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16 Abstract

17 Long short-term memory (LSTM) networks have demonstrated their excellent 
18 capability in processing long-length temporal dynamics and have proven to be 
19 effective in precipitation-runoff modeling. However, the current LSTM hydrological 
20 models lack the incorporation of multi-task learning and spatial information, which 
21 limits their ability to make full use of meteorological and hydrological data. To 
22 address this issue, this study proposes a spatiotemporal deep-learning (DL)-based 
23 hydrological model that couples the 2-Dimension convolutional neural network 
24 (CNN) and LSTM and introduces actual evaporation ( ) as an additional training 𝐸𝑎

25 target. The proposed CNN-LSTM model is tested on three large mountainous basins 
26 on the Tibetan Plateau, and the results are compared to those obtained from the 
27 LSTM-only model. Additionally, a probe method is used to decipher the internal 
28 embedding layers of the proposed DL models. The results indicate that both LSTM 
29 and CNN-LSTM hydrological models perform well in simulating runoff ( ) and , 𝑄 𝐸𝑎

30 with Nash-Sutcliffe efficiency coefficients ( ) higher than 0.82 and 0.95, 𝑁𝑆𝐸𝑠
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31 respectively. The higher  suggest that introducing spatial information into 𝑁𝑆𝐸𝑠
32 LSTM-only models can improve the overall and peak model performance. Moreover, 
33 multi-task simulation with LSTM-only models shows better accuracy in the 
34 estimation of  volume and performance, with  increasing by approximately 𝑄 𝑁𝑆𝐸𝑠
35 0.02. The probe method also reveals that CNN can capture the basin-averaged 
36 meteorological values in CNN-LSTM models, while LSTM  ( ) models contain 𝑄 𝐸𝑎
37 the information about the known  ( ) process. Overall, this study demonstrates the 𝐸𝑎 𝑄
38 value of spatial information and multi-task learning in LSTM hydrological modeling 
39 and provides a perspective for interpreting the internal embedding layers of DL 
40 models.

41

42 Highlight

43 (1) Spatiotemporal DL model enhances LSTM by introducing spatial information. 

44 (2) Multi-task simulation improves LSTM with enhanced performance in estimating 
45  volume. 𝑄

46 (3) Probe method shows CNN captures basin-averaged meteorological values in 
47 CNN-LSTM, LSTM  ( ) models contain known process. 𝑄 𝐸𝑎

48 Keywords

49 CNN-LSTM; spatiotemporal; multi-task; actual evaporation; Tibetan Plateau
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51 1. Introduction

52 Hydrological models, either physically-based or data-driven, play vital roles in flood 
53 and drought disaster prevention, as well as in water resources management (Blöschl et 
54 al. 2019). Recent advances in remote sensing and computational techniques have 
55 improved physically-based hydrological models by enhancing their capacity in 
56 characterizing hydrodynamic processes at finer scales (Khatakho et al. 2021, Sood 
57 and Smakhtin 2015, Tarek et al. 2020): notably, distributed hydrological models 
58 (DHMs) can incorporate processes at a sub-basin or other calculation unit scale (Li et 
59 al. 2021a). However, the application of DHMs is still limited owing to the unsolved 
60 issue in scale mismatch (Blöschl et al. 2019, Blöschl and Sivapalan 1995, Gupta et al. 
61 2008, Hrachowitz et al. 2013, Nearing et al. 2021).

62 Data-driven models can directly depict the statistical relationship between inputs and 
63 outputs without explicit characterization of physical processes (Nearing et al. 2021). 
64 Since the 1990s, machine learning (ML) techniques have been widely adopted in 
65 hydrological modeling and have proven similar or better performance compared with 
66 DHMs (Demirel et al. 2009, Hsu et al. 1995, Kratzert et al. 2018, Lees et al. 2021, 
67 Nearing et al. 2021, Yang et al. 2020). In particular, deep learning (DL) models, 
68 featuring neural networks, are the most commonly used ML techniques for 
69 hydrological modeling (Nearing et al. 2021). They have evolved from original multi-
70 layer perceptron, i.e., artificial neural networks (ANNs, Yang et al. 2020), to more 
71 advanced forms with enriched taxonomy, such as convolutional neural networks 
72 (CNNs, Jiang et al. 2020), recurrent neural networks (RNNs, Sadeghi Tabas and 
73 Samadi 2022), and its variant, long short-term memory networks (LSTM, Lees et al. 
74 2021). ANNs, CNNs, and RNNs are among the earliest DL models with promising 
75 performance for hydrological modeling (Demirel et al. 2009, Hsu et al. 1995, Khan et 
76 al. 2019, Yang et al. 2020). As feed-forward neural networks, ANNs and CNNs 
77 cannot directly represent temporal dynamics and are thus less able to accurately 
78 characterize hydrological processes (Kratzert et al. 2018). In contrast, RNNs, which 
79 process the input data chronologically by design, can consider temporal dynamics. 
80 Although RNNs are more ideal for time series analysis, vanilla RNNs can hardly store 
81 sequences over 10 time steps (Bengio et al. 1994) which limits their applicability in 
82 modeling slow hydrological processes occurring at larger time scale, such as those 
83 related to groundwater, snow, and glacier storage (Kratzert et al. 2018). The recently 
84 emerging LSTM models can conquer such weakness with the unique internal gate 
85 architectures and have demonstrated superior performance than the vanilla RNNs in 
86 time series analysis (Hochreiter and Schmidhuber 1997). Since the first application in 
87 hydrological modeling by Kratzert et al. (2018) for a precipitation-runoff ( - ) 𝑃 Q
88 simulation in 530 American basins (<2000 km2), the LSTM -  models have been 𝑃 𝑄
89 used worldwide (e.g., 669 basins in Great Britain in Lees et al. 2021, Hanjiang River 
90 in China in Liu et al. 2021) and have become one of the most powerful tools in -  𝑃 𝑄
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91 simulations.

92 Being promising in hydrological modeling, current DL-based hydrological models 
93 still need improvements in three notable aspects (Nearing et al. 2021): 

94 (1) Ability to resolve spatiotemporal features: hydrological processes modeling 
95 depends heavily on the spatial patterns of meteorological forcing and 
96 underlying surface characteristics. Yang et al. (2020) employed computer 
97 vision to resolve spatial features in ANN P-Q modeling and demonstrated that 
98 spatial information plays an important role in enhancing model robustness. 
99 However, most existing studies about LSTM hydrological modeling almost 

100 utilized basin spatially-averaged meteorological data as model inputs (e.g., 
101 Jiang et al. 2022, Kratzert et al. 2018, Lees et al. 2021), without fully 
102 representing spatial features of inputs for the LSTM hydrological modeling. 
103 Coupling 2-D CNN and LSTM is expected to bridge such gap by 
104 simultaneously considering both temporal dynamics and spatial features (Miao 
105 et al. 2019, Shi et al. 2015) and CNN-LSTM has proven to be promising in 
106 different fields (e.g.,  nowcasting (Miao et al. 2019, Shi et al. 2015) and 𝑃
107 water quality forecast (Barzegar et al. 2020, Yang et al. 2021)). 

