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Abstract
From a young age, we can select actions to achieve desired
goals, infer the goals of other agents, and learn causal rela-
tions in our environment through social interactions. Crucially,
these abilities are productive and generative: we can impute
desires to others that we have never held ourselves. These
abilities are often captured by only partially overlapping mod-
els, each requiring substantial changes to fit combinations of
abilities. Here, in an attempt to unify previous models, we
present a neural network underpinned by the linearly solvable
Markov Decision Process (LMDP) framework which permits
a distributed representation of tasks. The network contains two
pathways: one captures the desirability of states, and another
encodes the passive dynamics of state transitions in the ab-
sence of control. Interactions between pathways are bound by
a principle of rational action, enabling generative inference of
actions, goals, and causal relations supported by gradient up-
dates to parts of the network.
Keywords: Inverse reinforcement learning; Social causal
learning; Multitask LMDP

Introduction
Being able to reason accurately about the intentions and ac-
tions of other agents is critical for social animals like humans.
For instance, even from a young age, we can infer likely goals
of agents and generalize this knowledge to predict their ac-
tions in novel contexts (Heyes & Frith, 2014; Shafto, Good-
man, & Frank, 2012). While there exists striking descriptive
evidence of these abilities across human development and in
many other species, it is unclear what computations under-
pin them. Some elements of these abilities have been cap-
tured by the powerful Bayesian Theory of Mind formalism
(Baker, Saxe, & Tenenbaum, 2009; Shafto et al., 2012; Ra-
binowitz et al., 2018), in which actions, goals, and causal
world structure are linked together through approximately ra-
tional planning, allowing them to be inferred from limited
evidence using Bayesian inference. These models are effort-
lessly productive–they can plan actions to achieve novel com-
binations of goals, infer an agent’s intentions from their ac-
tions, and react instantly to changed environmental structure–
and they account for a variety of behavioral data. However,
they are often computationally intensive and difficult to scale
to large state and hypothesis spaces.

By contrast, deep reinforcement learning systems have re-
cently been shown to scale to large real-world problems, e.g.
(Mnih et al., 2015), but they are often not productive (in their
model-free incarnation), or similarly require computationally
intensive rollouts through internal models (model-based RL).

Moreover, inferring an agent’s goals from their actions in
both deep RL and Bayesian frameworks often requires solv-
ing the inverse RL problem. Current IRL algorithms re-
peatedly solve reinforcement learning problems in their in-
ner loop. For this reason, little work has focused on generic
goal inference in neural network models, and still less has ad-
dressed complex phenomena like social causal learning (but
see Rabinowitz et al. (2018)). One of the key problems in the
standard MDP framework inherent in these approaches is that
the optimal actions associated with different tasks do not typ-
ically compose together linearly. To take a spatial navigation
example, suppose an agent learns two tasks to navigate to goal
locations A and B respectively. The optimal policy for the
composite task “navigate to goal A or B” is not a simple linear
sum of the optimal actions for the component tasks. To begin
to address this problem, we propose a neural network archi-
tecture that permits a distributed representation of tasks based
on work relying on the LMDP formulation, which at the cost
of additional constraints on the problem formulation enjoys a
form of compositionality across tasks (Todorov, 2009; Saxe,
Earle, & Rosman, 2017; Piray & Daw, 2019). The network
can express an infinite set of tasks as weighted combinations
of a finite set of prior ‘basis’ tasks, analogously to how an in-
finite set of images may be represented as a distributed pattern
of activity across a basis of V1-like edge detectors. Leverag-
ing this distributed representation, the network can represent
novel tasks as a combination of previously learned tasks, im-
mediately knowing how to act optimally once the task blend
is known; or infer a novel goal for an agent by expressing it
as a particular combination of previously learned tasks. So
long as a novel input lies within the span of these basis tasks,
it can be represented exactly with a distributed code, even if
it has never been seen before. Here, we apply this network
to a popular set of cognitive science tasks across action selec-
tion, goal inference, and social causal learning scenarios, and
show that the resulting model can behave approximately like
sophisticated Bayesian models (and human subjects), while
retaining the flexibility of model-based reinforcement learn-
ing.

