 

of DMT initiation. 

4.2.2 Predictor inclusion strategy and harmonisation 

We included clinical and radiological predictors available to the MS neurologist in 

clinical practice including;  

• DMT,  

• sex,  

• age at MS onset,  

• ethnicity (grouped as White, Asian, Black, Mixed, or Other),  

• the presence of one or more comorbidities,  

• clinical phenotype at MS onset; characterised as optic neuritis (ON), 

supratentorial (ST), infratentorial (IT), spinal cord (SC) or other presentation 

(other),  

• number of previous DMTs,  

• The presence of alleles to HLA-DRB1*15  

• The presence of unmatched OCBs in the CSF 

• age at DMT initiation (baseline),  

• disease duration from onset of CIS to commencing the reference DMT,  

• number of relapses in the previous 12 months; a relapse is defined by 

new/worsening neurological symptoms lasting more than 24 hours in the 

absence of another cause such as an infection. 

• EDSS at DMT initiation,  
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• brain MRI derived measures including; number of new T2w and/or T1w-

gadolinium enhancing MS lesions and total lesion volume, which was added 

semi-automatically using ML algorithms. 

All binary categorical variables were represented by single terms where 1 = presence 

and 0 = absence of the feature. DMTs, ethnicity and clinical phenotype at MS onset 

were all assigned into five categories each and so they were modelled as five 

individual categorical variables (represented as five terms for each variable). All 

retrospective data was collected by me and was standardised so any variations in 

scoring that could potentially introduce bias, for example EDSS and relapses, were 

minimised. Identifying patients through the pharmacy and MS speciality nurse 

databases reduced selection bias and using the electronic records have optimised our 

collection of data and minimised sampling bias. 

4.2.3 MRI data acquisition and feature extraction  

We acquired the MRI dataset from MS patients treated with DMTs, described above, 

according to local, standard-of-care protocols in the NHS over the last 20 years.  

Baseline MRI features were collected from scans taken in the first 6 months of taking 

DMTs, unless scans from this time period were unavailable, in which case scans taken 

in the 6 months prior to initiating therapy were utilised. Where scans were not 

available or performed outside our centre, efforts were made to obtain 

scanned/copied documents to establish MRI findings described by neuro-

radiologists.  

The study had ethical and institutional approval at University College London 

Hospitals NHS Foundation Trust for the analysis of fully-anonymised, routinely 

collected data and was performed in accordance with the relevant guidelines and 

regulations.  

We sought to extract the lesion load of each patient from their routine clinical MR 

imaging. This required registering all images to a common space and then segmenting 
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the lesions. In the retrospective cohorts, whole-brain FLAIR MR imaging of 1 x 1 x 6 

mm resolution was acquired from a variety of sequences and parameters which had 

changed over time, and many different protocols were used. This may have 

introduced bias in terms of ability to identify lesions and measure volumes correctly. 

We used clinical neuro-radiologist reports for the number of lesions identified and 

used a semi-automatic lesion volume measure where poor quality scans were 

labelled manually. In the prospective PITMS ocrelizumab cohort, all MRI 

examinations were performed using a 3T MR system (Ingenia CX, Philips) and the 

product 16 channel neurovascular head coil, with an acquisition protocol including: a 

structural T1-weighted volume acquired using a 3D magnetisation prepared Turbo 

Field-Echo (3D-TFE) sequence  with repetition time (TR) = 7  ms; echo-time (TE) = 3.2 

ms; inversion delay time = 822 ms; flip angle = 8°; voxel size 1 x 1 x 1 mm3, used as 

anatomical reference; 3D sagittal fluid-attenuated inversion recovery (3D-FLAIR) 

(TE=266 ms, TR=4800 ms, inversion delay time=1650 ms, flip angle=90°, 1.2x1.2x1.2 

mm3 resolution), used for lesion segmentation.  The image pre-processing pipeline 

was assembled and executed by Dr Le Zhang (imaging-engineering post-doc research 

fellow). FLAIR images were denoised by the non-local means algorithm and rigidly 

registered to a T1-w image of isotropic 1mm resolution in MNI152 space. (229, 230) 

Images were skull-stripped using the Brain Extraction Tool (BET) and intensity 

corrected using the N4 algorithm. (231, 232) 

A convolutional neural network (CNN) was trained to extract lesion volumes based 

on the framework for MS lesion segmentation published by Valverde et al in 2017. 

(233) Their training and inference procedures were followed, using 30 randomly 

selected manually labelled segmentations as the training set. 

We conducted and reported this study according to STROBE (strengthening the 

reporting of observational studies in epidemiology) and a checklist has been provided 

in the appendix at the end of the thesis. 
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4.2.4 Model building 

All analysis was done using RStudio v1.4.1106 (2021). RStudio: Integrated 

Development for R. RStudio, Inc., Boston, MA http://www.rstudio.com/). We used 

Bayesian multiple logistic regression models to develop a final ‘comprehensive’ 

model of individual prediction of NEDA. The Bayesian multiple logistic regression 

workflow was adapted from Jha et al. (234) NEDA (a binary variable) was entered as 

the dependent variable, whereas the other clinical and radiological variables were 

added as predictors. A Bayesian model is specified by the likelihood and priors.  

1.  𝑝(𝑦𝑖 = 1,𝑋𝑖 , Z𝑖, 𝛼, 𝛽, η)  ~  1/(1 + exp(−(𝛼 + 𝑋𝑖𝛽 + Z𝑖η)))  𝑓𝑜𝑟 𝑖 = 1, … , N 

2.  𝛽𝑗 ~ student_t(df = 3, 𝜇𝑗 = 0, 𝑗 = 2.5)   𝑓𝑜𝑟 𝑗 = 1, … , J  

3.  η r,s ~ normal(𝜇 r,s = 𝜋, r,s = 𝜏)   𝑓𝑜𝑟 s = 1, … ,S ; 𝑓𝑜𝑟 r = 1, … ,R 

4.  𝜋r ~ student_t(dfr = 3, 𝜇r = 0, r = 2.5) 

5. 𝜏r ~ halfstudent_t(df = 3, 𝜇 = 0,  = 2.5) 

6.  𝛼 ~ 𝑁(𝜇 = 0,  = 1) 

The logistic regression likelihood is shown in the first equation above, where 𝑦𝑖 = 1 is 

the NEDA status for subject 𝑖 of N. This is predicted by a transformed linear sum of 

three components (𝛼 + 𝑋𝑖𝛽 + Z𝑖η). In the first term 𝛼, is the estimated model 

intercept. The second term consists of a J-dimensional vector of observed population-

level individual predictors, 𝑋𝑖, multiplied by a J-dimensional vector of estimated 

population-level regression coefficients 𝛽. Population-level variables included in 𝑋 

include continuous variables and binary variables and factors with 2 levels 

represented by single dummy variables where presence of the attribute was coded 

as 1. The third term, Z𝑖η, consists of an R x S dimensional vector of observed group-

level individual predictors, Z𝑖, multiplied by an R (number of groups) x S (number of 

levels in each group) - dimensional vector of estimated group-level regression 

coefficients η.  Group-level variables included in Z include factors or ordinal variables 

with 3 or more levels such as background ethnicity, EDSS and phenotype. The 

coefficient η r,s  for each level s within group r, was further modelled with a 

http://www.rstudio.com/
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hierarchical distribution on the mean (𝜋r) and variance parameter (𝜏r). This allows 

partial pooling of information from each level to optimise the variance of their 

coefficients and predictive performance of the posterior predictions. We followed a 

consistent and conservative approach to prior selection, employing weakly 

informative prior distributions over model parameters. (235) Uniform ‘improper’ 

priors were avoided as they are implausible and are liable to cause degeneracies in 

non-linear models. Student t distributions were preferred over Normal distributions 

where possible owing to their improved behaviour with the heavy tailed data 

characteristic of behaviour. (236) Priors over continuous unbounded population-level 

parameters of interest were generally modelled with a Student t distribution 

(degrees of freedom (df) = 3, mean = 0, sd = 2.5).  Group-level intercepts were 

modelled hierarchically with normal priors whose mean and standard deviation were 

learned from the data (partial pooling) by placing Student t (df = 3, mean = 0, sd = 

2.5) and Half-Student t (df = 3, mean = 0, sd = 2.5) priors over the Normal mean and 

standard deviations respectively.  
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Model Specification: 

In order to determine the effect of increasing amounts of clinical information we 

specified and evaluated five comparator models of increasing complexity. The 

baseline (Null) model which had an intercept and no other predictors were used to 

estimate the average prediction of NEDA in our sample population. Further models 

were developed, as per Table 47: The Bayesian Models, cumulatively including 

additional features step-by-step: DMTs, History, Examination and Imaging. 

 

Table 47: The Bayesian Models 

Model 
Number 

Model Name Model Variables No. of 
predictors 

1 Null Average population prediction 0 

2 + DMTs Model 1 + DMTs 1 

3 + History  Model 2 + sex, age at DMT initiation, ethnicity, 
comorbidities, phenotype, disease duration, 
number of previous DMTs, number of relapses 
12 months prior to DMT initiation 

9 

4 + Examination Model 3 + EDSS at DMT initiation 10 

5 + MRI Model 4 + baseline number of new/enhancing 
MRI lesions, and total lesions volume 

12 

 

4.2.5 Posterior Estimation: 

The posterior parameter estimates were generated using a Markov Chain Monte 

Carlo (MCMC) method. Analyses were performed with BRMS (237) and RStan (Stan 

Development Team (2018). RStan: the R interface to Stan. R package version 2.18.2. 

http://mc-stan.org/) running in RStudio v1.3.1056 (RStudio Team (2020). RStudio: 

Integrated Development for R. RStudio, Inc., Boston, MA http://www.rstudio.com/). 

