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Abstract
Current energy and climate policies are formulated and implemented to mitigate and adapt to climate change.
To inform relevant building policies, two bottom-up building stock modelling approach: 1) archetype-based
and 2) Building-by-building have been developed. This paper presents the main characteristics and appli-
cations of these two approaches and evaluates and compares their ability to support policy making. Because of
lower data requirements and computational cost, archetype-based modelling approaches are still the
mainstream approach to stock-level energy modelling, life cycle assessment, and indoor environmental quality
assessment. Building-by-building approaches can better capture the heterogeneous characteristics of each
building and are emerging due to the development of data acquisition and computational techniques. The
model uncertainties exist in both models which may affect the reliability of outputs, while stochastic ar-
chetype models and timeless digital twin model have the potential to address the issue. System dynamics
modelling approach can describe and address the dynamics and complexity of often-conflicting policies and
achieve co-benefit of multiple policy objectives.

Practical applications: This paper aims to provide comprehensive knowledge on building stock modelling
for modellers and policymakers, so they could use a building stock model with an appropriate user interface
without having to fully understand the underlying algorithms or complexities.
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Introduction

Climate change is the greatest challenge facing hu-
manity in the 21st century. Having achieved 20-20-
20 targets, EU (European Union) recently adopted a
55% net emissions reduction target by 2030, paving
the way to achieve climate neutrality in the EU by
2050.1 As one of the largest greenhouse gas emitters,
the building sector is crucial in addressing warming
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climate, responsible for approximately 40% of the
energy consumption and 36% of greenhouse gas
emissions across the European countries.2 EU
members have introduced a range of building energy
efficiency directives or regulations to mitigate cli-
mate change by reducing greenhouse gas emissions
from buildings.3,4 Adapting to climate change also
requires urgent action because a warming climate
could alter the thermal behaviour of buildings re-
sulting in adverse effects on occupants’ health,
comfort and wellbeing.5,6 This could result in a shift
in energy use patterns in winter and summer,7 which
requires reconsideration of building energy effi-
ciency strategies. Climate change mitigation and
adaptation should, thus, play equally important roles
in the global energy and environmental policy
efforts.

The building standards and regulations that
address climate change aim to promote a com-
fortable indoor environment for existing and newly
constructed buildings while simultaneously re-
ducing building energy consumption and associ-
ated carbon emissions.8 This requires a good
understanding of the present and future perfor-
mance of the building stock.9 Building stock
modelling is a powerful tool for policymakers to
evaluate the impact of a wide range of design and
retrofit strategies at the building stock level. This
could facilitate the development of effective en-
ergy efficiency policies to achieve national energy
efficiency and environmental targets.10

Existing building stock modelling approaches are
divided into three categories: (i) top-down, (ii)
bottom-up statistical and (iii) bottom-up engineering
approaches. The top-down building stock modelling
approach works at an aggregated level whereby
energy consumption is modelled by establishing
relationships between building energy use and
macro-economic or other variables (technological or
climatic ones). Both bottom-up approaches (statis-
tical and engineering) work at a disaggregated level.
More specifically, the bottom-up statistical approach
estimates building energy consumption based on
empirical and measured data, while the bottom-up
engineering approach estimates building perfor-
mance through building physics-based calculations
or simulations. The bottom-up engineering approach

consists of two major types: (a) archetype-based and
(b) building-by-building.

Several review papers10–15 have summarized the
typical characteristics of building stock modelling in
the past few years. However, these review papers do
not have a comparative analysis of archetype-based
and building-by-building approach in terms of model
development and applications. The aim of this paper
is to present the state-of-the-art review on:

(a) how the building stock models are developed
to represent and characterise a group of
buildings (building stock);

(b) how the building stock models are used to
simulate the various performance aspects of
building stock.

This paper will also evaluate and compare the two
approaches in terms of the reliability of model
outputs, data availability and computational cost, and
present their strengths and drawbacks. Lastly, this
paper will discuss how building stock modelling can
better inform policy decision making.

Methods

Search techniques

The review consisted of a keyword-based search in
electronic databases including Google Scholar, Web
of Science, ScienceDirect, SpringerLinks, and Sco-
pus. In the initial search, “building stock modelling”
or “building stock model” was identified as the first
keyword term, and was subsequently combined with
a second keyword term to construct keyword strings
to narrow the search scope, as shown in Table 1.
During the preliminary search it was found that
existing relevant studies use different terms to name
the concept of “archetype-based approach” and
“building-by-building approach,” therefore the sec-
ond search term comprises a broad range of similar
terms.

Inclusion and exclusion criteria

Since the aim of this review was to cover the state-of-
the-art knowledge on bottom-up engineering
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building stock modelling, the following was used as
eligibility criteria for inclusion and exclusion:

(1) Studies published in peer-reviewed journals
(e.g., Energy and Buildings, Building and
Environment, Building Services Engineer-
ing Research and Technology)

(2) Studies published from 2010 onwards
(3) Studies that used archetype-based modelling

or building-by-building modelling approach
(4) Studies that applied archetype models and

building-by-building models to conducting
analyses for policy making

Archetype-based modelling

Archetype-based approach

Building stocks are heterogeneous, commonly
containing a large number of diverse buildings.
The description of a building stock through the
archetype-based approach is the most commonly
used approach for reducing modelling efforts. The
archetype-based approach identifies representa-
tive building types (“archetypes”) to represent the
whole building stock. This approach is feasible for
residential and non-residential building stocks,
and for different scales, ranging from neigh-
bourhood level to multi-national level. There exist
national and European studies that have been
carried out to define building typologies and their
main characteristics (e.g., TABULA projects16

and English House Survey),17 laying the foun-
dation to develop archetype models, while many
studies need to develop the archetype models from
scratch.

