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Abstract

In this thesis, I consider two broad areas: the generation and verification of entanglement
between large masses, and the analysis of causality in quantum dynamics. While the former
is an extension of quantum mechanics in hitherto unexplored regimes such as for large masses
and gravity, the latter provides a tool to probe quantum mechanics in complex networks.

The first part of the thesis introduces a new methodology, namely, "spatial qubits", to
the study of non-classicality of macroscopic objects. Essentially, it allows one to treat
a continuous variable system as an effective qubit. This offers us a way to detect the
entanglement between a spin and a path in a Stern-Gerlach apparatus, which has never been
verified to date. We offer a way to observe it. It also enables one to observe the entanglement
between two neutral large masses induced by the Casimir interaction. This works in a
regime of non-Gaussian states of the two masses, and can evidence the quantum nature of
macroscopic forces. As a separate application, we apply the same technique to witness the
quantum nature of gravity via a table-top experiment. This approach has the advantage of not
requiring ancillary degrees of freedom such as spins, as well as not requiring a precise closure
of an interferometer, to evidence the entanglement. However, here we find it necessary to
prepare a highly position squeezed state of a mechanical system.

The other part of the thesis adopts concepts from classical causal analysis to the quantum
regime. In particular, we generalize the notion of Liang-Kleeman information flow to
quantum networks. The key feature of this theory is that an intervention is applied to the
system and then the resulting changes on the target are observed. Causal influence is then
quantified by relevant quantum entropic quantities such as the von Neumann entropy and
quantum relative entropy. The presence of entanglement in the quantum domain uniquely
manifests itself through some counter intuitive flows of information which we exemplify in
small networks.





Impact statement

Quantum physics has revolutionized information science. After all, information is encoded
in physical systems. The law of information is therefore intimately related to the underlying
physical systems, which are fundamentally quantum.

The first part of this thesis pertains to the usage of a freely evolving massive object as
a quantum bit, named qubit. This will be a door opener in the sense that it enables one to
probe the very boundaries of quantum mechanics in a very simple way – whether massive
objects such as nanocrystals obey things such as quantum contextuality. It is also applicable
to witness entanglement generated between two such massive objects via their Casimir
interaction. The massive spatial qubit methodology is also applied to witness the quantum
nature of gravity. Though the scheme is yet very challenging to realize with state of art
technology, the methodology provides a witness of quantum nurtured gravity purely through
position measurements. Thus the impact of this part ranges from fundamental (quantumness
verification) to potentially to applied (new types of qubits).

The second part of the thesis addresses causality quantification in quantum dynamics
of many interacting quantum systems from an information theoretical perspective. Though
there are several measures of correlations in quantum systems, most notably entanglement,
and how these propagate, “causation” is not “correlation”. There was no true measure
of causation to date. Here a widely applied concept from classical dynamical systems is
adapted to fill the gap. Several simple examples have been worked out in this preliminary
work. The formalism quantifies causation with respect to von Neumann entropy. A more
general formalism with respect to quantum relative entropy is also worked out. This is a
first type of work generalizing a concept widely used in the context of classical networks
to a quantum setting. This information flow-based approach is applicable to a wide range
of topics in quantum physics from both fundamental and practical aspects. Its impact could
be on analyzing causality in large scale quantum networks or potentially within quantum
circuits.
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Chapter 1

Introduction

The development of quantum information science began in the early 20th century when
quantum mechanics revolutionized physics. Why does physics have anything to do with
information? After all, information is encoded in the state of some physical system, and
computation is carried out on physical devices. Information theory was initially developed
with classical physics. However, the universe is fundamentally quantum. How does quantum
theory shed light on the nature of information? One important aspect is that in quantum theory,
non-commuting observables can not be determined simultaneously. Therefore, acquiring any
information from a physical state would unavoidably disturb the system. Such a limit does
not exist in classical systems. The non-commutation relation also leads to the non-cloning
principle which states that quantum information can not be copied perfectly, while classical
information does not have such a restriction. The deep way in which quantum information
differs from its classical counterpart was revealed by John Bell in 1964. He showed that
the statistics predicted by quantum mechanics is inconsistent with any local hidden variable
theory[19]. Quantum information can be stored in nonlocal correlations such as entanglement,
which has no classical analogue. The study of quantum information as a coherent discipline
culminated in the late 20th. Many of the central results in classical information theory can
be extended to the quantum regime, including: compression of information and bounds on
information transmission through noisy channels. This thesis consists of two parts. Part 1
focuses on a novel type of encoding of qubits. A new methodology of encoding qubit with a
massive spatial test mass is presented. Chapter 2 gives an outline of this methodology, and
applies it to test micro-macro entanglement and witness the quantum nature of the Casimir
interaction. Chapter 3 applies this methodology to test the quantum nature of gravity and
discusses its challenges. Part 2 focuses on information transmission. Chapter 4 presents
a conception of information flow-based causality analysis and demonstrated with several



2 Introduction

simple networks. Chapter 5 generalizes the causality analysis with respect to relative entropy
and exemplified with ergodic versus non-ergodic model.

1.1 Physics of information

In this section, we review several milestones in history shaping our understanding of how
physical systems place constraints on the transmission of information.

Landauer’s principle

In 1961, Rolf Landauer first proposed that to erase one bit of information, a minimum
possible amount of energy is required, known as the Landauer limit:

E = kBT log2 (1.1)

where T is the temperature of the heat bath, kB is the Boltzmann constant. Landauer
limit indicates that erasure of information is always dissipative. Any logically irreversible
manipulation of information is accompanied by an increase in entropy of the entire system,
involving the information processing device and the surrounding environment. From another
perspective, if some information of a physical system is leaked to the environment, becoming
inaccessible, then heat is generated and we are no longer able to extract useful work from
that system. Following Landauer’s principle, if a logical computation is reversible, that is, no
information is lost during the process, then it maybe implemented without energy dissipation.
Hence, considerable effort has been put into reversible computing.

Reversible computation

In 1973, Charles Bennett discovered that any logical computation can be performed with
reversible steps. For instance, the NAND gate has two input bits and one output bit, which is
irreversible. According to Landauer’s principle, a minimum energy of kBT log2 is needed
to perform the computation because one bit of information is erased. However, the NAND
gate can be replaced by reversible Toffoli gate in which all the information about the input is
preserved:

(x,y,z)→ (x,y,z⊕ x∧ y). (1.2)

The Toffoli gate on 3 bits flips the third bit if the first two bits both take the value of 1 and
do nothing otherwise. In the case where z = 1, it becomes the NAND gate of x and y. This
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reversible computation can be performed, in principle, with 0 dissipation. One may question
whether we have only delayed the energy cost to the end of the protocol because we generate
useless information in bits during the process. Bennett showed that a reversible computation
returns an answer to a logically reversible operation at the end of a computation and then
reverse all the computation process and recover to its initial configuration. No information
needs to be erased, hence, no energy cost.

To carry out reversible computation, one requires exquisite control of the physical process
such that no uncertainty about the physical state is generated during the logical operation. All
the energy would be recovered and ready to be reused for subsequent operations after each
round, preventing dissipation into the environment in the form of heat. The motivation to
improve the computational energy efficiency of computers beyond the Landauer limit drives
research on reversible computing technologies. In practice, the Landauer limit is still far
below the energy consumption of today’s computers. But as computing hardware continues
to reduce in size, reversible computation maybe the only viability to break the Landauer’s
limit and prevent the hardware from overheating.

Maxwell’s demon

The second law of thermodynamics states that entropy of an isolated system never decreases.
It implies that two physical systems with different temperature, when brought together and
allowed to exchange heat with one another while isolated from the rest of the universe,
would eventually evolve into thermal equilibrium with same temperature. In 1867, Maxwell
proposed a paradox. In the thought experiment, one container is divided into two parts
filled with same type of gas and same temperature. An imaginary demon sits on top of a
trapdoor between the two partitions. If a high speed molecule fly from left to right, the demon
would open the trapdoor and let it pass. If a slow-moving molecule fly from right to left,
the demon would also open the trapdoor. Therefore, the left partition cools while the right
partition heats up, without inputting energy. This conclusion clearly violates the second law
of thermodynamics.

Motivated from the insights of Landauer, Bennett resolved the paradox in 1982. The
explanation is that the demon must collect and store information of the molecules’ speed. The
recorded information is associated with some entropy and must be included in the calculation
of the entire system’s entropy. If the demon’s memory is finite, the gas cannot be cooled
without limit. If we erase the demon’s memory and restore the demon’s state to its initial
condition, energy input is needed to compensate for the cooling achieved, as guaranteed by
Landauer’s limit.
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The aforementioned work demonstrates that the study of communication and information
is unalienable from the laws of physics. Understanding physical systems’ behavior provides
not only technological basis for computational devices, but also insights for information
theory itself.

1.2 Classical Shannon Theory

Before we delve into the quantum regime, in this section, we review the key concepts from
classical information theory. In 1948, Claude Shannon solved two central problems that
serves as the benchmark of classical information theory:

1. Noiseless coding theorem: How much can a given message be compressed?
2. Noisy channel coding theorem: At what rate can reliable communications take place

over noisy channel?

Both problems regard redundancy: How much redundancy in a message can be ex-
tracted out? How much redundancy must be incorporated in communication to fight against
errors during transmission? Shannon demonstrated that entropy provides an appropriate
quantification of redundancy in communication.

Noiseless coding theorem

File formats such as JPEG, ZIP, GIF, etc. are commonly used in today’s telecommunication.
They all have compression algorithms for the output source. Intuitively, one would expect
that that compression algorithms can not reduce the output source to arbitrary small size.
Shannon’s theory of data compression proves this intuition.

A message consists of a string of letters. We shall consider the ideal situation in which
each letter is selected identically and independently from an ensemble with probability
distribution:

{xi, p(xi)}. (1.3)

Each letter takes a value xi with probability p(xi). A n-letter message is therefore associated
with a probability:

p(x1,x2, ...xn) =
n

∏
=1

p(xi). (1.4)

Now we may ask, for an arbitrary n-letter message, can we convey the same message but
with a shorter string of letters? The answer is yes. We shall start from binary scenario in
which each letter is either 0 or 1 with probability p and 1− p respectively, where p takes
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value in between 0 and 1. When n is large, we can apply the law of large numbers and
obtain an asymptotic solution. Typical strings would contain about np of 0 and n(1− p) of 1.
The number of typical strings is given by the binomial coefficient

( n
np

)
. Applying Stirling’s

formula to approximate factorials, we obtain:

log
(

n
np

)
= log(

n!
(np)!(n−np)!

) (1.5)

≃ nS(p),

where
S(p) =−p log p− (1− p) log(1− p) (1.6)

is the binary Shannon entropy. Adopting the convention of logarithms with base 2, the
number of typical strings is therefore 2nS(p). In the asymptotic limit n → ∞, the probability
that a message does not fall into the typical set goes to 0. Therefore, to encode a n-letter
message, the codeword necessarily distinguishes 2nS(p) number of messages. A codeword
containing less than nS(p) bits of information would unavoidably omit part of the message.
For binary strings, as long as p ̸= 1/2, the message’s string length can be shortened without
loss. Shannon’s key observation is that not all strings of letters needs to be coded, but only
the typical ones.

The binary scenario can be easily extended to incorporate the case where the letters
sample from a k-letter alphabet. The number of typical strings is

∼ 2−nS(p(x)), (1.7)

where
S(X) =−∑

x
p(x) log2 p(x) (1.8)

is the Shannon entropy of the ensemble X = {x, p(x)}. A letter sampling from this ensemble
contains S(X) bits of information on average and a n-letter message can be compressed to
about nS(X) bits.

One may ask if this compression rate is optimal, that is, is this the best we can do? The
answer is yes. The formal proof of optimality is outside the scope of this thesis, but we shall
briefly highlight the common approach to prove a coding theorem in information theory,
being classical or quantum. The formal proof of coding theorem typically consists of two
parts: direct coding theorem and the converse theorem.

The statement of the direct coding theorem is given by (as stated by Wilde [177]):
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If the rate of compression is greater than the entropy of the source, then there exists a
coding scheme that can achieve lossless data compression in the sense that it is possible to
make the probability of error for incorrectly decoding arbitrarily small

The proof of the direct coding theorem generally relies on the concept of typical sequences
as the length of the sequence becomes infinite. The statement of the converse theorem is
given by [177]:

If there exists a coding scheme that can achieve lossless data compression with arbitrarily
small probability of decoding error, then the rate of compression is greater than the entropy
of the source.

Proof of the converse theorem typically appeals to information inequalities that bounds
the relevant entropic quantities in the coding constructions.

Noisy channel coding theorem

The second problem in classical information theory is the transmission of information over
noisy channel. We shall start from a simple example−bit-flip channel. The channel flips the
input state with probability p and do nothing with probability 1− p. Again, we assume that
the channels are distributed independently and identically. If we use the channel as it is, the
scheme only works if the bit-flip error does not occur. To improve communication quality,
we may introduce some level of redundancy into the encoding process. For instance, we may
encode a logical bit with 3 identical physical bit: 0 → 000, 1 → 111. At the receiving end,
the decoder performs a majority vote. If two or more bits returns the same value, then the
value is adopted.

Output Probability
000 (1− p)3

001,010,100 p(1− p)2

011,110,101 p2(1− p)
111 p3

Table 1.1 The first column gives all possibilities of 3 "0" bit passing through bit-flip channel independently.
The second column gives the corresponding probabilities

If the sender encodes logical bit "0", the possible physical bits at the output of bit-flip
channels are 000,001,010,100,011,110,101,111 respectively. 000,001,010,100 would be
decoded as "0", otherwise "1". This 3-bit majority vote scheme apparently reduces the
possibility of error when p is small, compared with the no coding scenario. The cost is
that the rate of transmission drops from 1 to 1/3. This simple example shows that there is a
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trade-off between the transmission rate and the error probability. If we simply increase the
number of encoding bit in the majority vote scheme, the error approaches 0 asymptotically,
but so do the transmission rate. The question is then: can we code information in such a way
that the error probability approaches 0 but the communication rate converges to a finite value
asymptotically?

Shannon’s channel coding theorem

The theorem provides an affirmative answer to the above question. For k data bits encoded
on n physical bits carried by the channel, the rate of transmission is defined as:

R = k/n. (1.9)

To achieve reliable communication under noisy channel, one needs to encode the message
such that the number of bits flipped to change one codeword to another is maximized. For
input message of length n, the bit-flip channel flips about np number of bits. The number
of typical erroneous output strings is about 2nS(p), occupying an error space of the input
string. If the error space of any two input codewords overlap significantly, then decoding
error would occur. Reliable communication can then be achieved if the codewords are far
apart from each other so that their error space does not overlap. The condition of reliable
transmission is then

2n ≥ 2nS(p)2k (1.10)

or
1−S(p)≥ R, (1.11)

which simply states that the error space of all encoded message strings must be smaller than
the total number of output message bits. The channel capacity per channel denoted C in this
example is therefore:

C(p) = 1−S(p). (1.12)

Similar to the noiseless coding theorem, one needs to prove that the channel capacity is
optimal, that is, the rate R =C(p) is achievable asymptotically. Shannon’s insight is that this
rate can be achieved with random coding in the limit n → ∞. Here, we will not delve into
the proofs in detail, but to give a brief sketch. Consider a total of 2nR random codewords
generated by sampling from a uniform binary distribution for a single bit (0 and 1 occurs
both with probability 1/2). The codewords transmit to the receiver through the use of n
channels. The receiver then calculates the error space for each codeword, which consists of
2nS(p) number of strings. The receiver decodes the message if only one codeword exist in
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the space slightly larger than the error space2nS(p)+ε , otherwise decodes arbitrarily. An error
occurs when the error space containing the message’s codeword contains another codeword.
The error space contains a fraction of all the strings:

f =
2n(S(p)+ε)

2n . (1.13)

Due to the random uniform distribution, the probability of containing any other codeword
other than the sent message in the target error space is f . The probability of containing any
invalid codewords is therefore:

2k f = 2−n(C(p)−ε), (1.14)

where ε can be as small as we need. If we choose R slightly less than C(p) of our choice,
the decoding error vanishes as n goes to infinity. Hence, the rate R =C(p) can be achieved
asymptotically.

Shannon’s choice of random coding greatly simplifies the mathematical analysis of the
error probability. Shannon’s breakthrough idea was to concentrate on the expectation of
the average error probability with respect to the random code, rather than the average error
probability itself.

The aforementioned binary example can be extended to a more general setting where the
noisy channel is characterized by a conditional probability p(y|x) when letter x is sent and
letter y is received. We may sample the random codewords from a distribution X = x, p(x).
Following the same logic of reasoning, the optimal rate of transmission, achievable with
negligible error probability, is given by:

R = I(X ;Y ), (1.15)

where I(X ;Y ) is the mutual information between X and Y defined as:

I(X ;Y ) = S(X)+S(Y )−S(XY ). (1.16)

Y = y, p(y) is the output ensemble and XY = (x,y), p(x,y) is the joint ensemble. This result
demonstrates that the mutual information I(X ;Y ) quantifies the information gained about
X when accessible to Y . It is the maximum rate at which information can be transmitted
over the channel reliably. The channel capacity is obtained by maximizing over the input
ensemble X :

C = max
X

I(X ;Y ). (1.17)
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Now it is only a function of the noisy channel, characterized by the conditional probability
p(y|x).

Classical Causal analysis

Causal analysis is a sub-field of statistics unveiling the connection between cause and effect.
Causal models are generally pertaining to probabilistic inferences about causal relationships
from statistical data. The studies typically consists of sequences in time, a dynamical
mechanism that governs the evolution of the sequences, certain correlation measures and
action to eliminate the possible common causes. Judea pearl characterizes causal models in
terms of 3 components: A set of internal variables which are determined by factors within
the system, a set of external variables which are determined by factors outside the system and
a set of structural equations that describes the dependence of internal variables on external
variables. Causal analysis has found applications in climate change, economics, signal
processing and machine learning, etc. In this thesis, we shall briefly introduce two most
relevant causal measures: Granger causality and transfer entropy.

Granger causality

In 1969, Clive Granger established the first operational definition of causation using tools
of probability theory. The essential idea is that causal actions alter the probability of their
effects. Clive Granger pointed out that if prior knowledge of one time sequences is able to
predict the future of another time series, then causality is witnessed. The intuitive explanation
behind Granger causality is straightforward. If predictions of the value of a time series Y
based on its own past values, together with the past values of another time series X , is more
accurate than using past values of Y alone, then we say random variable X Granger-causes
Y . Suppose we have three time series X(t),Y (t),Z(t). We first try to predict Z(t +1) using
X(t) and Z(t). Then we incorporate Y (t) to see if the prediction of Z(t + 1) is improved.
If it does improve, then the past of Y (t) contains information that X(t) or Z(t) does not
possess in forecasting Z(t +1). Granger formulated a statistical test to determine whether
one variable Granger-causes another and widely accepted in economics. However, it is
generally believed that the causality measure is limited. It may produce misleading results
when multiple variables are involved. It does not address well with nonlinear causal relations,
non-stationary time sequences, existence of rational expectations[125].
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Transfer entropy

Transfer entropy, formulated by Schreiber[154] in 2000, measures directed information
transfer between joint random sequences. Different from Granger causality, which is
framed on prediction, transfer entropy focus on resolution of uncertainty. Given time
series X(t),Y (t),Z(t) as before, transfer entropy from Y to X is defined:

TY→X |Z = S(Xt+1|Xt ⊕Zt)−S(Xt+1|Xt ⊕Yt ⊕Zt), (1.18)

where S( | ) denotes conditional Shannon entropy. The transfer entropy from Y to X is the
difference between the entropy of X conditioned on the past of itself and Z, and the entropy
of X given additionally the past of Y .

Transfer entropy shows a feature of asymmetry. That is, different classical correlation
measures, which are symmetric, transfer entropy excludes the correlations due to common
input states or common history. In 2009, it is shown that transfer entropy and Granger
causality are equivalent for Gaussian states, substantiating the view point that causality
measures are alienable from information [12].

1.3 The language of open quantum systems

In this section, we review the basic postulates of quantum physics and develop the language
of open quantum system. Open quantum system refers to the scenario where a system
is not isolated, but able to exchange information and energy with the environment. The
mathematical formalism is needed when we delve into information/correlation measures of
quantum systems. We start from the postulates of quantum physics.

Axiom 1. State A quantum state is a ray living in a Hilbert space. It gives complete
description of a system.

A Hilbert space is a vector space over complex numbers. In Dirac’s notation, a vector in
Hilbert space is denoted |x⟩. It satisfy the following properties

• Linearity: ⟨φ |(α|ψ1⟩+β |ψ2⟩) = α⟨φ |ψ1⟩+β ⟨φ |ψ2⟩

• Positivity: ⟨φ |φ⟩> 0 for any non-zero |φ⟩

• Skew symmetry: ⟨φ |ψ⟩= ⟨ψ|φ⟩∗

A ray is almost identical to a vector |ψ⟩, only differs by a complex scalar. Since an overall
phase factor possess no physical significance, that is |ψ⟩ and eiα |ψ⟩ describe the same
physical state, we may simply ignore the global phase factor.
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Axiom 2. Observable Observables in quantum physics are described by self-adjoint opera-
tors.

An observable operator maps quantum state to state:

Ô : |ψ⟩ → Ô|ψ⟩. (1.19)

Observable operators are linear, that is:

Ô(α|ψ⟩+β |φ⟩) = αÔ|ψ⟩+β Ô|φ⟩. (1.20)

Further more, the eigenvalues of observable operators are interpreted as physical measurable
values, they must be represented by real numbers. So we require that the operators are also
self-adjoint:

Ô = Ô†, (1.21)

where Ô† is the complex conjugate of operator Ô:

⟨φ |Ôφ⟩> 0 = ⟨Ô†
φ |φ⟩> 0. (1.22)

Self-adjoint operators can be spectral decomposed:

Ô = ∑
i

λi|i⟩⟨i|, (1.23)

where λi are eigenvalues of the operator Ô and {|i⟩} forms a complete orthonormal basis of
the eigenstates. Therefore, we have Ô|i⟩= λi|i⟩.

Axiom 3. Evolution The dynamical evolution of a closed quantum system is governed by a
unitary operator, generated from its Hamiltonian function.

|φ(t)⟩=U(t)|φ(0)⟩, (1.24)

where U(t) is the unitary operator U(t) = e−iHt/h̄ and H is the corresponding Hamiltonian
function. The Planck’s constant h̄ may be set to 1 for convenience. The Hamiltonian of a
system is also an observable operator. So it is self-adjoint. Its eigenvalues are the accessible
energy levels of the system. An infinitesimal version of the above equation reads:

|φ(t +∆t)⟩= (I − iH(t)∆t)|φ(t)⟩. (1.25)

This is the Schroedinger equation.
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Axiom 4. Measurement If a measurement of observable Ô acts on a physical state |φ⟩, the
outcome is one of the observable’s eigenvalue λi with probability

pi = |⟨i|φ⟩|2. (1.26)

After the measurement, the state |φ⟩ collapse to the eigenstate associated with the measured
value λi. So the post-measurement state is |i⟩.

If the same measurement is conducted on an ensemble of identically prepared states, each
described by |φ⟩, the expectation value of the outcomes is

Expectation[Ô] = ∑
i

piλi = ∑
i

λi⟨φ |i⟩⟨i|φ⟩= ⟨φ |Ô|φ⟩. (1.27)

Axiom 5. Composite Systems The composite of two Hilbert space HA and HB of system A
and B together, is the tensor product of the two HA ⊗HB

If system A is prepared in state |φA⟩, system B is prepared in state |φB⟩, the state
of the composite system AB is then |φA⟩⊗ |φB⟩. By the linearity of quantum state, we
immediately obtain that if {|i⟩} forms a complete orthonormal basis for HA and {| j⟩} forms
an orthonormal basis for HB, then {|i⟩⊗ | j⟩} is a basis for HA ⊗HB.

Density operator

The stated axioms are formulated in terms of state vectors. Density operator is an alternative
formalism, which is mathematically equivalent. One may then wonder what is the point
of introducing this additional formalism. The reason is that it is particularly convenient in
describing open systems. The entropic quantities in quantum information theory is typically
formulated with respect to the density operator description of quantum systems.

