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There is mounting evidence for predictive coding theory from computational, neuroimaging, and psychological research. However,
there remains a lack of research exploring how predictive brain function develops across childhood. To address this gap, we used
pediatric magnetoencephalography to record the evoked magnetic fields of 18 younger children (M = 4.1 years) and 19 older children
(M = 6.2 years) as they listened to a 12-min auditory oddball paradigm. For each child, we computed a mismatch field “MMF”: an
electrophysiological component that is widely interpreted as a neural signature of predictive coding. At the sensor level, the older
children showed significantly larger MMF amplitudes relative to the younger children. At the source level, the older children showed a
significantly larger MMF amplitude in the right inferior frontal gyrus relative to the younger children, P < 0.05. No differences were found
in 2 other key regions (right primary auditory cortex and right superior temporal gyrus) thought to be involved in mismatch generation.
These findings support the idea that predictive brain function develops during childhood, with increasing involvement of the frontal
cortex in response to prediction errors. These findings contribute to a deeper understanding of the brain function underpinning child
cognitive development.
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Introduction
Under predictive coding theory, the brain houses an internal,
probabilistic, generative model which represents the statistical
structure of the external world (Rao and Ballard 1999; Friston and
Kiebel 2009; Hohwy 2013; Clark 2015). The brain uses this model
to generate predictions about the most likely causes of incoming
sensory signals, and tests its model by comparing its top-down
prior predictions with bottom-up sensory signals from the world
(Hohwy 2012). Predictions and sensory signals can be represented
as probability distributions whereby the difference between the
two represents the model’s “prediction error.” Prediction error is
a useful learning signal as it indicates which sensory informa-
tion the model failed to predict and hence, which information
requires further processing at higher levels of the neural hierar-
chy (Dołęga and Dewhurst 2021). To reduce processing require-
ments, the brain strives to minimize prediction errors over time
(Clark 2013).

An account of how children come to know about the world falls
naturally from predictive coding principles (Scholl 2004; Gopnik
2012; Badcock et al. 2019). According to this view, infants are
thought to begin life with a set of innately specified priors, rooted
in the genes (Kersten and Yuille 2003). Following environmen-
tal stimulation, “innate priors” are updated through “perceptual

inference” (Hohwy 2012) and subsequently called “empirical pri-
ors” (Kersten and Yuille 2003; Badcock et al. 2019). Thus, predictive
coding takes advantage of both nature and nurture perspectives,
allowing them to interact within a unifying framework. Iterative
model updating should enable children to meet incoming sensory
signals with increasingly accurate priors which should, in turn,
result in fewer prediction errors, and hence greater confidence in
the model’s predictions. Children’s priors may become increas-
ingly precise as they gain experience in the world (Kayhan et al.
2019; Köster et al. 2020). As such, the posterior distribution (i.e. the
perceptual experience; Hohwy 2012) would be gradually biased
toward the increasingly narrow prior distribution (representing
the brain’s stored knowledge), and away from the sensory signal
distribution (Lucas et al. 2014).

Rapid model maturation across childhood may be underpinned
by concurrent and significant neurophysiological changes.
Indeed, the brain roughly quadruples in weight before age 6,
by which time it has reached approximately 90% of its adult
volume (Brown and Jernigan 2012). Furthermore, the efficiency of
neuronal communication increases due to a prolonged period
of synaptic pruning and myelination during childhood and
adolescence (Blakemore and Choudhury 2006; Fischer and Bidell
2007; Santos and Noggle 2011). In particular, the protracted
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maturation of the prefrontal cortex (Huttenlocher and Dabholkar
1997)—a region thought to play a key role in extracting complex
statistical regularities from incoming sensory signals (Basirat
et al. 2014; Dürschmid et al. 2016; Jaffe-Dax et al. 2020)—may
support increasingly sophisticated predictive brain function
across development (Krogh et al. 2013). While a predictive coding
account of neurocognitive development is supported by an
extensive body of behavioral evidence (Gopnik and Wellman 2012;
Köster et al. 2020), available neural evidence (Emberson et al. 2015,
2017, 2019a; Jaffe-Dax et al. 2020; Zhang and Emberson 2020) is
in short supply —partly due to practical challenges associated
with conducting functional brain recordings with young children
(Barkovich et al. 2019). We sought to address this gap in the
literature.

A popular method for testing predictive coding is to use
electroencephalography (EEG) and/or magnetoencephalography
(MEG) to record participants’ brain responses as they listen
to an auditory oddball paradigm (Friston 2005; Heilbron and
Chait 2018). These paradigms are comprised of high-probability
“standard” and lower probability “deviant” stimuli (e.g. pure
tones). Averaged evoked responses to the “standards” and
“deviants” typically diverge between 0.1 and 0.25 s following
stimulus onset, with the “deviant” showing a larger amplitude
relative to the “standard” waveform (Näätänen et al. 2019b).
This divergence—conventionally presented as a difference
waveform—is the “mismatch negativity” (MMN; EEG literature)
or the “mismatch field” (MMF; MEG literature; hereafter, “MMN/F”
will be used when referring to both the MMN and MMF).