To develop detailed archetype models for a
building stock, the following procedures should be
carried out (Figure 1).

Data collection and pre-processing. To develop
building models, a full set of parameters typically
include building geometry data (e.g., shape, floor
area, orientation, height) and building fabric and
system data.18 For most regions and countries, the
available datasets of building stocks can be derived
from census data or on-site surveys.19 Census data,
which are usually reported in national statistics, give
a basic information on the building stock (e.g., the
use of the building, the number of buildings or floor
area);20,21 Survey data are collected through a
number of selected buildings and provide post-
occupancy information about building’s technical
characteristics, fuel usage and occupant behaviors. In
most regions and countries, statistics and knowledge
of residential buildings are generally more plentiful
than those of non-residential buildings. Energy
Performance Certificates (EPCs) and information
related to Geography Information System (GIS) have
emerged as additional means of building stock data
collection, since they record information about
building form and construction age for different
types of buildings.22 In addition, building standards,
design guideline and scientific literature are also the
main data sources for the inputs of archetype models.

There is a number of dynamic building simulation
software requiring weather datasets as inputs for
building performance evaluation.12 Typical weather
variables consist of air temperature, wind speed and
direction, solar radiation and humidity. Weather data
are standardised into “weather files” and created
from hourly historic observations at a specific lo-
cation. The most representative weather year files

Table 1. Search terms for literature review.

First keyword term AND Second keyword term

“Building stock
modelling”

“Bottom-up engineering” OR “bottom-up physical”

OR
“Building stock
model”

“Archetype” OR “prototype” OR “archetypal building” OR “prototypical building” OR
“representative building” OR “typology”

“Building-by-building” OR “one-by-one”
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include: TMY (Typical Meteorological Year), TRY
(Test Reference Year) and IWEC (International
Weather for Energy Calculations).23

Classification. Classification is a process of intro-
ducing criteria to the analysed building stocks and
split the buildings into several categories.24 This
process not only allows building archetypes to be
defined as representative of buildings with similar
properties, but also determines the distribution fre-
quency (or number) of every archetype. The con-
ventional approach to classification is dividing the
building stock according to the indicators determined
by modellers. The most commonly used indicators
include age, use and type of HVAC system, which
inherit energy-related properties of the buildings.
Spatial features (climate zone, location) and use
patterns can also be incorporated for further differ-
entiating archetypes.18 Despite its relative simplicity,
this approach heavily relies on modellers’ subjective
judgement, with some decisions often considered
arbitrary.14 To mitigate this, statistical methods are
often implemented to identify indicators that are
important for building energy use.14,25 Famuyibo
et al.26 conducted multi-linear regression analysis to
identify a new set of key energy-related variables as
classification indicators, using only 13 archetypes to
represent the Irish residential building stock. In this
study, the measured energy use demand by individual
building was used to statistically identify indicators
with the strongest correlation with energy use in
order to more accurately represent the overall

building stock variability. In recent years, the de-
velopment of machine learning techniques allows for
increasingly automated statistical segmentation. For
example, clustering techniques, as an unsupervised
machine-learning approach, have been applied in
several studies.27–29 In this approach, clustering al-
gorithms are used to identify hidden structures in
datasets of building characteristics based on simi-
larities and representative elements and allow si-
multaneous analysis of various indicators. However,
data completeness is typically a key challenge of
clustering algorithms.29 With the continuous im-
provement of algorithms, the classification of
building stock can achieve a better balance between
the number and representability of the archetypes.
Therefore, it is possible to describe the building stock
as completely as possible with fewer models.

Model development and characterisation. To investi-
gate the performance of building stock, computer-
based models are developed to characterize the
defined archetypes. The modelling approaches are
dependent on data completeness and the character-
ization methods of the shared characteristics of
archetypes. Thus, the approaches can be further
broken down into three different sub-categories:
sample, theoretical and example archetype approach.

Sample archetype approach. Sample archetypes
models are developed based on real buildings. Sta-
tistical analysis is performed to determine average
geometric and construction features of each specific

Figure 1. Typical archetype-based modelling approach framework.
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category,30 and real buildings showing characteris-
tics similar to the average characteristics are selected.
As the sample archetype models can reflect the high
degree of heterogeneity within building stocks,11,31

sample archetype approach have been applied to
develop archetype models for both residential
building stocks,32,33 and non-residential building
stocks.34,35 However, sample building approach re-
quires a large amount of building information on the
real buildings, which may not be applicable to
building stock with scarce data.

Theoretical archetype approach. Theoretical ar-
chetypes, also referred to as synthetical average
buildings,30,36 are a statistical composite of the
features found within a category of buildings in the
stock. The theoretical archetype approaches extract
building characteristics of different classified
building categories as input parameters based on
statistical analysis. The result is a “virtual” building
characterised by a set of properties statistically de-
tected in a building category. Geometrical parameters
are determined through statistical analysis, such as
using average floor area and storeys per building of
each category as geometrical parameters for the
models.36 Clustering techniques were used in one
study to extract geometrical features from satellite
images to define representative parameters for ar-
chetype models.27 Non-geometry data, such as
construction details or building systems, need to be
derived from literature and building codes, or as-
sumed according to modelers’ expertise.27 The most
commonly used building materials and systems are
often assumed to be the model parameters.