RStan implements Hamiltonian Monte Carlo with No-U-Turn sampling. (238) This is a 

faster and more efficient way to explore the parameters space of complex models 

than other sampling methods, particularly when there are large numbers of 

correlated parameters. (234) This improved robustness and efficiency in terms of 

estimated sample size (ESS) of MCMC sample. Subsequently for each imputed 

dataset, 4 chains, each with 2000 iterations, were run from different starting values 

http://www.rstudio.com/
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randomly taken from a uniform distribution between -2 and +2. 1000 warm up 

samples were discarded followed by obtaining posterior estimates from a further 

4000 samples (post-warmup) across all chains, which were assessed for chain stability 

and convergence using standard Rhat metrics within the software. (234) 

Missing Data: 

Predictor variables with >50% missing data were removed from the analysis; the 

presence/absence of alleles to HLA-DRB1*15 and presence/absence of unmatched 

OCBs. Other missing data were described in the previous chapter; Table 17: Missing 

data in the dimethyl fumarate cohort, Table 21: Missing data in the fingolimod 

cohort, Table 25: Missing data in the natalizumab cohort, Table 29: Missing data in 

the glatiramer acetate cohort.  

Multiple imputation was used to impute the remaining missing data assuming that it 

was missing at random conditional on the other covariates measured, using MICE as 

previously described.  
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4.2.6 Model Evaluation:  

The overall internal performance of all models was assessed with accuracy (number 

of correct predicted classifications/number of classifications) and balanced accuracy.  

Average internal discriminative performance was assessed with an Area Under the 

receiver-operator Curve (AUC). 

Beyond internal validity, external validation (generalisability) is important to assess 

the model prediction and assess for ‘over-fitting’ when applied to new individuals. 

This ideally requires assessments of an external dataset from a different geographical 

population or time period. This is difficult to achieve at this moment, although we are 

in the process of validating our results in an external unseen cohort. In the meantime, 

we sought to perform leave-one-out cross-validation (LOO-CV) as a measure of 

generalisability. This estimates how well the model would perform on new unseen 

individuals from the population sampled.  Bayesian models are computationally 

expensive to cross-validate and so we used an approximate technique based on 

Pareto smoothed importance-sampling. (239) This approximation can be assumed to 

be reliable as long as the Pareto tail parameter falls below 0.7. The resulting external 

validation metrics are based on a log-likelihood measure of probabilistic accuracy 

called the leave-one-out-expected log posterior density (elpd-loo). The final model 

comparison of how well the models generalise to new individuals was performed 

with the paired difference between their respective elpd-loo. Here, the worse model 

has a negative value relative to the preferred model which has a reference value and 

standard error of 0.  
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4.3 Results 

4.3.1 Demographics and clinical outcomes 

A total of 1986 patients (71% female; mean age 39.2 years (± 10.2); disease duration 

8.4 years (± 7.0); median EDSS 2.5 [range 0 - 8.0]; 43% DMT naïve) initiated different 

DMTs (glatiramer acetate = 547 (27%); dimethyl fumarate = 670 (34%); fingolimod = 

336 (17%); natalizumab = 177 (9%); ocrelizumab = 256 (13%)). The demographics and 

clinical information for each cohort are summarised in Table 48: Summary analysis of 

all cohorts.  

Comparing cohorts, it is clear that in our population, the majority of patients were 

female and white. The median age of MS onset (or CIS) ranged between 27-30 years 

and the median age at starting DMT ranged between 36-40 years. The majority of 

patients presented with a spinal cord clinical phenotype at MS onset. There was a 

difference between the clinical characteristics of those who started first line versus 

second line therapies. Natalizumab patients, for example, showed higher rate of 

relapses, MRI activity and disability at baseline compared to patients who started first 

line therapies. This is expected considering natalizumab is usually reserved for highly 

active RRMS due to its high efficacy as well as balancing its important risk of PML. On 

the other hand, ocrelizumab patients appear to have less active MS, which again 

reflects the less restrictive use considering its high efficacy, more convenient mode 

of administration and frequency, and association with lower risks compared to 

natalizumab. 

Overall, 1503/1986 (75.7%) of patients who commenced therapy achieved NEDA at 

year one. Only 1037/1835 (56.5%) patients achieved NEDA at year two. Patients 

included in NEDA analysis at each time point is summarised in Table 49: Number of 

patients assessed for NEDA at 1 and 2 years. As previously demonstrated in chapter 

three analysis, a small number of patients, 1-2% at year 1 and 2-4% at year 2, were 

lost to follow up in each cohort.  
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The results above demonstrate that despite the clinical guidance available for 

clinicians to commence different DMTs it is still very difficult to predict treatment 

response. This again highlights the importance of understanding baseline factors that 

could predict short- and medium-term outcomes to the individual patient. 

Table 48: Summary analysis of all cohorts 

Cohort 
Glatiramer 
Acetate (547) 

Dimethyl 
Fumarate (670) 

Fingolimod  
(336) 

Natalizumab 
(177) 

Ocrelizumab 
(256) 

Gender F:M (F%) 407:140 (74) 483:187 (72) 252:84 (75) 114:63 (64) 160:96 (63) 

Ethnicity 
White (%) 
Black 
Asian 
Mixed 
Other 

 
425 (78) 
33 
43 
17 
15 

 
478 (71) 
29 
65 
24 
22 

 
243 (75) 
16 
35 
15 
12 

 
118 (67) 
20 
16 
6 
11 

 
193 (75) 
16 
27 
14 
6 

Comorbidities 
1 = yes (%) 
0 = no 

 
347 (63) 
186 

 
324 (48) 
346 

 
200 (60) 
134 

 
128 (73) 
48 

 
144 (56) 
112 

Age at MS onset 
Median 
Mean 
Min 
Max 

 
30 
31.4 
8 
67 

 
30 
32 
10 
73 

 
28 
28.6 
8 
56 

 
27 
27.7 
10 
65 

 
30 
31.7 
11 
65 

Phenotype at MS onset 
SC = spinal cord (%) 
ON = optic neuritis 
ST = supratentorial 
IT = infratentorial 
Other 

 
210 (38) 
128 
82 
98 
 

 
236 (35) 
155 
111 
124 
9 

 
106 (32) 
73 
48 
76 
2 

 
41 (23) 
38 
19 
37 
7 

102 (40) 
61 
23 
60 

OCBs (%) 
1 = Yes 
0 = No 

191 (35) 
175 
16 

221 (33) 
206 
15 

120 (36) 
112 
8 

61 (35) 
58 
3 

No data 

Genetics (%) 
0 = no alleles 
1 = one allele 
2 = two alleles 
Pending phenotype 

85 (16) 
7 
15 
0 
63 

106 (16) 
9 
13 
0 
84 

73 (22) 
19 
8 
4 
42 

106 (60) 
28 
1 
7 
57 

No data 

No. of previous DMTs 
0 
1 
2 
3 
4 or more 

 
342 
150 
48 
6 
1 

 
335 
250 
62 
15 
8 

 
12 
186 
104 
32 
1 

 
26 
91 
38 
19 
3 

 
138 
54 
40 
15 
9 

Age at DMT initiation 
Median 
Mean 
Min 
Max 

 
37 
38.7 
16 
72 

 
40 
40.5 
16 
82 

 
39 
39.2 
15 
69 

 
36 
36 
15 
68 

 
38 
38.8 
18 
68 

Disease duration  
Median 
Mean 
Min 

 
5 
7.3 
0 

 
7 
8.6 
0 

 
9 
10.6 
0 

 
7 
8.4 
0 

 
5 
7.1 
0 
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Max 36 40 48 41 30 

No. relapses in last 12 
months 
0  
1 
2 
3 or more 

 
 
149 
251 
116  
28 

 
 
236 
308 
104 
21 

 
 
86 
160 
74 
13 

 
 
13 
52 
73 
38 

 
 
75 
120 
53 
8 

EDSS at DMT initiation 
Median 
Mean 
Min 
Max 

 
 
2.0 
2.5 
0 
7.0 

 
 
2.0 
2.6 
0 
7.5 

 
 
2.5 
3.5 
0 
7.5 

 
 
6.0 
4.7 
1.0 
8.0 

 
 
2.0 
2.7 
0 
8.0 

No. new MRI brain lesions 
0 
1 
2 
3 
4 
5-9 
10 or more 

 
187 
41 
40 
31 
28 
36 
0 

 
438 
73 
55 
49 
20 
19 
1 

 
231 
31 
15 
10 
8 
12 
2 

 
60 
20 
25 
24 
15 
16 
2 

 
119 
39 
27 
13 
16 
19 
3 

Total lesions volume (mL) 
Year 0 
Year 1 
Year 2 

Mean+/-SD 
9304.8±11936.9 
7362.8±7677.8 
10781.2±12608.4 

Mean+/-SD 
8927.6±10703.1 
9045.9±11247.1 
9599.3±11982.7 

Mean+/-SD 
11087.8±12152.6 
10997.2±12368.7 
11610.9±12964.4 

Mean+/-SD 
16146.7±14532.0 
14726.3±14092.4 
16357.2±15408.6 

Mean+/-SD 
11933.9±13270.2 
11424.6±13724.2 
10697.0±13505.3 

NEDA at 1 year 
1 = yes (%) 
0 = no (%) 

 
358/547 (65) 
189/547 (35) 

 
510/670 (76) 
160/670 (24) 

 
262/336 (78)  
74/336 (22) 

 
144/177 (81) 
33/177 (19) 

 
235/256 (92) 
21/256 (8) 

NEDA at 2 years 
1 = yes (%) 
0 = no 

 
248/532 (46.6) 
284/532 (53.4) 

 
387/670 (58) 
283/670 (42) 

 
206/336 (61) 
130/336 (39) 

 
123/177 (69) 
54/177 (31) 

 
87/120 (72.5) 
33/120 (27.5) 

 

  

Table 49: Number of patients assessed for NEDA at 1 and 2 years 

 Glatiramer 
Acetate 

Dimethyl 
fumarate 

Fingolimod Natalizumab Ocrelizumab Total 
number 

Patients assessed for 
NEDA at 1 year 

547 670 336 177 256 1986 

Patients assessed for 
NEDA at 2 years 

532 670 336 177 120 1835 
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4.3.2 Predictive performance  

Internal validation:  

All MCMC chains converged adequately with Rhat=1 for all relevant model 

parameters. Increasing model complexity by adding additional covariates improved 

internal (within-sample) predictive measures. The sensitivity and specificity of the 

models are shown across all thresholds as Area Under the Curve (AUC), as shown in 

Table 50: Bayesian models’ internal evaluation 

 

Table 50: Bayesian models’ internal evaluation 

Model 
Model 1 

(Null) 
Model 2 
(+DMTs) 

Model 3 
(+History) 

Model 4 
(+EDSS) 

Model 5 
(+MRI) 

Year 1 

Accuracy 0.81 0.81 0.81 0.82 0.82 

Balanced 
Accuracy 

0.50 0.50 0.51 0.53 0.54 

AUC 0.50 0.62 0.68 0.72 0.73 

Year 2 

Accuracy 0.66 0.66 0.67 0.68 0.69 

Balanced 
Accuracy 

0.50 0.50 0.54 0.56 0.57 

AUC 0.51 0.60 0.65 0.68 0.69 

 

Cross-validation: 

In order to determine whether the improved predictive performance was 

generalisable to unseen patients, we subsequently performed approximate cross-

validated model comparison. The approximate leave-one-subject-out cross-

validation technique was reliable with all observations being associated with a Pareto 

K < 0.7. This showed that the final ‘comprehensive’ model (+MRI) generalised to new 

individuals better than the simpler models. 