We can consider the case where we don’t have perfect knowledge of the quantum state,
but a classical mixture of various possibilities. To be more precise, let a quantum system
described by a set of quantum states |φi⟩, each with probability pi. The quantum state is
described by the set {pi, |φi⟩}. A density state of a quantum system is defined by:

ρ = ∑
i

pi|φi⟩⟨φi|. (1.28)

If the density state is exactly known, that is, there is only one term in the summation
ρ = |φ⟩⟨φ |, it is called a pure state. Otherwise, it is a mixed state because it is a mixture of a
set of pure states. If a quantum system is described by a mixture of density states ρi, instead
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of pure states, it is not difficult to see that the density state describing the system is

ρ = ∑
i

piρi. (1.29)

Since the evolution of a quantum state vector is governed by axiom3, a mixture of a
quantum state then evolves into a mixture of states with same probability distribution but
each state evolves according to a unitary operator. The density state then evolves to:

ρ = ∑
i

pi|φi⟩⟨φi|→ ρ = ∑
i

piU |φi⟩⟨φi|U† =UρU†. (1.30)

The measurement acting on a quantum state vector is governed by axiom4. Translating
into the language of density state, we obtain the probability of obtaining a particular outcome
λ j upon measuring Ô is:

p( j) = ∑
i

pi⟨φi| j⟩⟨ j|φi⟩= Tr[E jρ], (1.31)

where E j = | j⟩⟨ j| is the projection operator corresponding to the eigenvalue λ j.

Properties of the density operator

So far, the formalism of density operator is developed on top of the state vector description
and relies on the ensemble interpretation. The density operator representation of quantum
physics is equivalent to the state vector-based representation. The characterization based on
density operator can be regarded as intrinsic too. Here, we further develop the properties of
density operators.

A density operator must satisfy three conditions: it must have trace =1, positively defined
in sense of Eq. 1.33 and self-adjoint. For a density operator ρ

Tr[ρ] = ∑
i

piTr[|φi⟩⟨φi|] = ∑
i

pi = 1. (1.32)

The positive requirement can also be easily proven. Take arbitrary state |ψ⟩

⟨ψ|ρ|ψ⟩= ∑
i

pi⟨ψ|φi⟩⟨φi|ψ⟩ ≥ 0, (1.33)
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where ⟨ψ|φi⟩⟨φi|ψ⟩ is the probability of projecting state |φi⟩ onto |ψ⟩, which is greater or
equal to 0. The self-adjointness is also obvious from the ensemble formalism:

ρ
† = ∑

i
pi(|φi⟩⟨φi|)†

= ∑
i

pi|φi⟩⟨φi|

= ρ. (1.34)

The self-adjointness property of density operator indicates that any density state ρ must
have a spectral decomposition

∑
i

λi|i⟩⟨i|, (1.35)

where {|i⟩} forms an orthonormal basis. The positivity and unit trace property of density
operator guarantees that λi > 0 and ∑i λi = 1. Therefore, any valid density operator can be
written as an ensemble of orthonormal states {λi, |i⟩}.

Note that the unit trace criteria applies to any density operator, being pure or mixed. But
if we look at the trace of density operator squared:

Tr[ρ2] = ∑
i

p2
i . (1.36)

It is obviously equal to unit Tr[ρ2] = 1 if ρ is a pure state, since there is only one term in the
summation. But less than 1 Tr[ρ2]< 1 if the density operator ρ is mixed. This operation is
then a test of whether a density operator is mixed or pure.

Reformulating axioms

Now we are in a position to reformulate the axioms of quantum physics using the language
of density operator.

Axiom 1 regards the description of state. For a closed system, its density operator gives
a complete description. The density operator lives in the Hilbert space associated with the
physical system. It must be positive, self-adjoint and its trace is unity.

Axiom 2 states that observables in quantum physics are described by self-adjoint operators.
This statement remains unchanged.

Axiom 3 is about the evolution of quantum state. For a closed system, the time evolution
of its density operator is governed by a unitary transformation

ρ(t) =U(t)ρ(0)U(t)†. (1.37)
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Axiom 4 is relevant to the measurement process. A Quantum measurement of an
observable Ô is represented by a set of projection operators {Ei}, where Ei = |i⟩⟨i| and {|i⟩}
is the eigenvectors of Ô. The index i refers to a potential outcome of the measurement. The
projection operators are complete, that is

∑
i

Ei = I. (1.38)

The probability of obtaining a result i upon conducting the measurement is the following:

pi = Tr[Eiρ]. (1.39)

At the end of the measurement, the density state collapses to the eigenstate | j⟩⟨ j| associated
with the measured outcome j.

Axiom 5 states the Hilbert space of composite physical systems are represented by the
tensor product of those of their component systems. If the density operator of two Hilbert
spaces HA and HB is denoted ρA and ρB, the density operator of their composite system is
then ρA ⊗ρB.

One may wonder given the density operator of a composite system ρAB, how to recover
the density state of its components? It is obtained by the partial trace operation defined as
follows:

TrB[|A1⟩⟨A2|⊗|B1⟩⟨B2|] = |A1⟩⟨A2|Tr[|B1⟩⟨B2|], (1.40)

where the partial trace is taken over subsystem B. For a product state ρAB = ρA ⊗ρB, it is
obvious that its partial trace over B gives the density state description of A, ρA = TrB[ρAB].
But when the density state ρAB is mixed, why does the partial trace operation still give the
correct subsystems’ density states?

The answer is that the partial trace operation is the only operation that gives the correct
measurement statistics for observing a component system. This is also a crucial step to
understand the quantum description of open system. For simplicity, we shall consider
bipartite system AB. The density operator of the composite system shall be denoted ρAB

and let ÔA denotes an observable for measurement on system A. Since we are not doing
anything on B, the operation acting on B can be denoted by the identity operator IB. The
overall operation performed on the composite system AB is therefore

ÔAB = ÔA ⊗ IB = ∑
i

λi|i⟩⟨i|A⊗IB. (1.41)
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After the second equal sign, we have exploited the spectral decomposition of observable ÔA

and λi are the eigenvalues.
The expectation value of the observable ÔAB acting only on subsystem A is

Expectation[ÔAB] = Tr[ÔA ⊗ IB.ρAB]

= ∑
j,y

a∗jy⟨ j|A⊗⟨y|B(ÔA ⊗ IB)∑
ix

aix|i⟩A ⊗|x⟩B

= ∑
i jx

a∗ jx aix⟨ j|ÔA|i⟩= Tr[ÔAρA], (1.42)

where we have expanded ρAB = |ψ⟩⟨ψ|AB in the basis {|i⟩A ⊗|x⟩B}:

|ψ⟩AB = ∑
ix

aix|i⟩A ⊗|x⟩B (1.43)

and
ρA = TrB[ρAB] = ∑

i jx
aixa∗jx|i⟩⟨ j|. (1.44)

Since the above calculation is general to any observable ÔA, we can then interpret ρA =

TrB[ρAB] as an ensemble of quantum state containing all the information we can acquire
from subsystem A.

Ambiguity of ensembles

The density operators in a Hilbert space form a convex set, that is, a mixed density operator
can be expressed as an ensemble of pure states in various ways. The pure states are unique
and they are extremal points of the convex set. To see this, consider two density operator ρ1

and ρ2, we can construct density operator ρ3 as a convex linear combination of ρ1 and ρ2:

ρ3 = ηρ1 +(1−η)ρ2, (1.45)

where η is a real number satisfying 0 ≤ η ≤ 1. It is easy to check that ρ3 satisfies the
necessary criteria as density operator, that is, it is positive, self-adjoint and has unit trace.
Therefore, we have shown that density operators can be expressed as a summation of other
density operators in more than one ways. The only exception is pure states. It can be easily
proven that if ρ3 is pure, then ρ1 must equal to ρ2. Therefore, pure states consist of extremal
set of the density state because they can not be expressed as linear combination of other
elements in the convex set of vectors. The any mixed state is not in the extremal set since the
spectral decomposition of any mixed state ρ = ∑i pi|i⟩⟨i| consists of more than 1 term in the
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summation. A mixed state can be regarded as different linear combinations of pure states,
all of which are experimentally indistinguishable if we look at the system alone. In the next
section when we discuss mixed state entanglement, we will come back to this point.

Generalized measurement

In the previous section, we have seen how the density operator formalism extends the state
vector-based language to describe open systems’ state. In this section, we further develop the
language of open system by generalizing orthogonal measurement to involve more general
quantum operations.

The previously stated axiom 4 is that measurement conducted on an isolated system is
described by an orthogonal projection operator. However, if we only look at part of a larger
system, the measurement operation acting on the subsystem does not necessarily belong to
orthogonal projection operators. Generalized measurement is common in practice. To make
an observation, experimentalists have to couple the observable with variables representing
the measurement apparatus, which we shall regard as an ancillary system. The coupling
between the state of a mircroscopic quantum system and an ancilla, which we may take to be
a classical indicator, would then allow us to acquire information of the microscopic quantum
system by reading the value of the classical variable.

For simplicity, we shall consider two dimensional systems spanned by {|0⟩, |1⟩}. The
result can be easily extended to multi-dimensions. Let the microscopic system of interest
labeled by A and the ancillary system labeled by B. Suppose they evolve with the joint
Unitary operation:

(α|0⟩+β |1⟩)A ⊗|0⟩B
U→ α|0⟩A ⊗|0⟩B +β |1⟩A ⊗|1⟩B. (1.46)

The ancilla initially prepared in |0⟩ is now coupled to the microscopic system A. If we
measure the ancilla in the {|0⟩, |1⟩} basis, system A is then also projected in the {|0⟩, |1⟩}
basis, leading to an orthogonal projection acting on A. However, if we measure the ancilla
in different basis, say |±⟩ = (|0⟩± |1⟩)/

√
2, then the operation acting on A is no longer

orthogonal. To see this, we shall write the evolved state in new basis

α|0⟩A ⊗|0⟩B +β |1⟩A ⊗|1⟩B

= I/
√

2|φ⟩A ⊗|+⟩B +σz/
√

2|φ⟩A ⊗|−⟩B, (1.47)
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where |φ⟩A = α|0⟩+β |1⟩ is the original state of A, I =

(
1 0
0 1

)
is the identity operator,

σz =

(
1 0
0 −1

)
is the Pauli-Z operator. Therefore, measuring the ancillary system in the

{|±⟩} basis maps the system A to either |φ⟩A or σz|φ⟩A.
The result can be generalized to multiple dimensions, in general, the evolution of a

microscopic system and an ancilla |φ⟩A ⊗|0⟩B can be represented as

∑
m

Mm|φ⟩A ⊗|m⟩B. (1.48)

We may write
Em = M†

mMm. (1.49)

The set {Em} is called positive operator valued measurement (POVM). When a POVM {Em}
is performed on an open quantum system with density operator ρ , the probability of obtaining
result m is

p(m) = Tr[ρEm]. (1.50)

POVM satisfies the following three properties:

• Completeness: ∑m Em = I

• Positivity: ⟨φ |Em|φ⟩ ≥ 0 for arbitrary state |φ⟩

• Hermiticity: Em = E†
m

The requirement of normalization |∑m Mm|φ⟩A ⊗|m⟩B|2= 1 guarantees that

∑
m

M†
mMm = I. (1.51)

The above is the completeness relation of POVMs. Positivity and Hermiticity can also be
easily proved in a similar manner.

Quantum channel

So far, we have reviewed how does part of a closed system can be described by density oper-
ator and the measurement process can be modeled by positive operator valued measurement.
What about evolution? The evolution of a closed system is governed by unitary operator.
After tracing out the ancillary systems, how does the open system of interest evolve?
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In fact, we already have a solution to this question when we introduced POVM. When the
system of interest is described by ρA = |φ⟩A⟨φ |A, the evolved density operator after tracing
out the ancillary system is given by:

ε(ρA) = ∑
m

MmρAM†
m, (1.52)

where the operators {Mm} are the same operators appearing in generalized measurement and
satisfy the properties of completeness, positivity and self-adjointness. These operators are
called Kraus operators. ε denotes a linear map acting on density operators. It is called a
quantum channel. In quantum communication the density state mapping ε can be regarded as
a channel that links the sender who sends out the state ρ and the receiver who receives ε(ρ).

Quantum channels are trace preserving completely positive maps, because it satisfies the
following properties:

• Preserve trace: Tr[ε(ρ)] = Tr[ρ]

• Preserve positivity: If ρ ≥ 0, then ε(ρ)≥ 0

• Preserve Hermiticity: If ρ = ρ†, then ε(ρ) = ε(ρ)†

• Linear: ε(αρA +βρB) = αε(ρA)+βε(ρB)

In quantum communication, when the system carrying information is sent through a quantum
channel, unavoidable interaction with its environment decoheres the system. That is, the
system evolves into a mixture of states. The decoherence process is conveniently described
with the open system language.

Decoherence

Decoherence refers to the loss of quantum coherence. For a superposition state, as long as
the relative phase exists between different states remain definite, the state is coherent. A
definite phase is essential to perform quantum computational tasks. If a system is closed,
that is, it does not interact with external systems, coherence would be preserved perfectly.
However, when the system is open, that is, we allow it to interact with the environment,
the system unavoidably interacts with the environment. The language of open system tells
us that the evolution of the system is described by a quantum channel. In general, the
system evolves from a pure state to a mixed state. Typically, we do not have access to the
environment, we can not measure and obtain information from the environment. Therefore,
the dynamics of the system is irreversible. Some information about the system is now lost.
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Decoherence places a great challenge to the realization of quantum computers. The execution
of quantum information protocols rely on the manipulation of coherent states. How to prevent
unnecessary interaction with the environment is essential in quantum computing.

For closed systems, the evolution is described by a unitary transformation. However,
we usually find it convenient to describe the evolution with a differential equation, namely,
the Schrodinger equation, which is essentially equivalent to the unitary evolution over an
infinitesimal time duration. For open systems, the evolution is described by quantum channels.
In the scenario where the evolution is Markovian, that is, information loss continuously and
never returns, the quantum channel description can be replaced by a differential equation
called the master equation.

In this thesis, one of the primary systems under consideration is a mass in a spatial
quantum superposition (a quantum superposition of two spatially distinct states). We focus
on the exponential decay of the off-diagonal components of our density matrix in the position
basis. Position-localization decoherence can be described by the dephasing channel:

⟨x1|ρ(t)|x2⟩ ∝ e−Γt⟨x1|ρ(0)|x2⟩, (1.53)

where Γ is the dephasing rate and it is typically a function of the separation |x1 − x2|. This
quantum channel is common to decoherence due to interaction with an environment. The
corresponding master equation is given by [144]:

⟨x1|
dρ(t)

dt
|x2⟩=

i
h̄
⟨x1|[ρ,H]|x2⟩−Γ(x)⟨x1|ρ(t)|x2⟩, (1.54)

where x = |x1 − x2| and H is the Hamiltonian and the decoherence rate:

Γ = γ(1− e−
x2

4a2 ). (1.55)

The value of the localization strength γ and the localization distance a depends on the nature
of the decoherence source. The expression of decoherence rate can be greatly simplified in
the following two limits:

Γ ∼

{
Λx2 x << 2a

γ x >> 2a
, (1.56)

where Λ = γ/(4a2). In the short range limit x << 2a, the decay rate is proportional to
separation squared. In the long range limit x >> 2a, the decay rate is a constant independent
of the separation. Here we focus on the two main source of decoherence for the spatially
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superposed states of masses considered in the thesis: air molecules scattering and black-body
radiation.

Air molecules scattering

The thermal wavelength of a typical air molecule is given by[144]

λ
air = 2πh̄/

√
2πmkbTe, (1.57)

where m is the mass of molecule, Te is external temperature. Substituting m ∼ 28.97amu
and Te ∼ 4.5K gives the localization distance 2aair = λ air ∼ 0.15nm. The superposition size
considered in this thesis is much larger than 2aair, the long distance limit applies x >> 2a.
The decoherence rate is then characterized by the constant parameter γair. It is given by

γair =
16π

√
2πPR2

√
3v̄m

, (1.58)

where P is the pressure of the gas, R is the molecule effective radius, v̄ is the average velocity
of the molecules.

Blackbody radiation

The thermal wavelength for photons is given by [144]

λ
bb = π

2/3h̄c/(kbTe). (1.59)

For external temperature Te = 4.5K, the wavelength λ bb = 2abb ∼ 1mm. This localization
distance is much larger than the superposition size considered in this thesis. Therefore
the short range limit x << 2a applies. The localization parameter Λbb consists of three
contributions from scattering, absorption and emission of thermal photons

Λbb = Λsc +Λa +Λe. (1.60)
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Each of the component is given by [144]

Λsc =
8!8ζ (9)cR6

d9π
(
kbTe

h̄c
)9Re[

εbb −1
εbb +2

]2 (1.61)

Λa =
16π5cR3

189
[
kbTe

h̄c
]6Im[

εbb −1
εbb +2

] (1.62)

Λe =
16π5cR3

189
[
kbTi

h̄c
]6Im[

εbb −1
εbb +2

], (1.63)

where ζ is the ζ Riemann function, εbb is the dielectric constant of the relevant blackbody
spectrum. Te and Ti are external and internal temperature respectively. Among the three
contributions, the emission localization parameter dominates because it is usually much
harder to cool the bulk temperature of the object than the external temperature.

1.4 Quantum entanglement and Bell-CHSH inequality

Quantum entanglement is at the core of quantum communication. In many protocols, quan-
tum advantage over classical communication is obtained by exploiting quantum entanglement.
It is a phenomenon that multi-component systems, for instance a group of particles, interact
or generated in a way such that the quantum state of each component can not be described
independently, even if they may be separated distantly. Entanglement is a phenomenon
unique to quantum physics. There is no such analogous quantity in classical mechanics. The
mathematical statement of entanglement of rather simple:

Consider quantum systems A and B living in two different Hilbert space HA and HB. If
the state of system A is |φ⟩A and the state of system B is |ψ⟩B. The composite system is then

|φ⟩AB = |φ⟩A ⊗|ψ⟩B. (1.64)

State that can be expressed in the product form is called separable states. Otherwise, it is
entanglement. In general, the state of a composite system can be expanded in the basis
{|i⟩A ⊗| j⟩B} where {|i⟩A} spans HA and {| j⟩B} spans HB:

|φ⟩AB = ∑
i, j

ai j|i⟩A ⊗| j⟩B. (1.65)
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In general the coefficient ai j can not be separated, leading to entangled state. A simple
example in two level system is:

1√
2
(|0⟩A ⊗|1⟩B −|1⟩A ⊗|0⟩B). (1.66)

In this case, the state of the composite system can not be represented in a product form. If a
measurement in the {|0⟩, |1⟩} basis is performed on system A, the two outcomes of 0 and 1
both occur with 50% probability.

• If 0 is measured, the system state collapses to |0⟩A ⊗|1⟩B

• If 1 is measured, the system state collapses to |1⟩A ⊗|0⟩B

if the first situation occurs, the state of system B becomes |1⟩B. That is, measurement in
the {|0⟩, |1⟩} basis would always return 1. If the latter situation occurs, then measurement
on system B would always return 0. The result holds regardless of whether A and B are
separated distantly or no. We can picture the state of {|0⟩, |1⟩} as the spin or polarization
of particles. When a pair of particles are generated such that their spins or polarization are
entangled. If one particle is spin up then the other one is spin down and wise versa. The act
of measurement on one particle collapse the entire entangled system instantaneously, altering
the measurement result of the other particle. This is the foundation of the EPR paradox
proposed by Albert Einstein, Boris Podolsky and Nathan Rosen in 1935.

The EPR paradox is a thought experiment which involves a pair of entangled particles.
The particles are distantly separated. If the position of one particle is measured, the position
of another particle can then be predicted. Similar for momentum measurements as well.
Einstein, Podolsky and Rosen argues that no action taken on one particle can instantaneously
affect the other particle because the instantaneous transmission of information is forbidden
by the theory of relativity. Therefore, they infer that quantum theory is incomplete, that is,
the position and momentum of a particle must have definite values prior to measurements.
Along this line of thinking, hidden variable theories were proposed. In 1964, John Bell
proposed a statistical measure that tests the validity of hidden variable theories versus
quantum mechanics.

Bell inequality

Bell’s theorem shows that quantum physics is incompatible with local hidden variable theories.
Local refers to the principle that a particle can only be influenced by its surroundings and
interactions must occur through a mediator, which travels with a speed no greater than
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the speed of light. Hidden variable theories represent the theories which assume that the
physical observables of a system is predetermined and not affected by how one performs the
measurement. The hidden variable theories regard the probabilistic predictions of quantum
theory as a result of ignorance of the predetermined hidden variables, hence quantum theory
is incomplete. John Bell found out that if we consider a pair of entangled particles and then
perform measurement on the particles locally, hidden variable theories would then impose a
mathematical constraint on the outcomes of how the measurements are correlated. In other
words, quantum mechanics’ prediction of the measured correlations would differ from those
predicted by hidden variable theories.

Consider two parties Alice and Bob, who performs two sets of measurements A1,A2 and
B1,B2. Each measurement results in either +1 or −1. Here we assume that 1. the physical
observables a1,a2,b1,b2 are predetermined, that is, they exist independent of whether it is
being measured or not; and 2. locality, that is, Bob’s choice of measurement has no impact on
Alice’s result and vice versa. Consider the following combination of measured observables:

a1b1 +a1b2 +a2b1 −a2b2. (1.67)

You can convince yourself easily that the combination can only takes the value of either +2
or −2. Therefore if the same experiment is conducted with the same setting multiple times,
the expectation value of the measured set must be no greater than 2:

⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩−⟨A2B2⟩ ≤ 2. (1.68)

This is called Bell-CHSH inequality. As we shall see later that Quantum mechanics give a
different bound on the inequality.

Consider an initial state prepared in maximally entangled state:

|ψ⟩= 1√
2
(|0⟩A ⊗|1⟩B −|1⟩A ⊗|0⟩B) (1.69)

and let the measurement represented by:

A1 = σz,A2 = σx

B1 = −
σx +σy√

2
,B2 =−

σx −σy√
2

, (1.70)

where σx and σz are Pauli-X and Pauli-Z operators respectively. The eigenvalues of all the
measurements A1,A2,B1,B2 are either -1 or 1. Substituting the maximally mixed initial state
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gives:
⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩−⟨A2B2⟩= 2

√
2. (1.71)

Clearly, this result violates Bell-CHSH inequality obtained for local hidden variable theories.
In fact the above result bounds the inequality:

⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩−⟨A2B2⟩ ≤ 2
√

2. (1.72)

The violation of quantum mechanics with Bell-CHSH inequality indicates that local hidden
variable theories are incompatible with quantum physics and the only possibility that hidden
variable theories could explain the prediction of quantum physics is that they are non-local.
That is, the particles, distantly separated, are able to interact instantaneous. Experimental
test of Bell inequality started in 1972 with John Clauser and Stuart Freedman. The initial
experiment was using photon’s polarization for measurement. The signals are then detected
by coincidence monitor. The results are of course consistent with quantum mechanics and
eliminated the possibility of local hidden variable theories.

Entanglement witness Following Bell’s theorem, entanglement witness has been studied
to distinguish entangled state from separable state. Entanglement witnesses are functionals
of density matrix. The task is to find necessary and sufficient conditions for the existence of
entanglement in noisy quantum state. For low dimensional bipartite state, it is known that
positivity of partial transposition provides a necessary and sufficient condition for separability.
But it fails for mixed multipartite state. In 2001, a more general formalism of entanglement
witness based on linear maps positive on product states is introduced [82] to characterize
mixed state entanglement. Note that entanglement witness is by no means a quantification of
entanglement, but to test separability.

An observable W is an entanglement witness if and only if

Tr[Wρ]≥ 0, (1.73)

for all separable state ρ .
The relevant entanglement witness considered in this thesis include

I ⊗ I +σx ⊗σz +σy ⊗σy (1.74)

I ⊗ I −σx ⊗σx −σy ⊗σz −σz ⊗σy. (1.75)

Implementation of this entanglement witness on bipartite state requires Pauli-X , Y , Z mea-
surement.
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Stern-Gerlach apparatus A typical method to entangle the spin degree of freedom and
spatial degree of freedom is to send a spin embedded mass through a Stern-Gerlach apparatus.
Spin embedded mass is sent through inhomogeneous magnetic field, which may be generated
from a set of permanent magnets or current carrying wires, the magnetic field gradient
exerts a spin-dependent force on the test mass. Consider a spin embedded nano-crystal,
say a diamond with a single spin-1 nitrogen-vacancy center. The spin’s symmetry axis is
aligned along x axis and a uniform magnetic field gradient dB

dx is applied. The corresponding
Hamiltonian is

H =
p2

2m
−g.µB

dB
dx

σz.x, (1.76)

where µB is the Bohr magneton, g is the Lande g factor, σz is Pauli-Z operator and p, x are
momentum, position operator respectively.

The second term in the Hamiltonian g.µB
dB
dx σz.x entangles the spin degree of freedom

and spatial degree of freedom. Depends on the spin state of the system, the test particle can
be deflected along either x+ or x− direction before striking a detector screen. The schematic
diagram is shown in Fig. 1.1.

