Abstract:
Ammonia (NH3), one of the most promising carbon-free fuels, has received great research interest. In particular, NH3 is often blended with hydrocarbon fuels to achieve desired combustion characteristics. However, NH3 addition could affect soot formation, which has not been adequately understood. In this study, the effect of NH3 on the growth of polycyclic aromatic hydrocarbons (PAHs) is investigated with the reactive force field molecule dynamics (ReaxFF MD) simulations and quantum chemistry calculations. The simulation results indicate that NH3 addition slows down the growth of large carbon-containing species in the C2H4/O2 system. Novel path with HCN addition is discovered in the PAH growth, which inhibits the PAH growth compared to the conventional Hydrogen-Abstraction-Carbon-Addition (HACA) path via C2H2 addition. Moreover, quantum chemical calculations verified the rationality of this addition path and explained its inhibition on PAH growth by calculating the heat of reactions and reaction energy barriers. According to the present study, NH3 also has an inhibitory effect on both the HCN addition path and C2H2 addition path by providing H atoms to promote the generation of PAH radicals back to PAH molecules, and this effect is more significant for the C2H2 addition path. Results from the study provide a fundamental insight for the inhibition of PAH growth due to the NH3 addition from an atomistic insight, which helps to improve the understanding of the combustion of blends of NH3 and hydrocarbon fuels.
Role of ammonia addition on polycyclic aromatic hydrocarbon growth: A ReaxFF molecular dynamics study

Yunfeng Xu¹, Qian Mao²,*, Ying Wang¹, Kai H. Luo³, Lei Zhou¹,*, Zhanyuan Wang¹, Haiqiao Wei¹

¹, State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China;
², Institute of Technology for Nanostructures, University of Duisburg-Essen, Duisburg 47057, Germany
³, Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

*Corresponding author:
Email: qian.mao@uni-due.de (Qian Mao)
lei.zhou@tju.edu.cn (L. Zhou)

Abstract

Ammonia (NH₃), one of the most promising carbon-free fuels, has received great research interest. In particular, NH₃ is often blended with hydrocarbon fuels to achieve desired combustion characteristics. However, NH₃ addition could affect soot formation, which has not been adequately understood. In this study, the effect of NH₃ on the growth of polycyclic aromatic hydrocarbons (PAHs) is investigated with the reactive force field molecule dynamics (ReaxFF MD) simulations and quantum chemistry calculations. The simulation results indicate that NH₃ addition slows down the growth of large carbon-containing species in the C₂H₂/O₂ system. Novel path with HCN addition is discovered in the PAH growth, which inhibits the PAH growth compared to the conventional Hydrogen-Abstraction-Carbon-Addition (HACA) path via C₂H₂ addition. Moreover, quantum chemical calculations verified the rationality of this addition path and explained its inhibition on PAH growth by calculating the heat of reactions and reaction energy barriers. According to the present study, NH₃ also has an inhibitory effect on both the HCN addition path and C₂H₂ addition path by providing H atoms to promote the generation of PAH radicals back to PAH molecules, and this
effect is more significant for the C₂H₂ addition path. Results from the study provide a fundamental insight for the inhibition of PAH growth due to the NH₃ addition from an atomistic insight, which helps to improve the understanding of the combustion of blends of NH₃ and hydrocarbon fuels.

Keywords: Ammonia; PAHs; Molecule dynamics; Quantum chemistry; HACA pathway; Soot; Carbon-free

1. **Introduction**

 The extensive use of fossil fuels in industry and transportation has caused severe environmental problems that are detrimental to human health [1]. To reduce the carbon dioxide (CO₂) emissions from the combustion of the hydrocarbon fuels, carbon-free fuels like hydrogen (H₂), ammonia (NH₃) are regarded as promising alternatives and have attracted much attention. In comparison to H₂, NH₃ is a preferable choice because it is often in liquid phase rather than gas phase, which makes it easier to transport and store. Another advantage of NH₃ is its low cost per unit of stored energy and high volumetric energy density (7.1–2.9 MJ/L) [2] However, because of its low laminar burning velocities and unstable flames, NH₃ is not a viable alternative fuel [3] on its own. Therefore, a hybrid combustion approach of NH₃ with hydrocarbon fuels such as methane (CH₄) or ethylene (C₂H₄) has been proposed and has proven to be a promising solution[4, 5].