108 (2) Consideration of multiple hydrological processes: differing from physically-
109 based hydrological models, LSTM-based models simulate the individual 
110 hydrological process, such as  (Feng et al. 2020, Frame et al. 2021), 𝑄
111 groundwater (Ali et al. 2022, Nourani et al. 2022), and snow water equivalent 
112 (Duan and Ullrich 2021) in most studies, but rarely simulate multiple 
113 processes simultaneously. It makes LSTM-based hydrological models difficult 
114 to explicitly consider the interactions between different hydrological processes 
115 and diagnose models based on hydrological theories, such as the water balance 
116 equation (Reichstein et al. 2019). Besides, some studies found that introducing 
117 additional hydrological processes, such as the actual evaporation (denoted by 
118  in this work) process, in calibration for physical-based hydrological 𝐸𝑎

119 models can enhance the  simulation performance (Herman et al. 2018, 𝑄
120 Nesru et al. 2020). Therefore, it is beneficial to investigate if considering 
121 multiple hydrological processes simultaneously for LSTM-based hydrological 
122 models can enhance their capacity in depicting more hydrological processes 
123 and thus provide a more comprehensive diagnosis of hydrological variables.

124 (3) Physical interpretability: due to the “black-box” nature, DL-based 
125 hydrological models have no explicit representation of physical processes and 
126 thus remain being questioned by some hydrologists (Nearing et al. 2021). To 
127 enhance the confidence of users and policymakers in adopting DL-based 
128 hydrological models, improvements in the understanding of their physical 
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129 interpretability have been attempted recently (Arrieta et al. 2020, Jiang et al. 
130 2022). For example, LSTM hydrological models have proven to learn a 
131 generalizable representation of the underlying physical processes. LSTM 
132 regional hydrological models outperform DHMs calibrated regionally, and 
133 even calibrated for each basin individually (Feng et al. 2020, Kratzert et al. 
134 2019, Sun et al. 2021). Besides, LSTM hydrological models are found to be 
135 able to store the hidden information consistent with hydrological knowledge 
136 (Jiang et al. 2022, Kratzert et al. 2018, Lees et al. 2022). However, the 
137 physical interpretability of DL-models with respect to  process–a critical 𝐸𝑎

138 component in the hydrological cycle–is yet to be investigated. Also, the 
139 physical concepts of CNN outputs in CNN-LSTM models are still unclear. 

140 In this work, we aim to overcome these deficiencies by developing a spatiotemporal 
141 DL-based hydrological model by coupling 2-D CNN and LSTM (CNN-LSTM) and 
142 introducing multi-task learning. The potential of simultaneous multi-task (MT) 
143 learning in DL-based hydrological models is also investigated by involving  𝐸𝑎

144 process as additional learning target. Besides, we also advance the understanding of 
145 physical interpretability of DL-based models by extracting the meteorological and 
146 hydrological processes hidden in the proposed LSTM and CNN-LSTM models.

147 In the remainder of this paper, we first describe the proposed DL-based model by 
148 introducing the basic architecture of CNN and LSTM and physical interpretability 
149 method (Sec. 2), then evaluate the model performance in three large mountainous 
150 basins on the Tibetan Plateau with comparison to the LSTM hydrological models 
151 (Sec. 3); we also explore physical interpretations of this model with respect to the 
152 hydrological and meteorological processes (Sec. 4). 

153 2. Methods

154 2.1 Model development

155 We propose a DL-based hydrological model (Figure 1a) by coupling 2-D CNN 
156 (Figure 1b) and LSTM (Figure 1c) to utilize their respective advantages: the former 
157 for hierarchical spatial feature extraction while the latter for learning long temporal 
158 dependencies. The proposed model can use 2-D spatial meteorological and underlying 
159 surface data as input and predicts hydrological processes with daily  and  as 𝑄 𝐸𝑎

160 output. We note, however, only meteorological data–daily  and mean temperature–𝑃
161 are used in this work as inclusion of surface characteristics demonstrate minimal 
162 improvement in model performance (not shown). The model can perform either 
163 single-task or multi-task learning by setting training targets: the former simulates the 
164 individual hydrological process, while the latter focuses on two or more processes 
165 simultaneously. Below we focus on the model design and description of key 
166 components; more technical details refer to Appendix A. 
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167 2.1.1 Convolutional neural networks (CNNs)

168 CNNs (Figure 1b), are a particular type of feed-forward neural network, including the 
169 input, convolutional, pooling, and full connection layer (LeCun et al. 1998). The 
170 convolutional layer, the core of CNNs, uses convolutional kernels to extract 
171 information from various N-Dimensions model inputs. We utilize 2-D CNN to 
172 capture the spatial information of meteorological data. The convolutional layer 
173 processes meteorological data by reducing the spatial size (width and height) of inputs 
174 (features), increasing the channel number, and generating the 1-dimension sequence 
175 finally. Figure 1b takes a study basin as the example to illustrate the data dimensions 
176 in internal layers of the CNNs in this study and more details refer to Appendix A.
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Figure 1. (a) CNN-LSTM model architectures and the dimensions of data before 
and after each layer (take the Yellow as an example and other basins are shown in 
Appendix A, same with Panel (b)) in this study. (b) The workflow of the CNN 
model and the dimensions of data in the internal layers of CNN model. (c) The 
internals of LSTM cells. The meaning of each unexplained variable is stated in the 
text.
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177 2.1.2 Long short-term memory (LSTM) networks

178 The LSTM models (Figure 1c) are designed to alleviate the weakness of the vanilla 
179 RNNs in processing long-length temporal dynamics (Hochreiter and Schmidhuber 
180 1997, Sherstinsky 2020). The success of LSTM lies in the coordination of memory 
181 cells (cell states;  in Figure 1c) and hidden cells (hidden states;  in Figure 1c) in 𝑐𝑡 ℎ𝑡

182 the internal architecture that capture the slow and quick evolution processes, 
183 respectively. Besides, three gates (i.e., input, forget, and output) are designed to 
184 control the information in each cell to be stored, removed, and passed, respectively. 
185 These architectures are beneficial for LSTM models to process long-length temporal 
186 dynamics. More detailed descriptions of LSTM within the context of hydrological 
187 modeling refer to Kratzert et al. (2018).

188 2.1.3 Multi-task learning

189 Multi-task (MT) learning is to set multiple tasks as optimization targets in a DL-based 
190 model (Caruana 1997). The training can benefit from the enriched representations of 
191 MT information, thus enhancing the performance of each task using the information 
192 enveloped in the other tasks. Besides, MT learning can achieve higher efficiency and 
193 less over-fitting than single-task (ST) learning because it can lead the model to a more 
194 general feature representation preferred by multiple related tasks (Li et al. 2022, 
195 2023). The MT learning is introduced to investigate the effect of multi-hydrological-
196 process learning in LSTM-based hydrological modeling in this study.