Cross-validated prediction accuracy of the final ‘comprehensive’ model (reference 

ELPD-LOO = 0, SEM = 0) was substantially better than a simpler model of average 

treatment effect (ELPD-LOO = -41.7, SEM ± 10.2), and similar to a simpler model with 

clinical but no radiological information (ELPD-LOO = -2.6, SEM ± 2.9). A similar pattern 

was observed with NEDA at 2 years - the average treatment effect model performed 

worse (ELPD-LOO = -23.6, SEM ± 8.3) whilst the clinical information only without 
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imaging model was similar (ELPD-LOO = -1.0, SEM ± 2.2) to the ‘comprehensive’ 

model. This is further demonstrated in Table 51: Cross-validated prediction accuracy 

of the models and Figure 6: Approximate-Out of sample accuracy: ELPD-LOO for 

models predicting NEDA at 1 (A) and 2 (B) years.  

Table 51: Cross-validated prediction accuracy of the models 

 Year 1 Year 2 

Model no. Model name ELPD-LOO SEM ELPD-LOO SEM 

5 +MRI 0 0 0 0 

4 +EDSS -2.6 ±2.9 -1.0 ±2.2 

3 +History -28.2 ±7.9 -12.7 ±5.6 

2 +DMTs -41.7 ±10.2 -23.6 ±8.3 

1 Null -72.2 ±13.1 -46.6 ±11.0 

  

 

 

Figure 6: Approximate-Out of sample accuracy: ELPD-LOO for models predicting 
NEDA at 1 (A) and 2 (B) years. 
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4.3.3 Inference 

The adjusted posterior log odds ratios of the fitted logistic regression model are 

presented in   
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Figure 7: The impact of variables in the most comprehensive model in predicting 

NEDA at 1 (A) and 2 (B) years 

Bayesian models have no arbitrary significance threshold, so we assessed the 

strength of associations based on the mean effect-size (log odds ratio) and 

surrounding uncertainty. Values less than 0 are associated with a reduced probability 

of NEDA, whilst values greater than 0 are associated with an increased probability of 

NEDA, relative to the average population sample (black circle = average, red line = 

80% Credibility Interval, black line 95% Credibility Interval). It is important to note 

that several variables were strongly associated with NEDA however, the 

observational nature of evaluating clinical cases limit causal interpretations. 
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Figure 7: The impact of variables in the most comprehensive model in predicting 
NEDA at 1 (A) and 2 (B) years 
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4.4 Discussion 

We developed and tested a modelling framework designed to answer a distinct 

question. We aimed to provide individualised predictions of treatment effects. We 

found that our model predicted individual NEDA at 1 and 2 years with reasonable 

accuracy based on the inclusion of all variables that are potentially available routinely 

to the MS neurologist.  Although the results of cross-validation were consistent with 

this and encouraging, the use of the model in non-represented populations should 

still be cautious.  

Previous work by Kalincik et al developed models to predict individual treatment 

response to seven DMTs using demographic, clinical and paraclinical predictors in 

8513 patients with MS in the MSBase. (207) They assessed disability progression, 

disability regression, relapse frequency, and conversion to SPMS separately, using 

multivariable survival and generalised linear models. Although the accuracy and 

internal validity of the predictive models was high (>80%) for relapses at one year, it 

was moderate for relapses at 2-4 years and low for conversion to SPMS. However, 

this study did not consider radiological information and lacked data on dimethyl 

fumarate and ocrelizumab which are commonly used worldwide. In addition, 

assessing relapses and disability separately is important, however assessing NEDA is 

a more comprehensive measure of DMT effectiveness clinically and radiologically, 

and it is increasingly being used as primary outcome in clinical trials. (240) To date, 

to the best of our knowledge, there has been no attempt at predicting individualised 

NEDA in the short- or long-term using large real-world data. 

We demonstrated that making our models more complex with the addition of further 

clinical and radiological variables helped in the improvement of prediction accuracy. 

We aimed to include other markers that have prognostic values, such as the presence 

of unmatched OCBs in the CSF and the presence of alleles to HLA-DRB1*15, but there 

was >50% of missing data and were therefore excluded in this analysis. (241, 242) 

However, we look to include more DMT cohorts, such as cladribine, alemtuzumab 

and beta-interferons, and more MRI variables, including white and grey matter 

volumes, in future analysis. This is one of the main advantages of using the Bayesian 
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predictive modelling framework as it is well setup to include newly available data and 

models can be monitored and updated regularly.  

Our results have important implications for clinicians considering starting DMTs for 

RRMS patients in clinic, as there are two groups of DMTs available; moderately 

effective immunomodulating DMTs which are first line therapies (e.g interferon β, 

glatiramer acetate, dimethyl fumarate) and highly effective immunosuppressive and 

immune cell depleting monoclonal antibodies which are second line DMTs (e.g 

fingolimod, cladribine, natalizumab, ocrelizumab and ofatumumab). (243) According 

to the patient’s MS activity, usually guided by the number of relapses, EDSS and MRI 

activity, the clinician decides upon the group of DMTs to commence. Importantly, our 

models have demonstrated that DMTs, as expected, have variable impact on 

prediction which correlate with their efficacy, however importantly the addition of 

further clinical and radiological information improved prediction further. This is an 

important finding for the treating clinician who wishes to commence a new DMT for 

a RRMS patient. 

We chose to predict NEDA at one and two years as a measure of short- and 

intermediate-term treatment response respectively, similar to the follow up periods 

usually conducted by clinical trials. (110-112, 114, 115, 244, 245) Since we assessed 

both first- and second-line therapies together and first-line therapies take several 

months before they have a therapeutic effect, a period of two years to measure 

treatment effectiveness was thought to be appropriate. (246) On the other hand, 

second line-therapies are more potent and have a faster rate of effectiveness, but 

natalizumab, for example, is usually given for two years before it is switched to 

another DMT, particularly for those who are JC virus positive, to reduce the risk of 

developing PML. (247)  

The Bayesian approach in prediction was previously used in epilepsy, where Jha et al 

used Bayesian models to develop and validate an individualised prediction of SUDEP 

(sudden unexpected death in epilepsy) risk in epilepsy patients using clinical 

predictors, with accuracy reaching 71%. (234) Their model also identified prognostic 
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factors at epilepsy onset including generalised tonic-clonic and focal-onset seizure 

frequency, young age and family history of epilepsy, which are important findings to 

explore by the treating clinician. 

One of the main limitations to our study is the retrospective nature of our data. 

However, all data was collected in a standardised manner by a single operator 

(myself), so any variations in scoring, for example EDSS score and relapses, were 

minimised. Another limitation includes the lack of external independent cohort to 

test our model, however we are currently addressing this through ongoing 

collaboration with the Swedish MS team to test our model in an independent external 

cohort. 

The Bayesian approach may be criticised because of the need for prior distributions 

for the model parameters. We therefore used weakly informative priors consistent 

with expert knowledge that standardised odds ratios in clinical studies are unlikely to 

be more or less than 2. (234) 

Although the prediction remains – and will always remain - uncertain, we have 

developed a framework that potentially has some utility in clinical and research 

settings. Future prospectively acquired longitudinal PITMS study will provide more 

detailed cohorts with further information including various other variables that could 

potentially improve our model including genetics, serum neurofilament biomarkers, 

and further MRI characteristics. 
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Chapter 5. Comparing clinical and radiological effectiveness of 

disease modifying therapies in RRMS 

5.1 Introduction 

In the previous chapters we explored our experience in using different disease 

modifying therapies (DMTs) to manage RRMS. We evaluated treatment response 

according to NEDA (no evidence of disease activity) at one and two years through 

evaluating clinical (relapses and EDSS progression) and radiological activities. We also 

used machine learning to evaluate important clinical predictors of outcomes at a 

group level and at an individual level. In this chapter, we explore the clinical and 

radiological effectiveness of different DMTs given for RRMS patients.  