The MMN/F has been interpreted as a neural index of predic-
tion error (Friston 2005), whereby the larger the evoked response
amplitude, the larger the corresponding prediction error signal.
With significant neurophysiological maturation during childhood
(Huttenlocher and Dabholkar 1997; Blakemore and Choudhury
2006; Brown and Jernigan 2012), children’s brains may become
increasingly proficient at extracting statistical regularities from
the auditory input (Emberson et al. 2019b; Raviv and Arnon 2018).
Consequently, older children may be able to form relatively pre-
cise priors of the upcoming stimuli, whereby the strongest pre-
diction would be for the presentation of a high-probability “stan-
dard.” Thus, the presentation of a lower probability “deviant” may
evoke a larger prediction error relative to that of a “standard.” This,
in turn, would give rise to a relatively large MMF amplitude. By
contrast, if younger participants are less proficient at extracting
these statistical regularities, then they may form comparatively
less-precise predictions for the upcoming stimuli. Thus, if younger
children are less-precisely predicting the presentation of a stan-
dard, then the presentation of both high-probability “standards”
and lower probability “deviants” may evoke similar degrees of
prediction error, resulting in a relatively attenuated MMF.

Overall, one might expect a larger MMF amplitude in older
relative to younger children, reflecting maturation of predictive
brain function across development. However, previous EEG find-
ings have been mixed, with studies reporting an increase (Oades
et al. 1997; Bishop et al. 2011a; Chobert et al. 2014; Putkinen
et al. 2014a; Putkinen et al. 2014b; Linnavalli et al. 2018), decrease
(Csépe et al. 1992; Kraus et al. 1993a; Kraus et al. 1993b), or no
difference (Kraus et al. 1999; Gomot et al. 2000; Shafer et al. 2000,
2010) in the MMN amplitude with age.

Furthermore, it appears that all previous studies employed
EEG to investigate MMN maturation. Although MEG and EEG
are similar in their millisecond temporal resolution, MEG offers
advantages in terms of source-space reconstruction, as MEG
magnetic fields are less susceptible to signal smearing and

distortion compared with EEG electrical potentials (Baillet 2017).
The scarcity of maturational MMF studies is likely due to the
lack of availability of MEG systems—and pediatric MEG systems
in particular—around the world (Azhari et al. 2020). Given the
lack of child MEG-MMF studies, we currently know little about
the early maturational changes in activity within the canonical
MMN/F network. We sought to address this shortcoming in this
study.

Here we aimed to test a predictive coding account of early
neurocognitive development. To this end, we used pediatric MEG
(Johnson et al. 2010; Rapaport et al. 2019) and a multi-feature audi-
tory oddball paradigm, and measured MMF responses in younger
(Mage = 4.1 years, range: 3.1–5.3) and older (Mage = 6.2 years, range:
5.6–6.9) children. We hypothesized that the older-relative-to-
younger children would show a larger MMF amplitude, reflecting
maturation of predictive brain function across development.
Furthermore, we hypothesized that this maturation would be
underpinned by increasing involvement of the frontal cortex in
responding to prediction errors, as reflected by a significantly
larger frontal-MMF in the older children.

Materials and methods
Participants
We recruited 60 children (aged 3 to 6 years) via the Macquarie
University “Neuronauts” child research participation database. Of
those, 3 children were unable to complete the MEG recording ses-
sion due to anxiety (n = 2, aged 3.1 and 5.5 years) or falling asleep
during the recording (n = 1, aged 3.1 years). Of the 57 collected
datasets, 20 (35%) were excluded due to: (a) having a poor head
position in relation to the MEG sensor array (n = 6; determined
based on visual inspection); (b) excessive in-scanner head motion
(based on real-time head motion tracking data) that exceeded an
average of 10 mm over the recording (n = 4; Mage = 4.7 years, range:
3.2–5.8); (c) excessive in-scanner head motion (based on pre- and
post-recording marker coil measurements as the real-time head
motion tracking system was malfunctioning) that exceeded 5 mm
(n = 5; Mage = 5.0, range: 3.2–7.0); (d) having more than 2 stan-
dard deviations above the mean for the number of interpolated
channels (n = 4); and (e) missing triggers (n = 1). Thus, the final
sample included 37 children (Mage = 5.2 years, SD = 1.2, range = 3.1–
6.9 years; 20 females; 5 ambidextrous, 5 left-handed, based on
parent report).

