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Abstract: AL amyloidosis is caused by the misfolding of immunoglobulin light chains leading to
an impaired function of tissues and organs in which they accumulate. Due to the paucity of -omics
profiles from undissected samples, few studies have addressed amyloid-related damage system wide.
To fill this gap, we evaluated proteome changes in the abdominal subcutaneous adipose tissue of pa-
tients affected by the AL isotypes κ and λ. Through our retrospective analysis based on graph theory,
we have herein deduced new insights representing a step forward from the pioneering proteomic
investigations previously published by our group. ECM/cytoskeleton, oxidative stress and pro-
teostasis were confirmed as leading processes. In this scenario, some proteins, including glutathione
peroxidase 1 (GPX1), tubulins and the TRiC complex, were classified as biologically and topologically
relevant. These and other results overlap with those already reported for other amyloidoses, support-
ing the hypothesis that amyloidogenic proteins could induce similar mechanisms independently of
the main fibril precursor and of the target tissues/organs. Of course, further studies based on larger
patient cohorts and different tissues/organs will be essential, which would be a key point that would
allow for a more robust selection of the main molecular players and a more accurate correlation with
clinical aspects.

Keywords: amyloidosis; proteomics; systems biology; networks; PPI; co-expression

1. Introduction

Amyloidosis is characterized by the misfolding of circulating proteins, which are
progressively deposited at the extracellular level as insoluble amyloid aggregates. The
relationship between the site of production of the fibril precursor protein and its deposition
allows for the distinction between localized and systemic amyloidosis, although some
amyloidoses show both systemic and local features. Their current classification is based
on the amyloid protein type, and, to date, 42 human amyloid fibril proteins have been
identified in humans [1]. This knowledge is improving its diagnosis and, although systemic
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amyloidosis is classified as rare diseases, the increasing incidence in the elderly population
could soon make it a new global health socio-economic problem [2].

The deposition of amyloid aggregates can occur in several organs, including the heart,
which can be severely affected in structure and function, becoming the major survival
determinant [3]. The process of amyloid formation and organ targeting and damage is
multifaceted and still largely unknown. This makes understanding the pathogenic cascade
complex and its control a challenge [4]. Due to the progressive nature of the disease, early
diagnosis is therefore vital, and many studies have been made toward this aim [5]. For
instance, patients with advanced heart damage have a significantly poorer outcome and
more limited access to the most aggressive, yet most efficacious treatments [6].

To date, the diagnosis and typing of the systemic amyloidosis are performed, respec-
tively, by Congo red staining and the mass spectrometry (MS)-based proteomics analysis
of tissue biopsies, mainly subcutaneous fat aspirates [7]. No specific biomarkers of organ
damage to specifically differentiate the distinct amyloidoses forms exist. However, several
studies have been recently published, mainly for cardiac amyloidosis, focusing on classi-
fying amyloid types based on circulating microRNAs [8–10], protein markers [11–13] and
oligomers [14].

As for amyloidosis typing, amyloid deposits are often laser microdissected from biop-
sies prior to MS analysis [15]. If, on one hand, this sampling allows for the identification
of non-fibrillar proteins enriched in the amyloid deposit, on the other hand, it is not suffi-
ciently representative of molecular and histological alterations induced in tissue resident
cells by the deposition of extracellular amyloid aggregates. Thus, although microdissection
aims to improve diagnosis, it has led to a poor collection of -omics profiles at global organ
and tissue level. Consequently, the integration of comprehensive multi-omics analyses
to dissect pathological mechanisms in systemic amyloidosis is limited to few reports [16].
Most studies rely on proteomics data [17–19], while some of them have recently focused on
RNAseq analysis and differentially expressed genes (DEGs), both in cultured cardiomy-
ocytes exposed to amyloidogenic light chains [20] and in plasma cells from immunoglobulin
light chain (AL) amyloidosis patients and normal controls [21].

Omics technologies and network analysis give the opportunity to investigate human
diseases through data-derived system biology approaches based on graph theory [22].
When applied to complex tissues, these approaches provide the chance to evaluate, at a
global level, the pathophysiological processes underlying the investigated phenotypes [23].
In the context of protein misfolding diseases, fruitful application examples are available for
neurodegenerative diseases, such as Alzheimer’s [24–27] and Parkinson’s diseases [28–30].
Conversely, far fewer similar studies have been conducted analyzing biopsies from patients
affected by systemic amyloidosis [7,18,19,21].

To fill this gap, in this perspective study, we investigated the proteome changes in
abdominal subcutaneous adipose tissue of patients affected by AL amyloidosis at a system
level. Along with transthyretin (TTR), myocardial infiltration by immunoglobulin light
chains is the major cause of cardiac amyloidosis [31]. In addition to helping to shed light on
pathogenic mechanisms subtending AL subtypes, we provided a pipeline for evaluating
how protein fibril deposition might affect the physiological protein relationships in a tissue.
To reach this goal, we exploited the correlation between a protein network’s structure
and the functions that it supports [32]. Therefore, the knowledge previously acquired
through protein profiling and quantitation was here integrated with the new insights
inferred by modeling the proteome as protein–protein interaction (PPI) and co-expression
networks. In particular, these models were combined and analyzed at a topological and
functional level [22]. AL amyloidosis patients were further split into two groups based
on amyloid typing as AL κ or λ type. This classification aimed to verify the correlation
between different AL subtypes and the pathogenic mechanisms that they could trigger.
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2. Materials and Methods
2.1. Collected Samples, Proteomic Analysis and Preliminary Functional Analysis

Abdominal subcutaneous adipose tissue protein profiles previously collected and
analyzed were re-processed and used as reference dataset [7,17,18,33]. Specifically, n = 14
control subjects, n = 15 patients affected by ALκ amyloidosis and n = 15 patients affected
by ALλ amyloidosis were considered to create a larger cohort of profiles never evaluated
all together in a single study. Major details on samples origin, MS analytical parameters
and raw mass spectra processing are reported in Supplementary Material.

A preliminary functional evaluation of the characterized protein profiles was per-
formed by functional annotation tool contained in STRING database [34]. For each subject,
enriched Reactome pathways were retained (FDR ≤ 0.05) [35]. They were compared by
linear discriminant analysis (LDA) and those with F ratio ≥5 and p-value ≤ 0.01 were
selected as differentially enriched among C, ALκ and ALλ groups.