197 2.1.4 Coupling between CNN and LSTM

198 To utilize the respective advantage of CNN and LSTM models, we develop a 
199 spatiotemporal DL-based hydrological model by coupling CNN and LSTM models 
200 (Figure 1a). At each time step, the CNN-LSTM coupling is realized via two stages: 

201 1) the CNN reduces the 2-D gridded meteorological input into a 1-D sequence 
202 and feed it to the LSTM1 layer;

203 2) the hidden states of the LSTM1 layer are input to the LSTM2 layer and cell 
204 and hidden states of two LSTM layers are then fed to the corresponding layers 
205 at the next time step, respectively.

206 After all processing through the CNN-LSTM coupled layer prior to time step , the 𝐿
207 outputs of the LSTM2 layer at the last time step are passed to the dense layer to obtain 
208 the predictions: learned hydrological variables (Figure 1a). Depending on the target 
209 mode–ST or MT–the DL model may produce different number of output variables. 
210 ST model sets one hydrological process as optimization target while MT model sets 
211 two or more hydrological processes as optimization targets by MT learning. 
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212 2.2 Physical interpretability method

213 The internal embedding layers of the DL hydrological models contain a large amount 
214 of data that is not explicitly interpretable. These data may conceal some untrained 
215 internal hydrological variables. For example, the internal embedding layers of  𝑄
216 models may contain the information about  process. This study utilizes probes–𝐸𝑎

217 regression models that map the internal embedding layers of trained models to 
218 untrained hydrological variables (Hewitt and Liang 2019, Lees et al. 2022)–to test 
219 whether trained DL models can learn the known but untrained hydrological variables 
220 and examine the internal representation and further physical interpretability of 
221 models. The simplest form of probes is a linear regression (LR) model that connects 
222 the learned embedding layers to a given output. This study explores untrained 
223 hydrological variables from proposed LSTM and CNN-LSTM models based on LR 
224 models and detailed experiment design refers to Sec. 4.1.

225 3. Model evaluation

226 We evaluate the performance of proposed CNN-LSTM model in three large 
227 mountainous basins on the Tibetan Plateau (TP; Sec. 3.1). To assess the applicability 
228 of CNN-LSTM in resolving spatial information in hydrological modeling, an LSTM-
229 only model is also configured as a benchmarking baseline: differing from the CNN-
230 LSTM model, the basin spatially-averaged meteorological data at each time step are 
231 directly input to the LSTM-only model without the involvement of CNN model 
232 (detailed in Kratzert et al. 2018). Also, ST and MT experiments (Sec. 3.2) are 
233 designed to evaluate the MT learning performance of CNN-LSTM and LSTM models 
234 and the influence of MT on DL-based hydrological modeling. In this study, the model 
235 inputs are daily total  and mean air temperature ( ) in line with similar studies 𝑃 𝑇
236 (e.g., Jiang et al. 2022). In addition to , we also select the –an important 𝑄 𝐸𝑎

237 hydrological processes for which data are available– as the training target to evaluate 
238 the effect of multi-task learning in LSTM modeling.

239 3.1 Study area and data

240 3.1.1 Study area

241 The Tibetan Plateau (TP; Figure 2a) is the highest plateau in the world, known as the 
242 “Roof of the World”, or the “Third Pole”. Given the high altitude and vast glaciers of 
243 TP, along with the many mighty rivers (e.g., Yangtze, Lancang/Mekong, Yarlung 
244 Zangbo/Brahmaputra, and Yellow, among others) that provide enormous water 
245 sources for downstream livelihoods and agricultural irrigation (Huss et al. 2017, 
246 Immerzeel et al. 2010, Nan et al. 2021, Schaner et al. 2012, Wang et al. 2021, Zhang 
247 et al. 2013), TP is also considered the “Water tower of Asia”. However, owing to the 
248 incompleteness of knowledge of complex alpine hydrological processes, it is 
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249 challenging to adequately model hydrological processes by DHMs in the TP (Li et al. 
250 2019b, Nan et al. 2021). 

251 Table 1. Basic facts of the three study basins. “DEM” represents Digital Elevation 
252 Model.

Basins Area

(km2)

DEM range

(m)

Average annual 𝑷

 (mm)

Average annual 𝑸

(109 m3)

Yellow 123,000 2,656-6,253 510 20

Yangtze 139,000 3,516-6,575 460 16

Lancang 91,000 1,243-6,334 830 32

253 To systematically evaluate the performance of the LSTM and CNN-LSTM 
254 hydrological model in such a challenging environment, we select source regions of 
255 three rivers (Figure 2a)–the Yellow River (Figure 2b), the Yangtze River (Figure 2c), 
256 and the Lancang River (Figure 2d)–characterized as mountainous areas as the study 
257 basins. The landforms of all three basins undulate greatly with elevation variability 
258 greater than 3,000 m. The annual average  of three basins ranges from 460 to 830 𝑃
259 mm. The detailed description of the three study basins is shown in Table 1. Yellow, 
260 Yangtze, and Lancang are used hereinafter to denote their respective source regions if 
261 not specified otherwise.
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Figure 2. (a) The terrain of the Tibetan Plateau and the location of three study 
basins. The terrain and CNN-LSTM models input range of the Yellow River source 
region (b), the Yangtze River source region (c), and the Lancang River source 
region (d). 

262 3.1.2 Data

263 Due to the limited availability of in situ observations in the study area, we utilize 
264 either the optimal remote sensing or reanalysis datasets for different input variables as 
265 follows:

266 (1) Precipitation ( ): Multi-Source Weighted-Ensemble Precipitation (MSWEP) 𝑃
267 V2.2 with 0.1° spatial and 3h temporal resolution (Beck et al. 2017, Beck et al. 
268 2019). 
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269 (2) Air temperature ( ): The air temperature at 2m AGL (T2) from the fifth 𝑇
270 generation of ECMWF atmospheric reanalysis of the global climate (ERA5) 
271 reanalysis dataset with 0.1° spatially and 1h temporal resolution (Hersbach et 
272 al. 2020) 

273 Table 2. The length of the training, evaluation, and testing periods in three study 
274 basins.

Basins Training period Evaluation period Testing period

Yellow 1983-2004 2006-2009 2011-2014

Yangtze 1983-2004 2006-2009 2011-2014

Lancang 1988-2004 2005-2007 2008-2010

275 While for output/evaluation dataset, we use the following datasets:

276 (1) Evaporation ( ): Global Land Evaporation Amsterdam Model (GLEAM) 𝐸𝑎
277 v3.5a  dataset with 0.25° spatial and 1-day temporal resolution (Martens 𝐸𝑎
278 et al. 2017, Miralles et al. 2011). The basin spatially-averaged daily  are 𝐸𝑎

279 calculated as the model learning target.

280 (2) Runoff (Q): the daily in situ measurements collected at three hydrological 
281 stations (Figure 1) provided by local water agencies.