 The combustion properties of NH₃ and its hydrocarbon blends, particularly in CH₄-NH₃ flames, have been extensively studied, and majority of them concentrated on flame characteristics [6, 7], NOₓ and CO₂ emissions [8, 9]. In addition, addition of NH₃ is found to influence the PAH and soot formation in flames. Matthew et al. [10] investigated the soot formation of CH₄/ NH₃ blend flames and discovered that the C₂H₂ concentrations in the CH₄/ NH₃ blend flames decreased marginally, along with a considerable suppression of benzene. With NH₃ addition up to 20% or more, the soot volume fraction was reduced by more than a factor of 10. Existing chemical kinetic mechanisms [11] can accurately capture the soot concentration in CH₄ flames, but not in NH₃/CH₄ flames, highlighting the need for better chemical kinetic mechanisms to
forecast soot formation in ammonia-hydrocarbon blend flames. Shao et al. [12] investigated the inhibitory effect of NH\textsubscript{3} addition on the soot formation in C\textsubscript{2}H\textsubscript{4} flames, and found that doping with NH\textsubscript{3} in the C\textsubscript{2}H\textsubscript{4} flame reduced both soot particle size and the soot volume fraction. Chemical kinetic analysis indicated that C-N species generated in C\textsubscript{2}H\textsubscript{4}/NH\textsubscript{3} flames can inhibit carbon from participating in soot precursor formation, resulting in less soot formation. Renard et al. [13] discovered that adding NH\textsubscript{3} to C\textsubscript{2}H\textsubscript{4} flames had a minor effect on the C\textsubscript{2}H\textsubscript{2} concentrations but a significant effect on C\textsubscript{5}-C\textsubscript{10} intermediates. Bennett et al. [14] investigated the soot formation in a laminar counterflow flame with C\textsubscript{2}H\textsubscript{4} fuel mixed with different proportions of NH\textsubscript{3}, and discovered that the effect of NH\textsubscript{3} addition was not apparent for the formation of naphthalene (C\textsubscript{10}H\textsubscript{8}), whereas it started to become significant for larger PAHs. In addition, HCN is a crucial intermediate in NH\textsubscript{3} combustion. Haynes et al. [15] suggested the inhibitive effect on soot concentrations may be due to a quantitative formation of HCN. However, the effect of NH\textsubscript{3} and its byproduct (HCN) on soot formation is still not well understood, and the detailed chemical reaction paths of PAH growth with NH\textsubscript{3} or HCN addition are still controversial.

The goal of the present study is to conduct a theoretical study to systemically explore the chemical effect of NH\textsubscript{3} and its byproduct HCN on the PAH growth from an atomistic perspective. Firstly, the intermediate species are analyzed for NH\textsubscript{3} addition to the C\textsubscript{2}H\textsubscript{4}/O\textsubscript{2} system. Then, the effects of HCN and C\textsubscript{2}H\textsubscript{2} addition to naphthyl (C\textsubscript{10}H\textsubscript{7}•) in terms of the PAH growth are discussed from the reaction paths. Finally, NH\textsubscript{3} addition on the PAH growth is discussed.

2. Methodology

2.1 ReaxFF force field

The ReaxFF MD was developed to bridge the gap between quantum chemistry and classical MD simulation [16], which enables the simulation of reactive systems. The ReaxFF, as a function of the bond order, is expressed in Eq. (1), where terms on the right-hand-side of the equation represent bond energy, over-coordination energy
penalty, under-coordination stability, lone pair energy, valence angle energy, torsion angle energy, Coulomb energy, and van der Waals energy [17]. A more detailed description of the ReaxFF formulation can be found in the work by van Duin et al. [18].

\[E = E_{\text{bond}} + E_{\text{over}} + E_{\text{under}} + E_{\text{ip}} + E_{\text{val}} + E_{\text{tor}} + E_{\text{coul}} + E_{\text{vdw}} \]

(1)