2.2. Label-Free Quantitative Analysis

The characterized protein profiles were semi-quantitatively compared by a label-free
approach, as previously reported [36]. To minimize the batch effect of samples collected
at different times and analyzed with different instruments and methods, the spectral
count (SpC) values were normalized using a total signal normalization method [37]. Data
matrix dimensionality (44 subjects and 4319 proteins) was reduced by LDA and proteins
with F ratio ≥ 3 and p-value ≤ 0.05 were selected as differentially abundant (DAPs); of
note, to ensure a robust extraction of differentially abundant proteins (DAPs), only those
identified in at least 50% of subjects were retained. Selected DAPs were further processed
by principal component analysis (PCA) and Spearman’s correlation. Pairwise comparisons
were finally evaluated by DAve index (see Supplementary Material). All data processing
were performed using JMP 15.2 SAS software.

2.3. Reconstruction and Analysis of PPI and Co-Expression Network Models

A PPI network model per group (C, ALκ and ALλ) was reconstructed by considering
proteins identified in more than 50% of subjects (per group). The network models were
reconstructed by STRING Cytoscape’s APP [34] and only protein–protein interactions an-
notated with “databases” and/or “experiments” with a score≥0.3 and≥0.15 were retained.
Similarly, a PPI network model was reconstructed starting from DAPs selected by LDA
(n = 132, p ≤ 0.05). The proteins were grouped in PPI functional modules by the support of
STRING Cytoscape’s APP and BINGO 2.44 [38]; Homo sapiens organism, hypergeometric
test and Benjamini–Hochberg FDR correction (≤0.01) were set.

A protein co-expression network model per group was reconstructed processing
the characterized protein profiles by Spearman’s rank correlation coefficient; only scores
obtained by matching a number of measures (SpCs > 0) per protein pair greater than 50%
of the subjects (per group), and with p ≤ 0.05, were considered. In addition, the same
subset of proteins (n = 41, identification frequency = 100% per group) was processed to
evaluate how the correlation changes between protein pairs in C, ALκ and ALλ groups.

2.4. Topological Analysis of PPI and Co-Expression Network Models
2.4.1. Hubs Selection

Both reconstructed PPI and co-expression models were analyzed at topological level
by Centiscape Cytoscape’s APP [39], as previously reported [40]. Diameter, average dis-
tance, degree, betweenness, centroid, stress, eigenvector, bridging, eccentricity, closeness,
radiality and edge centralities were calculated for ppi network models, whereas diameter,
average distance and degree were calculated for co-expression models. As for PPI models,
nodes with both betweenness and centroid values above the average were considered hubs,
whereas co-expression hubs were selected based on degree [22]. Statistical significance
of topological results was tested by randomized network models [41]; n = 1000 random
models per group were reconstructed and analyzed by in-house R scripts based on Ver-
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texSort (to build random models), igraph (to compute centralities) and ggplot2 (to plot
results) libraries.

2.4.2. Topological and Functional Modules Selection

CytoCluster Cytoscape’s APP [42] and ClusterONE algorithm were used to extract pro-
tein co-expression modules (p≤ 0.01) from C, ALκ and ALλ models reconstructed from pro-
teins identified in all subjects (n = 41, identification frequency = 100%); minimum size = 3,
minimum density = “auto” and edge weights = Spearman’s rank correlation coefficient
were set. Network models reconstructed by matching PPI (“databases”-annotated PPIs,
score ≥ 0.3; “experiments”-annotated PPIs, score ≥ 0.15) and co-expression (Spearman’s
rank correlation coefficient≥ |0.5|, p≤ 0.05) networks were analyzed by Community Detec-
tion Cytoscape’s APP [43]; HiDeF 1.1 beta algorithm (maximum resolution
parameter = 25, consensus threshold = 75, persistent threshold = 5), while functional
enrichment (reactome pathways) of the selected topological modules was performed by
Enrichr algorithm (p ≤ 0.001, module size ≥ 4). Finally, the correlation change among
subunits/proteins physically and functionally interacting in complexes and biological
processes was evaluated in C, ALκ and ALλ groups.

2.5. Sub-Cutaneous Adipose Tissue Histological Analysis and TUBB4 Validation

Paraffin-embedded sections of sub-cutaneous adipose tissue were used for histological
analysis. Briefly, after some preparation steps, the samples were incubated with rabbit anti-
beta tubulin IV (TUBBIV; Ab179504, Abcam, Cambridge, UK) antibody. A Leica SP5 laser
scanning confocal microscope (Leica Microsystem, Wetzlar, Germany) was used to acquire
labeled samples. Finally, the images were analyzed using Image J software. Statistical
analysis was carried out using Prism 8 (GraphPad Software, La Jolla, CA, USA). Data are
presented as mean ± standard deviation (SD). Differences between sample means were
evaluated with Student’s t-test (p ≤ 0.05). For major details, see Supplementary Material.

3. Results
3.1. Similarities and Differences in Amyloid-Deposition-Induced Proteome Remodeling in
Abdominal Subcutaneous Adipose Tissue from ALκ and ALλ Patients

A set of protein profiles previously published [7,17,18,33], and collected by analyzing
the abdominal subcutaneous adipose tissue of control subjects (C) and patients affected by
ALκ and ALλ amyloidosis, was reprocessed following the workflow shown in (Figure 1).
Compared to the control group, ALκ and ALλ patient profiles were characterized by a
higher number of proteins (Figure 2A). This observation, which might have a link with an
altered protein homeostasis [44], was associated with an enrichment in protein synthesis
and metabolism we found in both AL patient’s groups, along with the mitochondrial
respiration chain, lipid metabolism and immune system (Supplementary Figure S1). In
ALκ and ALλ, we also found an enrichment in the amyloid fiber formation pathway [45].
Conversely, processes related to microtubules and ECM were less represented, and were
most significant for ALκ tissues.

Following a deeper analysis of the enrichment results, 132 out of 4319 total identified
proteins resulted in being differentially abundant (DAPs) (Supplementary Tables S1 and S2).
In addition, to confirm previously published DAPs [18], new ones were extracted thanks
to a larger cohorts of subjects. Although there were some exceptions, the set of higher-
confidence DAPs discriminated the investigated groups of subjects (Figure 2B,C) well. As
expected, the correlation between AL groups was higher (r = 0.79) than that observed
with respect to C (Figure 2D–F). This value pointed out some slight differences in the
modulation of the proteome when affected by the ALκ or ALλ isotype. These variations,
and those identified in the comparison against control tissues, were classified and repre-
sented through 25 PPI functional modules (Supplementary Figure S2). Besides what has
already been shown by the enrichment analysis (Supplementary Figure S1), in ALκ and
ALλ, we observed the up-regulation of proteins involved in proteolysis, protein folding
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and REDOX homeostasis, while a small set of proteins involved in blood coagulation was
down-regulated. Moreover, focusing on the comparison between AL groups, immune
system and keratin-related proteins were more abundant in ALλ, whereas ALκ tissues
showed a higher abundance of glutathione metabolism, protein synthesis and vesicle-
transport-related proteins.