Example archetype approach. Example building
models are developed entirely based on experts’
experience. The example building approach is suit-
able when no statistical data are available. All input
parameters are derived from handbooks, design
manuals, standards and codes, so the example
buildings are also virtual buildings. The example
buildings approach can be applied in all types of
building stocks, especially non-residential buildings
with more diverse characteristics in terms of built
form, construction, occupancy and activities. For
example, Korolija et al.37 analysed typical UK office

building design based on a comprehensive literature
survey. The authors developed a number of archetype
models that represent typical office building built
forms and parameterized other energy-related pa-
rameters, including window ratio, building con-
struction and activity features to generalise the
characteristics of the UK office building stock.

It has been noted that most archetype models are
time-constrained “snapshot” models, which repre-
sent the stock at a certain point in time. In fact, the
building stock evolves over time, so a few number of
studies Refs.35,38,39 have developed “transient ar-
chetype models” (i.e., timeless models) and forecast
change in the stock by assuming fixed rates or using
probability functions of retrofit, demolition and new
construction. The transient archetype models aims to
reflect the long-term development of the stock size
and composition.

Applications of archetype-based models

Energy modelling. Archetype models are widely
used in energy modelling in order to evaluate and
compare the energy saving potentials of different
energy efficiency measures (Table 2). The com-
parative assessment consists of two main steps:
assumptions of design or retrofit scenarios and
calculation of energy use under each scenario. The
scenarios include different options including in-
dividual measures or/and measure packages and
the technical parameters are determined for energy
efficiency measures. The calculation of energy use
mainly by two approaches (a) the simple approach
providing steady-state calculation of energy use by
using heat balance models and (b) the dynamic
thermal simulation approach using computational
software such as EnergyPlus/DesignBuilder, IDA
ICE, ESP-r, eQuest and IES-VE. Main metrics to
compare and prioritise the effectiveness of dif-
ferent measures typically include annual Energy
Use Intensity (EUI) (kWh/m2) for final energy, and
energy consumption (toe or kWh) and associated
CO2 emissions (kg CO2) of primary energy. The
comparison can be conducted at archetype levels,
or the stock levels. At stock levels, the results of
archetype models need to be extrapolated to the
whole stock, by multiplying weighting factors
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which are determined by the building number or
floor area within a building archetype.

The likely changes in energy use of building
stocks due to global warming have also been

investigated, by comparing the energy use under
current and future climate scenarios. A German
study39 used the degree-day approach to model the
heating and cooling demand of German residential

Table 2. Studies on energy modelling by archetype-based models.

Study Origin Spatia scale
Time
scale

Calculation
method

Applications

Energy
savings

Cost-
effectiveness
analysis

Climate
change
impact

Mata et al.31 Sweden National Snapshot Quasi steady-
state

√

Ballarini et al.30 Italy National Snapshot Quasi steady-
state

√

Corrado and
Ballarini51

Italy Regional Snapshot Quasi-steady
state

√

Dascalaki
et al.52

Greece National Snapshot Quasi steady-
state

√

Dascalaki
et al.38

Greece National Transient Quasi-steady
state

√

Caputo et al.53 Milan, Italy Urban Snapshot Dynamic √

Tuominnen
et al.35

Finland National Transient Dynamic √

Csoknyai
et al.20

Four Eastern
European
countries

Transnational Snapshot Quasi steady-
state

√

Olonscheck
et al.39

Germany National Transient Quasi-steady
state

√

Xu et al.40 California, US State Snapshot Dynamic √

Wang and
Chen41

US National Snapshot Dynamic √

Berardi42 Toronto, Canada Urban Snapshot Dynamic √

Nik et al.33 Stockholm,
Sweden

Urban Snapshot Dynamic √

Nik et al.43 Stockholm,
Sweden

Urban Snapshot Dynamic √

Nik et al.44 Stockholm,
Sweden

Urban Snapshot Dynamic √ √

Droutsa et al.47 Greece National Snapshot Quasi steady-
state

√ √

Mata et al.45 Four European
countries

Transnational Snapshot Quasi-steady
state

√ √

Mata et al.46 Spain National Snapshot Quasi steady-
state

√ √

Delmastro
et al.49

Torino, Italy Urban Snapshot Quasi steady-
state

√ √

Ballarini et al.50 Italy National Snapshot Quasi steady-
state

√ √
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buildings under future climate, considering the in-
fluences of future changes of the building stock,
retrofit measures and heating systems. Many studies
downscaled General Circulation Model (GCM) to
generate hourly weather data for predicting energy
use of building stocks at multiple temporal and
spatial scales. Based on the regional weather data,
two studies40,41 estimated future energy demand of
residential and commercial building stocks in the US.
Xu et al.40 focused on the energy use of different
types of buildings in the different regions of Cal-
ifornia, while the focus of Wang et al.41 is on the
general impact of climate change across the building
types in the whole country. Similarly, Berardi and
Jafapur42 assessed the impact of climate change on
different types of buildings in the city of Toronto, by
using future weather files generated by statistical and
dynamical downscaling methods. In addition, there
are also studies taking into account the climate
change and climate uncertainties and the effective-
ness the proposed energy retrofit measures are
evaluated under different climate scenarios.33,43,44

Some studies incorporate cost-effectiveness as-
sessment in retrofit analysis, as the willingness of
local authorities and building owners to implement
energy efficiency measures is often driven by in-
vestment cost and payback period. The Energy,
Carbon and Costs Assessment for Building Stocks
(ECCABS) model was developed by Mata et al.45

The cost benefits of energy efficiency measures were
evaluated and compared in two studies based on
investment costs and payback period.45,46 Droutsa
et al.47 prioritised energy efficiency measures pro-
posed for residential buildings in Greece by two
ranking criteria: primary heating energy savings and
payback period. A comparative methodology
framework proposed in Directive 2010/31/EU 8 have
been applied to conduct cost–benefit analysis of the
energy retrofit measures of existing buildings. This
methodology uses global cost as the criterion for a
cost–benefit analysis. The global cost is the sum of
the present value of the initial investment costs, and
the present value of annual costs and disposal costs.
A measure is considered as “cost-optimal” with the
lowest cost and a measure is considered as “cost-
effective” when the difference between the global
cost after and before the retrofit of the building is

negative. Delmastro et al.49 and Ballarini et al.50 also
used the framework to identify cost-optimal and cost-
effective energy efficiency measures and packages of
measures for different archetypes in Italy.