Currently, there are 9 sets of ReaxFFs describing interactions of C/H/O/N in literature. To figure out the most suitable set of force field for the NH\textsubscript{3} and hydrocarbons, we performed MD simulations of CH\textsubscript{4}/ NH\textsubscript{3} blend oxidation with all the available 9 sets of force fields as shown in Fig. S1 in Supplemental Material. The time evolutions of the consumption of CH\textsubscript{4} and NH\textsubscript{3} at both 2000 and 3000 K were calculated with the same initial component mole fraction in the experiment [19]. Since the bond dissociation energies (BDEs) of NH\textsubscript{3} and CH\textsubscript{4} are 435 kJ/mol and 431 kJ/mol [20, 21], respectively, as shown in Fig. 1(a), the molecular stability and reactivity of NH\textsubscript{3} and CH\textsubscript{4} should be similar. Among all the 9 sets of force fields, the C/H/N/O force field from Kulkarni et al. [22] can well capture the trend of CH\textsubscript{4} and NH\textsubscript{3} changes as shown in Fig. 1(b) as the consumption rate of both CH\textsubscript{4} and NH\textsubscript{3} are almost the same, which agree with the similar BDEs of CH\textsubscript{4} and NH\textsubscript{3}, as well as that from the experimental measurements of the species concentration in the NH\textsubscript{3}/ CH\textsubscript{4} low-pressure flame by Tian et al [19]. Therefore, the ReaxFF force field from Ref. [22] is selected in the present study to describe the reactions of NH\textsubscript{3} and hydrocarbons.
2.2 MD simulations

To study the effect of NH$_3$ addition on the growth process of C-containing species in the system during the combustion of hydrocarbon fuels, a series of simulations with different initial settings are conducted, as shown in Table 1. Since ethylene (C$_2$H$_4$) has a moderate sooting tendency and is usually a common choice for base soot studies [23], we selected C$_2$H$_4$ as the basic fuel for this study. To describe the amount of NH$_3$ added to the C$_2$H$_4$ system, the NH$_3$ addition ratio (α) is defined as the ratio of the number of NH$_3$ molecules, n (NH$_3$), to the number of ethylene molecules, n (C$_2$H$_4$), as shown in Eq. (2). The density of each system is kept the same at 0.3 g/cm3 by varying the size of the computational box. According to Bennett et al.’s [14] experiments, the inhibitory of NH$_3$ addition on soot formation was mainly in PAHs larger than C$_{10}$H$_8$. Therefore, the reactivity of NH$_3$, HCN and C$_2$H$_2$ addition to naphthyl radicals (C$_{10}$H$_7$•) and the
follow-up PAH growth are extensively studied in this present study. Details of the
simulation setup are listed in Table 2.

\[
\alpha = \frac{n(\text{NH}_3)}{n(\text{C}_2\text{H}_4)}
\]

(2)

The simulations are performed under the canonical ensemble (NVT), and the
temperature is controlled via the Nosé–Hoover thermostat. The simulations are
conducted at 3000 K for 500 ps. The periodic boundary condition is implemented in
the three directions. The bond order cutoff is set to be 0.3 and the time step is 0.1 fs.

All the ReaxFF MD simulations are carried out with the REAXC package in the
Large-scale Atomic/Molecular Massively Parallel Simulation (LAMMPS). The
reaction paths are obtained by Chemical Trajectory AnalYzer (ChemTraYzer) scripts
[24]. The dynamic trajectories were visualized using Visual Molecular Dynamics
(VMD) software [25].

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Simulation conditions of the C\textsubscript{2}\textsubscript{H\textsubscript{4}} system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n(C\textsubscript{2}\textsubscript{H\textsubscript{4}})</td>
</tr>
<tr>
<td>System 1</td>
<td>200</td>
</tr>
<tr>
<td>System 2</td>
<td>200</td>
</tr>
<tr>
<td>System 3</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Simulation conditions of the C\textsubscript{10}\textsubscript{H\textsubscript{7}} system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n(C\textsubscript{10}\textsubscript{H\textsubscript{7}})</td>
</tr>
<tr>
<td>System 4</td>
<td>50</td>
</tr>
<tr>
<td>System 5</td>
<td>50</td>
</tr>
<tr>
<td>System 6</td>
<td>50</td>
</tr>
<tr>
<td>System 7</td>
<td>50</td>
</tr>
<tr>
<td>System 8</td>
<td>50</td>
</tr>
<tr>
<td>System 9</td>
<td>50</td>
</tr>
</tbody>
</table>
2.3 Quantum chemical calculations