Figure 1. Workflow applied to investigate, at the proteomic system level, abdominal sub-cutaneous
adipose tissues from control subjects (C, n = 14) and patients affected by ALκ (ALκ, n = 15) and ALλ

(ALλ, n = 15) amyloidosis.

Among the most confident differentially abundant proteins (p ≤ 0.01), we found
glutathione peroxidase 1 (GPX1), an important antioxidant enzymes that has already been
described as protective in various neurodegenerative disorders, including Parkinson’s
and Alzheimer’s disease [46]. It was identified in 80% and 47% of ALκ and ALλ tissues,
respectively, whereas it was never found in the control group. Similarly, lon peptidase 1
(LONP1) and SNF2 histone linker PHD RING helicase (SHPRH) were mainly expressed
in ALλ tissues (53% and 67%, respectively), and erythrocyte membrane protein band 4.1
Like 3 (EPB41L3) was mainly expressed in ALκ ones (53%). A further interesting protein
was the CD81 antigen (CD81), which was more present in both patient groups (C IF = 36%,
ALκ IF = 73%, ALλ IF = 93%). On the other hand, tubulin alpha-1C chain (TUBA1C) and
hemoglobin subunit delta (HBD) were among the proteins that were less abundant in both
ALκ and ALλ .



Cells 2023, 12, 699 6 of 14

Figure 2. Proteomics analysis of abdominal sub-cutaneous adipose tissues from control subjects
and patients affected by AL amyloidosis. (A) Comparison among the average number of proteins
identified in control subjects (C, n = 14) and patients affected by AL amyloidosis (ALκ, n = 15; ALλ,
n = 15); ANOVA and Tukey’s test (* p ≤ 0.05). (B) Principal component analysis (PCA) by processing
proteins differentially abundant (DAPs) in C, ALκ and ALλ groups. (C) Hierarchical clustering and
heat map showing the high-confidence DAPs in C, ALκ and ALλ protein profiles (LDA, p ≤ 0.01).
(D) Spearman’s correlation using DAPs and the corresponding average SpC values in C and ALκ,
(E) C and ALλ, and (F) ALκ and ALλ groups.

3.2. Protein–Protein Interaction (PPI) and Co-Expression Network Models Provide New Insights
to Shed Light on Pathogenic Mechanisms Driven by Aggregation of ALκ and ALλ Isotypes
3.2.1. PPI and Co-Expression Hubs Characterizing C, ALκ and ALλ Network Models

To exploit the correlation between a protein network’s structure and the functions
that it supports, we transformed controls and patients protein profiles in PPI and protein
co-expression network models. Following their topological analysis, the greatest differences
concerned the average degree, which was higher in both AL cohorts. No notable centrality
differences were observed at network level; the diameter and average distance were
comparable in both PPI and co-expression models, even though the ALκ co-expression
model had lower values that, combined with the high node degree, suggest a greater
network compactness (Table 1 and Supplementary Table S3).

Table 1. Network centralities from PPI and co-expression models.

PPI Model Nodes Edges Diameter Av. Distance Degree

C 256 2757 5 2.38 21.5
ALκ 400 5644 5 2.35 28.2
ALλ 407 5315 5 2.42 26.1

Co-Expression Model Nodes Edges Diameter Av. Distance Degree

C 227 1212 7 2.97 10
ALκ 361 5438 6 2.52 30
ALλ 350 2534 9 2.88 14

In order to go deeper into the selection of topologically relevant nodes, we extracted a
set of PPI and co-expression network hubs, as putative key proteins involved in pathophys-
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iological processes running in ALκ and ALλ tissues (Figure 3A,B). Regarding co-expression
models, TUBA1C, GPX1 and ras-related protein Rab-1B (RAB1B) were the best ranked hubs
in C, ALκ, ALλ models, respectively (Figure 3C,D, Supplementary Table S4). GPX1 resulted
in being highly correlated with proteins involved in cell adhesion, while both GPX1 and
RAB1B correlated with proteins involved in mitochondrial metabolism and protein folding.
They showed a negative correlation with hemoglobin subunit delta (HBD), and GPX1 also
had a similar connection with the fibrinogen gamma chain (FGG) and fibrinogen beta chain
(FGB) (Figure 3D). Concerning the C group, a correlation between TUBA1C and collagen
IV subunits emerged.

Other isotype-specific co-expression hubs included thioredoxin (TXN), microtubule as-
sociated protein 4 (MAP4) and Cathepsin D (CTSD) for ALκ, and ATP synthase subunit d
(ATP5PD) and Mast cell carboxypeptidase A (CPA3) for ALλ (Figure 3C). TXN and CTSD
were also ALκ PPI hubs, whereas RAB1B, myosin-10 (MYH10) and dihydrolipoamide S-
acetyltransferase (DLAT) were simultaneously ALλ PPI and co-expression hubs
(Figure 3C–E, Supplementary Tables S4 and S5). In this scenario, PPI models have consis-
tently highlighted the role of mitochondria by a number of PPI hubs involved in mitochon-
drial metabolism and respiration (CYC1, DLAT, UQCRC1, NDUFS3, COX4I1, ACADM,
ECH1, ETFA), oxidative stress (SOD2) and translation (TUFM). Along with them, another
consistent set of PPI hubs featuring both ALκ and ALλ was involved in the unfolded
protein response (NPM1, HSPA12A, CCT2, CCT3); (Figure 3E).

Figure 3. Protein-protein interaction (PPI) and co-expression network topology. (A) Validation of co-
expression hubs. Violin plot of average degree values calculated from random co-expression networks
(n = 1000 per group); for each group of subjects, the average degree in the reference co-expression
network is shown, whereas in (B), the validation of PPI hubs is shown. Violin plot of average betweenness
values calculated from random PPI networks (n = 1000 per group); for each group of subjects, the
average betweenness in the reference PPI network is shown. (C) High-confidence differentially co-
expressed proteins (co-expression hubs) selected by comparing the node degree from C, ALκ and ALλ

co-expression network models (degree > 2× network average degree). (D) Best-ranked co-expression
hubs (TUBA1C in C, GPX1 ALκ and RAB1B in ALλ) and their higher-confidence correlation partners
(Spearman’s correlation score≥|0.85| for GPX1 and RAB1B,≥|0.75| for TUBA1C). (E) PPI hubs, selected
by betweenness and centroid values, from both ALκ and ALλ PPI network models.
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3.2.2. PPI and Co-Expression Modules Affected by Aggregation of ALκ and ALλ Isotypes

The combination of PPI and co-expression models was initially processed for the
identification of a highly correlated interacting community of nodes. Most of them were
enriched in pathways related to metabolism, cytoskeleton, transport and protein folding
(Supplementary Figure S3). The latter two were mainly represented in ALκ and ALλ, along
with communities enriched in the detoxification of reactive oxygen species. Communities
enriched in extracellular matrix (ECM) organization processes were found in all groups.
In this context, an interesting difference emerged in the co-expression network modules.
In fact, in both ALκ and ALλ, a weighted cluster analysis evidenced the presence of
the heparan sulfate proteoglycan core protein (HSPG2) in modules enriched by ECM
proteins, whereas this did not happen in the C model (Figure 4A). This result could fit
with the observation that heparan sulfate proteoglycans (HSPGs) are commonly found in
amyloid deposits; therefore, they have been suggested to be functionally involved in the
pathogenesis of amyloidosis [47].