To investigate the (cross-sectional) developmental trajectory
of the MMF, we performed a median age split—separating
the data groups of younger children (n = 18; Mage = 4.1 years,
SD = 0.9, range = 3.1–5.3 years; 8 females; 3 ambidextrous, 3 left-
handed) and older children (n = 19; Mage = 6.2 years, SD = 0.4,
range = 5.6–6.9 years; 12 females; 2 ambidextrous, 2 left-handed
determined based on parent report). Normal hearing thresholds
between 500 and 1,500 Hz were confirmed with pure-tone
audiometric testing using an Otovation Amplitude T3 series
audiometer (Otovation LLC, PA, United States). All children had
parent-reported normal or corrected-to-normal vision and had
no history of developmental disorders, epilepsy, brain injury,
or language or speech impairment, as reported by parents.
Children and their parents provided verbal and written informed
consent, respectively, before the experiment. All procedures were
approved by the Macquarie University Human Research Ethics
Committee (reference: 5201600188). Families were paid 40 AUD
for their participation and the children received a gift bag and
certificate.
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Fig. 1. A schematic illustration of the multi-feature auditory oddball
paradigm. The first 15 tones are “standards” (S) followed by alternating
“standard” and 1 of 4 types of “deviant” (D) tones.

Auditory oddball paradigm
Electrophysiological responses were measured as participants
listened to a passive multi-feature auditory oddball paradigm
(adapted from Näätänen et al. 2004). We chose to use the multi-
feature over the traditional oddball paradigm as the former ver-
sion offers advantages in terms of time efficiency—a quality
which is of critical importance when testing young children who
are generally less compliant than adults (Lovio et al. 2009). The
multi-feature recording time is significantly reduced by present-
ing standards and deviants in an alternating pattern, as opposed
to the traditional paradigm whereby the ratio of deviants to
standards is between 1:7 and 1:10 (Petermann et al. 2009). No
differences have been found between MMNs elicited by multi-
feature compared with traditional oddball paradigms (Näätänen
et al. 2004; Pakarinen et al. 2007). Furthermore, the multi-feature
paradigm has been shown to reliably evoke mismatch responses
in children (Petermann et al. 2009; Putkinen et al. 2012; Putkinen
et al. 2014b).

The paradigm consisted of 3 sequential stimulus blocks, each
of which ran for approximately 4 min and consisted of 495 stimuli
(0.5 s stimulus-onset-asynchrony). Block order was counterbal-
anced across participants. Each block began with the presentation
of 15 “standard” stimuli followed by alternating “standard” and
“deviant” stimuli (see Fig. 1 for a schematic diagram). The “stan-
dard” stimuli were sinusoidal harmonic tones which were 75 ms
in duration (including 5 ms rise and fall times) and presented at
a volume of 80 SPL and at a frequency of 550, 1,000, and 1,500 Hz
(for each block, respectively). Each “standard” had a presentation
probability of P = 0.5 (excluding the first 15 standards in each
block).

The “deviant” stimuli differed from the “standards” in 1 of 4
acoustic features: (1) frequency (half were 10% higher [partials:
605, 1,100, 1,650 Hz] and half were 10% lower [partials: 495, 900,
1,350 Hz] than the standards), (2) intensity (half were 10% louder
and half were 10% softer than the standards), (3) duration (the
stimulus was presented for 25 ms with a silent 25 ms gap before
the next stimulus), or (4) by having a silent gap in the middle of
the stimulus (i.e. 7 ms removed from the middle of the stimulus
tone, including 1 ms fall and rise times). Each of the 4 deviant
subtypes had a presentation probability of P = 0.125. Deviants were
presented in a pseudorandom order such that the same type of
deviant could not be presented in succession. The paradigm was
programmed and presented in MATLAB (Mathworks, Natick, MA,
USA) using Psychtoolbox (Brainard 1997).

MEG Acquisition
Electrophysiological data were acquired using a whole-head,
supine, pediatric MEG system (Model PQ1064R-N2m, KIT,
Kanazawa, Japan) housed in a magnetically shielded room (MSR;
Fujihara Co. Ltd, Tokyo, Japan). The MEG sensor array contained
125 first-order axial gradiometers, each of which had a coil

diameter of 15.5 mm and a baseline of 50 mm (see He et al. 2019
for further details). The dewar was designed to fit a maximum
head circumference of 53.4 cm, accommodating the heads of
more than 90% of 5-year-old Caucasian children (Johnson et al.
2010). All data were acquired at a sampling rate of 1,000 Hz and
with an online bandpass filter of 0.03–200 Hz. To maximize the
likelihood of obtaining high-quality data, we followed a child-
friendly MEG testing protocol (see Rapaport et al. 2019).