Life cycle assessment (LCA) modelling. Building life
cycle consists of the product, construction process,
use, and end-of-life stages. Although many energy
efficiency measures can reduce energy use at the
operational phase, but many of them that reduces
operational energy use may increase energy con-
sumption in other stages.54 LCA is a commonly used
tool to identify potential environmental impacts and
determine appropriate improvement actions at the
individual building level, while research works on
LCA at the building stock level are less common.
Studies on the use of archetype models to analyse the
complete environmental impacts of building stocks
have started emerging in recent years (Table 3).
These studies aim to provide building stock-level
outcomes to policymakers and designers and assist in
better understanding of the wider national, regional
and global environmental impacts of buildings.55

According to ISO 14040, LCA methodology
follows four main steps:64 (1) goal and scope defi-
nition, (2) inventory, (3) impact assessment, and (4)
interpretation. The energy efficiency measures can be
evaluated through full LCA approach which include
all stages of building life cycle, or simplified LCA
which include production, replacement and opera-
tional stage.65 A full LCA approach was proposed
and applied by Famuyibo et al.,56 where Irish
housing archetype models were employed to cal-
culate primary energy use and global warming po-
tential over the life of the building (assumed 50-years
life span) under different retrofit scenarios using
GaBi software.66 In this study, the combination of
input–output (I-O) analysis and process techniques
was adopted to calculate energy and carbon emis-
sions for each retrofit option along the entire lifecycle
of buildings. Wang et al.58 presented a simplified
LCA approach to assessing the effectiveness of
retrofit options for the Swedish housing stock, by
comparing the reductions in their operational energy
demand and the increase in embodied energy.
Hawkins and Mumovic57 also analysed the trade-off
between the operational and embodied carbon impact
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of retrofit scenarios for university building arche-
types by a simplified LCA approach. Moschetti
et al.59 performed Life-Cycle Cost (LCC) analyses to
evaluate cost-effectiveness of retrofit options during
the whole life cycle of buildings. SimaPro 65 (a LCA
software) and LCC models were adopted on Italian
archetype buildings to define reference values linked
to energy, environmental impacts and global costs. In
Sweden, Wang et al.61 integrated energy-demand
modelling with LCC analyses to examine and rank
the retrofit options. In the UK, Bull et al.56 developed
school archetype models educational building ar-
chetypes to rank energy efficient refurbishments by
marginal life cycle cost and marginal life cycle
carbon footprint.

Another group of studies incorporates the
building material quantities of building stocks in
LCA. Heeren et al.62 developed a modelling ap-
proach to investigate the impact of energy effi-
ciency measures on Swiss building stocks based on
Life Cycle (LC)-based archetype models. This
study incorporated the life cycle approach,
building components and energy supply sector,
with the consideration of the dynamics of building
fabric and systems on the building stock. Pauliuk
et al.63 combined dynamic Material Flow Analysis
(MFA) with LCA for identifying buildings with the
highest energy saving potential within Norwegian
dwelling stocks. Dynamic MFA was used in this
study to model and analyse the dynamic evolution
of the entire building stock until 2050, with the
given rates about demolition and renovation.

In summary, the use of archetype-based models in
LCA pave the way for more holistic evaluation of
policy measures, avoiding overestimation of their
true environmental contributions. However, there
exists a number of challenges in terms of data
availability and methodology standardisation, which
have been pointed out in previous review papers.55,67

IEQ and occupant’s health impact assessment. Humans
spend almost 90% of their time indoors and their
comfort and health are greatly influenced by IEQ
(Indoor Environmental Quality).5,6 A number of
studies have examined how climate change and
mitigation and adaptation measures are likely to
affect indoor environments, including building
overheating, heat-related health risks and indoor
air quality, many of which were carried out at the
stock level (Table 4). Several UK studies quan-
tified and compared the impact of factors (building
type, orientation, insulation levels, locations,
occupant behaviour) on overheating risks of
dwelling building stocks.68–71 In these studies,
archetype models were developed to represent
dwellings with different built form and con-
struction age. Then, a number of variants were
created based on these archetype models to con-
sider the examined influencing factors, according
to the study purposes. For instance, Mavrogianni
et al.68 compared the indoor temperature of
dwellings with two different insulation levels for
four construction elements under two climate
scenarios (current and future). A linear prediction

Table 3. Studies on LCA by archetype-based models.