Figure 4. PPI functional modules differentially correlated. (A) Clusters of proteins highly correlated
in C, ALκ and ALλ. (B) Correlation changes among subunits/proteins physically and functionally
interacting in complexes and biological processes. (C) DAve index of DAPs involved in protein
folding and microtubule-related processes. A positive DAve index indicates that protein most
abundant in C, whereas negative DAve index indicates that protein most abundant in ALκ and ALλ.
(D) Representative immunofluorescence images of sub-cutaneous adipose tissue from control subjects
(C) and patients affected by AL amyloidosis (ALκ and ALλ) stained against beta Tubulin IV (TUBBIV,
red). Nuclei were detected with Hoechst (blue). Scale bars represent 150 µm. (E) The graph highlights
the quantification of TUBBIV in the immunostained samples; * p ≤ 0.05.

Besides the analysis of node communities, the merging of the PPI and co-expression
models was performed with the aim of clarifying the question of whether proteins that are
part of protein complexes and/or biological processes are also correlated in maintaining
a well-defined stoichiometry. Therefore, the question of how to interpret the correlation
loss or gain arises. Following these tracks, we spotted some protein complexes whose
correlation changed from C to ALκ and ALλ groups (Figure 4B). In particular, the ALκ group
showed a significant decrease in correlation among tubulins, whereas, in the ALλ group,
the same phenomenon was observed for the 14-3-3 proteins complex. These variations were
associated with an increased correlation of proteins physically interacting and functionally
involved in the redox homeostasis/detoxification of reactive oxygen species and protein
folding/stress response. Their increase was much more marked for the ALκ group, where
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the protein folding/stress response module was featured by the presence of different
subunits belonging to the T-complex protein ring complex (TRiC). As TRiC is involved in
tubulin folding, our attention was captured by the opposite trend of expression between its
components (CCT3, CCT4, TCP1) and tubulin subunits (TUBA1C, TUBB4B) (Figure 4C–E,
Supplementary Figure S2). In fact, this suggests a potential non-random correlation of
events worthy of further future investigation. In addition, except for the alpha-crystallin B
chain (CRYAB), other folding-related proteins were more abundant in ALκ and ALλ tissues,
confirming a role of the endoplasmic reticulum (ER) in systemic amyloid diseases [48].

4. Discussion

To our knowledge, our perspective study represents the first example of an investiga-
tion of systemic amyloidosis through methods based on graph theory applied to proteomic
data from the analysis of complex human tissues. Due to the small number of subjects,
which does not allow for more robust stratifications, the results that we extracted represent
the mean emerging from groups created following the presence (or absence in healthy
controls) of amyloidogenic AL chains in subcutaneous adipose tissue. However, as pre-
viously reported by Brambilla et al. [33], most patients were further united by heart and
kidney involvement.

Globally, the observations collected here draw a landscape where ALκ and ALλ tissues
undergo a similar proteome modulation. In addition, slight and interesting differences
have been noted. These findings are consistent with those previously reported by our
group [18]. Thanks to a larger cohorts of subjects, new differentially abundant proteins were
extracted, while ECM/cytoskeleton, proteostasis and mitochondrial-related processes being
confirmed as those most affected by amyloid deposition in subcutaneous adipose tissues.

Going deeper through network approaches, here, we selected new proteins that could
be central in the pathophysiological processes underlying AL amyloidosis. A case in point
concerns proteins and pathways involved in oxidative stress. As reported for cultured cells
from multiple target tissues, there is solid evidence that AL-induced toxicity is associated
with an increase in ROS and mitochondrial alterations [49–54]. In our tissues, the relevance
of GPX1 in terms of protein expression and the network hub fits with its role in contrasting
ROS-mediated toxic effects, as already demonstrated in Parkinson’s and Alzheimer’s
disease [46]. A scenario of oxidative stress is further suggested by other hubs, such as
SOD2, TXN and Peroxiredoxin-2 (PRDX2). It is worth noting that we found a marked
negative correlation between GPX1 and some proteins, such as FGB, FGG and HBD, related
to hemostasis and blood coagulation. This observation drew our attention to a potential
relationship between oxidative stress and abnormal bleeding and fibrinolysis observed in
AL patients [55]. Although this correlation has previously been reported in patients with
isolated aortic stenosis [56], no evidence is currently available in patients with amyloidosis,
but it could represent an interesting hypothesis to be explored in future studies.

Oxidative stress, mitochondrial dysfunction and apoptosis represent interrelated
processes known to occur in experimental models of AL amyloidosis [51,54], as well as neu-
rodegenerative diseases [57]. The centrality of the mitochondrion has been clearly shown in
our study by a number of DAPs and PPI hubs characterizing ALκ and ALλ models. Among
the high-confidence DAPs, we noticed LONP1, a mitochondrial protease that mediates the
selective degradation of misfolded, unassembled or oxidatively damaged polypeptides [58];
it also works as a molecular chaperone and cooperates with heat shock 70 kDa protein 1B
(HSPA1B) to promote mitochondrial protein folding and contrasting cell death in response
to oxidative stress [59]. Proteoastasis-related proteolytic processes were also correlated
with the abundance and topological relevance of other proteases found in our profiles,
including CTSD. As a matter of fact, it has been described as physiologically important
in serum amyloid A (SAA) degradation in amyloidosis [60], while different studies have
established its role in the process of autophagy in neurodegenerative diseases [61].