Fig. 1.1 Stern-Gerlach apparatus

1.5 Quantum bits

As introduced in the classical information section, bit is the building block of classical
computation. In Quantum communication, a quantum bit or qubit for short is the fundamental
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concept. Similar to the classical bit, which takes the value of either 0 or 1, a quantum bit is a
linear combination of a two level system:

|φ⟩= α|0⟩+β |1⟩, (1.77)

where α and β are complex numbers denoting probability amplitude. The |0⟩ and |1⟩ state
form the computational basis. A qubit state is therefore a unit vector in 2-dimensional Hilbert
space. A classical bit can only take the value of either 0 or 1. For a qubit, on the other hand,
can be a superposition of |0⟩ and |1⟩ state.

When multiple qubits are present, the system is then spanned by a tensor product of |0⟩
and |1⟩ state. For instance, a two qubit system would be spanned by |00⟩, |01⟩, |10⟩, |11⟩. A
two qubit state can then be expressed as

|φ⟩= a00|00⟩+a01|01⟩+a10|10⟩+a11|11⟩. (1.78)

As illustrated previously, multipartite quantum system can be entangled. Such quantum
systems possess correlations that are not present in classical systems. These quantum correla-
tions can exploited to perform information processing tasks such as quantum teleportation
and super-dense coding. We will explore these protocols later.

Manipulation of classical bit in classical computer is typically implemented with electrical
circuits made from transistors. The state of art technology in semi-conductor enables
integrated circuits with billions number of transistors on each chip. The manipulation of
quantum bit is then implemented with quantum gates. Here, we briefly review some simple
quantum gates and how they may be realized.

A quantum NOT gate should be able to take the state |0⟩ to |1⟩ and take the state |1⟩ to |0⟩.
For a linear superposition state α|0⟩+β |1⟩, the quantum NOT gate should be able to turn it
into α|1⟩+β |0⟩. Therefore the quantum operator can be described by a two level matrix.
For quantum NOT gate on single qubit, it is equivalent to the Pauli-X matrix represented by:

σx =

(
0 1
1 0

)
. (1.79)

Note that quantum gates are unitary. For quantum gate denoted U , U †U = I. Recall from
the axioms of quantum physics, the evolution of a closed system is represented by a unitary
operator. Here, quantum gates are modeled by such an evolution. Other non-trivial quantum
gates including the Z-gate, which flips the sign of |1⟩ but leaves |0⟩ unchanged. Its matrix
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representation is given by:

σx =

(
1 0
0 −1

)
. (1.80)

The Hadamard gate denoted by letter H turns |0⟩ into (|0⟩+ |1⟩)/
√

2 and turns |1⟩ into
(|0⟩− |1⟩)/

√
2. Its matrix representation is given by:

σx =

(
1 1
1 −1

)
. (1.81)

Quantum gates that act on multiple qubits are also important. An important theoretical
result is that single qubit gates and CNOT gates are universal. It means that any quantum
gates operating on multipartite system can be decomposed into CNOT gate and singe qubit
gates. A CNOT gate acts on two qubits. It flips the target qubit if the control qubit is in
state 1 but leave the target qubit unchanged if the control qubit is in state 0, represented in
equations:

|00⟩ → |00⟩; |01⟩ → |01⟩; |10⟩ → |11⟩; |11⟩ → |10⟩. (1.82)

The matrix representation of CNOT gate in the standard basis {|00⟩, |01⟩, |10⟩, |11⟩} is
therefore:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.83)

The unitary property of CNOT gate can be easily checked.

1.6 Quantum Information theory

So far, we have covered how quantum systems can carry information and how quantum
characteristics of these systems lead to interesting information protocols such as quantum
teleportation, super-dense coding. In this section, we review how concepts in classical
Shannon theory can be generalized to the quantum setting. In parallel with its classical
counterpart, this section would discuss the aspects:

1. Noiseless coding theorem: How much can quantum information be compressed?
2. Characterization, witness and quantification of quantum entanglement
3. Noisy channel coding theorem: At what rate can reliable communications, being

classical or quantum, take place over noisy channel?
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The study of quantum information is centered around the manipulation of von-Neumann
entropy, the quantum version of Shannon entropy. This thesis focus on the principle issues of
quantum information theory. So we will look at information protocols in a asymptotic setting.
How does information processing task perform when the number of quantum channels
approaches infinity and the same quantum channel and quantum state are identically and
independently distributed.

von Neumann Entropy

Classical information theory is largely concerned with the interpretation of Shannon entropy
and its relatives. We have seen that Shannon entropy gives the asymptotic incompressible
information contained in a sequence and it also gives rise to the rate of reliable information
transmission through noisy channels. von-Neumann entropy plays a similar role in quantum
information theory. Here we review the mathematical properties of von-Neumann entropy
before discussing its information theoretical implications. The definition of von Neumann
entropy is given by:

S(ρ) =−Tr[ρ log[ρ]], (1.84)

where we have adopted the conventional basis of 2 for the logarithm function. Here the
notation of Shannon entropy and von Neumann entropy are not distinguished. Which
one applies should be clear by the context of whether being classical (Shannon entropy) or
quantum (von Neumann entropy). Recall that density operator ρ can be spectral decomposed:

ρ = ∑
i

λi|i⟩⟨i|. (1.85)

Substituting in the spectral decomposition of ρ we obtain

S(ρ) =−∑
i

λi log[λi]. (1.86)

This is same as the Shannon entropy of the distribution specified by {λi}. Therefore, we
could interpret von Neumann entropy of a given density state as the Shannon entropy of the
distribution specified by the density state eigenvalues. Here, we state without proven the
basic properties of von Neumann entropy:

• S(ρ) = 0 if and only if ρ is pure. That is, if ρ satisfies Tr[ρ2] = 1

• Given the dimension of the Hilbert space d, S(ρ)≤ logd. The bound saturates when
the quantum state is maximally mixed, that is, all the eigenvalues are identical.



30 Introduction

• S(ρ) is invariant under a change of basis, that is, given unitary operation U , S(ρ) =
S(UρU†). Since the entropy only depends on the eigenvalues of ρ

• S(ρ) is concave. Given a set of positive numbers that sum to one ∑i αi = 1 and density
operators with the same index ρi, the following equation holds:

S(∑
i

λiρi)≥ ∑
i

λiS(ρi). (1.87)

This is a direct outcome of the convexity of log function.

• S(ρ) is additive for separable states. Given two density state ρA, ρB that lives in Hilbert
space HA, HB respectively, the equation holds:

S(ρA ⊗ρB) = S(ρA)+S(ρB). (1.88)

• For pure bipartite system A,B with state |φ⟩AB, the entropy of each subsystem equates:

S(ρA) = S(ρB). (1.89)

• For any tripartite system A, B, C, S(ρABC) is strongly subadditive:

S(ρABC)+S(ρB)≤ S(ρAB)+S(ρBC). (1.90)

It also implies subadditivity of S(ρ) on bipartite systems:

S(ρAC)≤ S(ρA)+S(ρC). (1.91)

A sharp contrast of quantum entropy and classical entropy is that for classical systems, the
Shannon entropy of a joint system is always larger than each subsystem. This is intuitive
because we generally expect that we cannot have more information about a subsystem
than the whole system. But for quantum systems, for instance, a pure bipartite system
|φ⟩AB, its entropy is zero. But S(ρA) = S(ρB)> 0. How can it be that we know everything
about the whole system but uncertain about its subsystem? The answer lies in the quantum
entanglement between the subsystems. The information is stored in the correlation of the
subsystems. The statement should be clearer when we introduce the quantification of entropy.
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Other Entropic measures

Just like the classical case where entropic measures based on Shannon entropy gives answers
to classical information processing tasks, for instance, classical mutual information gives a
quantification of accessible information through a noisy channel, von Neumann entropy also
gives rise to entropic measures that play central role in quantum information processing.

Quantum conditional entropy of a bipartite system is the entropy of the joint system
minus the entropy of one subsystem:

S(A|B) = S(AB)−S(B), (1.92)

where the entropy is evaluated on the density state of the joint system AB ρAB. This definition
is a direct extension of classical conditional entropy.

Coherent information of a bipartite system ρAB is defined as

I(A⟩B) = S(B)−S(AB). (1.93)

You would immediately realize that coherent information is simply the negative of conditional
information. Then why do we employ a separate name for this quantity? In classical
information theory, conditional entropy is always positive because we are more certain about
a subsystem than the entire system. But this is not the case for quantum physics. You can
convince yourself that for bipartite maximally entangled state, the entropy of the entire
system is 0, but each subsystem is described by a two dimensional maximally mixed state, so
S(A|B) = 0−1 =−1bit. How can it be negative? We have briefly explained earlier as the
presence of entanglement stores information in the correlations between subsystems. In this
case, the coherent information is positive and gives 1bit. Coherent information deserves its
own name because it gives answer to certain information processing tasks. In particular, it
gives channel capacity of quantum communication, in which a sender is trying to transmit
the entanglement with some inaccessible reference system through noisy quantum channels
to the receiver.

Quantum mutual information is a direct extension of classical information. Just like
its classical counterpart, quantum mutual information plays a central role in quantifying
accessible information through noisy quantum channels. Quantum mutual information of a
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bipartite system ρAB is defined as:

I(A;B) = S(A)+S(B)−S(AB). (1.94)

From the definition we can directly see its relation with conditional entropy and coherent
information:

I(A;B) = S(A)−S(A|B) = S(A)+ I(A⟩B). (1.95)

Quantum relative entropy Quantum relative entropy act as a "parent" among entropic
measures in quantum information theory. Many entropy quantities can be expressed in terms
of it. The quantum relative entropy S(ρ1||ρ2) between two density operators ρ1, ρ2 is defined
as

S(ρ1||ρ2) = Tr{ρ1(logρ1 − logρ2)}. (1.96)

The importance of quantum relative entropy is comparable to von Neumann entropy itself. It
is useful to review its key properties:

• The quantum relative entropy is non-negative

S(ρ1||ρ2)≥ 0. (1.97)

• Invariant under unitary transformation U

S(ρ1||ρ2) = S(Uρ1U†||Uρ2U†). (1.98)

• The quantum relative entropy between two density states can not increase under the
application of the same quantum channel ε

S(ρ1||ρ2)≥ S(ε(ρ1)||ε(ρ2)). (1.99)

Quantum relative entropy can be regarded as quantifying how far about two states are in
quantum information, though it is not strictly a distance measure. The property that it can
not increase under the application of a common quantum channel is relevant to quantum
information processing inequality, which states that processing quantum data decreases
quantum correlations.
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Noiseless coding theorem

The essence of classical noiseless coding theorem is that one only needs to code the typical
sequences as the atypical sequences becomes negligible asymptotically. Similarly, the
quantum incompressible information is determined by the typical subspace.

Consider messages drawn from an ensemble {px, |φx⟩}, so each letter is determined by a
density matrix

ρ = ∑
x

px|φx⟩ ⟨φx|. (1.100)

A n-letter message is then determined by the tensor product of each letter’s density state

ρ
⊗n. (1.101)

Recall that density states contain all the information one can obtain from the system regardless
of how it is represented in terms of pure states. Note that density states can be spectral
decomposed into orthogonal states ρ = ∑i λi|i⟩⟨i|. We can then perceive each letter as drawn
from a classical probability distribution specified by the eigenvalues {λi}. Therefore, the
quantum information source is equivalent to a classical source in this basis. Following
from Shannon’s argument, one immediately realize that the density matrix specified by
ρ⊗n has asymptotically all of its support on the subspace spanned by (|i⟩⟨i|)⊗n whose
corresponding classical sequences are typical. Therefore, the dimension of the typical
subspace asymptotically approaches

2nS(ρ). (1.102)

Therefore, the rate at which one can compress quantum information stored in a state ρ

without loss of information asymptotically is equal to its entropy S(ρ). The essence is that
nearly all message has entire support on the typical subspace, so one only needs to code the
typical subspace and ignore the rest.

Entanglement concentration and dilution

Another way to look at von Neumann entropy is that it gives answer to the quantification
of quantum entanglement. This feature is unique to quantum information theory. Suppose
we have a set of pure bipartite systems, all of which are entangled, how do we know which
one of the systems are more entangled than others? We have seen that entanglement can be
treated as a resource in quantum information processing tasks. How much of this resource is
contained in each entangled pair?
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Local operations and classical communication First, we shall note that entanglement
can not be generated by local operations and classical communication, abbreviated LOCC.
Suppose two parties possess a quantum state independently, so that the composite system is a
separable state ρA⊗ρB. The two parties are allowed to exchange classical messages with each
other but can only perform quantum operations on their own site. The evolution of each state
is then described by a unitary operator. More generally, the evolution is described by quantum
channels. Since classical messages are allowed, we may assume that the quantum channels
acting on each state are correlated, denoted by a subscript εα(ρA)⊗ εβ (ρB). Regardless of
how α and β are correlated, the composite system is always described by a tensor product
state, therefore, remains separable. More generally, any quantification of entanglement
should possess the feature that it does not increase under LOCC and vanishes for separable
state.

Now let us turn back to the quantification of entanglement. Recall that in previous
examples of using entanglement as a resource, we have been using maximally entangled
state, called ebit. So the key to quantify entanglement is to convert entangled states with
LOCC into maximally entangled state, which acts as a choice of currency for comparison.
Now the problem becomes identifying the rate at which one can convert a entangled state
into a ebit. Consider n pairs of entangled state shared between two parties AB |ψ⟩⊗n

AB , they
are to be converted into Bell state |φ⟩⊗k

AB. The rate of conversion is then

R =
k
n
. (1.103)

We can also ask the reverse problem, given k Bell state pairs |φ⟩⊗k
AB, how many pairs of |ψ⟩AB

can be generated? For pure bipartite state, these two measures, called entanglement dilution
an concentration respectively, are equivalent. So the processes are reversible and we may not
distinguish between the two rates. For mixed state, the situation is more complicated. But
we shall not cover the topic in this thesis due to limited spaces.

The asymptotic rate of conversion for each state |ψ⟩AB is equal to the entropy of its
subsystems.

S(ρA) = S(ρB), (1.104)

where ρA = TrB[|ψ⟩AB⟨ψ|AB] and similar for ρB.
To give a hint of how the conversion may be implemented, consider the entanglement

dilution protocol where two parties AB are converting nS(ρA) pairs of Bell states into n
pairs of |ψ⟩AB with LOCC. First Alice creates n copies of |ψ⟩AA′ at her own site, hence
local operation. She then performs the compression protocol to compress subsystem A′ into
nS(ρA′) bits. Next, she exploit the pre-shared entanglement of nS(ρA) pairs of Bell state and



1.6 Quantum Information theory 35

classical communication channels to perform quantum teleportation, so that subsystem A′ is
now teleported to B. Bob then decompresses the states. Now Alice and Bob share the state
|ψ⟩⊗n

AB with perfect fidelity asymptotically.

Noisy channel coding theorem

This sections explores that dynamical aspect of Quantum information theory. When a
sender and a receiver communicates through quantum channels, the system that encodes the
transmitted message interact with the environment. At what rate can reliable communication
occur? The result is a direct generalization of Shannon’s noisy channel coding theorem.
However, as we discussed in the unit protocols of quantum information, entanglement shared
between the sender and the receiver acts as a resource. Depends on what communication
resource is available and what type of information, being classical or quantum, is transmitted,
quantum information theory is richer than its classical counterpart. The typically studied
information processing tasks are 1. classical communication, where a sender and receiver
are communicating classical messages through quantum channels but without pre-shared
entanglement. 2. Entanglement assisted classical communication, where unlimited pre-shared
entanglement is available. 3. Quantum communication, where the sender is trying to transmit
the entanglement with an inaccessible reference system to the receiver. 4. Entanglement-
assisted coherent communication. These protocols maybe regarded as generalizations of
the pre-discussed unit protocols. The entanglement assisted classical communication, for
instance, is a direct generalization of super dense coding in noisy environment. In this thesis,
we will take classical communication over quantum channels as an example to illustrate the
basic concepts in noisy channel coding theorem without delve into details.

The information processing protocol for classical communication over quantum channels
is as follows: the sender encodes a message into quantum codeword as input. The codeword
then transmit through n independently, identically distributed quantum channels. The decoder
receives the codeword and performs POVM to determine which message is sent. Let the
message to be selected from a set {1, .,x, ..,M}. The sender prepares a quantum state of
dimension 2n encoding the message x, denoted ρx

An . The state is then transmitted through n
channels denoted ε so that the received state is

ε
⊗n(ρx

An). (1.105)
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The receiver then performs a set of POVM {Λx} to decode the message. The probability of
obtaining the correct message is

p = Tr[Λxε
⊗n(ρx

An)]. (1.106)

The rate of communication is then

R = logM/n. (1.107)

A rate R is achievable if the probability of obtaining the correct message reaches 1 as n
approaches infinity. The classical capacity C(ε) of a quantum channel ε is the maximum of
all achievable rates through quantum channel ε for classical communication.

Here, we state without proven the classical capacity theorem:

The classical capacity of a quantum channel ε is given by the regularization of the Holevo
information of the channel

C(ε) = lim
n→∞

χ(ε⊗n)/n, (1.108)

where χ(ε) denotes the Holevo information of the channel

χ(ε) = max
ρ

I(X ;B). (1.109)

I(X ;B) is the mutual information evaluated with respect to the state

ρXB = ∑
x

px|x⟩⟨x|X⊗εA→B(ρ
x
A). (1.110)

The classical state {|x⟩⟨x|} carries information of the message. It can be regarded
as a copy of the message for the sender’s reference. The Holevo information gives an
upper bound on the accessible classical information. The regularization process refers to
averaging over all n channels. In the case where a particular channel εi is additive, that
is limn→∞ χ(ε⊗n

i )/n = χ(εi), the regularization is no longer needed. In general, quantum
channels are superadditive limn→∞ χ(ε⊗n)/n > χ(ε). This is a reflection that entanglement
among the input state could, in general, protect the information from noise. If we restrict to
product input state ρx

An = ρ
⊗n
A , the channel capacity is then C(ε) = χ(ε).

Proof of the channel capacity theorem again consists of a direct coding theorem and a
converse theorem, similar to its classical counterpart. The direct theorem is to show that the
regularized Holevo information is achievable by exploiting quantum typicality. The converse
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theorem is to prove that the rate is optimal, which make use of random encoding and quantum
data processing inequality.

For other information processing tasks, for instance, entanglement assisted classical com-
munication, quantum communication, entanglement-assisted coherent communication, the
channel capacity is generally expressed in terms of entropic measures introduced previously
including quantum mutual information and coherent information. Hence, we claim that the
significance of these entropic measures is that they give operational answers to quantum
information processing tasks.

1.7 Quantum field theoretical origin of gravity

Causality is one of the salient features of a local quantum field theory [172]. The causality
dictates that separated space-like local operators must commute, which ensures that the
measurement at a spacetime point x, cannot influence the measurement at a spacetime point
y, if x and y are not causally connected. This property will also hold in interacting theories.
It is usually treated as one of the axioms of local quantum field theories [78].

A causal structure of field theory can be probed by the nature of a Feynman propagator.
By preparing a particle at spacetime point x, we can ask what is the amplitude to find it at
point y, and vice versa. For a massless quantum field theory, one can show that the Feynman
propagator has a support only within the past and future light cones, and vanishes strictly
for space-like separation. Indeed, in a relativistic quantum field theory there is a way to
interpret the results; the amplitude for the particle to propagate from x → y gets canceled
by an anti-particle traveling from y → x. The challenges arise in a non-relativistic quantum
field theory, where there is no concept of an anti-particle. Indeed, in quantum mechanics we
have a conservation of a particle number, which would not have been possible in a relativistic
quantum field theory. Nevertheless, even if we are working in a regime of quantum mechanics
we are always in a hybrid scenario, where the masses are non-relativistic, but their interaction
is mediated by a relativistic quantum field theory. Such examples are abundant, slowly
moving charged particles are interacting via massless photon, or non-relativistic massive
particles are interacting via massless spin-2 graviton.

Any interacting local quantum field theory possesses an interesting quantum feature,
known as quantum entanglement, which measures quantum correlation [34]. In particular,
in the S-matrix formulation, for arbitrary initial states, the final states will get entangled by
virtue of quantum interaction or via a quantum mediator. These results are also corroborated
from a theorem in quantum information theory, which states that local operation and classical
communication (LOCC) cannot lead to an increment in the entanglement of two quantum
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systems [22]. We would require local operation and quantum communication (LOQC) to
entangle the two unentangled quantum states to begin with, which was recently highlighted
in the context of both local and non-local quantum field theories of gravity, see [121]. LOQC
builds this foundations and basis for testing the quantum nature of a graviton in the lowest
order in the scattering diagram, which was recently proposed in a spin entanglement witness
for quantum gravity [28]. The theoretical and experimental protocol is known as quantum
gravity induced entanglement of masses (QGEM). The protocol relies on bringing two quan-
tum masses sufficient close to each other, where other interactions such as electromagnetic
interactions can be sufficiently screened, and then study quantum correlations between the
two quantum masses to ascertain whether the final states are entangled or not.

The aim of this thesis will be to explore such a hybrid regime, and illustrate how causality
will influence quantum properties, such as quantum entanglement. This will be an indirect
test to causal propagation of the quantum mediator. In the case of gravity, it will ensure that
the graviton propagation between the two sources happen within the causal light cone, and
not outside the light cone.

Let us first consider the gravitational action

S =
∫

d4x
√
−g

[
M2

p

2
R

]
, (1.111)

where Mp ∼ 2.4×1018 GeV is the Planck mass. The physical excitations of this action around
the Minkowski background has been studied widely. We can compute the second variation
of the action, using gµν = ḡµν +hµν , where µ,ν = 0,1,2,3 and. A quick computation can
be made by employing the covariant mode decomposition of the metric following Refs. [29]

hµν = h⊥µν + ∇̄µAν + ∇̄νAµ +

(
∇̄µ∇̄ν −

1
4

η̄µν□̄

)
B+

1
4

ḡµνh, (1.112)

where h⊥µν is the transverse and traceless spin-2 excitation, Aµ is a transverse vector field,
and B, h are two scalar degrees of freedom. Upon linearization around maximally symmetric
backgrounds, the vector mode and the double derivative scalar mode vanish identically, and
we end up only with h⊥µν and φ = h− □̄B [121]. Performing necessary computations (which
are indeed straightforward around Minkowski as all derivatives commute), one gets [121]

δ
2S(h⊥µν) =

∫
d4x

√
−ḡ

1
2

h⊥µν□̄h⊥µν

δ
2S(φ) =

∫
d4x

√
−ḡ

1
2

φ□̄φ , (1.113)
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for the tensor component (where the field was rescaled by Mp/2 to become canonically
normalised), and the scalar component (where the field was rescaled by Mp

√
3/32 to be

canonically normalised), respectively.
If we wish to quantise purely gravitational waves, it suffices to quantise just the transverse

traceless graviton, h⊥µν . Though perturbative quantization of gravity is fundamentally a
non-renormalizable theory, it can be understood as an effective field theory for which the
graviton gives a good description in the low energy limit [55].

However, if we wish to understand the covariant virtual graviton propagator, the full
graviton propagator is required, which can be written using a similar method to [16], barring
the suppressed indices

Π(k2) =
P(2)

k2 − P(0)

2k2 . (1.114)

Assuming the massive external particles have zero spin, the Feynman rules for graviton
exchange can be computed by the covariant S-matrix Scov

f i = ⟨ f |S|i⟩cov, where Scov
f i =

−i8πGT (1)
µν Πµναβ T (2)

αβ
δ 4(Pf i), where δ 4(Pf i) is the four momenta conservation. In the non-

relativistic limit it will give us the gravitational potential where we use Scov
f i = iδ 4(Pf i)T cov

f i .

V (r) =
∫

d3ke−ik·rT cov
f i (NR) =−Gm1m2/r. (1.115)

Although, the lowest order potential does not have explicit h̄, the exchange of graviton is
a quantum process where both h⊥µν and scalar φ degrees of freedom contribute in virtual
exchange of a graviton. The presence of h̄ appears in the gravitational potential V (r) at
one-loop in graviton exchange, ∼ 32G2m1m2h̄/15πr3. Indeed, by including the spin in the
particles, such as fermions in the initial and final states will yield an extra contribution in the
metric potential, which is at the lowest order independent of the mass term, i.e. ∝ 2GS⃗× r⃗/r3,
which is further suppressed by the distance between the two masses. Therefore, leading order
contribution in G arises from the spin-less components, i.e. Newtonian potential.