Study Origin Spatial scale Time scale Calculation method (tool)

Applications

LCA LCC MFA

Famuyibo et al.56 Ireland National Snapshot GaBi √

Hawkins and Mumovic57 UK National Snapshot Dynamic √

Wang et al.58 Sweden National Snapshot Steady-state √

Moschetti et al.59 Italy National Snapshot SimaPro √ √

Bull et al.60 UK National Snapshot Steady-state √ √

Wang et al.61 Sweden National Snapshot Quasi-steady state √ √

Hereen. et al.62 Zurich, Switzerland Urban Snapshot — √ √

Pauliuk et al.63 Norway National Transient — √ √
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model which can predict overheating risks by
applying regression equations with dwelling
characteristics known from GIS databases were
developed. Oikonomou et al.69 simulated the in-
door temperature of dwelling variants in inner and
outer London during the hot summers under future
climate scenarios. This study aims to compare the
effects of building characteristics and locations
within London on the indoor overheating risks of
London dwelling stocks. Taylor et al.70 modelled
overheating risks under climates in five UK cities
to investigate how regional weather conditions
will alter the rankings of overheating risks of
dwelling types under current and future climate
scenarios. Mavrogianni et al.71 focused on the
influences of occupant behaviours on indoor
thermal environments and assessed the relative
importance of lifestyle patterns, occupant-
controlled window opening and shading use on
indoor overheating risk levels in overheating risks
across UK dwelling archetypes. In addition, a
Dutch study created dwelling archetype models
and quantified the impact of climate change on the
overheating risk of Dutch dwelling stock.72 The
climate resilience of Dutch dwelling types and the

effects of climate adaptation measures were in-
vestigated in this study.

In addition to thermal environments, indoor air
quality is also key aspect in IEQ assessment73 and
has also been studied at the building stock level.
Taylor et al.74 modelled indoor/outdoor (I/O) ratios
of PM2.5 for housing archetypes to investigate the
concentrations of indoor air pollutants from outdoor
sources due to different building characteristics of
London dwellings. Shrubsole et al.75 modelled PM2.5

concentrations from both outdoor and indoor sources
and compared their differences to quantify the im-
pacts of different housing types and occupant be-
haviours (e.g., smoking and cooking) on PM2.5

exposure. Two UK studies76,77 examined the change
of PM2.5 concentrations and overheating risks fol-
lowing different retrofit levels under current and
future climates, in dwelling and school buildings
respectively.

Indoor overheating and air pollution are often
considered as environmental hazards that lead to
adverse health effects and increased mortality risks.
Some UK studies quantify heat-related health risks at
the population level during summer heatwaves using
the function between indoor temperature and

Table 4. Studies on IEQ and health assessment by archetype-based models.

Study Origin
Spatial
scale

Time
scale

Calculation
method

Applications

Overheating
risks

Air
pollution

Health impact
assessment

Mavrogianni
et al.68

UK Urban Snapshot Dynamic √

Oikonomou
et al.69

UK Urban Snapshot Dynamic √

Taylor et al.70 UK National Snapshot Dynamic √

Mavrogianni
et al.71

UK Urban Snapshot Dynamic √

Hamdy et al.72 Dutch National Snapshot Dynamic √

Taylor et al.74 UK Urban Snapshot Dynamic √

Shrubsole et al75 UK Urban Snapshot Dynamic √

Taylor et al.76 UK National Snapshot Dynamic √ √

Grassie et al.77 UK National Snapshot Dynamic √ √

Taylor et al.78 UK Urban Snapshot Dynamic √ √

Taylor et al.79 UK Regional Snapshot Dynamic √ √

Taylor et al.80 UK National Snapshot Dynamic √ √ √
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mortality risks. The function is derived from existing
evidence based on epidemiology studies, which es-
tablish the relationship between mortality and dif-
ferent dwelling types, tailored by regional climate
scenarios. Taylor et al.78 linked region-specific
temperature-mortality functions to indoor tempera-
ture of dwelling archetypes. By using the functions,
the authors were able to explore the change of heat-
related mortality risk at population level following
heat adaptation measures implemented in dwelling
archetypes. Based on the same function, the variation
in heat mortality risk across building types in the
West Midlands region of the UK was investigated in
another study,79 where the effectiveness of shading
and ventilation in heat mortality reduction was ex-
amined. One study80 mapped the overheating risks
and PM2.5 concentrations of UK dwellings at the
postcode level across the UK. The primary objective
of this study is to estimate the spatial variations of
housing-related modifiers of mortality risk due to
heat and air pollution.

Building-by-building modelling

Building-by-building approach

Recent years have seen the rapid advancement of
Geography Information System (GIS) technologies
and computational capability, which makes model-
ling individual buildings on a large scale become
practical.81 This building stock modelling approach

is termed building-by-building or one-by-one
building approach and allows the creation of
models for every single building on a large scale and
visualisation of their geometrical and spatial features
in digital maps. A typical building-by-building ap-
proach framework is presented in Figure 2.

Similar to archetype models, building-by-
building models also require building geometry
data and fabric and system data for model gener-
ation.82 GIS databases are widely used for building-
by-building modelling worldwide, as they are in-
creasingly accessible to the public.12,83 An open
and editable GIS database - OpenStreetMap (OSM)
is created and maintained by a large community of
volunteers.84 OSM offers maps and information
about roads, stations, buildings and their usage.85

By leveraging Applications Programming Inter-
faces (API), the building footprint can be auto-
matically extracted.86 In addition, OSM data could
also provide information about building heights.
The information about building height can be also
acquired through Light Detection and Ranging
(LiDAR) surveys and photogrammetric techniques.
Compared to geometrical data, the acquisition of
non-geometrical data such as construction proper-
ties (e.g., U-values) and non-physical information
(e.g., internal gains and occupant behaviour) for
every single building in a region requires significant
effort and becomes impractical. In terms of building
fabric and system data which are often unavailable
at individual building levels, archetype-based

Figure 2. Typical building-by-building modelling approach framework.
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approaches are implemented. Representative con-
structions and system types for buildings in the
same category are set up according to building age,
literature and local building codes, or assumed
based on statistical analysis (e.g., probability dis-
tributions calculation).87