The number of DAPs, hubs and modules enriched in heat shock proteins/chaperones
could support the activation of the protein quality control (PQC) systems [62], as well
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as the implication of the endoplasmic reticulum (ER) in systemic amyloid diseases [48].
In this context, the recurrence of some proteins belonging to the T-complex protein ring
complex (TRiC) is noteworthy [63]. TRiC is an essential and ubiquitous component of the
protein-folding machinery of eukaryotic cells. It has been described as both a potential
modulator of protein aggregation [64] and neuroprotective factor in Huntington’s disease
by inhibiting the aggregation of the mutant huntingtin [65]. Moreover, it is also required
during sarcomere assembly in myofibers [66] and for the folding of abundant cytoskeletal
proteins, such as actin and tubulin [64]. This last function might have a link with the
decrease in correlation among tubulin subunits that we mainly observed in the ALκ group.
The greater expression and topological relevance of the TRiC complex subunits could
support a potential tubulin stress, which is an effect already described as a common feature
of many neurodegenerative diseases [67]. A putative influence of amyloid deposition on
microtubules was further suggested by the topological relevance of MAP4 in ALκ and its
up-regulation in both ALκ and ALλ groups. MAP4 is a major non-neuronal microtubule-
associated protein belonging to the MAP2 and TAU family. In addition to regulating
organelle transport along the cytoskeletal microtubules, it is involved in maintaining
mitochondrial homeostasis, and it has been proposed as a potential candidate in multiple
cardiovascular pathologies [68].

Finally, unlike in ALκ, a significant and interesting decrease in correlation in the ALλ
model was observed for 14-3-3 proteins, a complex that plays a pivotal role in cellular signal
transduction, counting more than 200 interactors [69]. Several studies have shown that
14-3-3 acts as a molecular adaptor to recruit chaperone-associated misfolded proteins to
dynein motors for transport to aggresomes [70]. More recently, the activity of specific 14-3-3
subunits as molecular chaperones has also been demonstrated, such as 14-3-3σ transiently
interacting with amyloid β (Aβ) in vitro and inhibiting fibril formation [71], and 14-3-3η
interacting with human α-synuclein aggregation intermediates, reducing their cellular
toxicity [72].

5. Conclusions

Looking at the proteome modulation from different points of view, including the
network topology, appeared to be a promising approach for ranking protein candidates
that may play a key role in pathophysiological mechanisms induced and affected by
amyloid deposition, respectively. Many targets related to the cytoskeleton, oxidative
stress and mitochondrial dysfunction overlap with molecules previously described in
other protein-misfolding diseases, such as Alzheimer’s, Parkinson’s and Huntington’s
diseases. Although we are well aware of the differences that distinguish amyloidosis from
more common neurodegenerative diseases, this matching could be construed as a virtual
validation of our findings. At the same time, they could be indicative of the aggregation
of unfolded proteins inducing similar mechanisms regardless of the amyloid protein and
tissues/organs targeted, and thus an overlapping that would allow us to speculate on the
use of adipose tissue as a mirror to infer potential molecular events occurring in other sites,
including the heart.

The number of subjects, as well as their retrospective analysis, represents one of the
major limitations of our study. Although all samples were processed under the same protein
extraction protocol, it is undeniable that they were analyzed using different MS instruments
and methods; however, we processed our data to minimize potential batch effects and
to extract the most robust and meaningful information. Also in light of this, rather than
drawing conclusions, our findings represent a source of information to design new target
experiments. On the other hand, our study is a proof-of-concept for future applications that
will take into account a larger cohort of patients and different organs/tissues affected. This
goal brings attention to the need for collaborative and multicenter studies. With the support
of single-cell technologies, they would allow for a better clinical stratification, which, in
turn, would improve the association with molecular data, favoring the identification of
targets for diagnostic, prognostic and therapeutic purposes, as well as helping to shed
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light on as yet unanswered questions, such as disparities in organ damage severity, organ
response to treatments and even organ tropism.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12050699/s1, Figure S1: Reactome pathways differentially
enriched in Control, ALκ and ALλ protein profiles; Figure S2: Protein-protein interaction (PPI)
functional modules differentially expressed in Control, ALκ and ALλ; Figure S3: Protein-protein
interaction (PPI) and Co-Expression node communities enriched in Control, ALκ and ALλ network
models; Figure S4: Protein-protein interaction (PPI) hubs specifically found in Control, ALκ and
ALλ; Table S1: Protein profiles from abdominal subcutaneous adipose tissue of control subjects and
patients affected by AL amyloidosis; Table S2: Differentially abundant proteins (DAPs) by comparing
Control, ALκ and ALλ profiles; Table S3: Centralities average values from Control, ALκ and ALλ

protein-protein interaction (PPI) network models; Table S4: Co-expression network hubs; Table S5:
Protein-protein interaction (PPI) network hubs.

Author Contributions: D.D.S. and P.M. contributed to the conception and design of the study. F.B.,
F.L. and D.C. performed the proteomic analysis. M.C., C.B. and R.R. performed the immunohisto-
chemistry (IHC) assay validations. B.C.P.H. and J.B. collected and provided new samples. D.D.S.
performed the statistical and network analysis. D.D.S. wrote the first draft of the manuscript. P.M.,
F.L., B.P.C.H., V.B. and J.D.G. contributed to the evaluation of the results and the writing of some sec-
tions of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Cariplo Telethon GJC2021 n. 2022-0578.

Institutional Review Board Statement: The use of the tissue for research purposes was approved by
the Ethical Committee of Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San
Matteo, Pavia, Italy. All persons gave written informed consent in accordance with the Declaration of
Helsinki for storing and using their biologic samples for research purposes, according to the Institu-
tional Review Board guidelines. The protein profiling of the considered samples were characterized
in the context of Fondazione Cariplo Nobel project, Proteomic platform, Operational Network for
Biomedicine Excellence in Lombardy (2007–2014), involving both IRCCS Policlinico San Matteo Foun-
dation and National Research Council), while the intellectual property rights of samples analyzed
after 2014 was regulated by a scientific cooperation agreement between the IRCCS Policlinico San
Matteo Foundation and the Department of Chemical Sciences and Materials Technologies-National
Research Council (AMMCTN-CNR, N.0027382, 21 April 2015).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The proteomic datasets (in form of raw data) analyzed for this study are
available (3 January 2023) in the MassIVE database (massive.ucsd.edu) under the ID: MSV000090875,
or by ftp at link ftp://massive.ucsd.edu/MSV000090875/.

Acknowledgments: Special thanks to Merlini for his precious suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AL Immunoglobulin light chain
ALκ Patients affected by amyloidosis κ

ALλ Patients affected by amyloidosis λ

C Control subjects
DAPs Differentially abundant proteins
DAve Differential average
DEGs Differentially expressed genes
FDR False discovery rate
HSPGs Heparan sulfate proteoglycans
MS Mass spectrometry
LDA Linear discriminant analysis
PCA Principal component analysis

https://www.mdpi.com/article/10.3390/cells12050699/s1
https://www.mdpi.com/article/10.3390/cells12050699/s1
ftp://massive.ucsd.edu/MSV000090875/.