To further validate the results of PAH growth via HCN and C$_2$H$_2$ addition from ReaxFF MD simulations. The potential energy surfaces of HCN and C$_2$H$_2$ addition to naphthyl are computed with density functional theory (DFT). The optimized geometries of all stationary points on the C$_{10}$H$_7$ + HCN/C$_2$H$_2$ potential energy surfaces were obtained using the M06-2X [26] method with the 6-311+G (d, p) basis set. The vibrational frequencies and zero-point energies (ZPEs) were calculated at the same level. The DFT calculations were conducted with ultrafine grid and ultra-tight convergence criteria. Species on the PES are ensured to be the minimum energy conformers. The accuracy of the M06-2X method for the study of PAHs has been reported before [27, 28]. The M06-2X calculations were performed using the Gaussian 09 program package [29].

3. Results and discussion

In this section, we firstly discuss the effect of NH$_3$ addition on intermediates formation in C$_2$H$_4$/O$_2$ systems under different NH$_3$ addition ratios, and then explore the effect of NH$_3$ and HCN addition to the C$_{10}$H$_7$ radicals compared against the traditional C$_2$H$_2$ addition on the PAH growth.

3.1 Effect of NH$_3$ addition in C$_2$H$_4$/O$_2$ systems

To investigate the effect of NH$_3$ addition on the growth process of C-containing species in the system during the combustion of hydrocarbon fuels, simulations were performed with different NH$_3$ addition ratios (α) in the C$_2$H$_4$/O$_2$ system. Figure 2(a) shows the temporal evolution of the total number of C$_1$ and C$_2$ (donated as C$_{1-2}$), as well as C$_3$ and larger species (donated as C$_{3+}$) at different α at 3000 K. It is found that with the increase of NH$_3$ addition, more C$_{1-2}$ species were formed, and the amount of C$_{3+}$ species is reduced. This indicates that NH$_3$ addition inhibits the formation of large carbonous species in the C$_2$H$_4$/O$_2$ system. It can also be confirmed by the structures of the largest species formed within 500 ps as shown in Fig. 2(b). The structures of the
largest species are C₈H₄O₅, C₅H₇NO and C₅H₄NO₂ for α = 0, 0.5 and 1, respectively. This indicates the largest species size decreases with the NH₃ addition.

This indicates the largest species size decreases with the NH₃ addition.

![Graph showing time evolutions of C₁C₂ and C₃+ species in C₂H₆/O₂ systems with different NH₃ addition ratios α.](image)

Fig. 2 (a). Time evolutions of C₁C₂ and C₃+ species in C₂H₆/O₂ systems with different NH₃ addition ratios α. (b). The largest species generated by the system within 500 ps.

According to the observation of the product evolution in systems 1 to 3, the effect of NH₃ addition on the growth of hydrocarbons in the C₂H₆/O₂ system can be depicted by Fig 3(a). The complex interactions between NH₃ and the small hydrocarbon radicals produce some C-N species like HCN, preventing the C atoms in the system from producing larger C-H species. Consequently, the formation of soot is slowed down. In this process, HCN is an important intermediate product, and more HCN production is also found in the MD simulations, as shown in Fig. 3(b). However, compared to soot, the emission of HCN is more concerning [30], as it poses a significant threat to the human health such as pneumonia, bronchitis and susceptibility to virus infections. Understanding its generation mechanism can help to effectively control the generation of HCN. Therefore, routes of HCN formation in C₂H₆/O₂/NH₃ systems are further investigated, and it mainly results from following three routes as shown in Fig. 3(c). The first route is from the reaction of C₂H₄ and C₂H₃O to form C₄H₂O, then occurs a series of cracking and dehydrogenation reactions to form CH₃. CH₃ combines with NH₂ to form CH₃-NH₂, which subsequently leads to HCN through the dehydrogenation reactions. The second route initiates from the C₂H₂O and NH₂ recombination reaction,
which then cracks to form CH$_4$-NH, and dehydrogenates to HCN eventually. The third route begins with the reaction of CO and NH$_2$ and forms intermediate species of NH$_2$CO, which then converts to HCN via a series of complex reactions as indicated in Fig. 3(b).