Our aim will be to study the scattering amplitude between the two neutral masses, but we
will embed an electronic spin inside the neutral masses, and study the lowest order in G and
the distance, which is dominated by Gm1m2/r in order to compute the entanglement.
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Massive Spatial Qubits





Chapter 2

Massive Spatial Qubits: Testing
Macro-Nonclassicality & Casimir
Entanglement

In Chapter 2, we present a new tool: massive spatial qubits. An open challenge in physics is
to expand the frontiers of the validity of quantum mechanics by evidencing nonclassicality
of the center of mass state of a macroscopic object. Yet another equally important task is
to evidence the essential nonclassicality of the interactions which act between macroscopic
objects. The methodology of encoding qubits in the spatial superposition states of massive
objects addresses these two challenges. In particular, we show that if two distinct localized
states of a mass are used as the |0⟩ and |1⟩ states of a qubit, then we can measure this
encoded spatial qubit with a high fidelity in the σx,σy and σz bases simply by measuring
its position after different duration of free evolution. This technique can be used to reveal
the irreducible nonclassicality of the spin-centre of mass entangled state of a nano-crystal
implying macro-contextuality. Further, in the context of Casimir interaction, this offers
a powerful method to create and certify non-Gaussian entanglement between two neutral
nano-objects. The entanglement such produced provides an empirical demonstration of the
Casimir interaction being inherently quantum.

2.1 Motivation

It is an open challenge to witness a nonclassicality in the behavior of the center of mass
of a massive object [102, 7]. While there are ideas to observe nonclassicalities of ever
more massive objects [27, 5, 120, 25, 38, 145, 146, 144, 151, 170, 26], the state of art
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demonstrations have only reached up to macro-molecules of 104 amu mass [66, 58]. Such
demonstrations would test the limits of quantum mechanics [52, 137, 15, 127, 131, 173],
would be a stepping stone to witness the quantum character of gravity [28, 121, 119, 116, 165],
and would open up unprecedented sensing opportunities [123]. Identifying new tools to
probe macroscopic nonclassicality (by which here we mean in terms of large mass) is thus
particularly important. Here we propose and examine the efficacy of precisely such a tool: a
mechanism to read out a qubit encoded in the spatial degree of freedom of a free (untrapped)
mass (a purely spatial qubit). A principal merit of this scheme is that measuring the spatial
qubit operators σx,σy and σz exploits solely the free time evolution of the mass (Hamiltonian
H = p̂2/2m), followed by the detection of its position. As the mass is not controlled/trapped
by any fields during its free evolution, decoherence is minimized.

As a first application, we show that our tool enables the verification of an irreducible
nonclassicality of a particular joint state of a spin (a well established quantum degree spin)
and the center of mass of a macroscopic object, whose quantum nature is yet to be established.
To this end, we use the state produced in a Stern-Gerlach apparatus which is usually written
down as an entangled state of a spin and the position [56, 79, 88, 116, 118, 147]. Such
Stern-Gerlach states have been created with atoms with its spatial coherence verified after
selecting a specific spin state [114, 118]. However, there are, as yet, no protocols to verify
the entanglement between the spin of an object in a Stern-Gerlach experiment and the motion
of its center of mass in a way which can be scaled to macroscopic objects. We show that
this can be accomplished via the violation of a Bell’s inequality in which the spin and the
positions of the mass are measured. This violation will also prove the nonclassicality of a
large mass in terms of quantum contextuality [1, 80].

Next, we propose a second application once the quantum nature of the center of mass
degree of freedom of macroscopic objects is assumed (or established in the above, or in some
other way). This application has import in establishing the quantum nature of the interactions
between macroscopic objects. We show how our spatial qubit methodology can enable
witnessing the entanglement created between two neutral nano-crystals through their Casimir
interaction. This has two implications: (a) It will empirically show that the extensively
measured Casimir interaction [100, 181, 180] is indeed quantum (e.g., is mediated by virtual
photons similar to [134, 101] – if photons are replaced by classical entities they would not
entangle the masses [28, 121, 119, 86, 99]). (b) As the entangled state is generated by starting
from a superposition of localized states, it is non-Gaussian. While there are ample methods
for generating [140, 98, 174] and testing [155] Gaussian entanglement of nanocrystals, there
is hardly any work on their non-Gaussian counterparts.
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We are constructing our methodology by combining ideas from two different quantum
technologies: photonic quantum information processing and the trapping and cooling of
nano-crystals. In the former field a qubit can be encoded in the spatial mode of a single
photon by passing it through an effective Young’s double slit [162]. These qubits, called
Young qubits, and their d-level counterparts [67, 150], have been exploited in quantum
information [95, 143]. On the other hand, we have had a rapid development recently in
the field of levitated quantum nano-objects [38, 145, 11] culminating in their ground state
cooling and the verification of energy quantization [49, 163]. While several schemes for
verifying quantum superposition of distinct states of such objects have been proposed to date,
in these schemes, either the x,y and z motions are measured as infinite dimensional systems
[144, 17, 184] rather than being discretized as an effective qubit, or never measured at all
(only ancillary systems coupled to them are measured [151, 170]). Here we adapt the idea
of Young qubits from photonic technologies to massive systems. Note that a very different
encoding of a qubit in the continuous variables of a harmonic oscillator was proposed long
ago for quantum error correction [71], which is not suited to an untrapped nano-crystal.

2.2 Qubit Encoding and its Measurement in all Bases:

Our encoding is intuitive: |0⟩ and |1⟩ states of a qubit are represented by two spatially
separated (say, in the x direction) non-overlapping wavepackets whose position and momenta
are both centered around zero in the other two commuting (y and z) directions. Explicitly,
these states (writing only the x part of their wavefunction) are

|0⟩ ≡ 1
√

σdπ1/4

∫
∞

−∞

exp[−(x+d/2)2

4σ2
d

]|x⟩dx, (2.1)

|1⟩ ≡ 1
√

σdπ1/4

∫
∞

−∞

exp[−(x−d/2)2

4σ2
d

]|x⟩dx, (2.2)

with d >> σd . These states are schematically depicted in Fig. 2.1 in which only the x
direction is depicted along with their evolution in time. For simplicity, we will omit the
acceleration due to the Earth’s gravity (as if the experiment is taking place in a freely falling
frame), which can easily be incorporated as its effect commutes with the rest. Thus we only
consider 1D time evolution in the x direction. In this chapter, we will only require two states:
(a) a state in which a spin embedded in a mass is entangled with the mass’s spatial degree
of freedom in the state |φ+⟩= 1√

2
(|↑,1⟩+ |↓,0⟩) for our first application, and (b) the spatial
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Fig. 2.1 Spatial detection for σx,σy measurements: a pair of detectors (color: orange) located at phase
angle θ = 0,θ = π perform σx measurement. The detectors (color: purple) at θ = π/2,θ =−π/2 perform σy
measurement.
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qubit state |+⟩= 1√
2
(|0⟩+ |1⟩) as a resource for our second application. Preparation of the

above adapts previous proposals and will be discussed with the respective applications.
We now outline our central tool: the method of measuring the above encoded spatial

qubit in various bases. The spatial detection can be performed by shining laser light onto
the test masses [68, 168]. The Rayleigh scattered light field acquires a position dependent
phase shift. The scheme is limited only by the standard quantum limit [68] (quantum back
action) of phase measurement when a large number of photons are scattered from the mass.
The resolution scales with the number n of scattered and detected photons as λ/

√
n, hence,

the power collected at the detector (see Eq. 13 of Ref [168]), and the detection time (as long
as this is lower than the dynamical time scale, it is independent of whether the particle is
trapped/untrapped). Thus the detection time should be as much as one needs for the required
resolution, but much less than the time span of the experiment. By the above methodology,
for a 60nm diameter silica particle, the detection resolution can reach 200±20 fm/

√
Hz with

laser power ∼ 385µW at the detector, at environmental pressure ∼ 0.01mbar [168]. Thus for
an integration time of ∼ 4µs, the resolution reaches ∼ 1Å, which corresponds to just ∼ 108

photons. The whole measurement is µs, any noise of frequency lower than MHz will not
affect it (simply remains constant during each measurement run). Moreover, lower frequency
noise causing variation between, say, groups of runs, could be measured efficiently by other
proximal sensors and taken into account. Also note that the spatial detection is performed at
the very end of the protocol, so the question of back action on further position measurements
does not arise.

Due to the spreading of the wavepackets along y and z directions, when we determine
whether the object is in a given position x = x0 at some measurement time t, we are essentially
integrating the probability of detecting it over a finite region ∆y(t) and ∆z(t). The operator
σz = |0⟩⟨0|−|1⟩⟨1| is trivial to measure, as we simply shine a laser centered at x = d/2
much before the wavepacket states |0⟩ and |1⟩ have started to overlap (at a time tz

meas <<

d(2σdm)/h̄; the error in σz measurement as a function of tz
meas is described in the appendix;

timing errors δ t << tz
meas have very little effect). If light is scattered, the state is |0⟩, otherwise

|1⟩.
To measure the spatial qubit σx and σy operators, we need a large enough time tx,y

meas ≥
d(2σdm)/h̄ so that the wavepackets of the |0⟩ and |1⟩ states have spread out enough
to significantly overlap with each other and produce an interference pattern. Moreover,
due to the free propagation, we would expect the measurement time tx,y

meas, final posi-
tion x and the transverse wave vector kx are related by: x =

h̄kxtx,y
meas
m (detecting at a po-

sition x after the interference effectively measures the initial superposition state of |0⟩
and |1⟩ in the |kx⟩ basis). Noting the momentum representation of the qubit states |n⟩ =
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∫ {√
2σd exp[ ikxd

2 − k2
xσ2

d ]exp[−inkxd]|kx⟩
}

dkx (n = 0,1), the probability to detect the ob-
ject at a position x for any initial qubit state |ψ⟩ is now obtained:

P(x) = |⟨ψ|kx⟩|2∝

∣∣∣∣exp[
ikxd

2
− k2

xσ
2
d ]⟨θ |ψ⟩

∣∣∣∣2 , (2.3)

where |θ⟩= |0⟩+ |1⟩eiθ in which the parameter θ = kxd = xmd
h̄tx,y

meas
(we will call θ the phase

angle). Therefore, finding the object in various positions x is in one to one correspondence
with positive operator valued measurements (POVM) on the spatial qubit, with the relevant
projection on the state being, up to a normalization factor, as |θ⟩⟨θ |. σx measurements can
therefore be implemented by placing a pair of position detectors (which will, in practice be,
lasers scattering from the object) at positions corresponding to phase angle θ = 0,θ = π;
Similarly, σy measurements can be achieved by placing detectors at θ = π/2,θ = −π/2
(Schematic shown in Fig. 2.1). For minimizing the time of the experiment, we are going to
choose tx,y

meas = d(2σdm)/h̄. The efficacy of the σx and σy measurements as a function of the
finite time tx,y

meas for various ratios σd : d is discussed in the appendix.

2.2.1 Young type qubit as beam splitter

Our experimental setup serves the same purpose as a Mach-Zehnder interferometer in probing
contextuality [1], in which a particle pass through beam splitters and which path information
defines a spatial qubit. In our approach, Young type double slit acts effectively as a lossy beam
splitter [2]. A cubic beam splitter has two input and two output. The transformation matrix
from the former to the latter ports is described by a two-by-two unitary matrix. The initial
states |0⟩ and |1⟩ act as the two input. By placing a pair of detectors in the interference plane,
we project the input states onto a different basis, parameterized by phase angle θ . For instance,
conducting Pauli-Y operation requires placing two detectors at phase angle −π/2 and π/2
respectively. The effective beam splitter therefore transforms the system from a superposition
of |0⟩ and |1⟩ to the basis spanned by |0⟩− i|1⟩ and |0⟩+ i|1⟩. The transformation matrix is

therefore 1√
2

(
1 i
1 −i

)
= 1√

2

(
1 i

i× e−iπ/2 1× e−iπ/2

)
, equivalently, a 50:50 beam splitter

followed by a phase shifter with angle −π/2.

2.3 Application: Nonclassicality of the Stern-Gerlach state:

As a first application of this spatial qubit technology, we consider an extra spin degree of
freedom embedded in a mesoscopic mass. We now imagine that the mass goes through a
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Stern-Gerlach apparatus. The motion of the mass relative to the source of the inhomogeneous
magnetic field (current/magnets) is affected in a spin dependent manner due to the exchange
of virtual photons between the source and the spin (Fig. 2.2) resulting in an entangled state
of the spin and position of the nano-object as given by |φ+⟩= 1√

2
(|↑,1⟩+ |↓,0⟩), as depicted

as the output of the preparation stage in Fig. 2.2. It could also be regarded as an intra-particle
entanglement (an entanglement between two degrees of freedom of the same object), which
has been a subject of several investigations [1, 75, 9].

To measure the spin-motion entanglement in |φ+⟩, we have to measure variables of spin
and spatial qubit. Here we specifically want to estimate the action of measuring one of these
qubits on the quantum state of the other. During this measurement, the inhomogeneous mag-
netic field causing the Stern-Gerlach splitting is simply switched off so that spin coherence
can be maintained using any dynamical decoupling schemes as required [10]. Alternatively,
one can also use more pristine nano diamond with less surface defects. As shown in Fig. 2.2,
after a required period of free evolution tx,y

meas, measurements of the spatial qubit operators are
made; the light shone on the object should not interact at all with the embedded spin degree
of freedom if it is completely off-resonant with any relevant spin transition. Immediately after
measuring the spatial qubit, the spin degree of freedom is directly measured in various bases.
The latter could be implemented, for example, with a NV center spin qubit in a nano-diamond
crystal, where the spin state is rotated by a microwave pulse, which corresponds to basis
change, followed by a fluorescence measurement by shining a laser resonant with an optical
transition [76]. The implementation would require cryogenic temperature of the diamond
[187, 171]. So the spin coherence time is much greater than the experimental time scale [10].
As the spin measurement is very efficient, we only need to consider the resolutions δx,δ t
of the spatial qubit measurements so that the effective spatial Pauli X and Y operators are
then projections onto a mixed state with phase angle ranging from θ − δθ

2 to θ + δθ

2 with
δθ = md

h̄tx,y
meas

δx− xmd
h̄(tx,y

meas)2 δ t. For purposes of coherence, which continuously decreases with
time, it is best to choose time of the order of the minimum allowed time for overlap of the
wavepackets, i.e., choose tx,y

meas = d(2σdm)/h̄ so that δθ = δx
2σd

− xh̄
4σ2

d md
δ t. The approximate

Pauli matrices are then:

σ̃x =
1

δθ

 0
∫ θ+ δθ

2

θ− δθ

2
e−iθ dθ |θ=0∫ θ+ δθ

2

θ− δθ

2
eiθ dθ |θ=0 0


=

1
δθ

(
0 −iei δθ

2 + ie−i δθ

2

−iei δθ

2 + ie−i δθ

2 0

)
,
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Fig. 2.2 Detection scheme for the entanglement of spin and center of mass of a Stern-Gerlach state: A
spin bearing nano-object is measured to be in a set of zones of size δx, where the size is set by the strength
and duration of lasers scattered from the object, which serves to measure the spatial qubit. Within each spatial
zone a suitable method is used to measure the spin in different bases, for example by rotating the spin states by
microwave pulses followed by fluorescence of certain states under excitation by a laser of appropriate frequency.

and similarly, σ̃y =
1

δθ

(
0 −ei δθ

2 + e−i δθ

2

ei δθ

2 − e−i δθ

2 0

)
. To verify the entanglement we have

to show that the spin-motion entangled state violates the Bell-CHSH inequality B = |⟨AB⟩+
⟨AB′⟩+ ⟨A′B⟩−⟨A′B′⟩|≤ 2 with variables [46] A = τx + τy and A′ = τx − τy operators of the
spin (τx and τy are spin Pauli matrices) and B = σ̃x and B′ = σ̃y operators of the spatial qubit.
The expected correlation can be calculated (see appendix) to give B = |2

√
2 f (δθ)|≤ 2

√
2

where f (δθ) = 2
δθ

Re[ieiδθ/2] = 2
δθ

cos(π+δθ

2 ). To obtain a violation of the CHSH inequality
the upper bound of δθ can be calculated:| f (δθ)|= 1√

2
,δθ≈ 2.783.

For realization, consider a m ∼ 10−19 kg (108 amu) spin-bearing mass cooled to a ground

state in ω ∼ 100 kHz trap [144, 49, 163] so that its ground state spread is =
√

h̄
2mω

∼ 1

Å. At time t = 0 the embedded spin is placed in a superposition 1/
√

2(|↑⟩+ |↓⟩), and the
mass is released from the trap. The wave packet then passes through an inhomogeneous
magnetic field gradient ∼ 105 Tm−1 [116]. Due to the Stern-Gerlach effect, the mass
moves in opposite directions corresponding to |↑⟩ and |↓⟩ spin states, and, in a time-scale
of tprep ∼ 50µs, evolves to a |φ+⟩ state with a separation of d = 25nm between the |0⟩ and
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|1⟩ spatial qubit states [170, 28, 123, 165, 116] (all lower m and d are also possible as they
demand lower tprep and ∂B/∂x). To keep the spin coherence for tprep, dynamical decoupling
may be needed [10]; it is possible to accomodate this within our protocols-one just needs to
change the direction of the magnetic field as well in tandem with the dynamical decoupling
pulses which flip the spin direction [179]. During the above tprep, the |0⟩ and |1⟩ wavepackets
spreads from σd ∼ 1 Åto ∼ 5 Å. The ratio σd/d ∼ 1/50 is within the validity regime of a
high fidelity spatial qubit σx and σy measurement as discussed by us if performed at time
tx,y
meas ∼ 2σdmd

h̄ ∼ 1 ms.
According to our results above, in order to obtain a CHSH inequality violation, one has

to measure to within δx ∼ 2σdδθ ∼ 1 Å resolution. To achieve this resolution, firstly, we
have to ensure that during the whole duration of our protocol, the acceleration noise has to
be below a certain threshold so as to not cause random displacement greater than 1Å. Given
tx,y ∼ 1ms is the longest duration step, the acceleration noise needs to be ∼ 10−4ms−2. Next
comes the measurement step where light is scattered from the object, which also needs to
measure to the required resolution. This is possible as there are feasible techniques that
give resolutions of 0.1 pm/

√
Hz [68, 168] for position measurements by scattering light

continuously from an object. In fact, we would need to scatter light only for a µs to achieve
our required resolution. Adopting the scheme in [168], the resolution can be achieved by
scattering light continuously from the object for ∼ 4µ s, which is 2−3 orders of magnitude
smaller than the experimental time span. On the other hand if the timing accuracy δ t of
tx,y
meas is kept below ∼ 0.1ms (also easy in terms of laser switching on/off times), there is a

negligible inaccuracy in θ .
Note that as shown in the appendix, dephasing between the spatial states |0⟩ and |1⟩ at a

rate γ simply suppresses the CHSH violation by a factor e−γt , which could be a new way to
investigate decoherence of the mass from various postulated models [52, 137, 15, 127, 131,
173] and environment.

The decoherence of the spatial degree of freedom results from background gas collision
and black-body radiation. Adopting the formulae from Ref [144], for our realization, the
contribution to γ from background gas reaches ∼ 167.2s−1 at pressure ∼ 10−10Torr. Black-
body radiation induces decoherence at a rate of ∼ 274.9s−1 at internal temperature ∼ 50K.
On the other hand, the spin degree of freedom, which may be encoded in NV centers of
nano-diamond crystal, reaches a coherence time of ∼ 0.6s at liquid nitrogen temperature 77K
[10]. Therefore, achievable pressure and temperature make the coherence time sufficient for
the realization of our protocol (same estimates hold for the protocol of the next section).

As both the spin and the mass are measured, it characterizes the entanglement of the given
state irrespective of the dynamics from which the state was generated, as opposed to previous
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Fig. 2.3 Application in witnessing Casimir induced entanglement: Two masses, each prepared in a
superposition of two states, act as two qubits 1√

2
(|0⟩1 + |1⟩1)⊗ 1√

2
(|0⟩2 + |1⟩2). The system freely propagates

and undergoes mutual interactions for a time τ . This interaction induces entanglement which can be witnessed
from correlations of spatial qubit Pauli measurements. For example, in the figure, σx, σy measurements on test
mass 1 and σz measurements on test mass 2 are depicted. Casimir interaction induced by virtual photons as
quantum mediators is shown [59].

protocols which rely on a reversible nature of the quantum dynamics [27, 5, 120, 25]. As
opposed to single object interferometry [144, 17, 184], here the CHSH violation explores
decoherence of the mass in multiple bases – not only how the |0⟩⟨1| term of the spatial
qubit decays (position basis), but also whether, and, if so, how, |+⟩⟨−| decays (where
|−⟩ = |0⟩ − |1⟩) – a novel type of decoherence of even/odd parity basis. Moreover, as
the total spin-motional system is quantum 4 state system, the CHSH violation can also be
regarded as a violation of the classical notion of non-contextuality [80, 1, 31].

2.4 Application: Casimir interaction induced entanglement:

Neutral unmagnetized untrapped masses, ideal for the preservation of spatial coherence,
can interact with each other via the Casimir interaction [165] (gravity can cause observable
effects in reasonable times only for masses > 10−15−10−14 kg [28, 165]). Two such masses
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(mass m, radius R) indexed 1 and 2 are each prepared in the spatial qubit state |+⟩ (the
superposition size, separation between states |0⟩ and |1⟩, being d) while the distance between
the centers of the superpositions is D (Fig. 2.3). In a time τ , the Casimir interaction evolves
the system to

eiφ
√

2
[|0⟩1

1√
2
(|0⟩2 + ei∆φ01|1⟩2)+ |1⟩1

1√
2
(ei∆φ10|0⟩2 + |1⟩2)],

where φ = k R6

D7 τ,∆φ01 = k R6

(D+d)7 τ −φ ,∆φ10 = k R6

(D−d)7 τ −φ , in which k = 23c
4π

(ε −1)2/(ε +

2)2), where ε is the relative permittivity of the material of the masses. On top of the above
evolution, we assume a local dephasing (|0⟩⟨1|i→ e−γτ |0⟩⟨1|i) for both particles (i = 1,2)
(this can generically model all dephasing [165, 164]). To verify the induced entanglement,
one can make spatial qubit measurements up to uncertainties parametrized by δθ as outlined
previously and then estimate the entanglement witness [41] W = I⊗ I− σ̃x ⊗ σ̃x − σ̃z ⊗ σ̃y −
σ̃y⊗ σ̃z where σ̃x and σ̃y are as discussed before, and we take σ̃z =

∫ 0
−∞

|x⟩⟨x|dx−
∫

∞

0 |x⟩⟨x|dx.
If ⟨W ⟩= Tr(Wρ) is negative, the masses are entangled. We find

⟨W̃ ⟩=1− 1
2

e−2γtg2(δθ)(1+ cos(∆φ10 −∆φ01))

−e−γtg(δθ)(sin(∆φ10)+ sin(∆φ01)), (2.4)

where g(δθ) = 2
δθ

cos(π−δθ

2 ).
We are going to consider the Stern-Gerlach mechanism to first prepare the state |φ+⟩, and

use that to prepare |+⟩. We consider a R ∼ 20 nm, m ∼ 1.17×10−19 kg mass, and consider
it to have been trapped and cooled it to its ground state (σd ∼ 1 nm) in a 1 kHz trap [184].
We then release it, and subject it to a magnetic field gradient of 5× 104 Tm−1 [116] for
t ∼ 100µs so that a Stern-Gerlach splitting of d ≈ 50 nm develops while there is insignificant
wavepacket spreading (σd remains ∼ 1 nm). At this stage, a microwave pulse may be given
to rotate the spin state so that the |φ+⟩ state evolves to |0⟩(|↑⟩+ |↓⟩)+ |1⟩(|↑⟩− |↓⟩). A
subselection of the |↑⟩ spin state via deflection through another Stern-Gerlach, then yields the
state |+⟩ [114, 118]. Alternatively, by performing a Controlled-NOT with the spatial qubit
as the control and the spin as the target (again, performed quite accurately by a microwave
pulse [184]), |φ+⟩ gets converted to |+⟩|↓⟩ so that the spatial part is our required state.
For D ≈ 2.1µm, then ∆φ10 = φ10 −φ ≈ 0.17, ∆φ01 = φ01 −φ ≈−0.14 after τ ∼ 0.012s of
entangling time, which gives a negative witness ⟨W ⟩ ∼ −0.0064.

Note here that the form of witness operator compels one to measure both the σ̃x ⊗ σ̃x

operator and the other two operators on the same entangled state. σ̃z measurement is also
done at tz

meas = τ . This is about 0.1 of the overlapping time ∼ d(2σdm)
h̄ so that the fidelity
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of the σz measurement is very high (see appendix). We then require tx,y
meas − tz

meas << τ

so that the extra entanglement generated due to interactions after the σ̃z measurement and
before the σ̃x/σ̃y measurements is negligible. This, in turn, requires us to speed up the
development of spatial overlap between the qubit states due to wavepacket spreading after
the σ̃z measurement, which can be accomplished by squeezing both of the wavepackets in
position after the time tz

meas. After 0.01 s of flight, the wavepacket width σd ∼ 1 nm expands
to ∼ 10 nm. Thus we have to squeeze the state by 2 orders of magnitude to ∼ 1×10−10 m, so
that it expands to ∼ 100 nm, where overlapping occurs, in the next 0.001.s The fidelity of XY
measurement here is very high (see appendix). The slight delay in σx/y measurement (0.001s
later than the σz measurement) would cause only a ∼ 5% error in the witness magnitude.
Note that in order to achieve the required squeezing, two appropriate periods of unitary
evolution in harmonic potentials of ω1 ∼1 MHz and ω2 ∼ 0.1 MHz would suffice (n repeated
changes between ω1 and ω2 separated by appropriate periods of harmonic evolution will
squeeze by the factor (ω1/ω2)

n [90]); if this potential was applied as an optical tweezer then
it will hardly cause any decoherence γsqueeze, j ∼ ω j10−5 [38]. We additionally need to ensure,
for reasons described earlier, the acceleration noise needs to be kept below 10−6ms−2. The
whole procedure described above could be one of the earliest demonstrations of non-Gaussian
entanglement between neutral masses. It would also demonstrate the nonclassical nature of
the Casimir interaction, namely that it is mediated by quantum agents (virtual photons) as in
the inset of Fig. 2.3.