282 All the above datasets are pre-processed into daily resolution in line with the model 
283 time step and spilt into three periods for training, evaluation, and testing (Table 2).

284 3.2 Model evaluation experiment

285 3.2.1 Experiment design

286 To test the performance of LSTM and CNN-LSTM models for single-task (ST) and 
287 multi-task (MT) modes, a total of 18 scenarios are set up: 3 basins (Yellow, Yangtze, 
288 Lancang) × 2 models (LSTM and CNN-LSTM) × 3 tasks ( , ,  + ). Task  𝑄 𝐸𝑎 𝑄 𝐸𝑎 𝑄
289 and  are for the ST experiment and  +  for MT.𝐸𝑎  𝑄 𝐸𝑎

290 3.2.2 Evaluation metrics

291 This study utilizes Nash–Sutcliffe efficiency (NSE; Equation 1; J.E.Nash and 
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292 J.V.Sutcliffe 1970) and its three decompositions (Gupta et al. 2009), namely, the 
293 correlation coefficient ( ; Eq. 2), the variance bias ( ; Eq. 3), and the total volume 𝑟 𝛼
294 bias ( ; Eq. 4) to evaluation metrics: 𝛽

𝑁𝑆𝐸 = 1 ―
∑𝑇

𝑡 = 1(𝑉𝑠𝑖𝑚 ― 𝑉𝑜𝑏𝑠)2

∑𝑇
𝑡 = 1(𝑉𝑜𝑏𝑠 ― 𝑉𝑜𝑏𝑠)2

(1)

𝑟 =
∑𝑇

𝑡 = 1(𝑉𝑠𝑖𝑚 ― 𝑉𝑠𝑖𝑚)(𝑉𝑜𝑏𝑠 ― 𝑉𝑜𝑏𝑠)
∑𝑇

𝑡 = 1(𝑉𝑠𝑖𝑚 ― 𝑉𝑠𝑖𝑚)2∑𝑇
𝑡 = 1(𝑉𝑜𝑏𝑠 ― 𝑉𝑜𝑏𝑠)2

(2)

𝛼 =
σ𝑠𝑖𝑚

σ𝑜𝑏𝑠

(3)

𝛽 =
(𝜇𝑠𝑖𝑚 ― 𝜇𝑜𝑏𝑠)

σ𝑜𝑏𝑠

(4)

295 where  ( ),  ( ), and  ( ) are the simulated (observed) values, 𝑉𝑠𝑖𝑚 𝑉𝑜𝑏𝑠 σ𝑠𝑖𝑚 σ𝑜𝑏𝑠 𝜇𝑠𝑖𝑚 𝜇𝑜𝑏𝑠

296 standard deviations, and means, respectively. The variance ( ) and total volume bias 𝛼
297 ( ) measure the error in the standard deviation and the average values, respectively. 𝛽

298 Besides, we calculate the peak, middle, and low values bias of the results grouped by 
299 the exceedance probability of observations to assess the range-specific model 
300 performance (Yilmaz et al. 2008):

𝐵𝐼𝑉 =
∑𝐼

𝑖 = 1(𝑉𝑠𝑖𝑚,𝑖 ― 𝑉𝑜𝑏𝑠,𝑖)

∑𝐼
𝑖 = 1𝑉𝑜𝑏𝑠,𝑖

(5)

301 where  is one of , , and  that represent the peak (0–0.02 exceedance 𝐼 𝑃 𝑀 𝐿
302 probabilities), middle (0.3-0.7 exceedance probabilities), and low (0.7–1.0 exceedance 
303 probabilities) values, respectively.

304 3.3 Evaluation results

305 3.3.1 Performance of CNN-LSTM models

306 In general, CNN-LSTM  models work remarkably well in all three study basins 𝑄
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307 with  > 0.89 (Table 3) (Moriasi et al. 2007) and can accurately capture peak of 𝑁𝑆𝐸𝑠
308  with appropriate magnitudes and timing (Figure 3). The results are compared to 𝑄
309 some traditional hydrological models in other relevant studies, and it is indicated that 
310 CNN-LSTM  models outperform them (see detailed in Appendix B). Besides, 𝑄
311 simulated  processes agree well with GLEAM data with  of 0.97 in all 𝐸𝑎 𝑁𝑆𝐸𝑠
312 three study basins (Table 4; Figure 4-5). These results demonstrate that the proposed 
313 CNN-LSTM model performs favorably and thus is a reasonable approach to simulate 
314 hydrological processes in large mountainous basins. 

Figure 3. The comparison of simulated (ST  models) and observed  processes 𝑄 𝑄
in the test period at three hydrological stations.

315 Table 3. The evaluation metrics of LSTM and CNN-LSTM hydrological models for 
316  simulation. LSTM (MT) and CNN-LSTM (MT) represent the LSTM and CNN-𝑄
317 LSTM  (multi-task) models, respectively. 𝑄

𝑁𝑆𝐸 𝑟 𝛼 𝛽 𝐵𝑃𝑉 𝐵𝑀𝑉 𝐵𝐿𝑉
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LSTM 0.88 0.95 0.80 -0.06 -0.31 0.02 0.12 

CNN-LSTM 0.90 0.95 1.01 0.11 -0.00 0.17 0.16 

LSTM MT 0.90 0.95 0.85 -0.04 -0.29 0.03 0.10 

Yellow

CNN-LSTM MT 0.86 0.94 0.98 0.15 -0.13 0.22 0.32 

LSTM 0.87 0.94 1.01 0.12 -0.15 0.24 0.58 

CNN-LSTM 0.89 0.95 0.99 0.11 -0.11 0.30 0.63 

LSTM MT 0.89 0.95 0.97 0.04 -0.19 0.07 0.56 

Yangtze

CNN-LSTM MT 0.82 0.94 1.09 0.22 -0.06 0.53 0.55 

LSTM 0.92 0.97 1.11 0.07 0.04 0.01 0.07 

CNN-LSTM 0.89 0.95 0.97 0.00 -0.11 0.02 0.18 

LSTM MT 0.93 0.96 0.99 -0.02 -0.04 -0.03 0.13 

Lancang

CNN-LSTM MT 0.82 0.94 1.14 0.17 -0.01 0.09 0.32 
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Figure 4. The evaluation metrics results of different DL-based hydrological 
models. “LSTM” (“CNN-LSTM”) and “LSTM MT” (“CNN-LSTM MT”) stand for 
LSTM (CNN-LSTM) ST and MT models, respectively. “Ye_Q”, “Ye_E”, “Ya_Q”, 
“Ya_E”, “La_Q”, and “La_E” denote the  and  simulation results in the 𝑄 𝐸𝑎

Yellow, Yangtze, and Lancang, respectively. 