Before the MEG recording, participants were fitted with a
polyester cap containing 5 head position indicator (HPI) “marker”
coils. A digitizer pen (Polhemus Fastrak, Colchester, USA) was used
to record the locations of the HPI coils, as well as 3 fiducial points
(the nasion and bilateral pre-auricular points) and 300–500 points
from the scalp and face. During the MEG recording, participants
listened to the multi-feature paradigm while watching a silent
video of their choice. The auditory stimuli were presented via
a 60 cm2 speaker (Panphonics SSH sound shower, Panphonics)
positioned centrally at the foot of the MEG bed. The video was
projected onto the MSR ceiling above the dewar. Participants’ head
position in relation to the MEG sensor array was continuously
monitored using a real-time marker coil tracking system (Oyama
et al. 2012). Participants were accompanied by a researcher (and
often a caregiver) during the MEG recording. The MEG procedures,
including the setup and the recording, took approximately 45 min
to complete.

Data pre-processing
Following an inspection of the data, we removed 3 MEG channels
that were consistently flat and noisy across participants for more
than 10% of the recording (Gross et al. 2013). The following steps
were performed using MEG160 (Yokogawa Electric Corporation
and Eagle Technology Corporation, Tokyo, Japan). Environmental
noise—estimated based on recordings from 3 reference magne-
tometers—was suppressed using a Time-Shift Principal Compo-
nent Analysis (TSPCA) algorithm (de Cheveigné and Simon 2007;
block width: 10,000 ms, 3 shifts). Data acquired with the real-
time marker coil tracking system were used to correct for head
motion artifacts (Knösche 2002; realignment conditions: sphere
mesh = 321, prune ratio = 0.05). Head motion artifact correction
could not be performed for 7 datasets that had missing or erro-
neous real-time coil tracking data for more than 10% of the
recording. These 7 datasets were still included as head movement
between the pre- and post-recording marker coil measurements
did not exceed 5 mm.

Further pre-processing steps were performed in Matlab 2020a
(MathWorths, Inc., Natick, MA, USA) using the Fieldtrip Tool-
box (v20200213; Oostenveld et al. 2011). For each participant,
the entire recording was high- and low-pass filtered at 0.1 and
40 Hz, respectively (using a onepass-zerophase firws filter with
a Blackman window), and band-stop filtered to remove residual
50 Hz power-line contamination and its harmonics. Following
visual inspection, segments of the recording containing artifacts
(e.g. SQUID jumps and jaw clenches) were removed. Channels
that contained a large number of these visually identified arti-
facts and/or were flat for more than 10% of the recording were
interpolated to ensure that all participants had the same number
of channels (Medvedovsky et al. 2007; NB. these removals were
in addition to the 3 channels already rejected across the entire
sample). An independent component analysis (ICA) was used
to suppress eye blink artifacts: the raw recordings were high-
pass filtered at 1 Hz to improve the ICA performance (Winkler
et al. 2015) and then components with scalp distributions that
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corresponded to eye blinks were removed from the 0.1 Hz, pre-
processed data. Up to one independent component was removed
per participant.

The continuous data were epoched into segments of 0.5 s (0.1 s
pre-, and 0.4 s post-stimulus onset). The first 15 epochs of each
stimulus block were excluded from further analysis. Standard
and deviant epochs were averaged across, respectively, to com-
pute standard and deviant event-related fields (ERFs). It should
be noted that we averaged across all 4 deviant conditions, as:
(1) we sought to maximize the statistical power of our compar-
isons, and (2) we had no theoretical reason to analyze the 4 types
of deviants separately. While the deviants differed in terms of
their acoustic features, the constant feature that unites them
is their pseudorandom occurrence (in contrast to the relatively
predictable occurrence of the standards—see Fig. 1). The standard
ERF was subtracted from the deviant ERF to produce an MMF.

Sensor-level analysis
The sensor-level analysis involved 2 key steps performed in MNE-
Python (Gramfort et al. 2013): (1) identifying a time-window of
interest (TOI), and (2) constraining the age-related analysis to
this time-window. We used a data-driven approach to identify
a TOI. First, we reduced the multi-variate (channel x time) data
from all 37 participants into a single time-course—achieved using
an “Effect-Matched Spatial (EMS) filtering” approach (Schurger
et al. 2013). EMS filtering involves estimating a spatial filter from
the data itself, and then projecting the data through the spa-
tial filter. EMS is superior to other data reduction methods (e.g.
averaging a contiguous cluster of channels) as it accounts for the
spatiotemporal evolution of the experimental effect across time
and space, and weights the channels at each timepoint accord-
ingly. EMS filtering was used to reduce the dimensionality of our
data, and was orthogonal to our (between groups) hypothesis
test.