2.5 Summary

We have shown how to measure a qubit encoded in a massive object by position detection. We
have shown how this can be applied to: (a) stretch the validity of quantum mechanics rules
to the center of mass of nano-objects – demonstrating quantum entanglement between spin
and center of mass, which has never before been tested for macroscopic objects, (b) entangle
spatial qubits encoded in two such objects, extending non-Gaussian quantum technology,
(c) prove empirically the quantum coherent nature of the Casimir force. Indeed, in the
same open-minded way that one asks whether quantum mechanics continues to hold for
macroscopic masses [102, 7], one can question whether those interactions between such
masses which are extensive in nature (grow as volume/area/mass) continue to be mediated by
a quantum natured field so as to be able to entangle the masses. In comparison with standard
approaches for probing the nonclassicality for smaller masses, we avoid a Mach-Zehnder
interferometer – only requiring the preparation of an original spatial superposition. This is
advantageous because of the difficulty of realizing beam-splitters for nano-objects (tunneling
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probability ∝ e−
√

2mV
h̄ ∆x getting extremely small), and also for avoiding interactions with

mirrors and beam splitters which can cause decoherence. (we exploit a two-slit experiment
as a beam-splitter [2]). Our methodology can be quantum mechanically simulated with cold
atoms, where other methods to encode qubits in motional states have been demonstrated [61],
before they are actually applied to nano-objects.





Chapter 3

Spatial Qubit Entanglement Witness for
Quantum Effects Of Gravity

Evidencing the quantum nature of gravity through the entanglement of two masses has
recently been proposed. Proposals using qubits to witness this entanglement can afford to
bring two masses close enough so that the complete 1/r interaction is at play (as opposed to
its second order Taylor expansion), and micron sized masses separated by 10-100 microns
(with/without electromagnetic screening) suffice to provide a ∼ 0.01−1 Hz rate of growth
of entanglement. Yet the only viable method proposed for obtaining qubit witnesses so far
has been to employ spins embedded in the masses, whose correlations are used to witness
the entanglement developed between masses during interferometry. This comes with the
dual challenge of incorporating spin coherence preserving methodologies into the protocol,
as well as a demanding precision of control fields for the accurate completion of spin aided
(Stern-Gerlach) interferometry. Here we show that if superpositions of distinct spatially
localized states of each mass can be created, whatever the means, simple position correlation
measurements alone can yield a spatial qubit witness of entanglement between the masses.
We find that a significant squeezing at a specific stage of the protocol is the principal new
requirement (in addition to the need to maintain spatial quantum coherence) for its viability.

3.1 Motivation

The quantumness of gravity is an open question due to a lack of empirical evidence. A
lot of research is performed in the setting of semi-classical gravity, in which matter and
non-gravitational fields are treated quantum mechanically, while gravity is treated classically.
A substantial community argues that gravity can be classical as quantum physics break
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down at macroscopic level, where gravitational effects become evident [137, 52, 15, 14].
Various proposals have been made to avoid quantizing gravity, at the cost of introducing extra
stochastic terms [87, 132] – but these are not ruled out by any current experiment such as
measuring forces precisely. Therefore, testing the quantum nature of gravity experimentally
is an open problem. Even if its quantumness is accepted from the point of view several
existing successful theories [133, 89], its verification is still open.

In 2017, Bose and collaborators proposed a protocol to test whether the nature of gravity
is quantum [28] (see also recorded online talk of 2016, where the same protocol is presented
[1]). Two spatial superposition state of masses can not entangle via classical channel [21]
(see also [119]). Locality in quantum field theory circumvents the non-local interaction
between the two superposed test masses [121]. Entanglement between the masses can
only be generated through local operations and quantum communication (in fact, quantum
communication is necessary for operator valued interactions, [29] which in turn is necessary
for the coherent interaction that generates entanglement). On the other hand, once quantum
communication is proven through a witnessing of gravitationally generated entanglement, this
unambiguously certifies the presence of off-shell/virtual graviton as this is the only way to get
a continuous deterministic operator valued interaction [121, 29]. Alternatively, the witnessed
entanglement can also be regarded as evidencing the quantum superposition of geometries
inherent in superposition states of each mass [45, 44].Moreover, from logical arguments, the
quantum nature of the Newtonian component of the gravitational field automatically has a
bearing on the quantum nature of other components [18, 48, 36, 4].

The original proposal exploits spin-embedded masses [28]. Stern-Gerlach interferometers
(SGIs) are used to prepare the spatial superpositions depend on embedded spins so that the
motional and spin degree of freedom is entangled. The test masses then freely evolve subject
to gravitational interaction. At the end of the proposed protocol, the Stern-Gerlach apparatus
is exploited again to bring the superposition components back to the center. Spin correlations
between the test masses then evidence the entanglement generated through the gravitational
interaction during propagation. Alternatively, it has also been proposed to witness the
gravitational entanglement growth between two initial delocalized gaussian states by position
and momentum correlations [140, 98, 175] (see also [24, 36, 4] for similar entanglement via
gravity between light and matter or between optical fields). However, a two-qubit witness for
entanglement is applicable to a situation where masses are brought as close to each other as
their delocalization (spatial superposition scale), so that the entanglement itself has a faster
growth rate (∼ 1 Hz) even for smaller (micron sized) masses.

It is challenging to complete SGIs as an exact overlap has to be attained in both position
and momentum of the wavepackets in the two interferometric arms [57, 114], although this
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has been achieved very recently for small atomic interferometers [116]. Moreover, the spin
can bring in an extra avenue of decoherence requiring extra dynamical decoupling procedures
which could potentially complicate the interferometry even more requiring further dynamical
decouplings [10, 179]. Although exceptionally long spin coherence have been shown, and
these are the subject of qubits in quantum computers, it may be worthwhile to look for
witnessing of the entanglement without spins. This may even be the case where we actually
use spin dependent forces (Stern-Gerlach) to create the initial superposition. However, we
do not worry about also completing the interferometry by appropriate matching of forces
in the two arms. On the other hand, without spins, the advantage of two-qubit witnesses
for quantum entanglement seems to disappear. We thus here look at the potential of using
position measurements themselves to infer states of “spatial qubits"(which have been called
Young qubits in photonic systems [162, 94, 150, 67]) and use that as witness for evidencing
gravitational entanglement. We find that aside the usual coherence requirements to be
satisfied for maintaining the quantum superpositions [28, 165], which is unavoidable in any
scheme, a spatial qubit witnessing of gravitational entanglement is possible if a challenging
squeezing requirement can be met.

The spatial qubit methodology [183] encodes qubit in the spatial degree of freedom
of a freely propagating test mass. The readout of the information stored in the qubit can
be implemented by placing sets of spatial detectors at appropriate positions. Correlations
generated between two such spatial qubits during evolution can then be tested by spatial
detection. One advantage of this approach is its simplicity: free propagation followed by
spatial detection. An interferometer with beam splitting elements such as Mach-Zhender,
looks highly unfeasible because of the large mass that has to tunnel through such a system. Of
course, a Stern-Gerlach interfrometer is possible, but this requires a spin, as well as exquisite
control in completing the interferometry. Both these requirements are completely avoided
if spatial qubits are used. However, it in general requires the application of an additional
squeezing operator. In this chapter, we apply this methodology to witness quantum natured
gravity.

3.2 Spin entanglement witness setup

Ref. [28] presents an approach to witness quantum effects of gravity (See Fig. 3.1 below).
The scheme consists of two spin embedded test masses initially in spatially localized states,
say, in respective traps. The test masses labeled j = 1,2 pass through a set of Stern-Gerlach
(SG) interferometers so that the spatial degree of freedom entangles with the spin degree of
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freedom to prepare
|ψ0⟩= (|L,↑⟩ j + |R,↓⟩ j)/

√
2( j = 1,2), (3.1)

with states |L⟩ and |R⟩ being separated by d, and the distance between the midpoint of each
superposition (∼ initial separation between the masses) being D. Next, let the coherent
superposition state propagate for a time τ by switching off the magnetic field of the SG
apparatus. If gravity were quantum, gravitational interaction can induce, through relative
phases among the superposition components, an entanglement between the masses (classical
gravity as mediator would not give an operator valued interaction [29], and hence will be
unable to entangle the two masses). The final step refocuses the SG apparatus to bring the
spatial superposition back to the center so that the final spin state reads

eiφ
√

2
[|↑⟩1

1√
2
(|↑⟩2 + ei∆φ↑↓|↓⟩2)

+|↓⟩1
1√
2
(ei∆φ↓↑ |↑⟩2 + |↓⟩2)], (3.2)

where φ = Gm1m2
h̄D τ,∆φ↑↓ =

Gm1m2
h̄(D+d)τ − φ ,∆φ↓↑ =

Gm1m2
h̄(D−d)τ − φ . This is generically an en-

tangled state as soon as 1√
2
(|↑⟩2 + ei∆φ↑↓|↓⟩2) ̸= 1√

2
(ei∆φ↓↑|↑⟩2 + |↓⟩2). By measuring spin

correlations, one can then verify the entanglement induced during the propagation time
τ . That can only arise from the exchange of quantum coherent mediators. If gravity is
the only interaction present, one can then conclude that gravity is quantum. To prevent
unwanted electromagnetic interactions between the masses, we will assume the placement of
a screening plate between them as will be discussed later. Of course, there is the question of
efficacy of this screening mechanism, as well as decoherence induced by it, which will be
subject of future investigations.

To produce observable relative phase, the original proposal in Ref. [28] considers massive
objects with m ∼ 10−14kg. The required mass is restricted by the minimum distance between
the two masses D−d. At micro-meter scale, Casimir-Polder force, which is another source
of interaction between neutral objects, becomes dominant over gravitational interaction. A
minimum distance D− d ∼ 100µm is necessary to ignore influence from Casimir-Polder
interaction. Later, a revised scheme based on Casimir screening [165] relaxes the parameters
to D ∼ 47µm, d ∼ 23µm by placing a conducting plate, which acts as a Faraday cage,
between the test masses to screen the mutual electromagnetic interaction. On the other hand,
to test the spin entanglement witness also requires a delicate balancing of magnetic field
gradient to bring the superposition components back to the center. In the revised scheme, the
test mass m ∼ 10−15 kg and the total accumulated phase during interaction time τ ∼ 1s is of
order of 0.01rad.
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Fig. 3.1 Schematic diagram: traveling of quantum coherent mediators. Two test masses, each in
superposition state and embedded with spin, are separated by distance D. quantum interactions induce relative
phase among different superposition components through the exchange of quantum mediators.

3.3 Massive spatial qubit methodology for Witnesssing
Gravitational Entanglement

In this chapter, we investigate the viability of testing the quantum nature of gravity with
recently developed methodology: massive spatial qubit. This approach treats freely evolving
spatially superposed masses as qubits, which does not call for spins. Therefore, it may relax
the criteria for witnessing the quantum aspect of gravity. The schematic diagram is shown
in Fig. 3.2. Two test masses m1,m2, each prepared in spatial superposition of two well
separated Gaussian states |L⟩ and |R⟩, are placed adjacent to each other then freely evolve,
under their own Hamiltonian, as well as undergo a joint phase evolution under their mutual
gravitational interaction as shown in Fig. 2.2. The propagation of each individual wavepacket
is modeled as the spreading of a Gaussian wavepacket due to free evolution. Each spatial
superposition 1√

2
(|L⟩+ |R⟩) of test mass can be treated as a state of a qubit with the two

qubit states identified with |L⟩ and |R⟩.
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Fig. 3.2 Testing quantumness of gravity with massive spatial qubits This interaction induces entanglement
which can be deduced from spatial qubit Pauli measurements. To evaluate the entanglement witness W , we
conduct spatial qubit measurements on both masses and evaluate the correlations. For example, in the figure,
Pauli-X, Pauli-Y measurements on test mass 1 and Pauli-Z measurements on test mass 2 are depicted. An
additional conducting plate is inserted between the masses for electromagnetic shielding

3.3.1 Witnessing the quantum nature of gravity:

If quantum gravitational interaction is the only source of interaction, relative phase induced
among the superposition components then reads (Please see the appendix for a more detailed
treatment taking into account the traveling time of coherent mediators):

|ψ(t = 0)⟩ =
1√
2
(|L⟩1 + |R⟩1)

1√
2
(|L⟩2 + |R⟩2) (3.3)

→ |ψ(t = τ)⟩ =
eiφ
√

2
[|L⟩1

1√
2
(|L⟩2 + ei∆φLR |R⟩2)

+ |R⟩1
1√
2
(ei∆φRL |L⟩2 + |R⟩2)]. (3.4)

It is true that the creation of a superposition of two localized states (a highly non-Gaussian
state) is a pre-requisite for being able to use spatial qubits (we will not delve into that issue
here in detail, but mention some possibilities in the next section). Here we concentrate
on how to read-out spatial qubits in absence of (in this context impractical) beam-splitter
elements, and thereby witness the entanglement of two masses without resorting to spins.
Pauli measurements, which readout the encoded information, can be performed by placing
spatial detectors at particular locations. Any entanglement induced during the propagation
process can be witnessed by the correlations between two spatial qubits. All of Pauli-x,y
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and z measurements are involved in obtaining these correlations. Pauli-z measurement
σz = |L⟩⟨L|−|R⟩⟨R| reads the probability amplitude of the encoded spatial qubit state, which
has to be performed before |L⟩ and |R⟩ have spread so much as to be confused with each
other (i.e., spread to about ∼ d). On the other hand, Pauli-x measurements project on to
states 1√

2
(|L⟩± |R⟩) and Pauli-y measurements project on to states 1√

2
(|L⟩± i|R⟩), which are

only discernible in the interference plane as shown in Fig. 2.2, which implies that they are
performed after each of |L⟩ and |R⟩ have spread to a length d so that they can overlap. At the
interference plane, the probability of detecting the test mass at position x is given by:

P(x) = |⟨ψ|kx⟩|2∝

∣∣∣∣exp[
ikxd

2
− k2

xσ
2
d ]⟨θ |ψ⟩

∣∣∣∣2 , (3.5)

where |θ⟩= |0⟩+ |1⟩eiθ , θ = kxd and kx =
xm

h̄tx,y
meas

is the transverse wavevector. Projection
of the spatial qubit state along σx+, σx− (σy+, σy−) can then be implemented by placing
spatial detectors corresponds to θ = 0,π(−π/2,π/2) respectively. Thus the Pauli-x,y and
Pauli-z measurements would normally have to be performed at different times tz

meas (before
spreading) and tx/y

meas (after spreading).

3.3.2 Squeezing requirement

The masses have to entangle sufficiently first. This inevitably requires a time of τ over
which the gravitational interaction should act between them. This is the earliest time any
measurement can occur as we want to measure the two masses after they are entangled. Thus
we set tz

meas = τ , being careful that hardly any spreading of the wavepackets |L⟩ and |R⟩
happens in time τ . However, we want to measure Pauli-x,y on the same state, i.e., the state
evolved up to time τ as the gravitational interaction cannot be switched off. This demands
that we must also measure Pauli-x,y at (or very nearly) the same time. So we need to induce
some process at τ so that the wavepackets immediately spread to ∼ d and overlap to interfere.
This requires the application of an additional squeezing operator to the masses immediately
after time τ . This localizes the wavefunctions so much (each of |L⟩ and |R⟩ are now highly
squeezed) that in subsequent free evolution for tx,y

meas − tz
meas they spread rapidly to overlap

and interfere. Thus the extra squeezing at τ enables us to meet the criterion: tx,y
meas ∼ tz

meas = τ ,
so that both the Pauli-z and the Pauli-x,y measurements are essentially performed on the
same entangled state of the two masses.

The spread of wavepackets scales approximately inversely proportional to its initial width
σd(0): σ(t)∼ h̄t

mσd(0)
. Therefore, application of squeezing operator at τ , squeezes width of

the wavepacket and speeds up subsequent spreading. This technique can be accomplished by
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passing the test masses through local Harmonic potentials with jumps between frequencies.
More precisely, n sudden switches between frequencies ω1 and ω2, with a quarter period
of harmonic evolution in each frequency, squeezes the wavepackets spatially by a factor
(ω1/ω2)

n [85, 142]. As, for the squeezing, we have to expend a quarter period of time π/2ω j

in each frequency ω j, this inevitably requires a time

tsqueeze = n(π/2ω1 +π/2ω2). (3.6)

On the other hand, the amount of squeezing depends on satisfying tx,y
meas ≈ tz

meas = τ . We
want the tsqueeze to be a negligible time-scale in comparison to the other times of the problem
as the gravitational entanglement is always happening (we cannot stop it). Thus n,ω1,ω2

must be so chosen that
tsqueeze << tx,y

meas ≈ tz
meas = τ. (3.7)

Squeezing thus places significant demands on this protocol.

3.3.3 Casimir screening imposed constraints

To shield the system from unwanted electromagnetic interaction, one places a conducting
plate between the test masses to act as a Faraday cage. For simpicity we assume that the
placement of a perfect conductor completely blocks the Casimir interaction between test
masses. The Casimir screening scheme introduces additional Casimir force between the plate
and test masses. The plate-mass Casimir interaction is now the dominant force at very small
scale and places constraints on the system. The screen is closest to one of the components
of the superposition (|R⟩ for the mass to the left of the screen and |L⟩ for the mass to the
right of the screen). We do not want this component to be pulled so close to the screen that
it prevents the overlap between the two components of each mass in order to enable the
Pauli-x,y measurements. Thus we require that the spread of wavepackets (which we exploit
in our scheme) dominates over the displacement due to Casimir force. This places a new
constraint on minimum separation of a mass and the conducting plate. The Casimir force
between a plate and sphere is given by[37]

Fca =−3h̄c
2π

(
ε −1
ε +2

)
R3

s5 , (3.8)

where ε is the dielectric constant of test masses, R is the radius of test masses and s = D−d
2 is

the mass-plate separation.
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We require that the spread of wavepacket dominates over the displacement due to Casimir
force by at least one order of magnitude:

0.1σd(t1)≥ Dca, (3.9)

where σd(t) is the width of the propagating wave packets, t1 is the total time before the
wavepackets overlap. Thus, in terms of the notation of the previous part of the chapter,
t1 ∼ tx,y

meas − tz
meas − tsqueeze, as that is the time over which the wavepacket expands after

squeezing (We know that this spread is required to be of the order of the slit separation d for
the overlap to happen; moreover, actually t1 << tx,y

meas, tz
meas, tsqueeze).

Classical treatment of Casimir force gives an estimate of its resulting displacement on
test masses given by:

Dca =− 9h̄c
16π2 (

ε −1
ε +2

)
1

µs5 , (3.10)

where µ is the density of test mass.
On the other hand, the spread of Gaussian wave packet σd(t) scales linearly with time by

a factor of h̄
σdm . Since wave overlaps at a time t ∼ 2mσdd/h̄, the width of wavepackets spread

is of same order as the slit separation σd(t1)∼ d. In the original setup, d and D−d
2 are on the

same scale. We may then take σd(t1)∼ d ∼ s. The above parameter domain is satisfied for
mass density µ ∼ 3×103kg/m3, ε = 5.7, and the minimum plate-mass separation s ∼ 12µm.

3.3.4 Induced phase

With the same mechanism as in [28], we can prepare initial state given by Eq. 3.3. Taking
D ∼ 40µm,d ∼ 10µm, for mass m ∼ 10−15kg, gravitational interaction, if quantum, would
induce relative phase ∆φ ∼ 1× 10−2rad after τ ∼ 3s of entangling time. To certify the
induced relative phase, we estimate the entanglement witness [40]

W = I ⊗ I −σx ⊗σx −σz ⊗σy −σy ⊗σz. (3.11)

The expectation value ⟨W ⟩= Tr(Wρ) would be negative, if the two masses are entangled.
Using Eq. 3.4 for the state, and phases ∆φLR = ∆φ↑↓,∆φRL = ∆φ↓↑ from below Eq. 3.2, the
expected witness measure at τ ∼ 3s is ∼−0.0065.

3.3.5 Initial state preparation

Witnessing the quantum nature of gravity through qubit correlations requires preparation
of superposition state of large spatial splitting d ∼ 10− 100µm of a micron scale mass ,
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m ∼ 10−15 −10−14kg [28, 165]. This is considerably beyond what has already been realized
(e.g., 10−25kg mass over 0.5m [96], or 10−22kg mass over 0.25µm [6], [58]). However, there
are several proposed schemes to achieve the required superpositions, with criteria in terms of
temperature, pressure, acceleration/vibration noise well identified.

The protocol starts from preparing a mass in a pure quantum state in a harmonic trap,
typically the ground state. This mass may or may not have a spin embedded in it (the protocol
of creating the initial state 1√

2
(|L⟩+ |R⟩) will depend on that). We imagine these objects to

be levitated in low frequency static magnetic traps [103, 186, 124, 169]. Feedback cooling
can be achieved by first shining light towards the particle. Scattered photons, which carries
information of the particle’s position, are collected by photo-diode detector. For example,
from detecting n scattered photons, the position of a particle gets determined to the accuracy
of λ/

√
n, where λ is the wavelength of the scattered light [69]. This information is then used

as feedback to cool the motion of the micro-sphere via an external damping force. Essentially,
the information gathering rate from detecting scattered photons must overtake the entropy
increase rate of the object from undetected scatterings (photons, atoms) and noises from the
environment. Using the feedback cooling principle, a mechanical oscillator as massive as
10kg has been prepared close to its ground state, the center-of-mass motion of which is cooled
down to tens of nano-Kelvin [176], which involved to measuring position to the uncertainty
of ∼ 10−20m/

√
Hz. Cryogenic diamagnetic levitated micro-mechanical oscillator has also

been realized with very low (µ Hz) dissipation rate [103, 186]. For test mass m ∼ 10−15kg
in a trap with frequency ∼ O(10−100)Hz, its ground state spread is ∼ O(0.1−1)nm. As
this uncertainty being much larger than the precision to which position has been localized
recently in feedback cooling [176], it is reasonable to suppose that feedback cooling to nearly
the ground state is also imminent for the above systems (for example, will require n ∼ 108

scattered photons to be detected, with undetected photons being much lower, in a time scale
over which no collisions with air molecules take place). Following the above stage either
spinless or spinful methods can be used to create the superposition.

If we have a spin embedded in the mass, a popular avenue to create a small superposition
(≤ 100nm) is to use the Stern-Gerlach effect [151, 184, 170, 28, 179]. The test mass in an
initially pure localized state |C⟩ (say, the ground state) is prepared with its spin in a state

1√
2
(|↑⟩+ |↓⟩) (by microwave pulses), and the trap is suddenly switched off. The spin state

undergoes spatial splitting due to an inhomogeneous magnetic field gradient so that the
system evolves as

1√
2
(|↑⟩+ |↓⟩)|C⟩ → 1√

2
(|L ↑⟩+ |R ↓⟩). (3.12)



3.3 Massive spatial qubit methodology for Witnesssing Gravitational Entanglement 67

A subsequent measurement of the spin in a different basis, say, the |±⟩ basis, and, for
example, getting the |+⟩ outcome, will prepare the mass in the spatial superposition

1√
2
(|L⟩+ |R⟩). (3.13)

Care must be taken so that the spin measurement does not reveal the position of the mass itself
to a better precision than the |L⟩ and |R⟩ difference. However, we now require to amplify
this superposition as we require (in the case where there is a screening of electromagnetic
interactions) a spatial splitting of ∼ 10µm, while the diamagnetism induced by the magnetic
field gradient used for the splitting, restricts the splitting [136, 122]. Interestingly, the
superposition could be amplified using a current carrying wire providing a diamagnetism
induced repulsion between wire and each split component [189]. Alternatively, spins may
be subject to nonlinear gradients to accumulate a velocity difference before catapulting
to a large size [188]. With magnetic field gradient ∼ 103T m−1, the desired separation of
10µm can be obtained after ∼ 1s of flight time [188]. It is easy to verify that during such
intervals of time, the wavepacket spread remains in the ∼O(0.1−1)nm regime. During these
protocols, spin coherence does not need to be retained during the amplifications (diamagnetic
repulsion/catapulting) the electronic spin does not play an active role. So, just before the
amplification stage, one could map it to much more coherent nuclear spins, or alternately,
simply measured in a different basis as noted above, to obtain directly the 1√

2
(|L⟩+ |R⟩)

state. noted above so as to have only a spatial superposition. Moreover, for the application
herewith (using spatial qubits) we do not need to complete an interferometer – only create
the large splitting superposition, which removes a significant challenge.