Fig. 3 (a). Diagram of the effect of NH$_3$ addition on the growth of hydrocarbons in the C$_2$H$_4$/O$_2$ system. **(b).** Time evolutions of HCN molecules. **(c).** The routes of HCN generation in system 2 (containing 200 C$_2$H$_4$ molecules, 600 O$_2$ molecules, and 100 NH$_3$ molecules).

3.2 HCN and C$_2$H$_2$ additions on the PAH growth

HCN has a triple-bond, which share high similarity with C$_2$H$_2$. The Hydrogen-Abstraction-Carbon-Addition (HACA) path [31, 32] is widely understood to be critical for the PAH growth. As a result, HCN could potentially participate in the PAH growth and play a competitive role to the traditional HACA path with C$_2$H$_2$ addition. Therefore, we performed a series of molecular dynamics simulations and quantum chemical calculations to investigate the role of HCN and C$_2$H$_2$ on the growth of PAH.

Figure 4 displays the potential energy surface of HCN and C$_2$H$_2$ addition to C$_{10}$H$_7$ at the M06-2X/6-311+G (d, p) level of theory. The solid and dashed lines depict the energy changes for C$_{10}$H$_7$-1 and C$_{10}$H$_7$-2 addition reactions, respectively. For both C$_2$H$_2$ and HCN, the energy barrier and heat of reaction for the addition reactions of C$_{10}$H$_7$-1 are almost identical to that of C$_{10}$H$_7$-2, implying the reaction kinetics of the two
structures should be similar. As a result, C_{10}H_{7}-1 was chosen as the subject for PAH growth study in ReaxFF MD simulations.

Fig. 4. Potential energy surface of HCN and C_2H_2 addition to C_{10}H_{7} at the M06-2X/6-311+G (d, p) level of theory.

Fig. 5. Reaction paths of 1-naphthyl (C_{10}H_{7}) with HCN, C_2H_2 and NH_3.
The MD simulations in systems 4 to 9 (as shown in Table 2) have been conducted to investigate the growth of PAH with the different addition ratios of HCN/ C2H2/ NH3. Figure 5 shows the main reaction paths. The reactions of C10H7 with HCN/ C2H2/ NH3 can be classified into hydrogenation reaction (Path A, B, and C), addition reaction (Path D, E), and radical-radical recombination reaction (Path F). Among them, hydrogenation and radical-radical recombination reactions occur in all systems, but addition reactions occur only between HCN and C10H7 or between C2H2 and C10H7. As the main path for PAH growth, these two addition reactions (Path D and Path E) will be discussed in detail in this section.

To figure out the PAH growth path via the HCN-addition and the C2H2 addition, the competitive mechanism of the two paths, the results of systems containing C10H7, C2H2 and HCN were analyzed simultaneously. The percentages of different types of reactions are shown in Fig. 6. In system 4 with C10H7 and HCN, addition reactions occur between HCN and C10H7 (Path D). It is noteworthy that the C is preferentially attached to C10H7 instead of N. In terms of molecular geometry of HCN, it is possible for both C, N atoms of HCN adding to C10H7, resulting in two possible structures: C10H7-NCH and C10H7-CHN (as shown in Fig. 4.). However, only one product, C10H7-CHN, was found in the molecular dynamics simulation results. Further analysis of the HCN addition reactions from the quantum chemical calculations, it is found that, the HCN addition to C10H7 with the formation of C10H7-CHN has a lower energy barrier, 4.0kal/mol, compared to that of forming C10H7-NCH at a barrier height of 10.7kal/mol as shown in Fig. 4. Moreover, the product C10H7-CHN is thermodynamically more stable with a lower energy of -28.9kal/mol, while that of the product C10H7-NCH is -12.8kal/mol. These indicate that C10H7 and HCN are more likely to react to produce the product C10H7-CHN. The results of the quantum chemical calculations provide sufficient evidence that only one addition product, C10H7-CHN, was observed in the molecular dynamics simulations, and it also indicates that the force field selected in this study is trustworthy for studying the process of PAH growth.
The red dashed line in Fig. 6 shows changes of the number of addition reactions. With increasing C$_2$H$_2$ molecules in systems 5 and 6, the percentage of addition reactions shows an upward trend. And in system 5 (HCN: C$_2$H$_2$=1:1), the percentage of the C$_2$H$_2$ addition reaction is higher than that of the HCN addition. This indicates that HCN can react with C$_{10}$H$_7$ for PAH growth, but with a lower preference than the conventional HACA path. This is confirmed from the results of the quantum chemistry calculations. From the potential energy surface in Fig. 4. The C$_2$H$_2$ addition to C$_{10}$H$_7$ with the formation of C$_{10}$H$_7$-C$_2$H$_2$ has a lower energy barrier, 3.6kal/mol, while the HCN addition to C$_{10}$H$_7$, forming C$_{10}$H$_7$-CHN, is at a barrier height of 4.0kal/mol. Moreover, the product C$_{10}$H$_7$-C$_2$H$_2$ is more stable with a lower energy of -39.2kal/mol, while the energy of product C$_{10}$H$_7$-CHN is -28.9kal/mol compared to reactants. This implies that C$_2$H$_2$ addition to C$_{10}$H$_7$ is more feasible than the HCN addition reactions.