To avoid circularity in the EMS filtering procedure, we employed
5-fold stratified cross-validation procedure (Huang et al. 2020;
Engemann and King 2021). This analysis involved performing the
following steps:

1. The data were normalized using z-scores.
2. A spatial filter was derived from 80% of the dataset, leaving

out a different 20% for each repetition. The spatial filter was
computed by subtracting the “standard” from the “deviant”
epochs at each timepoint and channel. This produced a set of
weightings (i.e. a spatial filter) that reflected the magnitude
of the experimental effect (i.e. the MMF) over temporal and
spatial dimensions.

3. The spatial filter was applied to the remaining 20% of the
dataset by taking the product of the filter and the data at
each time point and for each channel, and summing the
results to render a single, spatially filtered time-course for
the standard and deviant conditions, respectively.

The time-courses were then averaged across the 37 partici-
pants to form a single time-course for the “standard” and “deviant”
conditions, respectively. Subsequently, we performed a nonpara-
metric cluster-based permutation analysis (Maris and Oostenveld
2007) on the whole-group EMS filtered data to determine the time-
course of the MMF effect. This permutation approach has been
shown to adequately control the Type-I error rate for electro-
physiological data. The analysis involved conducting one-sample
t-tests at each time point to determine whether the MMF ampli-
tude was significantly different from zero. We clustered samples

whose t-values fell below a threshold corresponding to an alpha
level of 0.05 (based on temporal proximity) and calculated cluster-
level test statistics by taking the average of the t-values within
each cluster. The data were then permuted 1,000 times, each time
randomly shuffling the “standard” and “deviant” condition labels
and recomputing the t-values. We constructed a permutation
distribution from these random partition t-values. Finally, the
significance of each cluster was determined using a threshold
Monte-Carlo p-value.

To maximize statistical power, the time window of the sig-
nificant cluster (identified in the analysis above) was used to
constrain the age-related analysis. First, for each participant, we
computed a mean MMF amplitude by taking the average of their
EMS-filtered data within the TOI. Here the MMF was liberally
defined as any significantly larger deviant-relative-to-standard
amplitude within the TOI. Our definition stands in contrast to
the definition of the classic adult MMN/F, which emerges soon
after the second “N1” or “M2” component (Hari and Puce 2017,
p. 265; Näätänen et al. 2019a, p. 53) and is visible between 0.1
and 0.25 s following stimulus onset (Näätänen et al. 2019b). We
relied on this more liberal definition as the latency of the peak
mismatch effect changes across childhood (Näätänen et al. 2019a)
and it would therefore have been inappropriate to constrain our
analysis to the classic adult MMN time window. It should be noted
that prior pediatric auditory oddball studies have likewise used
liberally defined time windows to extract MMN effects (e.g. 0.2–
0.33 s in 6- to 7-year-olds, Lovio et al. 2009; 0.3–0.5 s in 4- to 12-year-
olds, Partanen et al. 2013; 0.15–0.4 s in 5- to 7-year-olds, Petermann
et al. 2009; 0.1–0.3 s in 9- to 13-year-olds, Putkinen et al. 2014a; 0.1–
0.32 s in 4- to 10-year-olds, Shafer et al. 2000).

We compared mean MMF amplitudes between the younger
and older children using a 2-sided permutation independent-
samples t-test with 5,000 bootstrap samples. For each p-value,
we performed 5,000 reshuffles of the age group labels using the
DABEST (Data Analysis with Bootstrap-coupled ESTimation; Ho
et al. 2019) open-source libraries for Python. Additionally, we used
the Pearson correlation coefficient to investigate the relationship
between mean MMF amplitude and age.

Source-level analysis
To investigate how the neural network underpinning the MMF
changes across age, we conducted source analysis on 6 prede-
fined regions of interest (ROIs): bilateral primary auditory cortices
(A1), bilateral superior temporal gyri (STG), and bilateral inferior
frontal gyri (IFG; Garrido et al. 2007, 2008, 2009; Phillips et al. 2015).
These ROIs were drawn from the adult literature as this is, to our
knowledge, the first pediatric MEG study which has examined
the neural sources underpinning MMN/F generation in typically
developing children.

As the participants did not have individual structural MRI
scans, we used the MRI Estimation for MEG Sourcespace toolbox
(MEMES; Seymour 2018; https://github.com/Macquarie-MEG-
Research/MEMES) to create surrogate structural MRIs. This
procedure uses an Iterative Closest Point algorithm to match
the participant’s digitized head shape information to an age-
appropriate average MRI template (Neurodevelopmental MRI
Database; Richards et al. 2016).