Several modelling tools have been developed to
generate building-by-building models, mostly on
urban contexts.85,88,89 All types of datasets are in-
tegrated and processed into a 3D standardized for-
mat, such as CityGML, Shapefile and GeoJSON.
These 3D data formats are semantic models which
not only include geometrical information for 3D
geospatial visualization of the real-world environ-
ment, but also include additional semantics and at-
tributes, which can be enhanced by a wide range of
data. In these modelling tools, CityGML format is
widely used because it represents the 3D models at
various levels of details to reflect the level of building
parameter availability.48 Based on CityGML, an
urban energy simulation platform - SimStadt was
developed and integrated with a 3D city model to
automatically model every single building at several
scales within the city of Rotterdam, Netherland.90 An
American web-based platform - City Building En-
ergy Saver (CityBES) was developed, which gen-
erated individual office and retail building models at
the district level in the US.91 In CityBES, workflow
for urban building energy model generation and
simulation are fully automated. Remmen et al.89

developed a framework (TEASER) that includes a
ready-to-use interface for CityGML and provide
individual, dynamic models for multiple buildings on
different spatial scales. TEASER is an open structure
that enable researchers to enrich building data in the
framework for different applications. Urban mod-
elling interface (UMI) was released by MIT Sus-
tainable Design Lab based on Rhinoceros as a
Computer-Aided Design (CAD) modelling tool.92

UMI allows the evaluation of energy use of build-
ings on neighbourhood and city scale.

Two recent studies presented building-by-
building models at a national scale. An on-going
modelling program, 3DStock, is presented by Evans
et al.,93 who developed a multi-zone buildings stock
model for domestic, non-domestic and mixed use
buildings in England and Wales. A novel

contribution of this work is that the model represents
the spatial relationships between “premises” and
“buildings” explicitly and breaks down occupant
activities by floor level and within each floor of every
building. Schwarz et al.94 developed a Modelling
platform for schools (MPS) in 2022, in which each
school in England and Wales can be automatically
generated.

Applications of building-by-building models

Building-by-building models have been applied in
large-scale energy benchmark and analysis of
building retrofits (Table 5). Using dynamic simula-
tion tool, energy modelling for benchmarking and
energy patterns analysis have been performed at
multiple scales.85, 92, 93, 95–98 For example, Zucker
et al.85 proposed a dynamic co-simulation method-
ology for 72 residential buildings in a German
neighbourhood which was used to assess dynamic
energy behaviour of every single building. With the
spatial information, 3D city models can take into
account the impacts of surrounding buildings in an
urban environment (inter-building effects)99 as well
as urban microclimate,100 both of which may have
significant implications on energy prediction results.

The spatial information also allows 3D city
models to provide and visualise spatial and temporal
demand data for all buildings and facilitate the
evaluation of Energy efficiency measures. Fonseca
and Schlueter95 introduced an integrated model for
characterisation of spatiotemporal building energy
consumption and created spatiotemporal energy
maps of space heating demand for the city of Zug in
Switzerland. Through digital map, energy modelling
results offer the possibility to put energy savings and
costs into a spatial context, and explicitly shows
energy deficit and surplus areas. For example, Cit-
yBES has been leveraged to simulate the potential
energy and cost savings of energy efficiency mea-
sures of the buildings in San Francisco, USA.91 In
this study, the annual site energy savings and CO2

reduction for each building type and payback year
were calculated for individual energy efficiency
measures and packages.

The exact size and orientation of each building
surface is available in 3D city models and, therefore,
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accurate simulations of renewable electricity gen-
eration from photovoltaics can be performed. Two
studies101,102 analysed the potential for photovoltaic
electricity generation of all buildings in Ludwigsburg
county. Based on a building-by-building roof surface
analysis, the fraction of the electricity demand that
can be covered in each municipality and the whole
region was determined.

Building stock modelling approaches
for policy decision-making

The success of the building stock modelling ap-
proach to inform policy planning and im-
plementation depends on several aspects. As
archetype-based and building-by-building model-
ling approach provide quantitative information to
support evidence-based policy development, the
reliability of the model outputs, data availability and
computational cost requires more attention. In ad-
dition, since the upgrade of the building stock are

often driven by multiple policy objectives, system
dynamics approach serves as a tool to qualitatively
describe and address the complex relations among
different policy objectives. The main strengths,
drawbacks and emerging solutions of above-
mentioned approach are shown in Table 6 and dis-
cussed in this section.

The reliability of model outputs

The ability of models to inform building design and
policy decision depends on how reliable the model
outputs are 14. Since computational building model
is an abstraction of the real building and not yet able
to fully capture the characteristics of real-world
environment, there is inevitably deviation between
simulation results and measured data. To identify the
gap, several modelling studies validated their models
by comparing the simulation results against mea-
sured energy data of building samples. Österbring
et al.83 compared calculated and measured energy

Table 5. Studies on the applications of building-by-building models.