318 Table 4. The evaluation metrics of LSTM and CNN-LSTM hydrological models for 
319  simulation. LSTM (MT) and CNN-LSTM (MT) represent the LSTM and CNN-𝐸𝑎
320 LSTM  (multi-task) models, respectively.𝐸𝑎

Basins Models 𝑁𝑆𝐸 𝑟 𝛼 𝛽 𝐵𝑃𝑉 𝐵𝑀𝑉 𝐵𝐿𝑉
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LSTM 0.97 0.99 1.00 0.00 -0.06 0.02 0.02 

CNN-LSTM 0.97 0.99 0.95 -0.05 -0.09 -0.02 -0.01 

LSTM MT 0.96 0.98 0.96 -0.01 -0.12 0.02 0.18 

Yellow

CNN-LSTM MT 0.95 0.97 1.01 -0.01 -0.07 0.03 -0.08 

LSTM 0.97 0.99 1.02 0.00 -0.03 -0.03 0.04 

CNN-LSTM 0.97 0.99 0.98 -0.06 -0.05 -0.13 -0.07 

LSTM MT 0.96 0.98 1.05 0.03 -0.02 -0.03 0.20 

Yangtze

CNN-LSTM MT 0.95 0.98 1.01 0.05 -0.08 0.08 0.24 

LSTM 0.98 0.99 0.98 0.01 -0.08 0.02 0.10 

CNN-LSTM 0.97 0.99 1.03 -0.05 -0.08 -0.05 -0.24 

LSTM MT 0.97 0.99 0.99 0.02 -0.08 0.03 0.14 

Lancang

CNN-LSTM MT 0.96 0.98 0.92 -0.06 -0.13 0.01 -0.02 
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Figure 5. The comparison in daily  between simulations (SIM in y axis) and 𝐸𝑎

GLEAM (OBS in x axis) under two learning modes (ST and MT) in the test period 
at three study basins. 

321 3.3.2 The capacity of 2-D CNN in extracting spatial characteristics 

322 To evaluate the capacity of 2-D CNN in extracting spatial characteristics, we 
323 developed LSTM  and  models as benchmarking baselines. High corrections 𝑄 𝐸𝑎
324 (  more than 0.87 of  and 0.97 of ; Table 3-4) indicate the good 𝑁𝑆𝐸𝑠 𝑄 𝐸𝑎

325 performance of LSTM models in hydrological simulation. By comparing the 
326 performance of LSTM and CNN-LSTM  models, it is found that CNN-LSTM 𝑄
327 models outperform LSTM models in overall  simulation with higher  of  𝑄 𝑁𝑆𝐸𝑠 𝑄
328 in the Yellow and Yangtze (Table 3). Also, evaluation results of three biases metrics 
329 indicate that both LSTM and CNN-LSTM  models underestimate the peak  𝑄 𝑄
330 processes ( ) but overestimate the median and low  processes 𝐵𝑃𝑉 < 0 𝑄
331 ( ) in the Yellow and Yangtze. But the peak  underestimation of 𝐵𝑀𝑉, 𝐵𝐿𝑉 > 0 𝑄
332 CNN-LSTM models is mitigated compared with that of LSTM models, with  𝐵𝑃𝑉
333 from -0.31 and -0.15 (LSTM) to 0.00 and -0.11 (CNN-LSTM) in the Yellow and 
334 Yangtze, respectively. In contrast, the overestimation of simulated median and low  𝑄
335 processes by CNN-LSTM  models are stronger than that by LSTM  models in 𝑄 𝑄
336 all three study basins. We conclude that the introduction of 2-D CNN into LSTM  𝑄
337 models has a two-sided effect: it can enhance the overall model performance as well 
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338 as the capacity in simulating peaking  processes, while may work slightly poorly in 𝑄
339 modeling  in the median and low ranges. 𝑄

340 These effects can be explained by the different LSTM inputs. In the CNN-LSTM 
341 models, the inputs to LSTM are the feature vectors (size is 1×64 at each time step; 
342 Table A3) extracted from 2-D spatial meteorological data by 2-D CNN; whereas those 
343 are the spatially-averaged  and  data within study basins in the LSTM-only 𝑃 𝑇
344 models. Based on the remarkable performance of both LSTM and CNN-LSTM 
345 models, we assume that the LSTM inputs of CNN-LSTM models (i.e., CNN outputs) 
346 contain the information about basin spatially-averaged  and  data (discussed later 𝑃 𝑇
347 in Sec. 4.2.1). Besides, we infer that more information hidden in the CNN outputs, 
348 capturing the peak runoff features, contribute to enhancing the downstream LSTM 
349 performance; while remaining redundant information might hurt downstream LSTM 
350 performance. Noting that there is one exception: in the Lancang, CNN-LSTM 𝑄 
351 model does not outperform LSTM models in terms of overall and high : this could 𝑄 
352 be due to different hydrological characteristics of the testing period and shorter 
353 training dataset (Table 2). All three years of the testing dataset in the Lancang can be 
354 categorized as normal or dry years without extreme processes (e.g., 2012 in the 𝑄 
355 Yellow)–that might not benefit from the capacity of 2-D CNN in modeling peaking 
356 processes. Besides, we also infer that shorter training dataset might not contain 𝑄 
357 enough information to train the optimal parameters for the CNN-LSTM model, whose 
358 training parameters are larger than the LSTM-only model. It causes the CNN-LSTM 
359 model does not outperform LSTM model in the Lancang. On the other hand, both 
360 LSTM and CNN-LSTM  models perform well without significant differences 𝐸𝑎

361 between two models in all three study basins (Table 4; Figure 4-5). It demonstrates 
362 that LSTM is a remarkable approach for average  of the basin modeling and 𝐸𝑎

363 introducing 2-D CNN has little impact on it, further suggesting that average  and  𝑃 𝑇
364 play vital roles in  modeling and CNN outputs might contain the information 𝐸𝑎

365 about it.

366 3.3.3 The effect of multi-task learning

367 To investigate the applicability of MT learning in training LSTM and CNN-LSTM 
368 models, we configured them with  and  as the simultaneous learning targets in 𝑄 𝐸𝑎
369 addition to those single-task (ST) experiments targeting at only  or . The 𝑄 𝐸𝑎

370 simulations by MT models agree well with observations in all three study basins with 
371 favorable  of  (0.89 by LSTM-MT and 0.82 by CNN-LSTM-MT) (Figure 𝑁𝑆𝐸𝑠 𝑄
372 6). Besides, both LSTM and CNN-LSTM MT models achieve remarkable 
373 performance in predicting  in all three study basins (Figure 5; Table 4). These 𝐸𝑎

374 results demonstrate that both LSTM and CNN-LSTM models are capable of 
375 simulating multiple hydrological processes simultaneously.
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Figure 6. The comparison of simulated (MT models) and observed  processes in 𝑄
the test period at three hydrological stations.