It is possible that even without spins the state 1√
2
(|L⟩+ |R⟩) can be produced as far as

∼ 1µm sized distances between |L⟩ and |R⟩ are concerned. For example, the first few stages
of the on-chip interferometer of Ref. [138] based on coherent inflation and a x̂2 (position2)
measurement can be used (till the superposition is generated). One can then, in principle,
combine with an diamagnetic repulsion aided further spatial splitting of the |L⟩ and |R⟩ terms
[189] so as to reach ∼ 10µm size.

3.3.6 Decoherence

During propagation, background gas collision and black body radiation unavoidably de-
coheres quantum coherence of the superposition state. Adopting the model in [144], air
molecule collision decoheres the 10−15kg test mass at a rate of ∼ 0.776s−1 under pressure
∼ 10−15Torr. Blackbody radiation arises from emission, absorption and scattering of ther-
mal photons. The emission localization parameter typically dominates because the internal



68 Spatial Qubit Entanglement Witness for Quantum Effects Of Gravity

temperature is usually larger than the external temperature. If internal temperature can be
cooled down to Ti = 4K, black body radiation decoheres the test mass at a rate of ∼ 0.72s−1,
which corresponds to ∼ 10s of coherence time. The required cooling to keep coherence of
the superposition state is challenging with state of art technology.

3.3.7 Squeezing challenges

Take initial width ∼ 0.4nm, the wavepacket expands to ∼ 0.85nm after 3 seconds of flight.
We will then have to squeeze the state by about 7 orders of magnitude to 1.5×10−16m, so
that it expands to ∼ 20µm in the next 0.03s, where interference occurs.

Optical squeezing is the most common technique for microscopic objects. However,
momentum recoil due to photon scattering induce decoherence and heating on the levitated
objects, the rate of which scales with the object size [141, 129, 38]. For large mass ∼
10−15kg, this approach becomes infeasible, the coherence time is only ∼ 10−6s. Alternatively,
one may adopt diamagnetic trapping for squeezing [103, 186, 124, 169]. Diamagnetic
trapping typically operates at much lower frequencies compare to its optical counterpart,
therefore, making it advantageous to hold large masses. Potential energy per unit volume of
a diamagnetic mass in trapped in magnetic field reads:

U ≈− χm

2µ0
B2 +ρgr, (3.14)

where χm is the mass magnetic susceptibility, µ0 is the magnetic permeability in vacuum,
g is the gravitational acceleration, B is induction of the magnetic field when the particle is
absent and r is the vertical displacement.

The mechanical frequency is therefore:

ωm =

√
χm

µ0

∂B
∂ r

, (3.15)

where ∂B
∂ r is the field gradient.

To control the motional superposition state during the squeezing procedure, the thermal
decoherence rate γth = n̄γ needs to be suppressed, where γ is the mechanical dissipation rate
and n̄ = kBT

h̄ωm
is the average phonon number. To keep coherence during n periods of quarter

oscillations, the dissipation rate must, therefore, satisfy the following relation:

γ <
h̄ω2

m
nkBT

. (3.16)
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In order to achieve the required squeezing, 7 times of successive changes between two
periods of harmonic potentials of 100Hz and 1000Hz would suffice. The environmental
temperature can be kept at ∼ 10mK with commercial dilution refrigerator. The dissipation
rate then must be kept below micro-hertz γ < 1µ Hz.

For solid state systems, the main contribution to dissipation is the direct coupling between
the system and the substrate. Ultra-low dissipation of micro hertz has been reported with
diamagnetic levitated objects, where permanent magnets are used for trapping. In [186],
where the levitated mass is similar to our scheme, damping rate of µHz is achieved at
pressure ∼ 3×10−7Torr and room temperature. The major contribution of damping came
from background gas collision, which scales linearly with pressure. Dissipation due to gas
collision could be significantly reduced by lowering temperature and pressure. Comparing
with the condition to keep coherence during the propagation stage, one finds that the required
level of vacuum is much less demanding during the squeezing stage.

However, permanent magnet based scheme maybe unfeasible for squeezing since succes-
sive changes of trapping potential are required. Alternatively, one may use magnetic field
generated by current-carrying coil, which introduces an additional type of dissipation due to
field fluctuation. One has to consider specific current sources for that and we do not go to
that technicality herewith. Moreover, there could be other sources of random forces at given
times δF(t). Thus we herewith estimate the constraint those forces have to satisfy. Although
the magnetic field noise will be switched off after attaining the required squeezing, and free
spreading of wavepacket under propagation will ensue, we assume some random force noise
being always present and constrain it (this will surely be an overestimate as far as forces
from magnetic field noise are concerned). Random forces will give a decoherence rate of

Γ ∼ SFF(Ω)d2

h̄2 , (3.17)

where SFF(Ω) =
∫

δF(0)δF(t)eiΩtdt is the force noise spectrum at the frequency Ω ∼ 1/τ

of our experiment, and d is the spatial splitting of each superposition. Keeping Γ < 1Hz
gives us the constraint that random force noise should be kept below

√
SFF ∼ 10−29N/

√
Hz.

Note that although this may sound challenging, faster frequency noise does not affect the
experiment particularly, while noise at this Hz frequency should be determinable by precision
measurements over a long duration of 1s to be taken into account in the experiment. Note that
this requirement is not unique to the spatial qubit method. Rather in the spatial qubit method
we are using free propagation for a large fraction of the time when, at least randomness in
superposition creating/delocalizing forces will be inactive.
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3.4 Summary

We have analyzed the feasibility of applying the massive spatial qubit methodology to witness
the quantum nature of gravity. This will enable a spinless witnessing of the gravitational
entanglement growth between two masses (∼ 10−15 kg each), essentially through position
measurements on masses, but still using qubit-qubit correlations to measure the entangle-
ment. The core property used here is the spreading of a free quantum wavepacket which
brings two initially localized states |L⟩ and |R⟩ to interfere so that observables such as
σx = |L⟩⟨R|+|R⟩⟨L| can be measured from the interference pattern. It is expedient work
within the remit of a Faraday shielding scheme so as to block unwanted electromagnetic
interactions between two masses, so that the masses can be brought closer and still interact
only gravitationally. But here the necessity for the wavepacket spreading to dominate over
the Casimir force of the Faraday screen to its nearest component arises. This, in turn, implies
a minimum distance to the screen, which, in turn, dictates a minimum separation d ∼ 10µm
between |L⟩ and |R⟩ to have a significant entanglement growth rate. This minimum d then
also necessitates a wavefunction spreading from a very localized width σd of each of |L⟩
and |R⟩ rapidly to ∼ d in an extremely short time-scale, so that the spatial qubit σz and σx

measurements are accomplished at nearly the same time (on the same entangled state of the
two masses). This is turn, necessitates squeezing the width immediately after significant
gravitationally generated entanglement is attained between the masses (at a time τ). The re-
quirements and a method for achieving this squeezing is described along with the challenges
(it requires position squeezing of the wavepacket by 7 orders of magnitude). As long as the
above can be met, and spatial superpositions can be generated (for which one may use spins
or other spinless methods), the evidencing through a qubit-qubit entanglement witness can
take place purely through position measurements.
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Chapter 4

Quantum Liang Information Flow as
Causation Quantifier

In Chapter 3, we focus on the aspect of information transmission and causality. Liang
information flow is a quantity widely used in classical network theory to quantify causation,
and has been applied widely, for example, to finance and climate. The most striking aspect
here is to freeze/subtract a certain node of the network to ascertain its causal influence to
other nodes of the network. Such an approach is yet to be applied to quantum network
dynamics. Here we generalize Liang information flow to the quantum domain using the
von-Neumann entropy. Using that we propose to assess the relative importance of various
nodes of a network to causally influence a target node. We exemplify the application by
using small quantum networks.

4.1 Motivation

The significance of information flow lies in its logical association [106] with the important
notion of causation [72, 135, 157, 111, 23, 154]. Historically, various measures of classical
information flow were proposed e.g., [72, 167, 154, 111, 30, 158, 161, 33]. Nonetheless,
limitations were pointed out e.g., [74, 156, 161], the most severe being an incorrect reflection
of causality. In 2005, Liang and Kleeman found a law for two-dimensional classical systems
[111]. Later on, the dimensionality and determinism limitations were overcome, and eventu-
ally Liang was able to link information flow to causality and establish a universally applicable
formalism within the framework of classical dynamical systems [111, 104–106, 109, 110].
This series of works puts the notion of information flow and causation on a rigorous footing,
as Liang(2016) [106] argued: "Information flow and causality can be derived ab initio." The
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formalism has been validated with various benchmark cases [106], and successfully applied
to many realistic problems: glaciology [166], neuro-science [84], El Niño-study[105] and
prediction [112], precipitation-soil moisture interaction[73], global climate change [159, 53],
economics [113], etc.

The discussion of causality in quantum physics goes back to the paradigmatic Bell
experiment [19]. Causal structure places constraints on the correlations that can be generated
in any classical hidden variable theories, which quantum physics violates [63, 8, 43, 148,
70]. Motivated by the possible relation between causality and correlations (Liang just put
this relation in a mathematical formula [105, 106], various attempts have been made to
estimate causal influences in certain quantum environments [65, 77, 39, 47, 64, 13, 178,
2]. The quantification of causal effects in quantum regime sheds new light on quantum
communication [60, 139] and helps understanding information flow in quantum processors
[51, 50]. Usually, correlation functions of Heisenberg picture evolving operators are used to
ascertain casual influences, but caution should be exercised since correlation does not imply
causation [105, 106].

Surprisingly, the straightforward approach to ascertaining causality that an experimentalist
will naturally employ, i.e., to subtract a given component from a network and examine its
influence, remains unexplored. Motivated by that, we hereafter adopt Liang’s methodology
to quantify causal influence in quantum systems. As opposed to all the approaches mentioned
above in the quantum context, here one detaches or freezes a certain subsystem of a network
(sender) in order to ascertain its causal influence on other subsystems (target). The change of
a target element’s von Neumann entropy, which possess various interpretations [130], then
gives the information flow from the sender.

4.2 Classical information flow-based causality analysis

Liang information flow quantitatively defines causality. The series of work starts with
the investigation of bi-variate deterministic systems and is originally based on a heuristic
argument [111]. Later on, the formalism is put on a rigorous footing and generalized to
stochastic and multi-variate systems [104, 106, 110]. To present this fundamental idea in its
simplest form, we will focus on bi-variate autonomous system with equation of motion given
by:

dx
dt

= F(x) (4.1)

where x = (x1,x2) ∈ Ω and the sample space Ω is a direct product of subspace Ω1⊗Ω2. X =

(X1,X2) is the random variable of subsystem 1 and 2. {X, t} is assumed a stochastic process
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and the joint probability density distribution at time t is denoted ρ(x1,x2, t). F = (F1,F2) may
be interpreted as the force acting on the system. Shannon entropy of this system is given by:

S(classical)(t) =−
∫

Ω

ρlog(ρ)dx1dx2 (4.2)

Substitute Eq. 4.1 into Eq. 4.2, one obtains the time rate change of entropy, provided that ρ

vanishes at boundaries[111]:
dS(classical)

dt
= E(∇ ·F) (4.3)

The right hand side is the expectation value of the divergence of force F. The physics revealed
by Eq. 4.3 is that the expansion and contraction of the phase space governs the change of
entropy.

The probability distribution of a subsystem, say subsystem 1, can be obtained by taking
the marginal density ρ1(x1, t) =

∫
Ω2

ρ(x1,x2, t)dx2. Its entropy can be calculated:

dS1(classical)

dt
=−

∫
Ω

ρ[
F1

ρ1

∂ρ1

∂x1
]dx1dx2 (4.4)

Liang and Kleeman identified that the entropy change of subsystem 1 given by Eq. 4.4 can
be decomposed into two parts: the evolution due to X1 alone, with effect from subsystem 2
excluded, denoted as

dS1̸2(classical)
dt . Another part is the influence from X2 through the coupling

with external force. Through heuristic reasoning based on the interpretation of Eq. 4.3, Liang
and Kleeman argue that if subsystem 1 evolves on its own, the entropy change of subsystem
1 would depend only on ∂F1/∂x1:

dS1 ̸2(classical)

dt
≡ E(

∂F1

∂x1
) =

∫
Ω

ρ
∂F1

∂x1
dx1dx2, (4.5)

In 2016, Liang [106] showed that the above result Eq. 4.5 can be derived by treating x2 as a
fixed parameter at time t, rather than a variate. Consider the mapping Φ : x(t) 7→ x(t +∆t),
which acts as follows: 

x1(t +∆t) = x1(t)+F1(x1,x2, ...,xn)∆t
x2(t +∆t) = x2(t)+F2(x1,x2, ...,xn)∆t

...
xn(t +∆t) = xn(t)+Fn(x1,x2, ...,xn)∆t

, (4.6)



76 Quantum Liang Information Flow as Causation Quantifier

the modified mapping Φ ̸2 with x2 frozen as a parameter during the time interval ∆t is:

x1(t +∆t) = x1(t)+F1(x1,x2, ...,xn)∆t
x2(t +∆t) = x2(t)
x3(t +∆t) = x3(t)+F3(x1,x2, ...,xn)∆t

...
xn(t +∆t) = xn(t)+Fn(x1,x2, ...,xn)∆t

, (4.7)

ρ1̸2(t +∆t) denotes the density of x1 under the modified mapping Φ ̸2 and S1̸2(classical) is its
Shannon entropy.

The rate of information flow from X2 to X1 is then:

T2→1 =
dS1(classical)

dt
−

dS1̸2(classical)

dt

= −
∫

Ω

ρ[
F1

ρ1

∂ρ1

∂x1
+

∂F1

∂x1
]dx1dx2 (4.8)

This formula verifies what Liang refers to as the principle of nil causality:

If F1 is independent of x2, then the information flow from 2 to 1 vanishes: T2→1 = 0.

If T2→1 is negative (positive), the interpretation is that system 2 is making system 1
more (less) certain. Note that the information flow formalism Eq. 4.8 is asymmetric, that
is T2→1 ̸= T1→2. When the information flow from 2 to 1 vanishes, that from 1 to 2 maybe
non-zero. The asymmetry feature distinguishes the information flow formalism with classical
correlation measures.

It should be pointed out that the evaluation of Eq. 4.8 requires full knowledge of the
dynamics. In [105], Liang showed that T2→1 can be estimated with local statistics. The
maximum-likelihood estimator of Eq. 4.8 is shown to be a combination of some sample
covariances, which greatly facilitates the implementation of the causality analysis.

This formalism has been widely applied to realistic schemes [105, 159, 73, 166, 84].
Among them, we will briefly mention its application to a network consisting of Stuart-Landau
oscillators [109], a typical model for many biological phenomena [160]. The magnitude of
Liang information flow quantifies the influence of individual components to produce the
collective behavior of the whole system. The direct addition of individual contributions does
not equal the cumulative information flow, demonstrating its collective property. Moreover,
the node with greatest information flow is verified to be the most crucial as its suppression



4.3 Quantum Generalization: Definition 77

leads to shut down of the entire network. Surprisingly, such a node may be sparsely connected,
rather than a center of network. The information-flow based causality analysis successfully
explains why small defects at local node could severely damage structural integrity.

4.2.1 Classical closed bivariate system

The classical model considered in Eq. 4.1 is dissipative. System 1 and 2 exchanges energy
with the environment through external force F. If system 1 and 2 is closed, the divergence
of force F vanishes: ∇ ·F = 0. As a result, Eq. 4.3, Eq. 4.5 becomes: dS(classical)/dt =
E(∇ ·F) = 0, dS1̸2(classical)/dt = E(∂F1

∂x1
) = 0, therefore,

T2→1 =
dS1(classical)

dt
(4.9)

Eq. 4.9 is completely in agreement with the quantum formalism obtained for initially mixed
bipartite system.

4.3 Quantum Generalization: Definition

Consider a multi-partite system with a density operator state ρ , evolving under a generic
unitary operator U(t). The evolution leads to an entropy change of its subsystems as initial
uncertainties can flow between the subsystems as well as when they get correlated quantum
mechanically with each other (an open system is also addressed here by tracing out the
ancillary degrees of freedom). Following Liang’s methodology, we decompose the time rate
of change of the von Neumann entropy of a subsystem A, dSA/dt, into two parts: TB→A,
the rate of information flow from subsystem B to A, and dSA̸B

dt , the entropic evolution rate of
subsystem A with the influence from B excluded:

TB→A =
dSA

dt
−

dSA̸B

dt
. (4.10)

S is the von Neumann entropy given by S = −Tr(σ logσ) for arbitrary state σ . SA ̸B =

S(ρA̸B) = S[ε(t)A ̸BρA(0)], where ε(t)A ̸B is a map denoting the evolution of A with B frozen.
We will discuss the definition and properties of ε(t)A ̸B in the following section. If we consider
time evolution as a discrete mapping during interval ∆t, the cumulative information flow is
then formulated in terms of the change of entropy ∆S:

TB→A =
∫

TB→Adt = ∆(SA −SA ̸B). (4.11)
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Note that the von Neumann entropy, hence the information flow formalism, possess various
interpretations [130]. Particularly distinct from the Shannon entropy, the von Neumann
entropy quantifies the entanglement within a pure bipartite quantum system. SA̸B (or SA)
can then be interpreted as the entanglement between A and the rest of the universe with (or
without) B frozen. The term (SA−SA ̸B) that appears in Eq. 4.10, 4.11 is then the difference of
these two entanglement measures, in units of ebits. TB→A then quantifies the causal influence
of B on A in the sense of how much it causes the entanglement of A with the rest of the
universe to change. Similarly, other interpretations, such as the uncertainty of a given state,
also apply here.

4.3.1 Evolution of subsystem A with B frozen

Since ε(t)A̸B is a mapping of states, it can be interpreted as a quantum channel acting on

subsystem A [130]: ρA(0)
ε(t)A ̸B→ ρA ̸B(t). We further require that ε(t)A̸B corresponds to a

physical process, therefore it can be obtained from taking the partial trace of the full system,
which evolves unitarily. For tripartite system ρABC:

ρA̸B(t) = TrBC{UA ̸BC(t)ρABC(0)U
†
A ̸BC(t)} (4.12)

for some unitary operator UA̸BC.

4.4 The principle of nil causality in quantum regime

We define the evolution mechanism with a subsystem frozen in terms of tensor product of
unitary operations acting on the frozen part and other parts of the system respectively:

UA ̸BC(t) = VAC ⊗WB (4.13)

where VAC and WB are unitary operators acting on subsystems AC and B respectively. Frozen
mechanism of the form Eq. 4.13 guarantees what Liang referred to as the principle of nil
causality [106]:

TB→A = 0 if the evolution of A is independent of B, that is, the unitary evolution operator
UABC(t) takes separable form MA ⊗NBC or OAC ⊗QB.

For tripartite system, if UA̸BC(t) takes the form of Eq. 4 (VAC ⊗WB), then the statement
of causality is satisfied, that is, TB→A = 0 when A evolves independent of B.
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If UABC = MA ⊗NBC, the evolution of A is solely determined by unitary operator MA.
Excluding B from the joint evolution of subsystem BC, denoted N̸BC, has no effect on
A. Therefore, ρA(t) = ρA ̸B(t) = MAρA(0)M

†
A . By the unitary invariance of von-Neumann

entropy, dSA
dt =

dSA ̸B
dt = 0, thus TB→A = 0.

If UABC(t) = OAC ⊗QB, it is already of the form given in Eq. 4.13. Therefore, excluding
B or not has no impact on the joint evolution of system AC. That is,

ρA(t) = TrBC{UABC(t)ρABC(0)U
†
ABC(t)}

= TrC[OACρAC(0)O
†
AC]

= TrBC{UA̸BC(t)ρABC(0)U
†
A̸BC(t)}= ρA̸B(t)

Therefore, TB→A = dSA
dt − dSA ̸B

dt = 0.
This results obtained above can be easily extended to multi-dimensions. Whether the

converse proof also holds remains an open question.
Therefore, the causal structure of space-time in physics is embedded in the formalism. If

quantum operations, conducted at 4-dimensional coordinates x and y, are space-like separated,
hence non-causal, then the operations acting at x do not affect the state located at y and vice
versa. The quantum operations at x and y commute and the joint evolution is in product form.
Thus the quantum Liang information flow from one coordinate to another vanishes.

Bipartite system

Consider a bipartite state ρAB under unitary evolution UAB(t). Comparing with Eq. 4.13, UA̸B

takes the form VA ⊗WB in 2 dimensions. Since von Neumann entropy is invariant under a
unitary change of basis, ρA ̸B = VAρA(0)V

†
A and dSA̸B

dt = 0. Therefore, the rate of information
flow from B to A: TB→A = dSA

dt . Similarly,TA→B = dSB
dt . If the initial state ρAB(0) is pure, that is,

the system is closed, by Schmidt decomposition, ρA and ρB share the same set of eigenvalues.
Since closed bipartite system is symmetric, SA(t)= SB(t) and TB→A = TA→B. In general, if the
initial state ρAB(0) is mixed, which can arise from entanglement with some external system,
then we no longer have the symmetry TA→B ̸= TB→A. Consider CNOT gate with controlled
qubit A and target qubit B acts on the initial state ρAB(0) = (1/2|0⟩⟨0|A+1/2|1⟩⟨1|A)⊗
|0⟩⟨0|B, the system evolves to 1/2|0⟩⟨0|A⊗|0⟩⟨0|B+1/2|1⟩⟨1|A⊗|1⟩⟨1|B. The cumulative
information flow for this discrete mapping TB→A = ∆SA = 0 and TA→B = ∆SB = 1bit. The
asymmetric quantum information flow obtained for initially mixed bipartite system parallels
its classical counterpart. For multi-partite system ρABCD···, the information flow from the rest
of a closed system towards a particular unit, say A, is equivalent to the bipartite scenario:
TBCD···→A = dSA

dt , TBCD···→A = ∆SA.
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Multipartite system

Evaluation of the information flow in a multipartite system requires a method to fix VAC in
Eq. 4.13. Here we demonstrate this with a tripartite system ρABC. We define the evolution
of A with B frozen by replacing the interaction terms relevant to B in the Hamiltonian
with the identity operator. For simplicity, consider the evolution operator generated from a
time-independent Hamiltonian H, U(t) = e−iHt , with h̄ set to unity. For instance, let:

HABC = H0A +H0B +H0C +A ⊗C +B⊗C (4.14)

where H0i,with i = A,B,C, is the free Hamiltonian. A ,B and C , which occur in the
interactions, are hermitian operators acting on subsystems A,B and C respectively. The
evolution mechanism with B frozen is then: UA̸BC = e−iHA̸BCt , where

HA ̸BC ≡ H0A +H0C +A ⊗C + IB (4.15)

UA̸BC is clearly of the product form given in Eq. 4.13, with WB = I and VAC generated by
hermitian operator H0A +H0C +A ⊗C . The meaning of UA̸BC is then:

evolution of the system if subsystem B is removed from the original evolution mechanism.

The operational meaning of the frozen mechanism guarantees that this definition is basis
(observable) independent. Now, we are equipped with the tools needed to evaluate quantum
Liang information flow.

4.5 Application: multi-qubit spin system

Consider a multi-qubit spin chain. The interaction Hamiltonian between any two interacting
qubits i, j is given by [185]:

Hspin,i j = ηi j(σ+iσ− j +σ−iσ+ j) (4.16)

where σ± can be expressed in terms of Pauli matrices {σx,y,z}, σ± = 1
2(σx ± iσy), ηi j repre-

sents the coupling strength. The interaction Hamiltonian for 3 interacting qubits, labeled A,
B, C, of the form Eq. 4.14 is given by:

Hint,ABC = ηAC(σ+Aσ−C +σ−Aσ+C)+ηBC(σ+Bσ−C +σ−Bσ+C) (4.17)
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For simplicity, η has scaled value with respect to unit relative coupling strength of frequency
dimensions. Time t is scaled inversely to unit relative coupling strength.