Study Origin Spatial scale
Time
scale

Calculation
method

Applications

Energy
benchmark

Energy efficiency
measures potential

Strzalka et al.97 Ostfildern,
Germany

District Snapshot Quasi-steady
state

√

Zucher85 Gothenburg,
Sweden

Neighbourhood Snapshot Dynamic √

Braulio-
Gonzalo96

Castellón de la
Plana, Spain

Urban Snapshot Dynamic √

Evan et al.93 London, UK Urban Snapshot Dynamic √

Cerezo Davila92 Boston, USA Urban Snapshot Dynamic √

Pisello et al.99 Minneapolis and
Miami, UCA

Urban Snapshot Dynamic √

Katal et al.100 Montreal, Canada Urban Snapshot Dynamic √

Fonseca and v
Schlueter95

Zug, Switzerland Urban Snapshot Dynamic √

Chen et al.91 San Francisco, USA Urban Snapshot Dynamic √

Eicker et al.101 Ludwigsburg,
Germany

Urban Snapshot Dynamic √ √

Romero
Rodriguez
et al.102

Ludwigsburg,
Germany

Urban Snapshot Dynamic √
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use of space heating and domestic hot water of 433
buildings in the city of Gothenburg. The calculated
energy use on stock level shows 3% difference from
measurement values. A model developed by Nageler
et al.103 was validated with measured energy data
from 69 buildings in Gleisdorf in Austria. The val-
idation results show only .98% deviation of the
annual heating and domestic hot water demand. The
national stock models for four countries developed in
Mata et al.19 show the difference between the re-
sulting final energy demand and available statistics
from 6% to �2% as depending on country. In Ren
et al.,104 the predicted electricity consumption of
New SouthWales and Victoria in 2006 by the models
was validated against national statistics and the error
was within 10%. In these studies which used ar-
chetype models for energy prediction, their simula-
tion results generally show relatively low errors with
measured energy use data at the stock levels. This has

been explained by,82,105 that the errors on a building
level tend to average out when aggregated into the
stock levels. However, because the errors may be-
come greater on smaller scales,25 uncertainty anal-
ysis is still needed.

For the archetype-based modelling approach, most
studies characterise archetype models in a determin-
istic way, assigning single values to each parameter to
represent the means of building classes. Due to this,
uncertainty in input parameters such as weather data,
building envelope, building systems and occupant
behaviours will arise. These parameters are either
inherently uncertain or relying on subjective as-
sumptions.105 Thus, a stochastic archetype modelling
approach is proposed,106 where the input parameters
are described by probability distribution. Base on
stochastic models, uncertainty in input parameters can
be addressed by two major approaches:107 uncertainty
propagation and model calibration. Uncertainty

Table 6. Comparison between archetype-based modelling approach, building-by-building modelling approach and
system dynamics modelling approach.

Archetype-based modelling
approach

Building - by – building
modelling approach System dynamics modelling approach

Feature Provide quantitative assessment for supporting single policy
objective

Provide qualitative assessment for
describing and address the dynamics
and complexity of often-conflicting
policy objectives

Main strengths 1) Relatively good accuracy on
stock-level

1) Retain the identical
characteristics of every
building

1) Consider building, energy and
wellbeing as a complex system

2) Do not require large
amounts of raw data and
computational resources

2) Able to simulate the
performance from stock
level to individual building
level

2) Encourage a collaborative learning
process for experts from various
disciplines

Main
drawbacks

Uncertainties due to input
assumptions

1) Uncertainties due to various
data types and formats

Lack of validation

2) Difficulties in data acquisition
and management of dividual
building data

3) High computational cost
Emerging
solutions

1) Stochastic archetype
models

1) The Internet of Things (IOT)
and digital twin models

Incorporate building stock modelling
and simulation to validate the SD
models

2) Uncertainty propagation
and model calibration

2) High - performance
computing or cloud
computing
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propagation is performed to quantify the uncertainties
in the model outputs from input parameters through
mathematical models. The Monte Carlo method, as a
commonly-used method of uncertainty propagation,
has been employed to specify probability distributions
of uncertain input parameters and present probability
distributions of results using descriptive statistical
measures or visual graphs (e.g., 108–112). Since oc-
cupant behaviours in buildings are often attributed to
model uncertainty leading to the differences between
simulated and measured energy consumption in
buildings,108 Monte Carlo methods have been used to
represent the behaviours of all occupants on a studied
building stock. In the study by An et al.111 the sto-
chastic occupant behaviour method (the SOBmethod)
was applied to represent different types of behaviours
in housing archetypes including thermostats, the
control of lighting and plug-in appliances, window
operation in a residential district inWuhan, China. The
cooling loads were calculated based on their archetype
models and the results agreed well with the measured
data. A stochastic model was developed for Portu-
guese housing stock by using Monte Carlo
methods.110 The models that described the variability
of climate and building characteristics. Compared with
other uncertainty propagation methods, the proposed
method is very intuitive and easy to use. The main
drawback of MC methods is high computational cost,
because of the slow convergence rate with a large
number of function evaluations.107

Model calibration is performed to determine the
unknown parameters from measurement data at
multiple temporal and spatial scales. Bayesian
methods are often used for calibrating stochastic
models, in that the distributions of the dominant
model inputs affecting building performance can be
inferred by inverse analysis. Sokol et al.113 devel-
oped stochastic archetype models for residential
houses in Cambridge, Massachusetts. The distribu-
tion of occupant behaviour parameters was defined
by using a training dataset of the homes with monthly
electricity and gas consumption data and updated by
Bayesian method. Another model was developed for
London secondary school buildings,114 where the
distribution of the main parameters affecting energy
consumption were identified by sensitivity analysis
and Bayesian methods.