In separately conducted clinical trials, all currently approved DMTs for RRMS have 

shown evidence of reducing relapses and progression at variable rates, as 

demonstrated in chapter one, Table 5: DMTs; effectiveness, mode of administration, 

monitoring, and adverse events. (111, 112, 114, 115, 245, 248) However, there has 

been no head-to-head phase III clinical trials comparing the efficacy of multiple first 

line DMTs and/or multiple high efficacy DMTs. In indirect comparisons with 

matching-adjusted analyses of clinical trials comparing two first line DMTs, 

peginterferon beta-1a showed better clinical outcomes when compared to 

subcutaneous interferon beta-1a, glatiramer acetate and teriflunomide. (249-251) 

Real-world data (RWD) has become a valuable tool for the evaluation of clinical 

practices in the management of chronic conditions such as MS. (252, 253) Using RWD 

in the comparative effectiveness research analyses can guide healthcare systems, 

approval of therapies, and most importantly patient care and management. Recently 

Reder et al. used real-world propensity score comparison of treatment effectiveness 

of multiple first line (moderately effective) DMTs. (254) However, to date there has 

been a limited number of studies comparing multiple DMTs across lower, moderate 

and higher efficacy therapies in the literature. (207)  We therefore conducted a 

propensity score-adjusted comparison of the clinical and radiological effectiveness of 

a combination of five low-, moderate- and high-efficacy DMTs among RRMS patients 
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at our tertiary MS centre. We conducted and reported this study according to STROBE 

(strengthening the reporting of observational studies in epidemiology) and a checklist 

has been provided in the appendix at the end of the thesis 

5.2 Methods 

5.2.1 Inclusion/Exclusion criteria 

This observational study included all consecutive participants aged ≥16 years old who 

had a diagnosis of RRMS and initiated ocrelizumab, natalizumab, fingolimod, 

dimethyl fumarate (DMF) and glatiramer acetate (GA) at Queen Square MS Centre at 

the National Hospital for Neurology and Neurosurgery between 2002 and 2022. 

Patients with PPMS or SPMS on DMTs were excluded. 

5.2.2 Data collection 

A review of the electronic medical records was conducted for all the patients who 

were included in the study. I reviewed all the medical encounters following each 

patient’s treatment initiation for at least 24 months or until DMT discontinuation. 

Identifying patients through the pharmacy and MS speciality nurse databases 

reduced selection bias and using the electronic records have optimised our collection 

of data and minimised sampling bias. Baseline information was collected from 

records at the time of starting a DMT. Baseline MRI characteristics were collected 

from the nearest scan after starting a DMT, this was usually within 6 months of 

initiating therapy. In the minority of patients who did not have available scans within 

this timeframe, scans undertaken in the 6 months prior to starting therapy were 

utilised. 

5.2.3 Outcome measures 

The primary outcome was comparing the clinical effectiveness of all DMTs defined as 

the patient experiencing a clinical relapse, EDSS progression and/or developing new 

T2/gadolinium (Gd) enhancing MRI brain lesions. We also compared NEDA (no 

evidence of disease activity), defined as the absence of relapses, EDSS progression 

and new MRI brain lesions (T2 and/or Gd enhancing MS lesions) at one and two years. 
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Since NEDA evaluates the three components in this analysis, the term NEDA will imply 

NEDA-3 in this chapter. For NEDA assessments, only those who had therapy for ≥6 

months and ≥18 months were assessed for NEDA at 1 and 2 years, respectively. 

5.2.4 Statistical analysis 

Demographic, clinical, and MRI variables are presented as mean (±standard 

deviation), median (range), or number (percent), as appropriate. Using baseline 

variables, propensity scores were calculated for the probability of being assigned to 

DMTs based on age, gender, previous DMT, comorbidities, disease duration, EDSS, 

and relapses in previous 12 months. 

Multivariable logistic and linear regression models were used to evaluate differences 

in probability and number of relapses, respectively, between different DMTs. Mixed-

effect linear regression models were used to evaluate the differences in EDSS 

between baseline and after year 1 and 2, separately, between different DMTs, 

including an interaction term between time (year) and DMTs to explore between-

DMTs differences over time. Multivariable logistic and linear regression models were 

used to evaluate differences in probability and number of new T2 and/or gadolinium-

enhancing lesions, respectively, between different DMTs. Cox proportional hazards 

regression models were used to evaluate differences in NEDA between different 

DMTs. For the subgroup of patients with quantitative MRI analysis, mixed-effect 

linear regression models were used to evaluate the differences in lesion volume 

between baseline and after year 1 and 2, separately, between different DMTs, 

including an interaction term between time (year) and DMTs to explore between-

DMTs differences over time. Ocrelizumab was used as reference DMT; propensity 

score was included as covariate in all statistical models. The proportional hazards 

assumption was met as assessed using plots of log (−log survival time) against log 

survival time and Schoenfeld residuals against survival time; linear regression of 

Schoenfeld residuals on time was used to test for independence between residuals 

and time.  
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Results were presented as odds ratio (OR), coefficient (Coeff), hazard ratio (HR), 95% 

confidence intervals (95%CI), and p-value, as appropriate. All P values were from 2-

sided tests and results were deemed statistically significant at P < 0.05. Stata, version 

15 MP (StataCorp LLC) was used to conduct statistical analyses. This statistical 

analysis was assisted by Dr Marcello Moccia, Assistant Professor at the University of 

Naples Federico II and Clinical Research Fellow at University College London, Dr 

Raffaele Palladino, clinical epidemiologist and statistician at school of public health, 

Imperial college London and Professor Maria Pia Sormani, Professor of biostatistics 

at the University of Genoa, Italy.  

5.3 Results  

5.3.1 Study population 

We included 1986 RRMS patients (age=39.1±10.2 years; females=71.2%; disease 

duration=8.3±7.0 years; EDSS=2.5 (0-8.0)), who initiated ocrelizumab (256), 

glatiramer acetate (547), dimethyl fumarate (670), fingolimod (336) or natalizumab 

(177), with average duration on DMTs of 3.8±3.3 years.  

For all patients, brain MRIs were acquired as per clinical practice, and we extracted 

presence and number of new T2 and Gd enhancing lesions. For a subset of patients 

(1600, 80.5%), we also had MRI acquisitions suitable for quantitative analysis, 

including white matter lesion volume at baseline and at least at one follow-up. 

Demographic, clinical, and MRI variables are presented in Table 52: Demographic, 

clinical, and MRI variables at baseline, year 1, and year 2 for different DMTs. Many of 

the variables mentioned in this table were also described in the previous chapter, 

Table 48: Summary analysis of all cohorts. Important difference is that in the analysis 

in comparing DMTs, we excluded patients who received therapy for <6 months and 

<18 months for the assessment at 1 and 2 years, respectively. A summary of the 

number of patients assessed at 1 and 2 years is shown in chapter three, Table 36: 

Number of patients assessed at 1 and 2 years. Reasons for patients stopping DMTs at 

different time points, within 2 years, were discussed in chapter 3.  
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Table 52: Demographic, clinical, and MRI variables at baseline, year 1, and year 2 for different DMTs. 

 Ocrelizumab 
N=256 

Dimethyl fumarate 
N=670 

Fingolimod 
N=336 

Glatiramer 
acetate 
N=547 

Natalizumab 
N=177 

Baseline      

Age, years 38.8±10.6 40.5±10.2 39.2±10.4 38.6±9.5 36.1±10.2 

Gender, females 160 (62.5%) 483 (72.0%) 252 (75.0%) 407 (74.4%) 113 (63.8%) 

Comorbidities 144 (56.2%) 324 (48.3%) 200 (60%) 347 (63.4%) 131 (74.0%) 

Disease duration, years 7.0±6.8 8.6±7.1 10.6±7.1 7.2±6.6 8.4±6.6 

EDSS 2.0 (0-8.0) 2.0 (0-7.5) 2.5 (0-7.5) 2.0 (0-7.0) 6.0 (1.0-8.0) 

Average number of relapses in 
12 months before treatment 

0.97±0.79 0.86±0.78 1.05±0.83 1.04±0.84 1.85±1.03 

Treatment naïve patients 138 (53.9%) 335 (50.0%) 12 (3.6%) 342 (62.5%) 26 (14.7%) 

Availability of quantitative 
MRI 

162 (63.2%) 621 (92.6%) 317 (94.3%) 338 (61.7%) 162 (91.5%) 

Lesion volume, mL 11933.9±13270.2 8927.6±10703.1 11087.8±12152.6 9304.8±11936.9 16146.7±14532.0 

Year 1      

EDSS 2.0 (0-8.5) 2.0 (0-7.5) 2.5 (0-7.5) 2.0 (0-7.5) 6.0 (1.0-8.5) 

Patients with relapses 3 (1.1%) 75 (12.3%) 50 (15.7%) 128 (24.9%) 27 (15.2%) 

Number of relapses 0.01±0.10 0.14±0.42 0.20±0.52 0.29±0.55 0.20±0.53 

Patients with new/Gd+ lesions 14 (7.3%) 47 (8.8%) 12 (5.0%) 46 (25.1%) 11 (6.5%) 

Patients with NEDA (baseline 
to year 1) 

235/255 (92.1%) 510/610 (83.6%) 262/317 (82.6%) 358/514 (69.6%) 144/177 (81.3%) 

Months to loss of NEDA 
(baseline to year 1)  

11.6±1.4 11.4±1.9 11.5±1.7 11.1±2.4 11.7±1.3 

Lesion volume, mL 11424.6±13724.2 9045.9±11247.1 10997.2±12368.7 7362.8±7677.8 14726.3±14092.4 

Lesion volume, percent change 
(baseline to year 1) 

3.66±49.6% 13.56±61.79% 11.99±82.66% 17.70±62.53% 0.86±43.57% 

Year 2      

EDSS 2.5 (0-8.0) 2.0 (0-7.5) 2.5 (0-7.5) 2.0 (0-8.0) 6.0 (1.0-8.5) 

Patients with relapses 6 (5.21%) 57 (10.9%) 48 (16.8%) 85 (21.0%) 18 (10.6%) 

Number of relapses 0.05±0.23 0.15±0.65 0.18±0.43 0.22±0.45 0.12±0.38 

Patients with new/Gd+ lesions 3 (4.1%) 61 (13.7%) 16 (7.1%) 37 (27.8%) 6 (3.5%) 

Patients with NEDA (baseline 
to year 2) 

87/115 (75.7%) 387/547 (70.7%) 206/299 (68.9%) 248/458 (54.1%) 123/169 (72.8%) 

Months to loss of NEDA 
(baseline to year 2) 

22.8±4.3 21.3±5.8 21.3±5.7 19.7±6.9 21.4±5.4 

Patients with NEDA (year 1 to 
year 2) 