4.5.1 Relative coupling strength variation

We here investigate the cumulative information flow T from A,B to C with different coupling
strengths; the classical counterpart is seen in [108]. We set the initial state of the sending
qubits A, B being maximally mixed while the receiving qubits C pure: ρ(0) = IA ⊗ IB ⊗
|0⟩⟨0|C. So the sending qubits are competing to propagate uncertainty towards the target
qubit. The Hamiltonian with one qubit frozen, say A, is obtained by erasing the terms
involving qubit A in Hamiltonian Eq. 4.17:

Hint ,̸ABC = ηBC(σ+Bσ−C +σ−Bσ+C)+ IA. (4.18)

The evolution of ρ̸A̸BC is defined similarly by removing hermitian terms relevant to qubits
A,B altogether. Therefore, ∆S̸A ̸BC vanishes and the joint cumulative information flow from
AB to C is: TAB→C = ∆SC. Set ηAC = 1, ηBC = 3, at time t ∼ 0.49, the entropy of C reaches
its maxima of 1 bit for the first time. This is the maximum uncertainty qubit C can receive,
determined by its dimension. For the purpose of illustration, we compare the cumulative
information flow from different sending qubits before this capacity is reached. The early time
behavior of cumulative information flow TAB→C(t), TA→C(t), TB→C(t) is plotted in figure
4.1a.

From Fig. 4.1a, we notice that: The cumulative information flow from B to C is greater
than that from A to C: TB→C > TA→C. This formalism is consistent with the intuition
that the strongly coupled qubit has greater impact on the target. The direct addition of
cumulative information flow from individual qubit A,B is smaller than the joint value:
TB→C +TA→C < TAB→C in this example. It means that turning off qubit A and B altogether
has more impact on qubit C than the direct addition of turning A,B off one at a time. Similar
result is obtained for the early time behavior of a 5 qubit spin chain.

4.5.2 5 qubits

For 5 qubits, labeled A,B,C,D,E, with E in the center and interacting with other qubits
independently. To check if stronger coupled sending qubit delivers more information towards
the receiving qubit, we set ηDE = 1, ηCE = 2, ηBE = 3, ηAE = 4 and let the initial state of
the sending qubits A,B,C,D being maximally mixed and the receiving qubit E pure, so that
ρ0 = IA/2⊗ IB/2⊗ IC/2⊗ ID/2⊗|0⟩⟨0|E .



82 Quantum Liang Information Flow as Causation Quantifier

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Time

C
u
m
u
la
ti
ve
In
fo
rm
at
io
n
F
lo
w

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

0.5

Time

C
u
m
u
la
ti
ve
In
fo
rm
at
io
n
F
lo
w

(b)

Fig. 4.1 3-qubit spin chain (a) From top to bottom (measured in bits): TAB→C, TB→C +TA→C, TB→C, TA→C.
Coupling strength: ηAC = 1, ηBC = 3. Initial state: ρ(0) = IA ⊗ IB ⊗|0⟩⟨0|C. (b)Blue curves: TA→C, Orange
curves: TB→C. Solid curves: Initial state ρ0(1) = IA ⊗ (0.9|0⟩⟨0|+0.1|1⟩⟨1|)B ⊗|0⟩⟨0|C, Dashed curves: Initial
state ρ0(2) = IA ⊗ (0.1|0⟩⟨0|+0.9|1⟩⟨1|)B ⊗|0⟩⟨0|C. Coupling strength: ηAC = ηBC = 1.

Calculation of information flow from the kth qubit to E, where k runs through the sending
qubits, requires the evolution mechanism with the kth qubit frozen:

Hspin,̸k = ∑
i,i̸=k

Hspin,iE (4.19)
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The joint information flow from A,B,C,D to E is simply the change of SE :

TABCD→E = ∆SE (4.20)

At time t ∼ 0.26, the entropy of E reaches its maxima SE = 1bit for the first time. The
Information flow from each sending qubit to E is plotted in Fig. 4.2, before the capacity
is reached. The stronger coupled qubit delivers more information to E at all time during
t ∈ [0,0.26]:

TA→E > TB→E > TC→E > TD→E (4.21)

At t = 0.26, TA→E ∼ 0.0731bits, TB→E ∼ 0.0132bits, TC→E ∼ 0.0022bits, TD→E ∼ 0.0001bits.
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Fig. 4.2 5-qubit spin chain: Cumulative Information flow towards qubit E (in Bits) from top to bottom:
TABCD→E , TA→E +TB→E +TC→E +TD→E ,TA→E , TB→E , TC→E , TD→E

Similar to the results obtained for 3 qubit system in the main text, here we also observe
superadditivity of quantum Liang information flow:

TABCD→E > TA→E +TB→E +TC→E +TD→E (4.22)

4.5.3 Initial configuration dependence

Note that the information flow formalism also depends on the initial configuration. To
see how different initial states affect the information flow, set the coupling constant equal:
ηAC = ηBC = 1, with initial state ρ0(1) = IA ⊗ (0.9|0⟩⟨0|+0.1|1⟩⟨1|)B ⊗|0⟩⟨0|C and ρ0(2) =
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IA⊗(0.1|0⟩⟨0|+0.9|1⟩⟨1|)B⊗|0⟩⟨0|C. In both cases, the initial entropy of qubit B is ∼ 0.47bit
while A is 1 bit. At a first glance, one may be expecting that A is transmitting more uncertainty
to C than qubit B. From Fig. 4.1b, we see this is indeed the case for initial state ρ0(1). But
when the initial state is switched to ρ0(2), we have TB→C > TA→C. This is because increasing
the von Neumann entropy could result from not only classical uncertainty propagation, but
also from entanglement generation. The qubit interaction given in Eq. 4.16 entangles state
|10⟩ (|01⟩), while it does not act on state |00⟩(|11⟩):

(σ+σ−+σ−σ+)|00⟩= 0, (σ+σ−+σ−σ+)|10⟩= |01⟩

For initial state ρ0(2), qubit B and C has 90% probability in |10⟩BC state, the entangling
mechanism greatly increases TB→C compared to ρ0(1), for which the probability is only 10%.
Changing the initial state to ρ0(2) also suppresses TA→C due to the growing competition from
B.

4.5.4 Quantum super-exchange

Add constant magnetic field along the z-axis with strength B on the intermediate qubit C so
that its energy is lifted by an amount Bσz, while qubits A and B remain unaffected. The total
Hamiltonian acting on the system then gains an additional term:

Hadditional = IA ⊗ IB ⊗Bσz(C) (4.23)

Set coupling strength ηAC = ηBC = 1 and initial state ρ(0) = IA ⊗ |0⟩⟨0|B⊗IC. We wish
to compare information flow from A,C to B with various magnetic field strengths. Note
that when B = 0, the dynamics of information flow in the XY model (Eq. 4.16), which is
not apriori obvious, can be pictured from Fig. 4.3a. The cumulative information flow is
initially from C to B and it reaches a high value of 1 bit before it declines and is overtaken
by the cumulative information flow from A to B. As the magnetic field strength increases,
super-exchange process [20] between A and B becomes progressively dominant. Thus, we
see that information flow from C to B goes down while that from A to B becomes that dictated
by an effective weaker super-exchange coupling η2

AC/B between A and B (σ+Aσ−B +h.c.)
[20].

4.5.5 5-qubit network

Consider a 5-qubit spin system, labeled A,B,C,D,E, with E in the center, we wish to
investigate the information flow towards E. The total Hamiltonian for the 5-qubit spin chain
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Fig. 4.3 Quantum super-exchange: (In bits) Blue curves: TA→B, Orange curves: TC→B. In 4.3a, 4.3b, 4.3c,
4.3d, Magnetic field strength set to B = 0,3,5,15 respectively. Coupling strength: ηAC = ηBC = 1. Initial state:
IA ⊗|0⟩⟨0|B⊗IC.

is
Hspin,tot = ∑

i
Hspin,iE (4.24)

with i = A,B,C,D. Set all the coupling strength with E identical: ηDE = ηCE = ηBE =

ηAE = 1, and initial state of sending qubits A,B,C,D maximally mixed, receiving qubit E
pure. At time t ∼ 0.69, the entropy of E reaches its maximum of 1 bit for the first time. The
cumulative information flow from each sending qubit, which is identical TA→E = TB→E =

TC→E = TD→E , is plotted for the time interval t ∈ [0,0.69] in Fig. 4.4a.
Now let us add mutual interaction between C,D with a relative coupling strength ηCD = 5

and observe how the information flow towards the central qubit E changes (schematic
diagram of the interaction pattern is shown in Fig. 4.5). The total Hamiltonian is now given
by:

∑
i

Hspin,iE +Hspin,CD (4.25)
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Fig. 4.4 5-qubit network Cumulative information flow (in bits) (a) from any sending qubit towards E with
identical coupling strength: ηDE = ηCE = ηBE = ηAE = 1. (b) with additional coupling ηCD = 5. Orange curve:
A(or B) to E, Blue curve: C(or D) to E.
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Fig. 4.5 schematic diagram: A,B couples solely with E, while C,D also interacts with each other. ηDE =
ηCE = ηBE = ηAE = 1, ηCD = 5

With this additional interaction term, the cumulative information flow from each sending
qubit to E is plotted in Fig. 4.4b. Comparing Fig. 4.4b to Fig. 4.4a, the additional interaction
term between C,D greatly reduces the transmitted uncertainty from qubit C (D) to qubit
E, while increasing that from qubit A (B) to qubit E. After time t ∼ 0.49, TC→E reaches
negative value, that is, the presence of qubit C (D) reduces the uncertainty of qubit E. The
uncertainty from qubit C (D) now has two routes to propagate, either towards E or D (C).
Also, the relative coupling strength ηCD is 5 times stronger than ηCE ,ηDE . The strongly
coupled route connecting C and D then diverts the uncertainty propagation away from the
original path between C (D) and E, so that TC→E(TD→E) decrease. Qubits A and B now
have less competition from qubits C and D to propagate uncertainty towards qubit E. Then,
TA→E(TB→E) increases. The presence of certain coupling can thus be used to preserve
information. Although beyond the scope of this proof of principle work, we point out that
this methodology could be exploited to design robust quantum circuits. Take variational
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quantum algorithms on Noisy Intermediate-Scale Quantum computers for instance [126].
The parameters of a quantum circuit are optimized to give a minimum cost function. Ground
state energy is typically the choice of cost function in many cases (eg. solving quantum
many-body systems). One can add to this the average Quantum Liang information flow,
for instance, from one node to another as a supplementary cost function. In that case the
optimized circuit will be more robust against single node failure.

4.6 Application: Two-qubit system in bosonic bath

Let A and B indicate two non-interacting qubits with ground and excited states |0⟩, |1⟩,
embedded in a common zero-temperature bosonic reservoir labeled C. We wish to compare
the information flow between the two qubits. The Hamiltonian governing the mechanism is
given by HSB = H0 +Hint , with:

H0 = ω0σ
A
+σ

A
−+ω0σ

B
+σ

B
−+∑

k
ωkb†

kbk

Hint = αAσ
A
+∑

k
gkbk +αBσ

B
+∑

k
gkbk +h.c. (4.26)

where σ
A(B)
± and ω0 are the inversion operator and transition frequency of qubit A(B). bk,b

†
k

are annihilation and creation operator of the environment C. αA(B) measures the coupling
between each qubit and the reservoir. In the limit αB or αA goes to 0, that is, when one of
the qubit decouples from the setup, then ρA and ρA̸B obeys the same equation of motion and
ρA(t) = ρA̸B(t). Therefore, TB→A = TA→B = 0.

We adopt the lossy cavity model given in Ref[62]. The two-qubit dynamics is solved
exactly at zero temperature. Take initial state ρAB(0) = |ψ0⟩⟨ψ0|, where |ψ0⟩= 1√

3
(|01⟩+

√
2|10⟩). Set λ and h̄ equal to unity, αA/αB = 10/1 and take strong coupling limit R = 10,

where λ defines the spectral width of the coupling and R determines the collective coupling
strength. The rate of information flow with respect to scaled time t from B to A versus that
from A to B is plotted in Fig. 4.6a. The cumulative information flow is shown in Fig. 4.6b.
From Fig. 4.6a, we see that the rate of information flow from the weakly coupled qubit (B)
towards the strongly coupled qubit (A) possesses a higher peak than that from A to B. On
the other hand, as shown in Fig. 4.6b, the cumulative information flow from A to B grows
steadily and surpasses that from B to A as the system approaches equilibrium. Note that
the information flow formalism is generically asymmetric T→A ̸= TA→B, as opposed to most
quantum correlation measures.
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Fig. 4.6 Two-qubit system in a lossy cavity Blue curves: From B to A. Orange curves: From A to B. Coupling
strength ratio: αA/αB = 10/1. (a) Rate of information flow (bits per unit time) (b) Cumulative information
flow (bits).
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4.7 Summary

We have generalized Liang’s theory/methodology for classical systems to quantify causality
in quantum networks. In quantum networks, the growth of entropy of a node can be attributed
to: (1) uncertainty propagation, (2) growth of entanglement. It is found that the information
flow between two qubits through a common bath could be nontrivial: the weakly coupled
qubit has higher rate of information flow, while in the long run, the strongly coupled qubit
has more impact. Another non-trivial result obtained for a 5-qubit network reveals that an
additional strong coupling diverts the directions of uncertainty propagation. The information
flow based causal measure may have applications in parallel with its classical counterparts
[105, 106, 109, 110, 166, 84, 73, 159, 32, 83].



Chapter 5

Causal analysis with respect to quantum
relative entropy

5.1 Introduction

The original Liang-Kleeman analysis is formulated with respect to Shannon entropy. Fol-
lowing the same logistic, Liang then extended the formalism with respect to relative entropy
[107]. Relative entropy provides a better measure of predictability than Shannon entropy in
certain cases [153, 91]. It is invariant under nonlinear transformation and consistent with
the second law of thermodynamics [91, 93, 92]. The Liang information flow with respect
to relative entropy is shown to be equivalent to the Shannon entropy-based formalism for
non-linear stochastic systems [107]. Properties of the Shannon entropy-based formalism,
including the nil causality principle [106], are also shared with the relative entropy-based
formalism. Furthermore, the latter is found invariant under nonlinear transformation under
weak assumptions. The relative entropy-based formalism also captures underlying causal
relations and it is shown that the influence of one component to another changes rapidly
when white noise is introduced.

In quantum information theory, quantum relative entropy also inherits advantages from
its classical counterpart. The inequalities quantum relative entropy satisfies is a "parent" of
many theorems of information processing. It also has the interpretation in terms of statistical
distinguishability between two states, which is similar to distance measure. In this paper, we
formulate the quantum Liang information flow formalism with respect to quantum relative
entropy.
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5.2 Definition

For density operators ρ , σ , the quantum relative entropy S(ρ||σ) is defined as:

S(ρ||σ) = Tr[ρ logρ −ρ logσ ] (5.1)

Consider a multipartite state ρ evolve under unitary operator U(t) generated from Hamil-
tonian function H. Reduced density state of subsystems of ρ AB, A, B is then denoted
ρAB, ρA, ρB. Following the methodology of its classical counterpart [107], quantum Liang
information flow with respect to relative entropy is then

T r
B→A =

dS(ρA||σ)

dt
−

dS(ρA̸B||σ)

dt
(5.2)

the cumulative information flow is then

Tr
B→A =

∫
T r

B→Adt = ∆S(ρA||σ)−∆S(ρA̸B||σ) (5.3)

where σ is an arbitrary constant density state and the superscript r is used to denote that
the formalism is based on relative entropy. Here ρA̸B again refers to the density state of A
evolving with B frozen. The frozen mechanism is adopted from the original von Neumann
entropy-based formalism by removing terms relevant to subsystem B in the Hamiltonian
function H [182].

5.3 Interpretations and properties

Interpretation of this information flow formalism follows directly from the interpretations of
quantum relative entropy. The quantum Sanov’s theorem claims that the quantum relative
entropy gives the asymptotic distinguishability of two density states by measurements.
Suppose ρx and ρy are two possible states of a quantum system and we prepare n identical
copies of the system. A measurement is then performed to test if the state is ρx, the probability
of passing the test with state ρy in the asymptotic limit n → ∞ is

p(n)≃ 2−nS(ρx||ρy) (5.4)

Therefore, the quantum Liang information flow Eq. 5.2 and Eq. 5.3 can then be interpreted as
quantifying how much would the distinguishability of subsystem A and a fixed constant state
σ change if subsystem B is frozen throughout the evolution. If the information flow measure
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is positive, the interpretation is that the presence of B in the interaction causes A to be more
distinguishable from the reference state σ and vice versa for negative measure. The choice
of σ depends on the information processing task of interest. For simplicity, one may pick
the initial state of the target node A, σ = ρA(0). When the evolution of subsystem A models
a noisy quantum channel where A interacts with its environment, the distinguishability of
subsystem A at time t and at time 0: S(ρA(t)||ρA(0)) then quantifies the decoherence and
memory effects.

von Neumann entropy can be interpreted in terms of quantification of computational
resources, for instance entanglement, in information processing tasks. Quantum relative
entropy plays a similar role. To name a few [128],

Iρ = min
π∈P

S(ρ||π) = S(ρ||πρ) (5.5)

Eρ = min
ω∈S

S(ρ||ω) (5.6)

Dρ = min
χ∈C

S(ρ||χ) (5.7)

Qω = min
χω∈C

S(ω||χω) (5.8)

where Iρ is the total mutual information of ρ , π ∈ P is a product density state, and πρ =

π1 ⊗ ...πn with πi the ith reduced density state of ρ . Eq5.5 states that the total information of
ρ is given by the distance with its closest product state πρ , which is the tensor product of its
reduced state. Eρ is the entanglement of ρ , given by the distance with its closet separable
state ω . S denotes the set of separable states. Dρ is the discord of state ρ , which is a
quantum correlation weaker than entanglement. It is given by the distance of ρ with its
closest classical state χ ∈ C . Quantum dissonance, denoted Q, is the distance between ω and
the closest classical state χω . It quantifies the rest of quantum correlations after entanglement
is "excluded" from ρ . The central role of relative entropy in quantum information science
provides versatility to the relative entropy-based information flow formalism by changing the
reference state σ in Eq. 5.2 and Eq. 5.3.

A special choice of σ is the identity matrix I. This reflects the probability of confusing any
density matrix from maximally mixed (completely random) state. For the model considered
in Ref [107], the classical relative entropy-based formalism is equivalent to its absolute
entropy-based alternative up to a minus sign. The quantum extension inherits this feature. It
should be immediately obvious by checking the definition of relative entropy Eq. 5.1. In the
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case where the reference state σ = I,

Tr[ρ log I] = 0

S(ρ||σ) = Tr[ρ logρ] =−S(ρ) (5.9)

The same equation S(ρ||σ) = −S(ρ) also holds when σ is pure since logσ is defined as
0 for pure states. For instance, one may be interested in the distance of a qubit A and its
initial state after evolution S(ρA(t)||ρA(0)) and the initial state ρA(0) can be taken as a pure
state. Then the relative entropy-based formalism would be no different from its absolute
entropy-based counterpart. In this sense, the von Neumann entropy-based formalism is a
special case of its relative entropy-based alternative.

One may also be interested in S(ρA(t)||ρA̸B(t)), which quantifies the distance between
the evolution of system A with or without freezing the component system B. This is also
a special case of the information flow formalism Eq. 5.2, Eq. 5.3 by picking σ = ρA̸B(t).
Since S(ρA̸B||ρA̸B(t)) = 0,

T r
B→A =

dS(ρA||ρA ̸B)

dt
(5.10)

Tr
B→A = ∆S(ρA||ρA̸B) (5.11)

Certain basic features of the original quantum Liang information flow formalism are
inherited by the relative-entropy based alternative. The principle of nil causality states that
the information flow measure vanishes when the evolution of A and B are independent [106].
This property can be directly observed from Eq. 5.2 and Eq. 5.3. Let the rest of the system
denoted by letter C, if the unitary operator acting on system ABC, UABC(t) is separable:
UABC(t) = MA ⊗NBC or UABC(t) = OAC ⊗QB, where M ,N ,O,Q are all unitary, then
ρA(t) = ρA̸B(t). Hence

T r
B→A = 0 (5.12)

Tr
B→A = 0 (5.13)

Bipartite system However, new opportunities are brought into the relative entropy-based
formalism by the freedom of choice of the reference state σ in Eq. 5.2, 5.3. For pure bipartite
state AB under unitary evolution U , the reduced density state ρA and ρB share the same
eigenvalues, therefore, SA = SB at all times. The original quantum Liang information flow
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formalism then reduces to:

TB→A =
dSA

dt
−

dSA̸B

dt
=

dSA

dt
=

dSB

dt
= TA→B (5.14)

where in the second equal sign, we have exploited the unitary invariance of von-Neumann
entropy. The evolution of A with B frozen ρA̸B(t) is governed by a unitary operation acting
on A, so, dSA ̸B

dt = 0. The third equal sign is a direct outcome of Schmidt decomposition. Such

simple reduction does not occur in the relative-entropy based formalism. First, dS(ρA̸B||σ)
dt ̸= 0.

The unitary transformation

ρA(0)→ ρA̸B(t) =U(t)ρA(0)U†(t) (5.15)

does not preserve the distance between system A and reference state σ in general. Further-
more, Schmidt decomposition of pure bipartite system does not guarantee the relative entropy
between system A and σ is the same as that between system B and σ :

dS(ρA||σ)

dt
̸= dS(ρB||σ)

dt
(5.16)

Though ρA and ρB share the same eigenvalues, their eigenvectors are not necessarily identical.
So their distances between σ are not always the same. To build some intuition of the relative
entropy-based information flow formalism, we exemplify with a few toy models.

5.3.1 Application: XY spin chain

Consider a 5-qubit spin chain system emerged in a heat reservoir with temperature T , the
interaction term between any two interacting qubits in the Hamiltonian function is given in
Eq. 4.16. To break the symmetry between |0⟩ and |1⟩, we also apply a uniform magnetic
field on each spin along the z-axis. The Hamiltonian of the 5 qubit spin chain is then:

Hint,5spins = ∑
i=1...5

ηi,i+1(σ+(i)σ−(i+1) (5.17)

+ σ−(i)σ+(i+1))+Bσz(i)

where σ+ = 1/
√

2(σx + iσy), σ− = 1/
√

2(σx − iσy), B is magnetic field strength, ηi j is the
relative coupling between the ith and jth spin. The value of i runs through the first 4 spins
{A,B,C,D}. Set the relative coupling strength and magnetic field strength to unity without
loss of generality ηi j = 1, B = 1. The value of η , B and time t here is again scaled with
respect to unit relative coupling strength.
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To apply the relative entropy-based information flow formalism, one has to pick a
reference state σ . Here we investigate the information flow towards the end qubit E. Pick
σ = ρ0E , where ρ0E = TrABCD[ρ0] is the reduced density state of the thermal equilibrium
state of the 5-qubit spin chain ρ0 = eβH/Tr[eβH ] and β = 1/kT . The information flow
formalism Eq. 5.2, 5.3 is then a measure of change in the relative distance between qubit E
and the reduced thermal equilibrium state ρ0E upon freezing a qubit in the chain. Note that
relative entropy has a interpretation in terms of free energy [54]. The relative entropy-based
information flow measure towards qubit E is then related to extractable work from the system.

The cumulative information flow formalism reads:

Tr
i→E = ∆S(ρE ||ρ0E)−∆S(ρE ̸i||ρ0E) (5.18)

where i ∈ {A,B,C,D}. Setting the initial state an equal superposition of base states in the
standard 5 qubit basis with each qubit spanned by {|0⟩, |1⟩} so that the initial configuration
weights each qubit equally:

|ψi⟩= |+⟩⊗n =
1

2n/2

2n−1

∑
x=0

|x⟩ (5.19)

where |+⟩= 1√
2
(|0⟩+ |1⟩), n = 5 is the number of qubits and {|x⟩} is a set of binary state, for

instance, |x = 0⟩= |00000⟩. This choice of initial state is typical in quantum computational
protocols[130].

The cumulative information flow from individual qubit to E is plotted in Fig. 5.1. Note
that each qubit is only interacting with its adjacent qubits, so freezing a qubit in the middle
essentially divide the chain in half. The information flow from a spin, say B, towards E is
then equivalent to that obtained by freezing B and all qubits before B (qubit A in this case).
The information flow from D to E, in particular, is equivalent to collective information flow
from A, B, C, D to E (By freezing A,B,C,D altogether) Tr

D→E = Tr
ABCD→E .

The information flow is plotted over a time period of t ∼ 300 in Fig. 5.1. The reason for
choosing such a large time interval in comparison to the time needed for influence to reach
from one end of the chain to another (∼ 5/η = 5 ) is that we want to identify the influence
per se without the effect of propagation speed. The averaged cumulative information flow
over the duration is −0.0447, −0.1246, −0.233 and −0.7932 bits from A, B, C, D to E
respectively. The variance is also computed to be 0.062, 0.1795, 0.1217, 0.0581 bit2 from
each qubit to E.