376 Furthermore, compared with LSTM  models, the LSTM MT ones achieve higher 𝑄
377  and lower total volume biases ( ), suggesting that introducing  as 𝑁𝑆𝐸𝑠 𝛽 𝐸𝑎

378 additional training target can enhance the  performance of LSTM models by 𝑄
379 reducing the total volume biases. It is consistent with the effect of introducing the  𝐸𝑎

380 process in calibration for physical-based hydrological models (Herman et al. 2018, 
381 Nesru et al. 2020). It further motivates us to assume that the internal states of LSTM 
382 hydrological models, similar to physical-based hydrological models, might encompass 
383 multiple untrained physical hydrological processes. Thus, we put forward the 
384 hypothesis that  ( ) process information can be easily reconstructed from internal 𝐸𝑎 𝑄
385 states of trained LSTM  ( ) models without the aforementioned complicated 𝑄 𝐸𝑎

386 training procedures. This hypothesis will be tested in Sec. 4.2.2. 

387 In contrast, the  performance of CNN-LSTM MT models declines significantly 𝑄
388 compared with their ST counterparts in all three study basins. Significant performance 
389 differences between ST and MT might be explained by the variant LSTM inputs in 
390 CNN-LSTM models with different training references, compared with the invariant 
391 LSTM inputs in LSTM models (Sec. 2.3). Besides, the redundant information 
392 contained in the CNN outputs might make it difficult to simulate multiple 
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393 hydrological processes. On the other hand, differences in  performance between 𝐸𝑎

394 ST and MT mode of both LSTM and CNN-LSTM are not significant, indicating that 
395 MT learning in the LSTM and CNN-LSTM models has minimal effect on  𝐸𝑎

396 modeling. 

397 4. Physical interpretability of DL hydrological models

398 This section further explores the physical interpretability of CNN and LSTM models 
399 by using the LR model (Sec. 2.2) to look into potential hydrological and 
400 meteorological information CNN and LSTM may capture (Figure 7).

401 4.1 Experiment design

402 According to the above discussions, we design two experiments to test two 
403 hypotheses as follows:

Figure 7. An overview of the physical interpretability exploration based on the LR 
model in this study. (a) LR models are used to map CNN output to spatially-
averaged meteorological data within the basin; (b) The difference between original 
grided data and grided data within the basin; (c) LR models map the state vector of 
LSTM  ( ) models to untrained  ( ) processes.𝑄 𝐸𝑎 𝐸𝑎 𝑄

404 (1) The CNN of trained CNN-LSTM models can capture spatially-averaged 
405 meteorological data within basin ( / ) from gridded meteorological 𝑇𝑏𝑎𝑠𝑖𝑛 𝑃𝑏𝑎𝑠𝑖𝑛

406 data (CNN input; Figure 7a-b). To test this hypothesis, we construct LR 
407 models to map the CNN output of three CNN-LSTM ( , , and MT) models 𝑄 𝐸𝑎

408 (Figure 7a) to spatially-averaged precipitation and temperature data within 
409 basins (  and ) and then use the correlation coefficient  between 𝑃𝑏𝑎𝑠𝑖𝑛 𝑇𝑏𝑎𝑠𝑖𝑛 𝑟
410 LR model output and spatially-averaged meteorological data within basins 
411 (namely ) as indicator to examine their correlation (Figure 7a). In 𝑟𝐶𝑁𝑁

412 addition, we calculate the  of spatial averages of meteorological data within 𝑟
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413 the basin and those of the original gridded data ( ) as the reference indicator 𝑟𝑟𝑒𝑓
414 (Figure 7b). By comparing  and , we can thus infer if the CNN can 𝑟𝐶𝑁𝑁 𝑟𝑟𝑒𝑓

415 extract basin-scale characteristics of meteorological input data or not.

416 (2)  ( ) process information can be reconstructed from internal states of 𝐸𝑎 𝑄
417 trained LSTM  ( ) models without the aforementioned complicated 𝑄 𝐸𝑎

418 training procedures (Figure 7c). Similar as Lees et al. (2022), LR models are 
419 constructed to map the cell states vector–the memory of LSTM  ( ) 𝐸𝑎 𝑄
420 models–to the untrained  ( ) processes and examine the resultant  to 𝑄 𝐸𝑎 𝑁𝑆𝐸
421 justify if LSTM is capable of inferring untrained hydrological information. For 
422 this, we obtain 6 sets of  values: 2 relations (  and  ) × 3 𝑁𝑆𝐸 𝐸𝑎→𝑄 𝑄→𝐸𝑎

423 basins (Yellow, Yangtze, and Lancang).

424 4.2The physical interpretability results

425 4.2.1 The physical interpretability of CNN outputs

426 As the meteorological data within a studied basin is essentially a subset of the original 
427 gridded dataset (Figure 7b), it is expected the spatial average of the former datasets 
428 (i.e.,  and ) can be highly correlated to those of the latter (i.e.,  and 𝑃𝑏𝑎𝑠𝑖𝑛 𝑇𝑏𝑎𝑠𝑖𝑛 𝑃𝑟𝑒𝑓
429 ), in particular when their spatial extents are comparable (e.g. the Yangtze river 𝑇𝑟𝑒𝑓

430 basin in Figure 2c). And our estimation does suggest high  and  correlation for 𝑃 𝑇
431 all three basins ( ) except the lower  correlation for the Lancang (𝑟𝑟𝑒𝑓 > 0.97 𝑃 𝑟𝑟𝑒𝑓

432 ; Table 5). Thus, we select the Lancang basin as the study area to examine the < 0.80
433 capacity of CNN in inferring basin-specific information from the original gridded 
434 dataset. Our results indicate that the spatial averages of  and  within the Lancang 𝑃 𝑇
435 can be extracted from the CNN outputs in high fidelity:  of all configurations 𝑟𝐶𝑁𝑁
436 are much larger than  for  (cf.  vs. -0.50; Table 5) and close to 1 for 𝑟𝑟𝑒𝑓 𝑃 > 0.87
437 , which supports our first hypothesis. Furthermore, it is also interesting to see the 𝑇
438 difference in  between different configurations: for , a lower  is 𝑟𝐶𝑁𝑁 𝑃 𝑟𝐶𝑁𝑁

439 produced by the evapotranspiration-targeted model, suggesting those runoff-targeted 
440 models perform better in extracting precipitation-related information; while a reverse 
441 pattern is found for . Such results are in line with the common hydrological 𝑇
442 understanding that  has a more significant impact on  while  is a strong 𝑃 𝑄 𝑇
443 control of . 𝐸𝑎

444 Table 5. The  (three CNN-LSTM models: : CNN-Q, : CNN-E,  + : 𝑟𝐶𝑁𝑁 𝑄 𝐸𝑎 𝑄 𝐸𝑎
445 CNN-Q+E) and  of  and  in the Lancang.𝑟𝑟𝑒𝑓 𝑃 𝑇

𝒓𝑪𝑵𝑵 𝒓𝒓𝒆𝒇
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CNN_Q CNN_E CNN_Q+E

𝑷 0.96 0.94 0.97 0.79 

𝑻 0.98 1.00 1.00 1.00 

446 4.2.2 The physical interpretability of LSTM cell states

Figure 8. The comparison of simulated (extracted from the cell states of LSTM  𝐸𝑎

models) and observed  processes in the test period at three hydrological stations.𝑄