91 (88.3%) 407 (79.1%) 222 (77.8%) 280 (70.0%) 143 (84.6%) 

Months to loss of NEDA (year 1 
to year 2) 

23.8±0.7 23.8±1.1 23.8±1.0 23.6±1.4 23.9±0.7 

Lesion volume, mL 10697.0±13505.3 9599.3±11982.7 11610.9±12964.4 10781.2±12608.4 16357.2±15408.6 

Lesion volume, percent change 
(baseline to year 2) 

-3.64±30.31% 27.26±102.77% 18.30±50.95% 16.43±66.00 3.90±49.70% 
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5.3.2 Relapses 

On year 1, propensity score-adjusted logistic regression models showed a higher 

probability of relapse in patients treated with dimethyl fumarate (OR=11.73; 

95%CI=3.65, 37.72; p<0.01), fingolimod (OR=15.98; 95%CI=4.91, 51.97; p<0.01), 

glatiramer acetate (OR=28.63; 95%CI=8.98, 91.25; p<0.01), and natalizumab 

(OR=15.23; 95%CI=4.54, 51.07; p<0.01), when compared with ocrelizumab (Figure 8: 

Bar graph showing the percent of patients with relapses during 12 months before 

treatment, and after 1 and 2 years.). Similarly, at year 1, propensity score-adjusted 

linear regression models showed a higher number of relapses in patients treated with 

dimethyl fumarate (Coeff=0.13; 95%CI=0.06, 0.20; p<0.01), fingolimod (Coeff=0.19; 

95%CI=0.11, 0.26; p<0.01), glatiramer acetate (Coeff=0.28; 95%CI=0.21, 0.36; 

p<0.01), and natalizumab (Coeff=0.19; 95%CI=0.10, 0.28; p<0.01), when compared 

with ocrelizumab. 

On year 2, propensity score-adjusted logistic regression models showed a higher 

probability of relapse in patients treated with fingolimod (OR=3.26; 95%CI=1.34, 

7.90; p<0.01), and glatiramer acetate (OR=4.75; 95%CI=2.00, 11.26; p<0.01), when 

compared with ocrelizumab, while no differences were found for dimethyl fumarate 

(OR=2.12; 95%CI=0.88, 5.08; p=0.09), and natalizumab (OR=1.89; 95%CI=0.72, 4.96; 

p=0.19) (Figure 8: Bar graph showing the percent of patients with relapses during 12 

months before treatment, and after 1 and 2 years.). Similarly, at year 2, propensity 

score-adjusted linear regression models showed a higher number of relapses in 

patients treated with fingolimod (Coeff=0.12; 95%CI=0.01, 0.24; p=0.03), and 

glatiramer acetate (Coeff=0.18; 95%CI=0.06, 0.29; p<0.01), when compared with 

ocrelizumab, while no differences were found for dimethyl fumarate (Coeff=0.10; 

95%CI=-0.01, 0.21; p=0.07), and natalizumab (Coeff=0.06; 95%CI=-0.06, 0.19; 

p=0.30). 
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Figure 8: Bar graph showing the percent of patients with relapses during 12 months 
before treatment, and after 1 and 2 years. 
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5.3.3 EDSS 

On year 1, propensity score-adjusted mixed-effect linear regression models also 

including baseline EDSS, showed EDSS was 0.24 larger in patients treated with 

dimethyl fumarate (Coeff=0.24; 95%CI=0.16, 0.32; p<0.01), 0.25 in fingolimod 

(Coeff=0.25; 95%CI=0.16, 0.35; p<0.01), 0.34 in glatiramer acetate (Coeff=0.34; 

95%CI=0.25, 0.42; p<0.01), and 0.21 in natalizumab (Coeff=0.21; 95%CI=0.11, 0.32; 

p<0.01), when compared with ocrelizumab (Figure 9: Box-and-whisker plot showing 

EDSS before treatment, and after 1 and 2 years). 

On year 2, propensity score-adjusted mixed-effect linear regression models, showed 

higher EDSS in patients treated with dimethyl fumarate (Coeff=0.22; 95%CI=0.08, 

0.35; p<0.01), fingolimod (Coeff=0.24; 95%CI=0.10, 0.39; p<0.01), glatiramer acetate 

(Coeff=0.39; 95%CI=0.25, 0.53; p<0.01), and natalizumab (Coeff=0.21; 95%CI=0.06, 

0.37; p<0.01), when compared with ocrelizumab (Figure 9: Box-and-whisker plot 

showing EDSS before treatment, and after 1 and 2 years). 
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Figure 9: Box-and-whisker plot showing EDSS before treatment, and after 1 and 2 
years.  

The lines splitting the boxes in two represent the median. The top and bottom edges of the boxes 
represent the upper and lower quartiles respectively. The top and bottom of the straight lines 
represent the maximum and minimum values of the cohort. The figures are raw presentation of data.  
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5.3.4 MRI 

On year 1, propensity score-adjusted logistic regression models showed a higher 

probability of new/Gd enhancing lesions in patients treated with glatiramer acetate 

(OR=4.07; 95%CI=2.03, 8.16; p<0.01), when compared with ocrelizumab, while no 

differences were found for dimethyl fumarate (OR=1.45; 95%CI=0.74, 2.84; p=0.27), 

fingolimod (OR=0.88; 95%CI=0.38, 2.02; p=0.77), and natalizumab (OR=0.84; 

95%CI=0.36, 1.96; p=0.70) (Figure 10: Bar graph showing the percent of patients with 

new/Gd enhancing lesions at treatment initiation (baseline), and after 1 and 2 years.).  

On year 2, propensity score-adjusted logistic regression models showed a higher 

probability of new/Gd enhancing lesions in patients treated with dimethyl fumarate 

(OR=4.93; 95%CI=1.45, 16.68; p=0.01), and glatiramer acetate (OR=9.40; 95%CI=2.67, 

33.05; p<0.01), when compared with ocrelizumab, while no differences were found 

for fingolimod (OR=1.71; 95%CI=0.44, 6.53; p=0.43), and natalizumab (OR=0.77; 

95%CI=0.18, 3.26; p=0.72) (Figure 10: Bar graph showing the percent of patients with 

new/Gd enhancing lesions at treatment initiation (baseline), and after 1 and 2 years.).  
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Figure 10: Bar graph showing the percent of patients with new/Gd enhancing lesions 
at treatment initiation (baseline), and after 1 and 2 years. 
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5.3.5 NEDA 

On year 1, propensity score-adjusted Cox regression models showed reduced 

probability of remaining NEDA in patients treated with dimethyl fumarate (HR=0.49; 

95%CI=0.36, 0.65; p<0.01), fingolimod (HR=0.54; 95%CI=0.38, 0.75; p<0.01), 

glatiramer acetate (HR=0.55; 95%CI=0.41, 0.73; p<0.01), and natalizumab (HR=0.40; 

95%CI=0.27, 0.61; p<0.01), when compared with ocrelizumab (Figure 9a). 

On year 2, propensity score-adjusted Cox regression models showed reduced 

probability of remaining NEDA in patients treated with dimethyl fumarate (HR=0.53; 

95%CI=0.39, 0.72; p<0.01), fingolimod (HR=0.53; 95%CI=0.38, 0.74; p<0.01), 

glatiramer acetate (HR=0.66; 95%CI=0.49, 0.89; p<0.01), and natalizumab (HR=0.52; 

95%CI=0.35, 0.77; p<0.01), when compared with ocrelizumab (Figure 9b). 

Between year 1 and 2, propensity score-adjusted Cox regression models showed 

reduced probability of remaining NEDA in patients treated with dimethyl fumarate 

(HR=0.38; 95%CI=0.26, 0.55; p<0.01), fingolimod (HR=0.39; 95%CI=0.26, 0.59; 

p<0.01), glatiramer acetate (HR=0.48; 95%CI=0.33, 0.70; p<0.01), and natalizumab 

(HR=0.35; 95%CI=0.20, 0.60; p<0.01), when compared with ocrelizumab (Figure 9c). 

 

Figure 11: Kaplan-Meier curve showing the rate of NEDA loss for ocrelizumab 
(yellow), dimethyl fumarate (green), fingolimod (blue), glatiramer acetate (green), 
and natalizumab (red), after 1 year (a), 2 years (b), and between year 1 and 2 (c).  
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5.3.6 Lesion volume 

On year 1, propensity score-adjusted mixed-effect linear regression models did not 

show any differences in lesion volume between patients treated with dimethyl 

fumarate (Coeff=219.43; 95%CI=-703.82, 1142.70; p=0.64), fingolimod 

(Coeff=127.79; 95%CI=-909.43, 1165.03; p=0.80), glatiramer acetate (Coeff=-85.94; 

95%CI=-1371.88, 1199.99; p=0.89), natalizumab (Coeff=-927.77; 95%CI=-2059.44, 

203.69; p=0.10), and ocrelizumab (Figure 12: Box-and-whisker plot showing lesion 

volume before treatment, and after 1 and 2 years). 

On year 2, propensity score-adjusted mixed-effect linear regression models did not 

show any differences in lesion volume between patients treated with dimethyl 

fumarate (Coeff=2147.31; 95%CI=-145.96, 4440.58; p=0.06), fingolimod 

(Coeff=1773.48; 95%CI=-586.10, 4133.07; p=0.14), glatiramer acetate 

(Coeff=2112.52; 95%CI=-475.48, 4700.54; p=0.11), natalizumab (Coeff=636.10; 

95%CI=-1789.19, 3061.40; p=0.60), and ocrelizumab (Figure 12: Box-and-whisker plot 

showing lesion volume before treatment, and after 1 and 2 years).  
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Figure 12: Box-and-whisker plot showing lesion volume before treatment, and after 
1 and 2 years.  

The lines splitting the boxes in two represent the median. The top and bottom edges of the 
boxes represent the upper and lower quartiles respectively. The top and bottom of the 
straight lines represent the maximum and minimum values of the cohort  
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5.4 Discussion 

In this real-world observational study, we compared the effectiveness of five DMTs 

taken by RRMS patients in the past two decades. A large sample was obtained and a 

well-balanced cohort for comparison was achieved through propensity-score 

adjusting. 