For each participant, the best-fitting template with the lowest
objective registration (Gohel et al. 2017) was selected and used
to create a cortical mesh and source grid and co-registered with
the MEG sensor locations. A forward model (i.e. leadfield) was
then computed using the cortical mesh as the volume conductor
model. Source reconstruction was performed using a linearly
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Fig. 2. Top panel: Whole-group EMS filtered MEG data (a.u. = arbitrary
units) for the standard (blue) and deviant (red) waveforms (n = 37). Bottom
panel: Results from the cluster-based permutation test. The cluster of
significant t-statistics is highlighted in red.

constrained minimum variance (LCMV) beamformer (Van Veen
et al. 1997), as implemented in Fieldtrip Toolbox (v20200213;
Oostenveld et al. 2011). A spatial filter for each vertex in the source
grid was computed using a free dipole orientation (Garrido et al.
2007). This step was performed separately for the “standard” and
“deviant” conditions based on the covariance matrix calculated
from the data combined across conditions. The spatial filters
for all vertices within each ROI were combined into a single
spatial filter by weighting voxels within the ROI according to their
proximity to a centroid (Brookes et al. 2016). This centroid was
defined as the voxel within the ROI that was nearest to all other
voxels in the ROI (Douw et al. 2018). The sensor-level data were
then right-multiplied by the spatial filters for each condition.

The final 3 analysis steps involved using the nonparametric
cluster-based permutation approach (Maris and Oostenveld 2007).
First, we used paired-samples t-tests to compare the “standard”
and “deviant” amplitudes at each of the ROIs for all 37 children,
permuting the condition labels 2,000 times. Second, we used
independent-samples t-tests to compare the source-level (i) MMF
(ii) standard, and (iii) deviant amplitudes between the groups of
younger and older children, permuting the group labels (“younger”
and “older”) 2,000 times. The experimental paradigm, data pre-
processing and data analysis scripts are freely available on an
Open Science Framework repository: https://osf.io/35q8n/.

Results
Sensor-level results
Across all 37 children, we found a significantly larger deviant-
relative-to-standard (i.e. MMF) amplitude between 0.19 and 0.49 s
following stimulus onset (see Fig. 2). Results from a 2-sided per-
mutation independent-samples t-test (constrained to 0.19–0.49 s)
indicated that the mean MMF amplitudes were significantly larger
in the older children (n = 19; M = 0.71, SD = 0.45) compared with
the younger children (n = 18; M = 0.40, SD = 0.34), P = 0.027, Cohen’s
d = 0.77 (95% CI for Cohen’s d: 0.03–1.4; see Fig. 3). A moderate,
positive correlation of borderline significance was found between
mean MMF amplitude and age (Pearson’s r = 0.33, P = 0.049; see
Fig. 4).

Source-level results
Across the entire sample, we found significantly larger MMF
amplitudes, P < 0.05, in the 3 right-hemisphere ROIs: A1

Fig. 3. A Gardner–Altman estimation plot. Mean MMF amplitudes for all
participants are plotted by age group on the 2 left-most axes. The effect
size is presented as a bootstrap 95% confidence interval on the separate
but aligned right-hand-side axis, and is displayed to the right of the data.
The mean value of the older group is aligned with the effect size.

Fig. 4. Scatterplot of the mean MMF responses and age for all participants
(n = 37). The shaded area represents the 95% confidence interval.

(0.25–0.36 s), STG (0.25–0.36 s), and IFG (0.23–0.34 s; see Fig. 5).
Hence, we constrained the subsequent age-related analysis to
the right-hemisphere ROIs, and to the time window of 0.23 to
0.36 s. Consistent with our hypothesis, the older children showed a
significantly larger MMF amplitude, P < 0.05, in the right-IFG (0.31
to 0.33 s) relative to the younger children (see Fig. 6). We found no
significant differences between the younger and older children’s
standard or deviant amplitudes in the same time window, P > 0.05.

Discussion
This pediatric MEG study investigated the maturation of MMF
between the ages of 3 and 6. Consistent with our hypotheses, we
found that—at the sensor level—the older children (M = 6.2 years,
range: 5.6–6.9) showed significantly larger MMF amplitudes rel-
ative to the younger children (M = 4.1 years, range: 3.1–5.3). Fur-
thermore—at the source level—the older children showed a sig-
nificantly larger MMF amplitude in the right IFG relative to the
younger children. The larger MMF in older (relative to younger)
children did not appear to be driven by either smaller or larger
deviants alone, by rather a change in both directions, thereby
giving rise to a significantly larger difference waveform across age.
Our study is a first step toward measuring the early maturation
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Fig. 5. Whole-group source-level results. The 2 columns show the standard (blue) and deviant (red) ERF amplitudes (ampere per meter square) by time
(s) for the left and right hemisphere ROIs, respectively. The shaded regions around each waveform represent 95% confidence intervals. The horizontal
black line indicates clusters of significant differences (P < 0.05) between the standard and deviant ERF. Note the different y-axis scales.

of predictive brain function, with a focus on frontal regions like
the IFG.