The first observation from the plot is that the influence from a qubit farther away takes
longer time to reach the target qubit E. For the farthest qubit A, it takes t ∼ 18 to influence E,
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the next one qubit B takes about t ∼ 12, qubit C takes time around t ∼ 2. This is expected as
there will be a speed of propagation in the system. This result validates the interpretation
of our formalism as an information flow measure. The influence from the adjacent qubit D
towards E takes effect immediately at t ∼ 0. This is a reflection of the fact that the simplified
model Eq. 5.18 does not involve explicit terms of coherent mediators. For a more rigorous
account of propagation speed, one may adopt a quantum field theoretical model.

The second observation is that the natural dynamics of the chain should take the subsystem
E closer to equilibrium. This is modulo the fact we have considered very small chain in
this preliminary study so that the thermalizing effects of the dynamics can be trusted only
for small times, and have a finite size effects giving long term oscillations. We see that
farther the qubit, the less it affects the departure from equilibrium, as evidenced also from
the decreasing of the mean value magnitude.

Another observation is that influence from closest qubit D (or, equivalently, the rest of the
chain) forms a lower bound on the information flow from other qubits. This is a reflection of
the intuition that the influence from a component is no larger than the entire chain except
the target qubit. Note also that the mean value of the influence is negative for all the qubits,
indicating that overall, they all play a role in the equilibration of the target system (bringing
the target closer to equilibrium).

5.3.2 Application: Ergodic Ising spin chain

The Hamiltonian given in Eq. 5.18 is non-ergodic so that its subsystems do not thermalize,
although they equilibrate. For the same reason, we also investigate the Hamiltonian

Hint,5spins2 = ∑
i=1...5

ηi,i+1σz(i)σz(i+1)+Bxσx(i)+Bzσz(i) (5.20)

where the interaction term between qubit i, j is now described by σz(i)σz( j) and a magnetic
field is applied along both x and z components.

The above Hamiltonian is ergodic, so that its subsystems should fully thermalize in the
long chain thermodynamic limit given enough time. We have also plotted the information
flow for this model in Fig. 5.2 to see whether, even at this level of short chain length (5
qubits), any difference can be spotted between ergodic and non-ergodic evolution towards
equilibration.

The information flow is plotted again over a time period of t ∼ 300 in Fig. 5.2. The
averaged cumulative information flow over the duration is −0.0256, −0.1124, −0.1217 and
−0.9908 bits from A, B, C, D to E respectively. The variance is also computed to be 0.0378,
0.0842, 0.1635, 0.0355 bit2 from each qubit to E.
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Fig. 5.1 Non-ergodic model: Cumulative Information flow towards qubit E (in Bits) The initial state is
set to be equal superposition state in the standard {|0⟩, |1⟩} basis: |ψi⟩= |+⟩⊗n = 1

2n/2 ∑
2n−1
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If one compares the ergodic and non-ergodic models, we see from the mean value of
cumulative information flow over a long time that the collective influence of the chain on
thermalization (influence from D to E) is more for the ergodic than the non-ergodic model.
On the other hand, influence from parts of the chain to E is more for non-ergodic than ergodic
model. This is a reflection of the fact that the equilibration in ergodic systems is a delocalized
process involving all qubits more equally than in non-ergodic systems. The variance, on the
other hand, are comparable in both models, and the middle qubits have greater variance than
the qubits at the ends. This result implies that information flow is more stable from end to
end than middle to end. We do not yet have a good explanation of the trend but we realize
that it is parallel to the behavior of entropy between complementary blocks in a typical state
of a spin chain [3] (block entropy peaks when the partition reaches the middle of the chain).
This is not immediately relatable to our variances as it involves differences arising from the
act of freezing a qubit as well as the fluctuations in the dynamics.
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Fig. 5.2 Ergodic model: Cumulative Information flow towards qubit E (in Bits) The initial state is set to
be equal superposition state in the standard {|0⟩, |1⟩} basis: |ψi⟩= |+⟩⊗n = 1
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5.4 Conclusion

Liang information flow based on Shannon entropy has been applied to various schemes in
classical dynamic systems to analyze causal relations and it has been generalized to the
quantum regime with respect to von Neumann entropy. However, von Neumann entropy
does not always quantify the computational resource of interest in various information
processing tasks. Relative entropy, on the other hand, plays a "parent" role in quantifying
computational resource in general protocols. In particular, it has a statistical interpretation in
terms of distinguishing states. Motivated by this, in the current chapter, we have adopted
relative entropy as the entity in generalizing Liang information to the quantum setting.
In particular, the freedom of choosing a reference state in the formalism gives us a tool
for looking at different aspects of a quantum process. For example, here we looked at
thermalization in ergodic versus non-ergodic systems, albeit with very small sized models.
We found that, consistent with expectations, information propagates at finite speed during
thermalizing/equilibrating dynamics. More distant qubits initializing influence at a later time
and to a lesser extent even if given a very long time. The formalism also agrees with the
more delocalized and collective influence of all spins in the dynamics of ergodic systems
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as opposed to non-ergodic systems. The fact that differences can be found for such short
chains using our formalism is interesting to note. For the type of case studied, even a single
qubit tomography will suffice to measure ρE thereby find out the information flow in the
many-body system. So it will be attractive to implement this in a quantum simulator.



Chapter 6

Summary and outlook

In this chapter, I will start with a summation of the projects conducted during my PhD studies.
Then, I will give concluding remarks on these works and an outlook of future studies. This
thesis consists of two parts: Massive spatial qubits and Quantum Liang information flow.

6.1 Massive spatial qubit

The first part of the thesis is centered around a novel methodology to encode qubits with
the spatial superposition state of nano-micro objects. It is an open challenge to evidence
nonclassicality in the behaviour of the center of mass of a large object, thereby extending the
boundaries of quantum physics. Here we combine ideas from photonic quantum information
processing and levitated quantum objects to encode and readout a qubit encoded in the spatial
degree of freedom of a free mass. The scheme consists only the free evolution of a superposed
state followed by spatial detection at particular position. Simplicity of the scheme avoids
unnecessary interaction that induces decoherence such as passing through beam-splitters
in Mach-Zhender type interferometer. However, one of its downside is that the Pauli-z
measurement needs to be performed at a time earlier than Pauli-x and y measurement (an
ensemble of particles are considered). For applications where all Pauli-measurements need to
be conducted at approximately same time, squeezing technique may be exploited to shorten
the difference in time. This massive spatial qubit methodology avoids a Mach-Zehnder
interferometer. The tunneling probability is increasingly small when the size of the objects
enlarges. For nano-objects, the standard beam splitters in Mach-Zehnder type interferometers
becomes infeasible. The qubit encoding scheme can be simulated with cold atoms before
being applied to nano-objects.

We fist applied this methodology to verify the nonclassicality inherent in a Stern-Gerlach
state before the final stage of the measurement in which the deflection of the mass that bears
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the spin is recorded. The Stern-Gerlach state is usually written down as a quantum entangled
state of a spin and the position, but there is no direct test of this yet. Such Stern-Gerlach
states have been created with atoms [114, 117] and the coherence of the spatial part alone
has been verified by interferometry after selecting a specific spin state. An alternative is to
verify the coherence by undoing the Stern-Gerlach splitting, which, while it would scale
to large masses, is extremely difficult[116]. However, there are, as yet, no protocols to
verify the nonclassicality directly from correlation measurements of spin and position thereby
verifying their entanglement. We show that this can be accomplished via the violation
of a Bell’s inequality in which the spin and the positions of the mass are measured, even
when the positions are measured sufficiently imprecisely. This violation will also prove the
nonclassicality of a large mass in terms of quantum contextuality[1, 80].

The second application is to test the quantum nature of Casimir interaction. The scheme
witnesses the entanglement created between two neutral nano-crystal masses through their
Casimir interaction (a minor additional squeezing operation has to be appended). This has
two types of foundational imports: (a) It shows that the Casimir interaction has a quantum
origin – it is mediated by virtual photons – the quantum nature of these is the cause of
entanglement between the masses (if the agent going between the masses was classical it
would not entangle). Though there have been numerous experiments on Casimir forces,
recently even for torques on nanocrystals[181], they do not “qualitatively” identify it as a
quantum force, only via a quantitative matching of the magnitude of the force as derived from
quantum field theory. (b) As the entangled state is generated by starting from superpositions
of distinct localized (Gaussian) states, it is highly non-Gaussian in nature, and will be a
simplest unique example of how to generate and verify such a state for two nano-crystals
(mass ∼ 10−19kg). While there are several ideas to date for the generation of Gaussian
entangled states of massive systems (e.g., [140, 174] for nano-objects) where the familiar
EPR criterion [155] to witness entanglement can be applied, there are hardly any schemes to
either generate or witness non-Gaussian entangled states of nano-crystals. The realization
of a Casimir induced entanglement will thus be a significant milestone in the entanglement
frontier of nano-crystals.

Finally, we looked at the potential of applying this methodology to witness the quantum
nature of gravitational interaction. The original scheme to test quantum gravity[28] exploits
spin degree of freedom, which involves spin-embedded mass and a standard Stern-Gerlach
interferometer. The challenge is that the spin-entanglement scheme requires an precise
overlap of the wavepackets in the two interferometric arms to complete SGIs. The spin
degree of freedom also introduces additional source of decoherence. The massive spatial
qubit approach provides a spinless alternative, but also arises its own challenges. The
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scheme consists of two spatially superposed masses m ∼ 10−15kg, which propagates and
interacts through gravitational interaction. A Faraday shielding scheme is incorporated
to block unwanted electromagnetic interaction between the masses. The requirement for
the wavepacket spreading to dominate over the displacement due to Casimir force imposes
constraint on the minimum distance to the screen, which, in turn, implies a minimum
separation between the initial state of the two masses so that in-negligible relative phase
can be induced during the propagation stage. The protocol requires all Pauli-Z,X and Y
measurement to readout the potential entanglement due to quantum gravity. In order to
shorten the time difference between Pauli-Z and Pauli-X,Y measurement, one squeezes
the wavepacket width immediately after observable relative phase has been induced among
the superposition components. The proposed scheme requires spatial squeezing of the
wavepacket by 7 orders of magnitude, which can hardly be achieved. Magnetic field generated
from current-carrying wire may be used for squeezing such massive objects. Decoherence
due to random field fluctuations place strict upper bound on the force noise spectrum. If the
proposed spatial superposition state can be prepared and the above requirements can be met,
evidencing quantum gravity nurtured entanglement between two test masses can be achieved
solely through spatial measurements.

As the next step, there are a number of interesting avenues to investigate. The most
important is to have a comparison between spinful(as in reference [28]) and spinless (as
in this thesis) scenarios in terms of various achievable decoherence values. Decoherence
in our works have been introduced heuristically (of course, with magnitudes taken from
realistic calculations), without incorporating it into the dynamics while the Hamiltonian
creating the superpositions, squeezings and wavefunction spreadings are simultaneously
acting. That is a master equation approach using system dynamics as well as decoherence is
important. This will help to really understand whether spinful or spinless approach is better
and indeed, compare them with approaches based on Gaussian states[97]. In particular, even
the preparation of the superposed quantum state, if it can be achieved without spins, using
double slits manufactured from other electromagnetic sources, will be an important thing
to study. Usage of massive spatial qubits as quantum sensors, as well as their extension to
qudits (quantum multi-dimensional systems), can also be interesting directions to study.

6.2 Quantum information flow-based causality analysis

The second part of the thesis addresses causality in quantum physics from the perspective
of information flow. Quantification of causation between dynamical events is of enormous
interest in various subjects. In classical physics, the recent developments of causality theory
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have been widely applied to various disciplines, e.g., climate science, finance, turbulence, etc.
In quantum physics, the discussion of causality can be traced back to the paradigmatic Bell
experiment, in which it shows causal structure places constraints on correlation generation.
In light of the intimate relation between causation and correlation, multiple attempts have
been made to estimate causal influences in certain types of quantum environments. Yet, a
generic measure of causation in quantum physics is still lacking.

Here we adopt a new methodology from classical physics (Liang information flow) to
propose a generic quantification of causation in quantum dynamical systems. The relative
causal influence is assessed by an entropic quantity measured in Bits per unit time. When
the target and sending nodes evolve independently, this measure vanishes. This information
flow-based formalism ascertain causality from one node to another in a network by simply
subtracting the former from the mechanism, which is what an experimentalist would naturally
employ. In classical information, the increase in Shannon entropy is a result of uncertainty
propagation. The quantum counterpart, on the other hand, can be a result of both uncertainty
propagation and entanglement generation. We verified the formalism through some toy
models. We considered two qubits interact through a common bath. The information
flow from the weakly coupled qubit to the other one has a higher rate. But in the long
run, the strongly coupled qubit has more influence towards the weakly coupled one. We
also considered information flow from the end qubits towards the center qubit in a 3 qubit
spin chain system. The strongly coupled qubit exerts a stronger impact towards the center
than the weakly coupled one. The information flow formalism also depends on the initial
configuration. We considered two set of initial configurations in the 3 qubit spin chain system.
The evolution mechanism entangles one initial configuration but not the other. As a result, the
setup, in which entanglement is generated, manifests a greater causal influence from one end
of the chain to the other end. Next, we examined quantum superexchange, where a magnetic
field is applied to the center qubit in the 3 qubit spin chain system. Information flow from one
end of the chain to the other end is studied. It is found that as the strength of magnetic field
increases, the energy rise of the center qubit gradually blocks the information transmission
between the two ends of the chain. Finally, we looked at a 5-qubit network with one qubit
in the center connecting the other 4 qubits. The information flow from the 4 qubits at the
end towards the center is studied. When we turn on an additional coupling between any two
qubits at the end, this additional coupling diverts the direction of uncertainty propagation.

This project proposes a generic concept of causation quantifier for any quantum dynam-
ical system. It may be exploited to investigate quantum versus classical behavior from a
fundamental aspect or aid the design of robust quantum network for practical purposes. This
proof-of-principle work provides a picturization of causal relations in a complex quantum
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network in terms of information flow. This formalism is based on a) full knowledge of the
dynamics and b) an intervention applied upon the system. For classical information, the
analytical expression has been obtained for linear systems and can be estimated with local
measurements. This result greatly enhances the applicability of this information flow-based
causality analysis. To what extent can the quantum version be estimated without knowing
the dynamics apriori remains a subject of investigation for future studies.

Next, we extended the von-Neumann entropy-based causal analysis to relative entropy.
von-Neumann entropy possess the interpretation of quantifying resources in information tasks.
Relative entropy plays similar role in quantum information science. Quantum correlations can
be expressed in terms of relative entropy and the inequalities satisfied by relative entropy act
as a "parent" of various theorems in quantum information science. Here we have generalized
quantum Liang information flow with respect to relative entropy. The new information flow
measure quantifies how much would the distance between the state of interest and a fixed
reference state (as quantified by relative entropy) change upon freezing a subsystem. This
relative entropy-based formalism incorporates the von-Neumann entropy based formalism as
a special case by choosing a maximally mixed reference state. The principle of nil causality
is inherited. That is, if the evolution of two subsystems are independent, the information flow
measure from one subsystem to another vanishes. This result is intuitive in the sense that if
the evolution is separable, the act of freezing a component would not lead to any change on
the other one. This formalism is then applied to thermalization in non-ergodic and ergodic
short spin chain systems. We observed, in both cases, the influence from one qubit to the
target qubit is consistent with a finite speed propagation. The farther the qubit, the longer it
takes to start influencing the target, also a lesser impact averaged over a long time duration.
The calculated information flow is also consistent with the knowledge that equilibration in
ergodic systems is delocalized, which exhibits more collective behavior of all qubits than in
non-ergodic systems.

For future studies, from a fundamental aspect, one may also be interested in a possi-
ble connection with the thermodynamics of causal structures, given the key-role played
by entropic arguments in this manuscript. The Liang-Kleeman analysis is linked to the
Horowitz-Esposito analysis[32]. The latter concerns entropic balance arguments in the study
of information transfer in complex dynamical systems[83]. How the current formalism is
connected with the thermodynamics of causal structures is also of interest for future explo-
ration. From a practical side, one may be interested in applying the quantum Liang causal
analysis to certain information processing tasks. For instance, quantum spatial search is a
quantum computational problem of finding a marked site in a structured database[42]. It is
shown that, in real complex network, hubs in the network as target nodes tend to have low
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success probability[115]. Such phenomenon may be interpreted in terms of quantum Liang
information flow. Further, the formalism maybe applied to reveal features of networks, which
lead to robustness against failure of nodes.
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Appendix A

Massive Spatial Qubits

A.1 Efficacy of the Pauli-Z measurement as a function of
measurement time

The system freely propagates for a time t, the final state may be written, for an initial state
|+⟩, as:

⟨x|Ψ(t)⟩= 1
[2πσ2]1/4

√
1

1
s − i h̄t
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]

 (A.1)

where s ≡ i4φ

σ2 + 1
σ2 +

1
σ2

d
, φ is global phase added during the propagation.

Note that Eq. A.1 consists of two terms tracing which path the object passes through,
effectively the predefined Young qubit. σz measurement requires that the wave packets
are well separated upon measurement. The condition maybe formulated by demanding the
probability distribution P0 (P1) of |0⟩ (|1⟩) state alone confined in the x < 0 (x > 0) regime:

ε = 1−
∫ 0
−∞

P0dx∫
∞

−∞
P0dx

≪ 1 (A.2)
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Substituting Eq. A.1, the fraction term can be evaluated at the σz measurement time t = tz
meas:
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=

∫ 0
−∞

exp[−
(x+ d

2σ2
d s
)2 1

s

2
s2 +

h̄2t2

8m2

]dx

∫
∞

−∞
exp[−

(x+ d
2σ2

d s
)2 1

s

2
s2 +

h̄2t2

8m2

]dx

(A.3)

where the normalization factor in the probability distribution, independent of x, cancels out
in the calculation.

Let us take σd : d = 1 : 50 and tz
meas ≈ one-tenth of the overlapping time d(2σdm)

h̄ . We
then get ε ∼ (1−4.7×10−7). We may thus claim that for the above choice of parameters
the left and right Gaussian wavepackets are well separated, and Pauli-Z measurement has a
good fidelity.

A.2 Efficacy of the Pauli-X and Pauli-Z measurement for
various parameters

We take t = tx,y
meas ∼ 2σdmd

h̄ as the time of σx, σy measurement, and evaluate how accurate
this measurement is for various ratios σd : d using the full time evolution as in A.1. Our
target is to check how accurately the interference pattern is reproduced at correct positions
as given by x =

h̄kxtx,y
meas
m . For an initial state |0⟩+ |1⟩, if σd : d = 1 : 10 the first peak of

the interference pattern adjacent to the central peak (corresponding to θ = 2π) locates at
x ∼ 11.797σd . If σd : d = 1 : 100, x ∼ 12.559σd . If σd : d = 1 : 50, x ∼ 12.536σd . While
assumption x= h̄kxtx,y

meas
m gives a value of x= 4πσd ∼ 12.566σd , which is >∼ 99.94% accurate

for σd
d ≤ 1

100 , >∼ 99.76% accurate for σd
d ≤ 1

50 . Therefore, the σx, σy measurements have a
good fidelity in the σd

d ≤ 1
50 setting, which we shall use.
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A.3 Methods of computation with effective Pauli opera-
tors including uncertainties, and the incorporation of
decoherence

Let σ̃ denotes the measured Pauli operator, parameterized by uncertainty in phase angle δθ .
Then,

σ̃x =
1

δθ

(
0 −iei δθ

2 + ie−i δθ

2

−iei δθ

2 + ie−i δθ

2 0

)
(A.4)

= g(δθ)σx

where g(δθ) =−iei δθ

2 + ie−i δθ

2 = 2
δθ

cos(π−δθ

2 ). g(δθ) goes to 1 as δθ → 0. Similarly,

σ̃y = g(δθ)σy (A.5)

Therefore, for arbitrary density state ρ

Tr(σ̃xρ) = g(δθ)Tr(σxρ) (A.6)

Tr(σ̃yρ) = g(δθ)Tr(σyρ)

In particular, let ρx+(ρy+) denotes the positive eigenstate of σx(σy), and ρx+ = 1
2

(
1 1
1 1

)
,

ρy+ = 1
2

(
1 −i
i 1

)
. Then,

Tr(σ̃xρx+) = Tr(σ̃yρy+) = g(δθ) (A.7)

Furthermore, if decoherence is considered, let ρ̃ =

(
ρ00 ρ01e−γt

ρ10e−γt ρ11

)
, where γ denotes

dephasing rate, then we have:

Tr(σ̃xρ̃) = g(δθ)Tr(σxρ)e−γt (A.8)

Tr(σ̃yρ̃) = g(δθ)Tr(σyρ)e−γt
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A.4 Decoherence in probing the entanglement of the Stern-
Gerlach state

Consider the state φ+ = 1√
2
(|↑,R⟩+ |↓,L⟩), where the spatial qubit undergoes decoherence.

The density state can be written as

ρ̃(φ+) =
1
2


0 0 0 0
0 1 e−γt 0
0 e−γt 1 0
0 0 0 0

 (A.9)

Tr(σx ⊗σxρ̃(φ+)) = Tr(σy ⊗σyρ̃(φ+)) = e−γt (A.10)

Tr(σx ⊗σyρ̃(φ+)) = Tr(σy ⊗σxρ̃(φ+)) = 0

Therefore,
|⟨ab⟩+ ⟨ab′⟩+ ⟨a′b⟩−⟨a′b′⟩|= |2

√
2g(δθ)e−γt |≤ 2

√
2 (A.11)
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Appendix B

Quantum gravity induced phase

B.1 time delayed induction

In the following, we will take into account the propagation time of quantum mediators. The
system would not entangle before the virtual gravitons reach the corresponding superposition
component. The state evolution, therefore, consists of four periods:

t < D−d
c , φRL = 0 φ = 0 φLR = 0

D−d
c < t < D

c , φRL = φ ′
RL φ = 0 φLR = 0

D
c < t < D+d

c , φRL = φ ′
RL φ = φ ′ φLR = 0

t > D+d
c , φRL = φ ′

RL φ = φ ′ φLR = φ ′
LR

the (delayed) induced phase is given by:

φ
′
RL ∼ Gm1m2

h̄(D−d)
(t − D−d

c
)

φ
′
LR ∼ Gm1m2

h̄(D+d)
(t − D+d

c
) (B.1)

φ
′ ∼ Gm1m2

h̄D
(t − D

d
)

Take m∼ 10−14kg, D∼ 450µm, d ∼ 250µm. The timescale, at which the phase evolution
threshold occurs, is of order of magnitude 10−12s.With these parameters, the induced phase
Eq. B.1 at this timescale is of order of magnitude 10−13rad. The entanglement witness
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0 < t < D−d
c

(a)

D−d
c < t < D

c

(b)

D
c < t < D+d

c

(c)

t > D+d
c

(d)

Fig. B.1 Illustrative light cone structure for one superposition component: B.1a Before t = D−d
c , no

quantum mediator emitted has reached the other mass. B.1b Immediately after t = D−d
c , mediators emitted

from the left(right) component of the right(left) mass reaches the right(left) component of the left(right) test
mass. B.1c,B.1d Immediately after t = D

c , and consecutively D+d
c , superposition components separated by

distance D, and D+d, also establishes quantum communication.

⟨W ⟩ as a function of time is plotted below. Note that the graph takes four regions, t < D−d
c ,

D−d
c < t < D

c , D
c < t < D+d

c , t > D+d
c .
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Fig. B.2 gravitational interaction: witness versus time.

We expect that the entanglement witness reaches negative value immediately after t =
D−d

c . This is when the closest superposition components of the two test masses encounter
the edge of each other’s light cone.

Similarly, entanglement entropy E(ρ12) also generates at different rates in four regions
t < D−d

c , D−d
c < t < D

c , D
c < t < D+d

c , t > D+d
c . This is attributed to the transmission time of
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Fig. B.3 Gravitational interaction: entropy versus time

gravitons. Each junction point in the figure corresponds to when the light cone of a given
superposition component of one test mass reaches that of another mass. The magnitude of
entropy at this timescale (∼ 10−12s) is of order of magnitude ∼ 10−25, the detection of which
is unattainable with current technology.

decoherence The time span of our proposal (∼ 10−12s) is much smaller than the typical
coherence time of mesoscopic masses(∼ 1s) [28, 165, 144]. The major source of decoherence
for orbital degree of freedom is collision with air molecules as well as emission and absorption
of blackbody radiation [81, 144, 35, 152]. Take air pressure ∼ 10−15Pa and temperature
0.15K, the collisional decoherence time is of order of magnitude ∼ 1s for test mass ∼
10−14 − 10−15kg in superposition state with size ∼ 10−4m. Decoherence due to thermal
noise is negligible in comparison with collisional noise. The proposal also requires spin
degree of freedom to remain coherent. Coherence time of 1s may be achieved with micro-
diamond below 77K [10]. Since the time span of our proposal is much smaller, effects due to
decoherence shall be neglected.
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