Cells 2023, 12, 699 12 of 14

PPI Protein–protein interaction
SD Standard deviation
SpC Spectral count

References
1. Buxbaum, J.N.; Dispenzieri, A.; Eisenberg, D.S.; Fändrich, M.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Westermark, P. Amy-

loid nomenclature 2022: Update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA)
Nomenclature Committee. Amyloid Int. J. Exp. Clin. Investig. Off. J. Int. Soc. Amyloidosis 2022, 29, 213–219. [CrossRef]

2. Wechalekar, A.D. The Evolving Epidemiology of Amyloidosis. JACC CardioOncol. 2021, 3, 534–536. [CrossRef]
3. Merlini, G.; Dispenzieri, A.; Sanchorawala, V.; Schönland, S.O.; Palladini, G.; Hawkins, P.N.; Gertz, M.A. Systemic immunoglobu-

lin light chain amyloidosis. Nat. Rev. Dis. Prim. 2018, 4, 38. [CrossRef]
4. Merlini, G. AL amyloidosis: From molecular mechanisms to targeted therapies. Hematol. Am. Soc. Hematol. Educ. Program 2017,

2017, 1–12. [CrossRef]
5. Vaxman, I.; Gertz, M. When to Suspect a Diagnosis of Amyloidosis. Acta Haematol. 2020, 143, 304–311. [CrossRef]
6. Oerlemans, M.I.F.J.; Rutten, K.H.G.; Minnema, M.C.; Raymakers, R.A.P.; Asselbergs, F.W.; de Jonge, N. Cardiac amyloidosis: The

need for early diagnosis. Neth. Heart J. Mon. J. Neth. Soc. Cardiol. Neth. Heart Found. 2019, 27, 525–536. [CrossRef]
7. Canetti, D.; Brambilla, F.; Rendell, N.B.; Nocerino, P.; Gilbertson, J.A.; Di Silvestre, D.; Bergamaschi, A.; Lavatelli, F.; Merlini, G.;

Gillmore, J.D.; et al. Clinical Amyloid Typing by Proteomics: Performance Evaluation and Data Sharing between Two Centres.
Molecules 2021, 26, 1913. [CrossRef]

8. Derda, A.A.; Thum, S.; Lorenzen, J.M.; Bavendiek, U.; Heineke, J.; Keyser, B.; Stuhrmann, M.; Givens, R.C.; Kennel, P.J.; Schulze,
P.C.; et al. Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. Int. J. Cardiol. 2015, 196, 115–122.
[CrossRef]

9. Derda, A.A.; Pfanne, A.; Bär, C.; Schimmel, K.; Kennel, P.J.; Xiao, K.; Schulze, P.C.; Bauersachs, J.; Thum, T. Blood-based microRNA
profiling in patients with cardiac amyloidosis. PLoS ONE 2018, 13, e0204235. [CrossRef]

10. Vita, G.L.; Aguennouz, M.; Polito, F.; Oteri, R.; Russo, M.; Gentile, L.; Barbagallo, C.; Ragusa, M.; Rodolico, C.; Di Giorgio, R.M.;
et al. Circulating microRNAs Profile in Patients with Transthyretin Variant Amyloidosis. Front. Mol. Neurosci. 2020, 13, 102.
[CrossRef]

11. Tanaka, K.; Essick, E.E.; Doros, G.; Tanriverdi, K.; Connors, L.H.; Seldin, D.C.; Sam, F. Circulating matrix metalloproteinases and
tissue inhibitors of metalloproteinases in cardiac amyloidosis. J. Am. Heart Assoc. 2013, 2, e005868. [CrossRef]

12. Chan, G.G.; Koch, C.M.; Connors, L.H. Blood Proteomic Profiling in Inherited (ATTRm) and Acquired (ATTRwt) Forms of
Transthyretin-Associated Cardiac Amyloidosis. J. Proteome Res. 2017, 16, 1659–1668. [CrossRef]

13. Chan, G.G.; Koch, C.M.; Connors, L.H. Serum Proteomic Variability Associated with Clinical Phenotype in Familial Transthyretin
Amyloidosis (ATTRm). J. Proteome Res. 2017, 16, 4104–4112. [CrossRef]

14. Schonhoft, J.D.; Monteiro, C.; Plate, L.; Eisele, Y.S.; Kelly, J.M.; Boland, D.; Parker, C.G.; Cravatt, B.F.; Teruya, S.; Helmke, S.; et al.
Peptide probes detect misfolded transthyretin oligomers in plasma of hereditary amyloidosis patients. Sci. Transl. Med. 2017, 9,
eaam7621. [CrossRef]

15. Kourelis, T.V.; Dasari, S.S.; Dispenzieri, A.; Maleszewski, J.J.; Redfield, M.M.; Fayyaz, A.U.; Grogan, M.; Ramirez-Alvarado,
M.; Abou Ezzeddine, O.F.; McPhail, E.D. A Proteomic Atlas of Cardiac Amyloid Plaques. JACC CardioOncol. 2020, 2, 632–643.
[CrossRef]

16. Genova, F.; Nonnis, S.; Maffioli, E.; Tedeschi, G.; Strillacci, M.G.; Carisetti, M.; Sironi, G.; Cupaioli, F.A.; Di Nanni, N.; Mezzelani,
A.; et al. Multi-omic analyses in Abyssinian cats with primary renal amyloid deposits. Sci. Rep. 2021, 11, 8339. [CrossRef]

17. Brambilla, F.; Lavatelli, F.; Valentini, V.; Di Silvestre, D.; Obici, L.; Mauri, P.; Merlini, G. Changes in tissue proteome associated
with ATTR amyloidosis: Insights into pathogenesis. Amyloid Int. J. Exp. Clin. Investig. Off. J. Int. Soc. Amyloidosis 2012, 19
(Suppl. S1), 11–13. [CrossRef]

18. Brambilla, F.; Lavatelli, F.; Di Silvestre, D.; Valentini, V.; Palladini, G.; Merlini, G.; Mauri, P. Shotgun protein profile of human
adipose tissue and its changes in relation to systemic amyloidoses. J. Proteome Res. 2013, 12, 5642–5655. [CrossRef]

19. Cai, D.; Li, Y.; Zhou, C.; Jiang, Y.; Jiao, J.; Wu, L. Comparative proteomics analysis of primary cutaneous amyloidosis. Exp. Ther.
Med. 2017, 14, 3004–3012. [CrossRef]

20. Xu, F.; Yu, Y.; Wang, F.; Sun, W.; Li, P.; Wu, H.F.; Bian, Z.P.; Chen, X.J.; Dong-Jie, X. Analysis of gene expression profiling of
amyloidogenic immunoglobulin light-chains on cultured rat cardiomyocytes. Exp. Ther. Med. 2020, 19, 3767–3777. [CrossRef]

21. Bai, W.; Wang, H.; Bai, H. Identification of Candidate Genes and Therapeutic Agents for Light Chain Amyloidosis Based on
Bioinformatics Approach. Pharmacogenomics Pers. Med. 2019, 12, 387–396. [CrossRef]