The maturation of the MMF
The right-lateralized source-space findings are consistent with
prior evidence that the classic, pure-tone-elicited MMN is most
pronounced in the right hemisphere (Paavilainen et al. 1991).
Furthermore, our finding of larger MMF amplitudes in older-
relative-to-younger children is in line with the findings of previous
EEG studies—both longitudinal (Chobert et al. 2014; Putkinen
et al. 2014a; Putkinen et al. 2014b; Linnavalli et al. 2018) and
cross-sectional (Oades et al. 1997; Bishop et al. 2011a)—which
have similarly reported an increase in the MMN amplitude across
childhood. Yet our results conflict with the findings of several
other cross-sectional EEG studies, which have reported a decrease

(Csépe et al. 1992; Kraus et al. 1993a; Kraus et al. 1993b) or no
difference (Kraus et al. 1999; Gomot et al. 2000; Shafer et al. 2000,
2010) in the MMN amplitude with age.

One possible reason for the mixed findings regarding the mat-
uration of the MMN/F may be related to variability in the meth-
ods used to calculate the MMN/F amplitude. Mean measures
(calculated by taking the average amplitude across a time win-
dow) are generally considered to be superior to peak measures
(calculated by locating the maximum amplitude within a given
time window) as they are less susceptible to high-frequency noise
distortions (Bishop 2007; Bishop et al. 2011b; Luck 2014a). Previous
MMN studies that computed “mean” measures largely reported
an amplitude increase with age (Bishop et al. 2011b; Chobert et al.
2014; Putkinen et al. 2014a; Putkinen et al. 2014b; Linnavalli et al.
2018), whereas those using “peak” measures reported either a
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Fig. 6. Source-level results for the younger and older children. The first 2 columns show the standard (blue) and deviant (red) ERF amplitudes (ampere
per meter square) by time (s) for the younger and older children, respectively. The third column shows the MMF waveforms for the younger (pink) and
older (green) children. The shaded regions around each waveform represent 95% confidence intervals. The horizontal black line indicates clusters of
significant differences (P < 0.05) between the younger and older children’s MMF amplitudes. Note the different y-axis scales.

decrease (Csépe et al. 1992; Kraus et al. 1993a; Kraus et al. 1993b)
or no difference (Shafer et al. 2000, 2010) in the MMN amplitude
with age. Given the problems associated with peak measures, the
mean amplitude findings seem to be the most reliable and are
consistent with the findings from this study.

The key finding of this study is that older children (Mage =
6.2 years) showed significantly larger MMF amplitudes in the
right IFG relative to the younger children (Mage = 4.1 years). To
our knowledge, this is the first pediatric MEG study which has
examined the neural sources underpinning MMN/F generation in
typically developing children. We cautiously interpret the current
finding of larger MMF amplitudes in older children as reflect-
ing the maturation of predictive brain function across child-
hood. Specifically, we suggest that with significant physiological
maturation of the brain during childhood—and, the prolonged
maturation of the frontal lobes (Huttenlocher and Dabholkar
1997)—children’s brains may become increasingly proficient at
extracting statistical regularities from the stream of auditory
input. Equipped with this statistical knowledge, children are then
able to form increasingly precise priors of the upcoming stimuli,

whereby the strongest prediction would be for the presenta-
tion of a high probability “standard.” The larger MMF difference
waveform amplitude seen in the older children may reflect a
larger prediction error response to the lower probability deviants
(which may lie outside of the precise prior distribution), as well
as a smaller error response to the higher probability standards
(which may be precisely predicted). By contrast, the relatively
attenuated MMF amplitude seen in the younger children may
reflect—compared with the older children—a smaller prediction
error to the deviants (which may lie within the broad prior dis-
tribution), as well as a larger response to the standards (which
may be less precisely predicted). Furthermore, the results support
the proposal that increasingly mature predictive brain function
across development is underpinned by greater involvement of the
frontal cortex in responding to prediction errors.

The notion that priors become increasingly precise with age
is consistent with what we intuitively understand about the dif-
ferences between adult and child perception (Lucas et al. 2014).
Increasingly precise prior distributions across development would
progressively bias the posterior distribution (i.e. the perceptual
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experience) toward the narrowing prior (i.e. the brain’s stored
knowledge about the world) and away from incoming sensory
signals. Furthermore, increasingly precise predictions about the
world have an adaptive function, resulting in fewer prediction
error signals and thus, reduced demands on neural bandwidth in
the long run.

Conversely, having relatively broad priors in the early years
of life would give rise to a perceptual experience that is biased
toward incoming sensory signals from the world and less biased
by prior knowledge. Furthermore, having imprecise, broad priors
should yield more frequent prediction errors—driving more fre-
quent model updating and thus boosting the learning rate. Indeed,
it might be precisely because young children know less about the
world that makes them more open to learning new information
(Lucas et al. 2014).