Our findings show that further real-world data (RWD) analyses of RRMS patients 

commencing different DMTs will likely compliment the evidence generated from 

randomized clinical trials. (255) This is because RWD can increase the understanding 

of the relative effectiveness of DMTs, long-term DMT efficacy and safety, treatment 

discontinuation and switching outcomes, and the impact of other clinical variables, 

such as age and comorbidities, on treatment effectiveness and disease progression. 

(255) We are looking to include more retrospective cohorts, including beta-

interferons, alemtuzumab and cladribine, which will give us more information and 

power to our analysis. A previous small single-centre Canadian study showed limited 

difference in achieving NEDA between alemtuzumab and cladribine, but it would be 

interesting to see how they can be compared in our much bigger population. (256) 

Our study demonstrated that patients taking ocrelizumab in our cohort achieved 

higher rate of NEDA status and had lower EDSS worsening compared to other DMTs, 

using propensity score adjustment. We also noted that ocrelizumab showed a slightly 

better outcomes compared to natalizumab, though this applies to propensity score 

adjusting and not matching. There has been no previous direct comparison between 

ocrelizumab and natalizumab, however, in a large retrospective analysis comparing 

the effectiveness of ocrelizumab, natalizumab and cladribine in RRMS patients 

switching from fingolimod, Zhu et al found that patients had lower annualised relapse 

rate for ocrelizumab compared to natalizumab. (257) However, statistical significance 

was not reached due to the low number of annualised relapse rate and limited period 

of observation in both groups.  

Different propensity score methods can be used to attempt to mimic randomisation 

when comparing outcomes based on RWD sources. Some of the most common 
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methods are propensity score matching, adjusting and inverse probability of 

treatment weighting (IPTW). (258) We chose propensity score adjusting for our study 

considering our small number of patients and to generate a pilot data exploring this 

method of analysis. When using more robust analysis in performing propensity score 

matching, we used a multinomial logistic regression model to estimate the 

probability of treatment allocation of each DMT compared with ocrelizumab, based 

on age, gender, disease duration, comorbidities, previous DMTs, relapses in the 

previous year, EDSS and the year of DMT initiation. Based on propensity scores 

calculated, for each pair of DMTs (ocrelizumab vs dimethyl fumarate, ocrelizumab vs 

fingolimod, ocrelizumab vs glatiramer acetate, and ocrelizumab vs natalizumab), 

patients were matched on a 1:1 ratio, by nearest neighbour with replacement, within 

a calliper of 0.1 standard deviation of the propensity score. No patient satisfied 

matching criteria and no further analyses were run. Same results were obtained 

when we used four different logistic regression models to estimate the probability of 

treatment allocation of each DMT compared with ocrelizumab, separately 

(ocrelizumab vs dimethyl fumarate, ocrelizumab vs fingolimod, ocrelizumab vs 

glatiramer acetate, and ocrelizumab vs natalizumab), based on age, gender, disease 

duration, comorbidities, previous DMTs, relapses in the previous year, EDSS and year 

of treatment initiation. This shows the difficulty of matching patients in our cohort 

considering the constant development of therapies and evolving guidelines of 

treatment eligibility over time. Such common issue found in single centre studies can 

become less problematic when assessing much bigger cohorts in multicentre 

databases. 

Although our study showed similar NEDA rates at 1 and 2 years compared to other 

observational studies, as discussed in chapter three, our NEDA rates are much higher 

compared to phase III trials. For example, our NEDA rate in patients taking 

ocrelizumab reached 75% at 2 years, whereas it only reached 48% at 2 years in a 

randomised control trial. (259) This higher rate is expected in real world analysis 

where clinicians are guided by regularity bodies, NHS England for example, and 

patients are stratified to different therapies according to results obtained from phase 

III trials to optimise care and provide the best treatment that suite the right patient’s 
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disease characteristics. Besides, in prospective trials the follow-up periods, scanning 

and clinical reviews are much more frequent and detailed, and therefore more likely 

to detect disease activity compared to real world clinical setting. 

The less striking results on MRI lesion volumes could be due to the limited sample 

size analysed. Further analysis on more MRI outcomes, such as white and grey matter 

volumes, is ongoing.  

To the best of our knowledge, there has been no such sizable comparative study 

including such a variety of DMTs including ocrelizumab. Similar smaller studies 

compared different DMTs to rituximab, which is used more commonly in Europe as 

off-label therapy of MS. Vollmer et al used retrospectively collected data to compare 

the effectiveness of rituximab versus natalizumab, fingolimod and dimethyl fumarate 

using logistic regression on matched patients through propensity scores. (260) They 

found that patients taking rituximab had lower odds of experiencing disease activity 

compared to fingolimod and DMF, but similar odds to natalizumab.  

Two other much smaller studies failed to show a difference between clinical relapses 

for natalizumab and rituximab after adjustment. (261, 262) Both studies only 

included clinical relapses and MRI outcomes, but a composite measure may be 

needed when comparing effectiveness between highly effective DMTs. This is why 

we also included NEDA in our study as it increases power to detect smaller differences 

through observation of more events. (64) 

Since our study is observational, retrospective and non-randomised there were 

limitations. EDSS was our only measure of disability as this is usually performed and 

documented regularly in the MS clinic. It is widely used in clinical practice and 

research as it is easily performed and interpreted by clinicians. However, one of the 

main criticisms of EDSS is that it is regarded as heavily weighted on mobility and not 

very sensitive to upper limb disability and cognitive impairment. (52) Patient reported 

outcomes and the 9-hole-peg test, for example, have been used in MS research for 

the assessment of cognitive impairment and upper limb dysfunction, and would be 
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great to be included in future studies and assessments of treatment response. (54, 

263) 

Our cohort consists of mainly retrospectively collected data and a smaller proportion 

of prospectively collected data including the ocrelizumab cohort. This may have 

introduced bias as gathering data for patients who are in a study attending scheduled 

visits minimises missing information and assessments can be more accurately in a 

study setting rather than a clinic setting. This may contribute to the improved 

outcomes for ocrelizumab compared to other DMTs collected retrospectively. 

Besides, ocrelizumab is one of the latest approved highly effective DMTs and 

inclusion criteria has been less restrictive compared to other highly effective 

therapies such as natalizumab. This has made the cohorts evidently different in terms 

of level of MS activity, relapses and MRI lesions, and disability, including EDSS scores.  

Different DMTs have been introduced to patients at different time periods over the 

last two decades and therefore some confounders are time varying and can be 

affected by prior treatment. Although we gathered data including number of 

previous DMTs used prior to the use of the index DMT, prior DMTs can affect 

confounders over time. Statistical methods, such as inverse probability weighting, 

can be used in future analysis to address this treatment confounder feedback. Also, 

we did not include the year of the baseline treatment in our models which might be 

confounding our results considering some studies have shown that MS disability 

accrual rates are lessening over time and MS neurologists are increasingly using 

higher efficacy DMTs earlier.  

One of the limitations of propensity adjustment is that it only adjusts for measured, 

known factors, whereas other factors, unmeasured or unknown, may affect 

clinicians’ prescribing decision and may subsequently affect what type of patient is 

treated with what therapy. These unmeasured or unknown factors can introduce a 

hidden bias which are not accounted for and can impact on the results. This is why 

RCTs are still needed and remain to be the gold standard for evaluating and 

comparing effectiveness of multiple therapies.  
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In our data gathering and analysis, we did not include spinal cord MRI findings that 

could detect further MS activity, particularly for patients with predominantly spinal 

cord disease, due to lack of data. (264) This is because spinal cord imaging is not 

routinely performed in clinical practice in the NHS particularly at follow ups, unless 

indicated, to assess treatment response. (68) Spinal cord imaging analysis remains 

difficult due to the lack of standardised imaging techniques over the past two 

decades and the difficulty of obtaining volumetric imaging in a very small area which 

is liable to motion artefact. (265) Having said that, in our ongoing prospective PITMS 

study, our recruited patients are having spinal cord imaging, according to the 2021 

MAGNIMS-CMSC-NAIMS consensus recommendations, at each time-point of 

assessment, which will potentially guide spinal cord imaging standardisation and 

evaluation. 

We evaluated the effectiveness of therapies over a two-year period which could 

potentially obscure long-term disease activity. Studies have shown that stability of 

MS may take several years and early treatment reduces the risk of MS activity, 

particularly relapse-associated worsening (RAW). However, MS may progress over 

time with ongoing disease progression independent of relapse activity (PIRA), which 

becomes the primary driver in the development of SPMS. (266)  This is why we have 

set up a database that can be updated regularly and future analysis over a longer 

period of follow up can be performed. 

A small proportion of our patients in our cohort had EDSS score of >6.5 at baseline, 

which is outside NHS England prescribing guidelines for commencing DMTs. These 

patients received therapy following multidisciplinary team discussions as they were 

deemed appropriate for these selected cases. However, it is well known that higher 

EDSS is associated with worse outcomes in RRMS patients and greater chance of 

developing SPMS. Another limitation to add is that our study was conducted at a 

single tertiary MS centre, both of which can possibly limit generalisability to other 

centres as clinicians can differ in their practice of counselling and prescribing different 

DMTs. On the other hand, the monocentric nature of our study possibly provides 

standardised clinical assessment and management as patients commence therapy 
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following multidisciplinary team discussions, particularly for higher efficacy 

therapies.  

In our study we used the absolute change in EDSS from baseline to year one and two 

and we have not assessed the proportion free from sustained accumulation of 

disability events. It is therefore not known if any EDSS changes were sustained and 

the information about time to event if lost. This is expected considering the data 

included assessment of patients on annual basis as per clinical practice. 

In conclusion, we provide important class III information for evaluating the 

effectiveness of different DMTs in the management of RRMS. Highly effective DMTs 

are associated with better outcomes compared to moderately effective DMTs in 

terms of real-world effectiveness. Patients taking moderately effective DMTs were at 

higher risk of experiencing disease activity in the first two years. Randomised 

controlled trials and further long-term studies evaluating more DMTs in larger 

cohorts, so that more robust statistics such as matching analysis can be used, are 

needed to investigate risk factors for patients experiencing disease activity. 