According to the above analysis, the addition of HCN reduces the proportion of the total addition reactions (including both the reactions with HCN and C$_2$H$_2$). To validate whether such a phenomenon still exists in the subsequent PAH growth process, simulations with extended simulation time have been performed. Within 500 ps, the
largest species produced in systems 4(C_{10}H_7/HCN), 5(C_{10}H_7/C_2H_2/HCN) and 6(C_{10}H_7/C_2H_2) are C_{88}H_{49}N_{17}, C_{121}H_{79}N_{10} and C_{177}H_{139}, respectively. This implies that the addition of HCN inhibits the growth of PAH. Three main reasons are listed below. Firstly, HCN and C_2H_2 compete to react with C_{10}H_7, which slows down the whole PAH growth process. Secondly, the structure of C_{10}H_7-CHN generated by the addition of HCN to C_{10}H_7 is less stable than C_{10}H_7-C_2H_2 and has a higher energy barrier, which reduces the growth rate of C_{10}H_7 in the whole system. Thirdly, about 28.0% C_2H_2 is consumed by HCN through R1 and R2, which reduces C_2H_2 and HCN species for the C_{10}H_7 growth.

\[
C_2H_2 + HCN \rightarrow C_3H_3N \quad \text{R1}
\]
\[
C_2H_2 + HCN \rightarrow C_2H + CH_2N \quad \text{R2}
\]

3.3 Effects of NH_3 addition on conventional HACA-type path and the HCN-added PAH growth path.

Moreover, the effect of NH_3 on the PAH growth is examined. Figure 7(a) shows the percentage of each reaction type in systems 8 (C_{10}H_7/NH_3), 4 (C_{10}H_7/HCN) and 9 (C_{10}H_7/HCN/NH_3). It can be seen that NH_3 addition slightly affects the radical-radical recombination reaction. However, with increasing NH_3 addition, the number of hydrogenation reactions increases, while the number of addition reactions decreases. A similar trend also can be found in the systems of 8 (C_{10}H_7/NH_3), 6 (C_{10}H_7/C_2H_2) and 7 (C_{10}H_7/C_2H_2/NH_3) as shown in Fig. 7(b). The NH_3 shows an obvious inhibitory effect on the addition reactions for the system containing C_2H_2 (System 7). It can be seen that the slope of the red dashed line in Fig. 7(b) is significantly larger than that in Fig. 7(a). Note that the addition of NH_3 significantly increases the percentage of hydrogenation reactions in the system, which results in the formation of a stable C_{10}H_8 structure and finally prohibits addition reactions for the further growth of PAHs.
Fig. 7. Percentage of the reaction type of C10H7. Systems of NH3 added to (a). C10H7/HCN. (b). C10H7/ C2H2 (Green for radical-radical recombination reactions, blue for hydrogenation reactions and orange for addition reactions, shaded part for the reaction with HCN or C2H2, un-shaded part for the reaction with NH3). (c). Reaction pathway between C2H2 and NH3 in system 7 (Blue shading for the reactions related to C10H7, while green shading for the reaction between NH3 and C2H2).