22. Vella, D.; Zoppis, I.; Mauri, G.; Mauri, P.; Di Silvestre, D. From protein-protein interactions to protein co-expression networks: A
new perspective to evaluate large-scale proteomic data. Eurasip J. Bioinform. Syst. Biol. 2017, 2017, 6. [CrossRef]

23. Di Silvestre, D.; Brambilla, F.; Scardoni, G.; Brunetti, P.; Motta, S.; Matteucci, M.; Laudanna, C.; Recchia, F.A.; Lionetti, V.; Mauri, P.
Proteomics-based network analysis characterizes biological processes and pathways activated by preconditioned mesenchymal
stem cells in cardiac repair mechanisms. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1190–1199. [CrossRef]

24. Zhang, Q.; Ma, C.; Gearing, M.; Wang, P.G.; Chin, L.S.; Li, L. Integrated proteomics and network analysis identifies protein hubs
and network alterations in Alzheimer’s disease. Acta Neuropathol. Commun. 2018, 6, 19. [CrossRef]

http://doi.org/10.1080/13506129.2022.2147636
http://dx.doi.org/10.1016/j.jaccao.2021.09.001
http://dx.doi.org/10.1038/s41572-018-0034-3
http://dx.doi.org/10.1182/asheducation-2017.1.1
http://dx.doi.org/10.1159/000506617
http://dx.doi.org/10.1007/s12471-019-1299-1
http://dx.doi.org/10.3390/molecules26071913
http://dx.doi.org/10.1016/j.ijcard.2015.05.185
http://dx.doi.org/10.1371/journal.pone.0204235
http://dx.doi.org/10.3389/fnmol.2020.00102
http://dx.doi.org/10.1161/JAHA.112.005868
http://dx.doi.org/10.1021/acs.jproteome.6b00998
http://dx.doi.org/10.1021/acs.jproteome.7b00479
http://dx.doi.org/10.1126/scitranslmed.aam7621
http://dx.doi.org/10.1016/j.jaccao.2020.08.013
http://dx.doi.org/10.1038/s41598-021-87168-0
http://dx.doi.org/10.3109/13506129.2012.674989
http://dx.doi.org/10.1021/pr400583h
http://dx.doi.org/10.3892/etm.2017.4852
http://dx.doi.org/10.3892/etm.2020.8610
http://dx.doi.org/10.2147/PGPM.S228574
http://dx.doi.org/10.1186/s13637-017-0059-z
http://dx.doi.org/10.1016/j.bbagen.2017.02.006
http://dx.doi.org/10.1186/s40478-018-0524-2


Cells 2023, 12, 699 13 of 14

25. Tian, X.; Qin, Y.; Tian, Y.; Ge, X.; Cui, J.; Han, H.; Liu, L.; Yu, H. Identification of vascular dementia and Alzheimer’s disease
hub genes expressed in the frontal lobe and temporal cortex by weighted co-expression network analysis and construction of a
protein-protein interaction. Int. J. Neurosci. 2021, 32, 1049–1060. [CrossRef]

26. Johnson, E.C.B.; Carter, E.K.; Dammer, E.B.; Duong, D.M.; Gerasimov, E.S.; Liu, Y.; Liu, J.; Betarbet, R.; Ping, L.; Yin, L.; et al.
Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed
at the RNA level. Nat. Neurosci. 2022, 25, 213–225. [CrossRef]

27. Tsumagari, K.; Sato, Y.; Shimozawa, A.; Aoyagi, H.; Okano, H.; Kuromitsu, J. Co-expression network analysis of human
tau-transgenic mice reveals protein modules associated with tau-induced pathologies. iScience 2022, 25, 104832. [CrossRef]

28. Wu, Y.; Yao, Q.; Jiang, G.X.; Wang, G.; Cheng, Q. Identification of distinct blood-based biomarkers in early stage of Parkinson’s
disease. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2020, 41, 893–901. [CrossRef]

29. Dong, B.H.; Niu, Z.Q.; Zhang, J.T.; Zhou, Y.J.; Meng, F.M.; Dong, A.Q. Complementary Transcriptomic and Proteomic Analysis in
the Substantia Nigra of Parkinson’s Disease. Dis. Markers 2021, 2021, 2148820. [CrossRef]

30. Zheng, H.; Qian, X.; Tian, W.; Cao, L. Exploration of the Common Gene Characteristics and Molecular Mechanism of Parkinson’s
Disease and Crohn’s Disease from Transcriptome Data. Brain Sci. 2022, 12, 774. . [CrossRef]

31. Falk, R.H.; Alexander, K.M.; Liao, R.; Dorbala, S. AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy. J.
Am. Coll. Cardiol. 2016, 68, 1323–1341. [CrossRef]

32. Jeong, H.; Mason, S.P.; Barabási, A.L.; Oltvai, Z.N. Lethality and centrality in protein networks. Nature 2001, 411, 41–42. [CrossRef]
33. Brambilla, F.; Lavatelli, F.; Di Silvestre, D.; Valentini, V.; Rossi, R.; Palladini, G.; Obici, L.; Verga, L.; Mauri, P.; Merlini, G.

Reliable typing of systemic amyloidoses through proteomic analysis of subcutaneous adipose tissue. Blood 2012, 119, 1844–1847.
[CrossRef]

34. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.;
et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded
gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [CrossRef]

35. Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The
reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [CrossRef]

36. Palma, C.; Rocca, C.L.; Gigantino, V.; Aquino, G.; Piccaro, G.; Silvestre, D.D.; Brambilla, F.; Rossi, R.; Bonacina, F.; Lepore, M.T.;
et al. Caloric Restriction Promotes Immunometabolic Reprogramming Leading to Protection from Tuberculosis. Cell Metab. 2021,
33, 300–318.e12. [CrossRef]

37. Di Silvestre, D.; Brambilla, F.; Mauri, P.L. Multidimensional protein identification technology for direct-tissue proteomics of heart.
Methods Mol. Biol. 2013, 1005, 25–38. [CrossRef]

38. Maere, S.; Heymans, K.; Kuiper, M. BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in
Biological Networks. Bioinformatics 2005, 21, 3448–3449. [CrossRef] [PubMed]

39. Scardoni, G.; Tosadori, G.; Faizan, M.; Spoto, F.; Fabbri, F.; Laudanna, C. Biological network analysis with CentiScaPe: Centralities
and experimental dataset integration. F1000Research 2014, 3, 139. [CrossRef]

40. Sereni, L.; Castiello, M.C.; Di Silvestre, D.; Della Valle, P.; Brombin, C.; Ferrua, F.; Cicalese, M.P.; Pozzi, L.; Migliavacca, M.;
Bernardo, M.E.; et al. Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome.
J. Allergy Clin. Immunol. 2019, 144, 825–838. [CrossRef]