  



174 
 

Chapter 6. Conclusion and future direction 

6.1 Conclusion 

In this thesis we initially reviewed the causes, pathology and pathophysiology of MS. 

We explored the use of MRI scans in the diagnosis and treatment monitoring of MS. 

We also explored the different therapy strategies including symptoms management 

and disease modifying therapies available for the holistic management of MS.  

Due to the heterogeneity of onset, diagnosis, classification, treatment response and 

prognosis, it is difficult to predict outcomes in MS patients. Therefore, in chapter two, 

We reviewed the literature on the use of machine learning in MS diagnosis, 

classification, progression and prediction. Studies have focused on predicting 

disability progression and the response to the large number of available therapies in 

order to help clinicians to choose the best treatment for MS patients. Despite the 

rapidly evolving field of ML in MS, there have been a limited number of studies 

focusing on the prediction of treatment responses.  

In chapter three, we reviewed and analysed clinical and radiological data of nearly 

2000 RRMS patients who had initiated five DMTs at a single tertiary MS centre over 

the last two decades. We investigated the impact of each variable, observed in each 

DMT cohort separately, on the outcome, NEDA, using the frequentist analysis. 

Reviewing the baseline variables across all cohorts; older age at MS onset, lower 

number of previous DMTs, lower number of relapses in the previous 12 months, 

lower number of new and/or Gd-enhancing MRI brain lesions, and lower EDSS score 

showed significant association of achieving NEDA in most cohorts. Whilst these 

factors are associated with clinical response at the group-level, we were unable to 

make clinically useful predictions of treatment response at the individual-level. 

In chapter four, we built a Bayesian modelling framework optimal for estimating 

individual-level uncertainty in predicting NEDA in RRMS patients starting DMTs using 

routinely available clinical and radiological data. We combined all cohorts and built 

five predicting models with increasing complexity. The most comprehensive model 
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with 12 clinical and radiological predictors showed the best accuracy in predicting 

individualised NEDA at 1 and 2 years.  

Finally, there has been no head-to-head phase III clinical trials comparing the efficacy 

of multiple DMTs in RRMS. Therefore, in chapter five, we attempted to compare the 

clinical and radiological effectiveness of five different DMTs in our real-world cohort. 

However, there were several limitations to our study, including using propensity 

score adjusting rather than matching, and further long-term studies evaluating and 

comparing more DMTs in larger cohorts are needed to investigate risk factors for 

patients experiencing disease activity. 

Although our work showed results that are important in the MS field, it is also 

important to demonstrate the limitations. The cohort analysed is obtained from a 

single tertiary centre, representing a particular population and therefore 

interpretation in other populations should be cautious for the time being, until 

validation in an unseen independent cohort is finalised.  

The data collected was mixed and the majority was collected retrospectively and a 

small proportion, ocrelizumab patients, was collected prospectively as part of the on-

going prospective observational PITMS study. The DMT cohorts were collected over 

many years, the criteria for prescribing DMTs has changed and evolved over this time, 

therefore this may affect the level of DMTs used for the level of MS activity observed. 

The MRI data was collected from scans of different time periods with different 

protocols that have evolved over time. This has made MRI analysis challenging 

particularly in the hope of developing a fully automated pipeline.  

Finally, our analysis included a short period of follow up. Considering our cohort had 

an average duration of being on therapy of nearly 4 years, further analysis of longer-

term outcomes is planned. 
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6.2 Future direction 

Study Design 

Our work has demonstrated a large cohort of RRMS patients analysed from a single 

tertiary MS centre over a long period of time. The use of DMTs has changed over time 

and other therapies, which are not included in this thesis, are also being routinely 

prescribed. These including ofatumumab, ponesimod and clardribine; data of RRMS 

patient cohorts taking these other DMTs are prospectively being evaluated.  This will 

generate a further sizable cohort that can be combined and assessed alongside the 

cohort included in this study for a more powerful analysis, particularly when 

comparing effectiveness (for example in chapter five) and the possibility of using 

propensity score matching. In the meantime, we are in the process of validating the 

Bayesian models in an unseen, independent Swedish RRMS cohort. In addition, our 

department is extending the investigation of prediction of treatment response to 

other NHS trusts in the UK by ‘decentralising’ artificial intelligence and using 

federated methods.  Decentralisation will involve raw data being kept locally within 

each NHS trust, and the insights generated from local analytics being sent to a server 

for result aggregation. This is an important step to ensure a larger number of 

participants (up to 15,000 MS patients on DMTs) and develop a ‘decision aid system’, 

which will help to improve patient care and treatment.  

More complex variables, including serum biomarkers (such as serum neurofilament), 

diet, genetics and optical coherence tomography (OCT) measurement are being 

explored through the on-going prospective PITMS study. Although these variables 

have been studied separately, they have not been assessed in combination with 

many clinical and radiological variables to predict the short- and long-term treatment 

outcomes such as NEDA. Collaborating and accessing larger international registries, 

such as the MSBase, and testing our models would be of extreme importance for the 

future in comparing different DMTs. 

There have been a number of studies looking at the two ways of commencing therapy 

for RRMS; escalation (starting a lower efficacy therapy and escalating as needed) 
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versus induction (commencing a high efficacy therapy at the start). Escalation is the 

more widely used treatment strategy, as induction is restricted to patients at risk of 

rapid disability accrual. Over time, there has been growing evidence for more 

favourable, long-term outcomes following early intensive therapy versus first-line 

moderate-efficacy DMT. (119, 267) Therefore, future observational studies are likely 

to include a higher number of high-efficacy drugs. So far, there has been little 

evidence about the optimal sequence of DMTs for the escalation strategy, and 

extending the length of follow-up in our cohort has the potential to capture the 

impact of different combinations of DMTs over time. 

MS phenotypes: 

Our work has been confined to RRMS patients and future work will include other 

types of MS, including PPMS and SPMS who commence DMTs, with longer follow up 

periods. This will provide further insight of treatment response and disease 

progression while on therapy. An important aim which will be achieved by future 

studies is to predict treatment response in children with MS. Paediatric MS accounts 

for 3-10% of all patient with MS. Current treatment regimes in paediatric MS are 

largely centre-specific and based predominantly on adult protocols. Children with MS 

requiring long-term immunosuppression are currently at risk of being either under-

treated (which results in acquired motor, visual and cognitive disabilities) or over-

treater, particularly with concurrent or sequential immunotherapy. This 

Immunotherapy has potential short- and long-term toxicities, including impact on 

subsequent fertility and risks of malignancy and premature immune senescence. 

Therefore, the prediction of treatment response in children with MS is an important 

unmet need. 

Statistical analysis  

Randomised controlled trials (RCTs) are the primary design for evaluating the 

difference in treatment effect between patient groups treated with different (or no) 

DMTs. However, RCTs are performed under optimal circumstances (e.g. over-

representation of treatment-adherent patients, absence of co-morbidities, low 
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representation of old patients), which may be different from real-life practice. 

Observational studies have the advantage of limiting the issue of external validity, 

but patients treated with different medications (or patients not treated) are often 

non-comparable, as seen in our study, thereby leading to a high risk of confounding 

bias. Propensity score-based methods are some of the methods currently employed 

to mitigate the effects of confounding bias. A future, more statistical, direction of 

research is to explore methods other than propensity score-based methods to 

control for confounding bias, including doubly robust estimators and g-computation. 

Recent evidence suggests that considering all the covariates influencing the outcome 

may lead to the lowest bias and variance when using causal inference methods, 

particularly for g-computation. (268) 

Predictive variables 

More baseline variables are being explored through the on-going prospective PITMS 

study. These include spinal cord MRI. In particular, number of spinal cord lesions and 

spinal cord cross-sectional area (which is used as a proxy for atrophy) would be of 

importance considering that spinal cord pathology tends to be symptomatic and 

associated with worse outcomes over time. 

Other variables which may predict treatment response include serum biomarkers 

(such as serum neurofilament), and optical coherence tomography (OCT) 

measurement. Although these variables have been studied separately, they have not 

been assessed in combination with many clinical and radiological variables to predict 

the short- and long-term treatment outcomes, such as NEDA. Variables that are more 

explorative and have a less significant impact on treatment response (compared to  

MRI, EDSS and age/sex) include diet, environmental and lifestyle, and smoking. It is 

expected that comorbidities can influence the effectiveness and tolerability of DMTs; 

for example, fingolimod-associated macular oedema is higher in patients with 

diabetes. (269) Genetic markers that predict response to the oldest DMTs have been 

detected. (270) Additionally, HLA-DRB1*15 influences the progression of brain 

pathology in progressive MS and is associated with a more aggressive MS course in 

relapsing-onset MS. (271, 272) This suggests that genetic factors may identify 
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patients who are at greater risk of accumulation of brain pathology, and therefore, 

worse outcome.  

Outcome measure:  

Considering we only included treatment response in the form of NEDA at 1 and 2 

years, longer term response at 3 and 5 years would capture a better real-world 

efficacy of therapies over a longer period of time. NEDA-3 is the only outcome 

measure we focused on in this thesis and therefore future analysis with the inclusion 

of brain volume atrophy will analyse NEDA-4, assessing treatment response in terms 

of relapses, MRI activity, EDSS worsening and brain atrophy rate. NEDA can be 

criticised for being too strict as patients would fail NEDA if they develop one new 

asymptomatic brain lesion or one significant spinal cord relapse. Future analysis of 

minimal disease activity (MEDA) can be explored in the short and long term.  

In addition, we tend to estimate treatment response by studying disease activity or 

progression, without focusing on side effects. Future studies will investigate the 

prediction of serious side effects that lead to treatment discontinuation. In our PITMS 

study we have collected data including the side effects experienced by all patients; 

therefore, it would be interesting to test our models in predicting the risk of side 

effects in the short- and long-term for the individual patient. This would help the 

clinicians and patients deciding on the best treatment not just in terms of efficacy, 

but also in terms of tolerance. 