According to the reaction percentages in systems 7 (50 C10H7+250 C2H2+250 NH3) and 9 (50 C10H7+250 HCN+250 NH3), the reaction of C10H7 with HCN are more frequent than those of C10H7 with C2H2 in both hydrogenation reactions and addition reactions. This can be well explained by the reaction pathways between C2H2 and NH3 shown in Fig. 7(c). Among the reaction pathways involving C2H2, the most frequent reaction pathway is shown by the thick arrow in Fig. 7(c). It can be found that NH2 produced by the hydrogenation reaction of C10H7 with NH3 can further cause NH3 formation by the reaction of NH2 with C2H2. And then, NH3 reacts with C10H7 again. Consequently, the circular reaction pathway significantly increases the proportion of the reactions of C10H7 with NH3 in the system where C2H2 and NH3 coexist. It should
be noted that the circular reaction pathway is not observed in the system of HCN and NH₃. The detailed reaction pathway analysis of HCN and NH₃ is shown in Supplemental Material.

Furthermore, the morphology of the largest species produced within 500 ps in systems 6 (C₁₀H₇/ C₂H₂), 7 (C₁₀H₅/ C₂H₂/ NH₃) and 8 (C₁₀H₅/ NH₃) are C₁₇₇H₁₃₉, C₈₉H₇₁N and C₃₀H₂₇N₃, respectively, indicating that NH₃ addition significantly decreases the PAH growth. This also happens in the systems of NH₃ added to C₁₀H₅/ HCN, where the largest species are C₈₈H₄₉N₁₇ (C₁₀H₅/ HCN system), C₅₁H₃₇N₉ (C₁₀H₅/ HCN/ NH₃ system) and C₃₀H₂₇N₃ (C₁₀H₅/ NH₃ system), respectively. However, the results are attributed to different mechanisms. For the C₁₀H₅/ HCN/ NH₃ system, C₁₀H₇ reacts preferentially with NH₃ because of lower bond dissociation energy of NH₂-H (435 kJ/mol) than H-CN (502.1 kJ/mol), and the reactions are mostly in the form of hydrogenation reactions to produce a stable C₁₀H₈ structure. This leads to only a small portion of C₁₀H₇ radicals take addition reactions with HCN. Therefore, the PAH growth process slows down. However, for the C₁₀H₇/ C₂H₂/ NH₃ system, NH₃ not only plays the dominant role in the reaction with C₁₀H₇ compared to C₂H₂ but also consumes the C₂H₂ through the pathways shown in Fig. 7(c). The dual effects result in a faster decrease in the largest species size in the system.

4. Conclusions

In this study, ReaxFF MD simulations and quantum chemical calculations are conducted to provide insights into the effect of NH₃ addition to hydrocarbons on the PAH precursor formation and PAH growth process from an atomistic perspective for the first time. In the C₂H₄/O₂ system, the simulation results imply that NH₃ addition slows down the formation of large carbon-containing species in the system through producing many small C-N species, especially HCN. The present results confirm that the C-N species prevents carbon atoms from participating in soot precursor formation, thereby reducing soot formation. In addition, in the systems containing C₁₀H₇, C₂H₂, and HCN, a new HCN-added PAH growth path is found, but with a lower preference than the conventional HACA path with C₂H₂ addition. Several N-PAHs are produced
through the HCN-added PAH growth, which inhibits the PAH growth process. Further study reveals that the effect of NH$_3$ addition is more pronounced for the conventional HACA path. This is because the circular reaction pathway significantly increases the proportion of the reactions of C$_{10}$H$_7$ with NH$_3$ in the system where C$_2$H$_2$ and NH$_3$ coexist. Overall, the present results provide novel insights into the potential refinement of the mechanism of C-N compounds. In future work, studies employing quantum chemistry and/or ab initio MD are needed to investigate N-PAH more deeply.

5. **Acknowledgements**

This work was supported by the National Natural Science Foundation of China (Grant No. 51921004). Qian Mao acknowledges the research fellowship from Alexander von Humboldt Foundation.

6. **Supplementary material**

In this work, supplementary material is submitted along with the manuscript, which involves the validations of the ReaxFF force field, the detailed reaction pathway analysis of HCN and NH$_3$ and optimized geometries on the C$_{10}$H$_7$+C$_2$H$_2$/HCN potential energy surfaces.

References

Click here to access/download
Supplementary Material
supplymentary.docx
Declaration of Interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