447 High correlation is found between the LSTM-inferred and observed  (  of 𝑄 𝑁𝑆𝐸𝑠
448 0.72, 0.84, and 0.86 in the Yellow, Yangtze, and Lancang; Figure 8), suggesting the 
449 remarkable capacity of LSTM in inferring the Q-related processes solely from Ea. 
450 Likewise, the inferred  processes also agree favorably with GLEAM  data with 𝐸𝑎 𝐸𝑎

451  more than 0.93 in all three study basins (Figure 9). Such results support our 𝑁𝑆𝐸𝑠
452 second hypothesis that LSTM  ( ) models contain information about untrained 𝑄 𝐸𝑎
453  ( ) processes without prior training procedures. 𝐸𝑎 𝑄
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Figure 9. The comparison of simulated (extracted from the cell states of LSTM  𝑄
models) and observed  processes in the test period at three hydrological stations.𝐸𝑎

454 5. Conclusion and limitation

455 In this study, we develop an integrated spatiotemporal DL-based model by coupling 
456 CNN and LSTM for hydrological simulation and evaluate it in the source regions of 
457 the Yellow River, the Yangtze River, and the Lancang River. Besides, we employ a 
458 simple linear regression method to explore the physical interpretability of CNN and 
459 LSTM in DL-based hydrological models to improve our understanding of DLM-
460 inferred hydrological processes. Our main findings are as follows:

461 (1) Both LSTM and CNN-LSTM models perform favorably with  more 𝑁𝑆𝐸s
462 than 0.87 ( ) and 0.97 ( ) in all three study basins. The CNN-LSTM  𝑄 𝐸𝑎 𝑄
463 models achieve better performance than LSTM ones in modeling . 𝑄
464 Therefore, we recommend the CNN-LSTM models for hydrological modeling 
465 and flooding forecasts in large mountainous basins.

466 (2) Both LSTM and CNN-LSTM multi-task models work well for  (𝑄 𝑁𝑆𝐸
467 ) and  ( ) simulation and LSTM multi-task models s > 0.82 𝐸𝑎 𝑁𝑆𝐸s > 0.95
468 outperform LSTM  models in all three study basins. This finding 𝑄
469 demonstrates that introducing  as an additional training target in the LSTM 𝐸𝑎

470  model can enhance the model performance and further research can be 𝑄 
471 conducted to evaluate the potential of LSTM models for more and even whole 
472 hydrological modeling in the future.

473 (3) The internal cells of CNN and LSTM contain the hydrological and 
474 meteorological information consistent with our knowledge. CNN outputs in 
475 CNN-LSTM models can capture the basin-specific characteristics from 2-D 
476 gridded meteorological data of larger domains, while the internal cells of 
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477 LSTM  ( ) models may infer the  ( ) processes. These findings 𝑄 𝐸𝑎 𝐸𝑎 𝑄
478 advance the understanding of the physical interpretability of DL-based 
479 hydrological models.

480 Being promising in predicting hydrological processes, this model has several 
481 limitations. First, unlike the observed runoff data, the GLEAM dataset–as the  𝐸𝑎

482 training target–is of high accuracy but subject to some biases in the Tibetan Plateau 
483 (Li et al. 2019a). It might lead trained  models to a slight deviation from the true 𝐸𝑎
484  process. Besides, this model is only evaluated in the three large mountainous 𝐸𝑎

485 basins on the Tibetan Plateau due to the limitation of computational resources. Future 
486 research will be carried out to evaluate the performance of proposed CNN-LSTM 
487 model in more basins, develop CNN-LSTM regional hydrological models using more 
488 underlying surface data, and explore more physical information hidden in the internal 
489 cells of DL-based hydrological models.
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490 Appendix A: Architecture and parameters of LSTM and CNN-
491 LSTM models 

492 This study developed 3 (basins: Yellow, Yangtze, Lancang) × 2 (model: LSTM, 
493 CNN+LSTM) × 3 (objective: runoff, evaporation, runoff + evaporation) = 18 DL-
494 based hydrological models. The loss function is the mean-squared error (MSE), and 
495 the optimizer is Adaptive Moment Estimation (Adam). The batch size is 32, and the 
496 epoch is 400. The detailed parameters are as follows.

497 Table A1. The parameters of LSTM hydrological models

final parameter values

parameters range of parameter values
Yello

w
Yangtz

e
Lancang

Hidden states 16, 32, 64, 128, 256 32 32 32

Length of the input sequence 10, 20, 30×n (n=1, 2, …, 12) 90 180 120

Number of LSTM layer 1, 2 2 2 2

498  

499 Table A2. The parameters of LSTM models in CNN-LSTM hydrological models

final parameter values

parameters range of parameter values
Yello

w
Yangtz

e
Lancang

Hidden states 16, 32, 64, 128, 256 32 32 32

Length of the input sequence 10, 20, 30×n (n=1, 2, …, 
12)

60 120 90
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Number of LSTM layer 1, 2 2 2 2

500

501 Table A3. The parameters of CNN models in CNN-LSTM hydrological models

Yellow Yangtze Lancang

size Architectures size Architectures size architectures

41×77 conv, 5×5, s=2, 8 34×71 conv, 5×5, s=2, 8 84×59 conv, 5×5, s=2, 8

19×37 conv, 5×5, s=2, 16 16×35 conv, 5×5, s=2, 16 40×28 conv, 5×5, s=2, 16

9×17 conv, 5×5, s=2×3, 
32

7×17 conv, 5×5, s=2×3, 
32

19×12 conv, 5×5, s=3×2, 
32

3×5 conv, 3×5, s=1, 64 2×5 conv, 2×5, s=1, 64 5×4 conv, 5×4, s=1, 64

1×1 1×1 1×1

502 Appendix B: The simulated daily and monthly runoff results of three 
503 study basins in other relevant studies

504 To compare the proposed CNN-LSTM model with traditional hydrological models, 
505 we collected simulated daily and monthly runoff results using hydrological models in 
506 relevant studies (Table B1). Although the simulation periods and model inputs are 
507 different from this study, the higher  results can demonstrate that the CNN-𝑁𝑆𝐸
508 LSTM models outperform traditional hydrological models in runoff simulation.

509 Table B1. The simulated daily and monthly runoff  results of three study basins in 𝑁𝑆𝐸
510 other relevant studies

Basins Models Simulation 
periods

 results𝑵𝑺𝑬 Reference
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Yellow SWAT 2014-2018 0.71 (Xie et al. 
2020)

Yellow SPHY 2000-2016 0.76 (Zhang et al. 
2022)

Yangtze WEB‐DHM‐SF 1987-2016 0.62 (Qi et al. 2019)

Yangtze SWAT 2001-2016 0.75 (monthly) (Ahmed et al. 
2022) 

Lancang SWAT 1981-2015 0.71 (monthly) (Li et al. 
2021b)

511

512 Code and data availability. Precipitation, air temperature, and actual evaporation data 
513 used in this research study are openly available and the sources are mentioned in Sec. 
514 3.1.2. Model outputs and code are available by request to the corresponding author. 
515 The observed runoff data are not publicly available for legal/ethical reasons.