Cognition, fatigue and quality of life measures are important to assess for MS 

patients. Although it is difficult to include in retrospective NHS patients where such 

data is not collected routinely in the clinical setting, future prospective study (such as 

our PITMS study) will collect such data, including the Brief International Cognitive 

Assessment for MS (BICAMS) battery, which includes tests of mental processing 

speed and memory. (273) One of the tests of the BICAMS is the symbol digit 

modalities test (SDMT). (274) Ubiquitously employed in cross-sectional research and 

clinical trials, the SDMT has high validity for discriminating between people with and 

without MS, and predicts real-world functional outcomes such as employment status. 
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(275) However, for detecting cognitive decline over time, the SDMT is inadequate, as 

inspection of change on SDMT over time reveals overall improvement, which is due 

to vulnerability of SDMT to practice effects. (276) Therefore, future studies will aim 

to develop and employ cognitive measurement tools sensitive to subtle decline over 

time as outcome measures. 

Patient reported outcomes, including MS quality of life and modified fatigue impact 

scales, will be explored as a measure of outcomes in future analysis. Important 

outcome measures, which are rarely included in observational studies, are health-

economics scales and information related to employment, education and 

absenteeism, as these measures also capture the effect of DMTs. 

Integration into routine clinical workflows:  

Since patients’ details in the NHS are being increasingly stored in the electronic health 

record, it would be of a huge benefit to embed the phenotypic collection of clinical 

and paraclinical variables into patients’ clinical care. This would make access and 

analysis of records much easier and quicker. Also, the ultimate aim, once our models 

are finalised and validated, is to develop as a decision aid system that generates 

prediction in clinic, such as the Fracture Risk Assessment Tool (FRAX) that is used for 

calculating the 10-year risk of a fracture in patients with osteoporosis, to provide the 

best treatment for the individual patient. 

Once a decision aid system is created, it is important to investigate whether it can 

improve practice and clinical care. A pragmatic randomised clinical trial was recently 

reported using artificial intelligence to diagnose low ejection fraction through 

electrocardiograms. (277) Similar pragmatic trial using MRI brain scans to diagnose 

MS early can be conducted in the future in MS 
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categorized 

N/A 

(c) If relevant, consider translating estimates of relative risk into 
absolute risk for a meaningful time period 

N/A 

Other analyses 17 Report other analyses done—eg analyses of subgroups and 
interactions, and sensitivity analyses 

N/A 

Discussion 

Key results 18 Summarise key results with reference to study objectives 129-132 

Limitations 19 Discuss limitations of the study, taking into account sources of 
potential bias or imprecision. Discuss both direction and 
magnitude of any potential bias 

129-132 

Interpretation 20 Give a cautious overall interpretation of results considering 
objectives, limitations, multiplicity of analyses, results from 
similar studies, and other relevant evidence 

129-132 

Generalisability 21 Discuss the generalisability (external validity) of the study results 129-132 

Other information 

Funding 22 Give the source of funding and the role of the funders for the 
present study and, if applicable, for the original study on which 
the present article is based 

96 
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8.2 STROBE checklist for chapter four  

 

 Item 
No Recommendation 

Page 
No 

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the 
title or the abstract 

133 

(b) Provide in the abstract an informative and balanced summary 
of what was done and what was found 

N/A 

Introduction 

Background/rationale 2 Explain the scientific background and rationale for the 
investigation being reported 

133 

Objectives 3 State specific objectives, including any prespecified hypotheses 133 

Methods 

Study design 4 Present key elements of study design early in the paper 134-
136 

Setting 5 Describe the setting, locations, and relevant dates, including 
periods of recruitment, exposure, follow-up, and data collection 

134 

Participants 6 (a) Give the eligibility criteria, and the sources and methods of 
selection of participants. Describe methods of follow-up 

134 

(b) For matched studies, give matching criteria and number of 
exposed and unexposed 

N/A 

Variables 7 Clearly define all outcomes, exposures, predictors, potential 

confounders, and effect modifiers. Give diagnostic criteria, if 
applicable 

134-
135 

Data sources/ 
measurement 

8  For each variable of interest, give sources of data and details of 
methods of assessment (measurement). Describe comparability of 
assessment methods if there is more than one group 

134-
136 

Bias 9 Describe any efforts to address potential sources of bias 135-
136 

Study size 10 Explain how the study size was arrived at 134-
135 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If 
applicable, describe which groupings were chosen and why 

134-
135 

Statistical methods 12 (a) Describe all statistical methods, including those used to control 

for confounding 

134-
140 

(b) Describe any methods used to examine subgroups and 
interactions 

N/A 

(c) Explain how missing data were addressed 140 

(d) If applicable, explain how loss to follow-up was addressed 140 

(e) Describe any sensitivity analyses N/A 

Results  
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Participants 13 (a) Report numbers of individuals at each stage of study—eg 

numbers potentially eligible, examined for eligibility, confirmed 
eligible, included in the study, completing follow-up, and analysed 

142-
144 

(b) Give reasons for non-participation at each stage 142-
144 

(c) Consider use of a flow diagram Table 
49 

Descriptive data 14 (a) Give characteristics of study participants (eg demographic, 
clinical, social) and information on exposures and potential 
confounders 

142-
144 

(b) Indicate number of participants with missing data for each 
variable of interest 

142-
144 

(c) Summarise follow-up time (eg, average and total amount) 142-
144 

Outcome data 15 Report numbers of outcome events or summary measures over 
time 

142-
144 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-

adjusted estimates and their precision (eg, 95% confidence 
interval). Make clear which confounders were adjusted for and why 
they were included 

142- 
149 

(b) Report category boundaries when continuous variables were 
categorized 

N/A 

(c) If relevant, consider translating estimates of relative risk into 
absolute risk for a meaningful time period 

N/A 

Other analyses 17 Report other analyses done—eg analyses of subgroups and 
interactions, and sensitivity analyses 

N/A 

Discussion 

Key results 18 Summarise key results with reference to study objectives 150 

Limitations 19 Discuss limitations of the study, taking into account sources of 
potential bias or imprecision. Discuss both direction and magnitude 
of any potential bias 

150-
152 

Interpretation 20 Give a cautious overall interpretation of results considering 
objectives, limitations, multiplicity of analyses, results from similar 
studies, and other relevant evidence 

150-
152 

Generalisability 21 Discuss the generalisability (external validity) of the study results 150-
152 

Other information 

Funding 22 Give the source of funding and the role of the funders for the 
present study and, if applicable, for the original study on which the 
present article is based 

N/A 
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8.3 STROBE checklist for chapter five  

 Item 
No Recommendation 

Page 
No 

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the 
title or the abstract 

153 

(b) Provide in the abstract an informative and balanced summary of 
what was done and what was found 

N/A 

Introduction 

Background/rationale 2 Explain the scientific background and rationale for the investigation 
being reported 

153 

Objectives 3 State specific objectives, including any prespecified hypotheses 153-
154 

Methods 

Study design 4 Present key elements of study design early in the paper 154 

Setting 5 Describe the setting, locations, and relevant dates, including 
periods of recruitment, exposure, follow-up, and data collection 

154 

Participants 6 (a) Give the eligibility criteria, and the sources and methods of 
selection of participants. Describe methods of follow-up 

154 

(b) For matched studies, give matching criteria and number of 
exposed and unexposed 

168 

Variables 7 Clearly define all outcomes, exposures, predictors, potential 
confounders, and effect modifiers. Give diagnostic criteria, if 
applicable 

154 

Data sources/ 
measurement 

8  For each variable of interest, give sources of data and details of 
methods of assessment (measurement). Describe comparability of 
assessment methods if there is more than one group 

154 

Bias 9 Describe any efforts to address potential sources of bias 154 

Study size 10 Explain how the study size was arrived at 154 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If 
applicable, describe which groupings were chosen and why 

154 

Statistical methods 12 (a) Describe all statistical methods, including those used to control 
for confounding 

155 

(b) Describe any methods used to examine subgroups and 
interactions 

155 

(c) Explain how missing data were addressed 156 

(d) If applicable, explain how loss to follow-up was addressed N/A 

(e) Describe any sensitivity analyses 155 

Results  

Participants 13 (a) Report numbers of individuals at each stage of study—eg 
numbers potentially eligible, examined for eligibility, confirmed 
eligible, included in the study, completing follow-up, and analysed 

154-
156 

(b) Give reasons for non-participation at each stage 156 

(c) Consider use of a flow diagram –  156 
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Descriptive data 14 (a) Give characteristics of study participants (eg demographic, 
clinical, social) and information on exposures and potential 
confounders 

154-
155 

(b) Indicate number of participants with missing data for each 
variable of interest 

156 

(c) Summarise follow-up time (eg, average and total amount) 156 

Outcome data 15 Report numbers of outcome events or summary measures over 
time 

156-
163 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-
adjusted estimates and their precision (eg, 95% confidence 
interval). Make clear which confounders were adjusted for and why 
they were included 

156-
166 

(b) Report category boundaries when continuous variables were 
categorized 

N/A 

(c) If relevant, consider translating estimates of relative risk into 
absolute risk for a meaningful time period 

N/A 

Other analyses 17 Report other analyses done—eg analyses of subgroups and 
interactions, and sensitivity analyses 

N/A 

Discussion 

Key results 18 Summarise key results with reference to study objectives 167 

Limitations 19 Discuss limitations of the study, taking into account sources of 
potential bias or imprecision. Discuss both direction and magnitude 
of any potential bias 

167-
172 

Interpretation 20 Give a cautious overall interpretation of results considering 
objectives, limitations, multiplicity of analyses, results from similar 
studies, and other relevant evidence 

167-
172 

Generalisability 21 Discuss the generalisability (external validity) of the study results 167-
172 

Other information 

Funding 22 Give the source of funding and the role of the funders for the 
present study and, if applicable, for the original study on which the 
present article is based 

N/A 

 

 

 