The major advantage of building-by-building
approach is that it aims to retain the identical char-
acteristics of every building and describe the het-
erogeneity of the building stock, which can ideally
provide more accurate simulation results at different
levels. However, additional uncertainties could be
introduced into the models because the model inputs
are often a combination of data sources with different
types and formats, and data quality are diverse
among the databases. Additionally, merging data
from different sources will also lead to mismatch
issue, A simple validation method is visual inspec-
tion of a sample of models to identify their quality,
and the low-quality models are calibrated manu-
ally,94 while as a more sophisticated approach to
validating and calibrating models against actual
buildings is recommended.106

Data availability and computational cost

Archetype-based modelling approaches do not re-
quire large amounts of raw data and computational
resources, which makes them still the dominant
approach. In contrast, capturing, analysing and
storing data of every single building is a challenge of
building-by-building approach.115 The Internet of
Things (IOT) has changed the way of building data
acquisition and management and led to the emer-
gence of the digital twin - a virtual model of a real-life
actionable entity. A timeless digital twin stock model
can not only comprehensively represent each
building but can be also continually kept up-to-date
using crowd-sourced energy, building and indoor air
quality data,116 which also theoretically reduces the
model uncertainties. High computational cost is also
highlighted as the main drawback of building-by-
building approaches. Advanced computing tech-
niques, such as high-performance computing117 or
cloud-based computing,14 which allow batch runs of
large numbers of models can significantly save
simulation time. However, such techniques are still
in their infancy in most countries.

Archetype-based approach is often considered to
be a trade-off between accuracy and speed. Whether
it is necessary to simulate the performance of the
building stock by building-by-building approach at
the cost of high computational cost is worth further
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research. The capability to stimulate the building
performance down to individual building levels
means this approach can also provide insight into the
impact of new technologies or policies on building
stocks at different scales. Nonetheless, if decision
makers mainly need to capture the general trends of
building stock performance at aggregate level as-
sessment purposes, the building-by-building ap-
proach is not necessarily advantageous over the
archetype approach due to relatively good perfor-
mance of archetype models at aggregate level, as
mentioned above.

Support for multiple policy objectives

Current climate change mitigation policies are a
strong driver for the retrofit of building stocks by
energy efficiency measures.118 Existing studies using
bottom-up engineering models to evaluate design
and retrofit strategies often aim at a single policy
objective (e.g., reduced energy use or carbon
emissions or improved thermal comfort). These
single focus measures result in negative unintended
consequences on IEQ and population health if they
are inappropriately implemented.118 For example,
buildings may have a low heating energy demand in
winters after introducing thermal insulation and
improving air tightness while having a higher
overheating risk in summer. Furthermore, Eker
et al.119 pointed out that if considerations of non-
technical aspects, such as psychological, social and
economic barriers are inadequate, and there may be
strong resistance to promoting energy efficiency
measures. Since there may be inevitable trade-offs
between different objectives, it is crucial to under-
stand the complex and dynamic interrelationships
between technical aspects and non-technical aspects
that influences the upgrade of building stock.120 A
more integrated approach to decision making, that
ensures co-benefits of multiple policy objectives, is
needed.121

To deal with the complexity and minimise
building performance gaps, systems thinking has
been proposed for both academic research and policy
decision-making.119,122 This integrated approach can
develop a qualitative causal relationship between a
broad range of policy outcomes as well as provided

initial quantitative results.123 Several studies123,124

utilised participatory system dynamics (SD) mod-
elling approach to map causal loop diagrams be-
tween building, energy and wellbeing as a complex
system. Such studies aim to capture the complexity
and gain better understanding of the effects of dif-
ferent proposed policies over a chosen time scale. SD
modelling allows a truly multi-objective review so
offers an opportunity to improve a building’s energy
and IEQ performance without compromising the
wider aspects of the building performance. This
approach also encourages a collaborative learning
process for experts from various disciplines and
brings together different kinds of knowledge and
view. In the future, bottom-up building stock mod-
elling and simulation may be needed to validate SD
models.124

Conclusion

This paper presents the main characteristics and
applications of archetype-based and building-by-
building modelling approach and evaluates and
compares their ability to support policy making. Key
findings can be summarized as follows:

· Typical archetype-based modelling approach
includes three steps: data collection and pre-
processing, classification of building stock as
well as model development and character-
isation. Because of lower data requirements
and computational cost, archetype-based
modelling approaches are still the main-
stream approach to 1) energy modelling for
assessing the impact of energy efficiency
measures and climate change on building
stock; 2) LCAmodelling for understanding the
global environmental impacts of building
stocks; 3) IEQ and occupant’s health assess-
ment modelling for understanding the indoor
environment impacts on occupants at stock
levels.

· Building-by-building stock models that move
away from the use of archetypes better capture
the heterogeneous characteristics of each
building. By considering these unique char-
acteristics, such approach provides a step-
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change in the identification of the best strat-
egies for improving building performance.
Building-by-building approach are emerging
in recent years due to the development of data
acquisition and management and computa-
tional techniques.

· Uncertainty issues remain a key challenge for
both archetype-based approaches and building-
by-building approach, which may affect the
reliability of outputs. Stochastic archetype
models have been developed to probabilistically
represent the model inputs, and the input un-
certainties can be addressed by uncertainty
propagation and model calibration. In addition,
the concept of timeless digital twin stock model
is proposed, which have the potential to address
model uncertainties by comprehensively repre-
senting each building and being continually kept
up-to-date using crowd-sourced energy, building
and indoor air quality data.

· Lastly, as a supporting tool for policymaking,
bottom-up engineering modelling and simula-
tion may require a multi-objective view, moving
from a single energy/IEQ lens to a wider aspects
of building performance. With the systems dy-
namic modelling approach, the dynamics and
complexity of often-conflicting policies can be
described and addressed to achieve the co-
benefit of multiple policy objectives.
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19. Mata É, Sasic Kalagasidis A and Johnsson F.
Building-stock aggregation through archetype
buildings: France, Germany, Spain and the UK.
Building and Environment 2014; 81: 270–282. DOI:
10.1016/j.buildenv.2014.06.013.

20. Csoknyai T, Hrabovszky-Horváth S, Georgiev Z,
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