516
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712 Table 1. Basic facts of the three study basins. “DEM” represents Digital Elevation 
713 Model.

Basins Area

(km2)

DEM range

(m)

Average annual 𝑷

 (mm)

Average annual 𝑸

(109 m3)
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Yellow 123,000 2,656-6,253 510 20

Yangtze 139,000 3,516-6,575 460 16

Lancang 91,000 1,243-6,334 830 32

714
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715 Table 2. The length of the training, evaluation, and testing periods in three study 
716 basins.

Basins Training period Evaluation period Testing period

Yellow 1983-2004 2006-2009 2011-2014

Yangtze 1983-2004 2006-2009 2011-2014

Lancang 1988-2004 2005-2007 2008-2010

717
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718 Table 3. The evaluation metrics of LSTM and CNN-LSTM hydrological models for 
719  simulation. LSTM (MT) and CNN-LSTM (MT) represent the LSTM and CNN-𝑄
720 LSTM  (multi-task) models, respectively. 𝑄

𝑁𝑆𝐸 𝑟 𝛼 𝛽 𝐵𝑃𝑉 𝐵𝑀𝑉 𝐵𝐿𝑉

LSTM 0.88 0.95 0.80 -0.06 -0.31 0.02 0.12 

CNN-LSTM 0.90 0.95 1.01 0.11 -0.00 0.17 0.16 

LSTM MT 0.90 0.95 0.85 -0.04 -0.29 0.03 0.10 

Yellow

CNN-LSTM MT 0.86 0.94 0.98 0.15 -0.13 0.22 0.32 

LSTM 0.87 0.94 1.01 0.12 -0.15 0.24 0.58 

CNN-LSTM 0.89 0.95 0.99 0.11 -0.11 0.30 0.63 

LSTM MT 0.89 0.95 0.97 0.04 -0.19 0.07 0.56 

Yangtze

CNN-LSTM MT 0.82 0.94 1.09 0.22 -0.06 0.53 0.55 

LSTM 0.92 0.97 1.11 0.07 0.04 0.01 0.07 

CNN-LSTM 0.89 0.95 0.97 0.00 -0.11 0.02 0.18 

LSTM MT 0.93 0.96 0.99 -0.02 -0.04 -0.03 0.13 

Lancang

CNN-LSTM MT 0.82 0.94 1.14 0.17 -0.01 0.09 0.32 

721
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722 Table 4. The evaluation metrics of LSTM and CNN-LSTM hydrological models for 
723  simulation. LSTM (MT) and CNN-LSTM (MT) represent the LSTM and CNN-𝐸𝑎
724 LSTM  (multi-task) models, respectively.𝐸𝑎

Basins Models 𝑁𝑆𝐸 𝑟 𝛼 𝛽 𝐵𝑃𝑉 𝐵𝑀𝑉 𝐵𝐿𝑉

LSTM 0.97 0.99 1.00 0.00 -0.06 0.02 0.02 

CNN-LSTM 0.97 0.99 0.95 -0.05 -0.09 -0.02 -0.01 

LSTM MT 0.96 0.98 0.96 -0.01 -0.12 0.02 0.18 

Yellow

CNN-LSTM MT 0.95 0.97 1.01 -0.01 -0.07 0.03 -0.08 

LSTM 0.97 0.99 1.02 0.00 -0.03 -0.03 0.04 

CNN-LSTM 0.97 0.99 0.98 -0.06 -0.05 -0.13 -0.07 

LSTM MT 0.96 0.98 1.05 0.03 -0.02 -0.03 0.20 

Yangtze

CNN-LSTM MT 0.95 0.98 1.01 0.05 -0.08 0.08 0.24 

LSTM 0.98 0.99 0.98 0.01 -0.08 0.02 0.10 

CNN-LSTM 0.97 0.99 1.03 -0.05 -0.08 -0.05 -0.24 

LSTM MT 0.97 0.99 0.99 0.02 -0.08 0.03 0.14 

Lancang

CNN-LSTM MT 0.96 0.98 0.92 -0.06 -0.13 0.01 -0.02 

725
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726 Table 5. The  (three CNN-LSTM models: : CNN-Q, : CNN-E,  + : 𝑟𝐶𝑁𝑁 𝑄 𝐸𝑎 𝑄 𝐸𝑎
727 CNN-Q+E) and  of  and  in the Lancang.𝑟𝑟𝑒𝑓 𝑃 𝑇

𝒓𝑪𝑵𝑵

CNN_Q CNN_E CNN_Q+E

𝒓𝒓𝒆𝒇

𝑷 0.96 0.94 0.97 0.79 

𝑻 0.98 1.00 1.00 1.00 

728
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740  
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742

743

744 Long short-term memory (LSTM) networks have demonstrated their excellent 
745 capability in processing long-length temporal dynamics and have proven to be 
746 effective in precipitation-runoff modeling. However, the current LSTM hydrological 
747 models lack the incorporation of multi-task learning and spatial information, which 
748 limits their ability to make full use of meteorological and hydrological data. To 
749 address this issue, this study proposes a spatiotemporal deep-learning (DL)-based 
750 hydrological model that couples the 2-Dimension convolutional neural network 
751 (CNN) and LSTM and introduces actual evaporation ( ) as an additional training 𝐸𝑎
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752 target. The proposed CNN-LSTM model is tested on three large mountainous basins 
753 on the Tibetan Plateau, and the results are compared to those obtained from the 
754 LSTM-only model. Additionally, a probe method is used to decipher the internal 
755 embedding layers of the proposed DL models. The results indicate that both LSTM 
756 and CNN-LSTM hydrological models perform well in simulating runoff ( ) and , 𝑄 𝐸𝑎

757 with Nash-Sutcliffe efficiency coefficients ( ) higher than 0.82 and 0.95, 𝑁𝑆𝐸𝑠
758 respectively. The higher  suggest that introducing spatial information into 𝑁𝑆𝐸𝑠
759 LSTM-only models can improve the overall and peak model performance. Moreover, 
760 multi-task simulation with LSTM-only models shows better accuracy in the 
761 estimation of  volume and performance, with  increasing by approximately 𝑄 𝑁𝑆𝐸𝑠
762 0.02. The probe method also reveals that CNN can capture the basin-averaged 
763 meteorological values in CNN-LSTM models, while LSTM  ( ) models contain 𝑄 𝐸𝑎
764 the information about the known  ( ) process. Overall, this study demonstrates the 𝐸𝑎 𝑄
765 value of spatial information and multi-task learning in LSTM hydrological modeling 
766 and provides a perspective for interpreting the internal embedding layers of DL 
767 models.

768
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