41. Tosadori, G.; Bestvina, I.; Spoto, F.; Laudanna, C.; Scardoni, G. Creating, generating and comparing random network models
with NetworkRandomizer. F1000Research 2016, 5, 2524. [CrossRef]

42. Li, M.; Li, D.; Tang, Y.; Wu, F.; Wang, J. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological
Networks. Int. J. Mol. Sci. 2017, 18, 1880. [CrossRef]

43. Singhal, A.; Cao, S.; Churas, C.; Pratt, D.; Fortunato, S.; Zheng, F.; Ideker, T. Multiscale community detection in Cytoscape. PLoS
Comput. Biol. 2020, 16, e1008239. [CrossRef]

44. Chiti, F.; Dobson, C.M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last
Decade. Annu. Rev. Biochem. 2017, 86, 27–68. [CrossRef]

45. Brumshtein, B.; Esswein, S.R.; Landau, M.; Ryan, C.M.; Whitelegge, J.P.; Phillips, M.L.; Cascio, D.; Sawaya, M.R.; Eisenberg, D.S.
Formation of Amyloid Fibers by Monomeric Light Chain Variable Domains. J. Biol. Chem. 2014, 289, 27513–27525. [CrossRef]

46. Sharma, G.; Shin, E.J.; Sharma, N.; Nah, S.Y.; Mai, H.N.; Nguyen, B.T.; Jeong, J.H.; Lei, X.G.; Kim, H.C. Glutathione peroxidase-1
and neuromodulation: Novel potentials of an old enzyme. Food Chem. Toxicol. 2021, 148, 111945. [CrossRef]

47. Li, J.P.; Zhang, X. Implications of Heparan Sulfate and Heparanase in Amyloid Diseases. Adv. Exp. Med. Biol. 2020, 1221, 631–645.
[CrossRef]

48. Chen, J.J.; Genereux, J.C.; Wiseman, R.L. Endoplasmic reticulum quality control and systemic amyloid disease: Impacting protein
stability from the inside out. IUBMB Life 2015, 67, 404–413. [CrossRef]

49. Brenner, D.A.; Jain, M.; Pimentel, D.R.; Wang, B.; Connors, L.H.; Skinner, M.; Apstein, C.S.; Liao, R. Human amyloidogenic
light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ. Res. 2004, 94, 1008–1010.
[CrossRef]

50. Migrino, R.Q.; Hari, P.; Gutterman, D.D.; Bright, M.; Truran, S.; Schlundt, B.; Phillips, S.A. Systemic and microvascular oxidative
stress induced by light chain amyloidosis. Int. J. Cardiol. 2010, 145, 67–68. [CrossRef]

http://dx.doi.org/10.1080/00207454.2020.1860966
http://dx.doi.org/10.1038/s41593-021-00999-y
http://dx.doi.org/10.1016/j.isci.2022.104832
http://dx.doi.org/10.1007/s10072-019-04165-y
http://dx.doi.org/10.1155/2021/2148820
http://dx.doi.org/10.3390/brainsci12060774
http://dx.doi.org/10.1016/j.jacc.2016.06.053
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1182/blood-2011-07-365510
http://dx.doi.org/10.1093/nar/gkaa1074
http://dx.doi.org/10.1093/nar/gkz1031
http://dx.doi.org/10.1016/j.cmet.2020.12.016
http://dx.doi.org/10.1007/978-1-62703-386-2_3
http://dx.doi.org/10.1093/bioinformatics/bti551
http://www.ncbi.nlm.nih.gov/pubmed/15972284
http://dx.doi.org/10.12688/f1000research.4477.1
http://dx.doi.org/10.1016/j.jaci.2019.03.012
http://dx.doi.org/10.12688/f1000research.9203.1
http://dx.doi.org/10.3390/ijms18091880
http://dx.doi.org/10.1371/journal.pcbi.1008239
http://dx.doi.org/10.1146/annurev-biochem-061516-045115
http://dx.doi.org/10.1074/jbc.M114.585638
http://dx.doi.org/10.1016/j.fct.2020.111945
http://dx.doi.org/10.1007/978-3-030-34521-1_25
http://dx.doi.org/10.1002/iub.1386
http://dx.doi.org/10.1161/01.RES.0000126569.75419.74
http://dx.doi.org/10.1016/j.ijcard.2009.04.044


Cells 2023, 12, 699 14 of 14

51. Shi, J.; Guan, J.; Jiang, B.; Brenner, D.A.; del Monte, F.; Ward, J.E.; Connors, L.H.; Sawyer, D.B.; Semigran, M.J.; Macgillivray, T.E.;
et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38α MAPK
pathway. Proc. Natl. Acad. Sci. USA 2010, 107, 4188–4193. [CrossRef]

52. Guan, J.; Mishra, S.; Shi, J.; Plovie, E.; Qiu, Y.; Cao, X.; Gianni, D.; Jiang, B.; Del Monte, F.; Connors, L.H.; et al. Stanniocalcin1 is a
key mediator of amyloidogenic light chain induced cardiotoxicity. Basic Res. Cardiol. 2013, 108, 378. [CrossRef]

53. Lavatelli, F.; Imperlini, E.; Orrù, S.; Rognoni, P.; Sarnataro, D.; Palladini, G.; Malpasso, G.; Soriano, M.E.; Di Fonzo, A.; Valentini,
V.; et al. Novel mitochondrial protein interactors of immunoglobulin light chains causing heart amyloidosis. FASEB J. Off. Publ.
Fed. Am. Soc. Exp. Biol. 2015, 29, 4614–4628. [CrossRef]

54. Imperlini, E.; Gnecchi, M.; Rognoni, P.; Sabidò, E.; Ciuffreda, M.C.; Palladini, G.; Espadas, G.; Mancuso, F.M.; Bozzola, M.;
Malpasso, G.; et al. Proteotoxicity in cardiac amyloidosis: Amyloidogenic light chains affect the levels of intracellular proteins in
human heart cells. Sci. Rep. 2017, 7, 15661. [CrossRef]

55. Arahata, M.; Takamatsu, H.; Morishita, E.; Kadohira, Y.; Yamada, S.; Ichinose, A.; Asakura, H. Coagulation and fibrinolytic
features in AL amyloidosis with abnormal bleeding and usefulness of tranexamic acid. Int. J. Hematol. 2020, 111, 550–558.
[CrossRef]

56. Siudut, J.; Natorska, J.; Wypasek, E.; Wiewiórka, L.; Ostrowska-Kaim, E.; Wiśniowska-Śmiałek, S.; Plens, K.; Legutko, J.; Undas, A.
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