Alternative mechanistic accounts
Predictive coding theory provides a plausible account of the
current findings. While alternative mechanistic accounts of the
MMN/F have been put forward, these accounts can only account
for MMN/F responses elicited by auditory oddball paradigms in
which the “standards” are both: (a) acoustically identical to one
another, and (b) repetitive in their occurrence. The “traditional”
auditory oddball paradigm fits these criteria, involving the
presentation of a stream of repetitive standard (S) stimuli that are
infrequently interrupted by the presentation of a single deviant
(D) stimulus (i.e. D-SSSD-SSSSS-D . . . ).

Under the “sensory memory” account, a traditional MMN/F
is generated when there is a detectable acoustic difference
between the current input (e.g. a “deviant” stimulus) and a brief
memory trace of the preceding input (e.g. a “standard” stimulus;
Näätänen et al. 1978). Alternatively, under the “neuronal
adaptation” account, neurons tuned to the “standards” become
suppressed through repeated stimulation, whereas the rarer
“deviant” stimuli activate non-adapted neurons (i.e. “fresh
afferents”), resulting in an enhanced deviant-relative-to-standard
evoked response (May and Tiitinen 2010). Finally, under predictive
coding, the traditional MMN/F could reflect a relatively larger
prediction error signal elicited in response to the lower probability
“deviants” (P = 0.5/4) relative to the higher probability “standards”
(P = 0.5). Thus, all 3 mechanistic accounts provide equally
satisfying explanations of the traditional MMN/F.

Yet these sensory memory and neuronal adaptation accounts
fail to explain MMN/Fs elicited by paradigms in which the “stan-
dard” stimuli are non-repetitive in their occurrence—such as the
multi-feature paradigm implemented in this study (i.e. S-D4-S-
D2-S-D1-S-D4-S-D3 . . . ). Under the “sensory memory” account, a
change-detection mechanism would signal acoustic change on
every trial, resulting in equally large evoked response amplitudes
to all the stimuli and therefore, no mismatch effect. Likewise,
under the neuronal adaptation account, the constant acoustic
changes would not allow for habitation to any of the stimuli, again
resulting in no mismatch effect.

Study implications
Overall, the current neural findings offer preliminary support to
the notion that predictive brain function improves across child-
hood. Our findings are consistent with a substantial body of
behavioral evidence suggesting that young children learn the sta-
tistical regularities in their environment and use that statistical
knowledge to generate predictions about future sensory events
(Gopnik and Wellman 2012; Köster et al. 2020). The predictive cod-
ing account of childhood neurocognitive development represents

a relatively new and radical way of conceptualizing early learning
(Gopnik 2012).

This account may also have important implications for under-
standing the neurocognitive underpinnings of neurodevelopmen-
tal conditions that manifest in the early childhood years. For
example, predictive coding accounts of autism have proposed that
both the sensory and social characteristics of autistic people may
be explained by divergent precision weighting of prediction errors
(Brock 2012; Pellicano and Burr 2012; Friston et al. 2013; Pellicano
2013; van Boxtel and Lu 2013; Van de Cruys et al. 2013, 2014;
Lawson et al. 2014, 2017). The current findings will serve as an
important baseline for testing these predictive coding accounts of
autism, as well as other neurodevelopmental conditions.

Study limitations
It should be noted that the current findings are constrained
by several limitations. The between-group analyses were con-
ducted with relatively small samples (younger children: n = 18;
older children: n = 19). While the effect sizes were large, stud-
ies with larger samples are needed to strengthen the present
findings. With respect to the source analysis, our approach was
constrained to 6 ROIs taken from Garrido et al. (2007, 2008, 2009):
the bilateral primary auditory cortices (A1), STG, and IFG. We
chose to constrain the analysis in this way in order to maximize
the statistical power of the permutation approach (Luck 2014b).
However, there is evidence of a more extensive MMN/F neural
network beyond the frontotemporal regions, including generators
in the parietal cortex (Celsis et al. 1999; Opitz et al. 1999; Schall
et al. 2003; Molholm et al. 2005; Näätänen et al. 2019b). As such,
important ROIs may have been left out of the current source
analysis. Future research should attempt to investigate the neural
generators more precisely beyond the regions investigated here
with a considerably larger sample of participants (e.g. N = ≥ 100)
using functional magnetic resonance imaging (fMRI) and/or MEG
whole-brain source analyses.

Conclusions
In conclusion, this study is the first to use MEG to investigate the
maturation of the MMF during the childhood years. In line with
our sensor-level hypotheses, we found larger MMF amplitudes in
older (relative to younger) children. Furthermore, at the source-
level, older children showed significantly larger MMF amplitudes
in the right IFG relative to the younger children. We interpret
these findings as preliminary support for the notion that predic-
tive brain function matures across early development, and that
this maturation is underpinned by increasing involvement of the
frontal cortex in responding to prediction errors. These findings
contribute to a deeper understanding of the brain function under-
pinning child cognitive development.
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