A Neural Network with an Intentional Stance
We base our formulation on the multitask linearly-solvable
Markov decision process (MLMDP) framework introduced
by (Todorov, 2009; Saxe et al., 2017), which we briefly re-
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Figure 1: A neural network for intentional action reasoning. (A) The network contains a value pathway (top) and a dynamics
pathway (bottom). The value pathway decomposes instantaneous rewards for reaching each terminal state using a set of task
bases B. The resulting distributed task blend determines the composite desirability function for each state, i.e., the total expected
future returns. The dynamics pathway receives a one-hot vector denoting the current state of the agent, and predicts the
distribution over next states in the absence of exerting control (the ‘passive’ dynamics). The composite desirability and next
state distribution are multiplied and renormalized to obtain a desired action, which is a distribution over next states. Sampling
from this distribution yields the state of the agent at the next time point. The interaction of these elements is governed by
a principle of rational action (see text), such that sampling from the action distribution will maximize expected reward. (B)
Illustration of inputs given (green) and targets (grey) to be computed by the network for flexible action selection (top panel),
inferring intentions (middle panel) and causal inference (bottom panel).

view here for completeness. The agent exists in a world with
N discrete states. These may represent different spatial po-
sitions in a navigation task, different block configurations in
the Tower of Hanoi task, or different equations in an alge-
braic task. We represent the current state of the agent at time
t as a one-hot column vector s(t) ∈ RN with a one in the in-
dex corresponding to the current state of the agent, and a zero
otherwise. The environment offers instantaneous rewards for
arriving in each state, which can be collected into the col-
umn vector r ∈ RN . If the agent does not exert control effort,
the state transitions will evolve according to passive dynam-
ics specified by the matrix P ∈ RN×N , where Pi j specifies the
probability of transitioning from state j to state i.

Rather than choosing from a discrete set of actions as in the
standard MDP framework, the agent’s action in the LMDP
framework is a choice of distribution over next states. This
distribution can be written as the column vector a(t) ∈ RN .
The LMDP framework penalizes actions which deviate from
the passive dynamics, thereby rewarding efficient action se-
lection. In particular, the instantaneous reward for arriving in
state s and taking action a is

R (s,a) = rT s−λKL(a||Ps) (1)

where KL(x||y) denotes the Kullback-Leibler divergence be-
tween the distributions x and y, and λ is a parameter control-
ling the strength of this KL control cost. We note in pass-
ing that the discrete actions available to the agent are usually
recoverable from the non-zero entries in P, as these reflect

“links” between states.

Here we adopt the finite exit formulation of the MDP, such
that the set of states is divided into Ni internal states and Nb
absorbing boundary states. The agent transitions through in-
ternal states accruing reward, and when the agent enters a
state in the set of absorbing states A , the episode terminates.
The goal of the agent is to select actions which maximize total
expected future reward,

a∗ = argmaxaE s(t+1)∼a(t)
ε=min{t:s(t)∈A}

{
rT s(ε)+

ε−1

∑
t=0

R (s(t),a(t))

}
.

(2)

Following (Todorov, 2009), we define the desirability of a
state as the exponentiated cost-to-go function of that state,
which we collect into the vector z ∈ RN with components
zk = evk/λ where vk is the cost-to-go (expected reward from
state k if acting optimally). Analogously, we denote the ex-
ponentiated instantaneous rewards as the vector q ∈ RN with
components qk = erk/λ. Further, we make use of the de-
composition into Ni internal states and Nb absorbing terminal
states and similarly partition the desirability, reward, and tran-
sition functions into their constituent internal and absorbing
parts, e.g. zi and zb denote the instantaneous and boundary
desirabilities, respectively.

As shown in (Todorov, 2009), this formulation has the ben-
efit that the Bellman equation reduces to a linear system,
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(
I−MiPT

i
)

zi = MiPT
b qb, (3)

where Mi = diag(qi). We may then solve for zi explicitly; or
iteratively in an analog of value iteration,

zi←MiPT
i zi +MiPT

b qb; (4)

or through online exploration and a feedback-driven update
known as Z-Learning (the LMDP analogue to Q-Learning),
described in detail in (Todorov, 2009).

With the desirability function in hand, the optimal action
in any state can be shown to be (Todorov, 2009)

a∗(t) ∝ z◦ [Ps(t)] (5)

where ◦ denotes the Hadamard (element-wise) product. That
is, we take the product of the desirability of each state with
its probability under the next state distribution for the pas-
sive dynamics. We then renormalize to ensure the action is a
probability distribution, e.g. using the softmax function anal-
ogously to action sampling in standard RL. In this way, the
passive dynamics are shifted toward states which offer greater
expected future reward. The fact that the optimal policy takes
this particularly simple form is a distinctive property of the
LMDP framework.

So far, we have explained how optimal actions can be se-
lected for one fixed reward structure in the LMDP. Now fol-
lowing Saxe et al. (2017), we exploit the linearity of the Bell-
man equation to enable acting towards diverse goals. We
suppose we have learned optimal actions for a library of
τ = 1, · · · ,Nτ tasks, where each task shares P, qi, and λ but
differs in its boundary rewards qτ

b. We can form the Nb×Nτ

task exponentiated reward matrix Q =
[
q1

b q2
b · · · qNτ

b

]
, which

collects these boundary rewards in its columns, and com-
pute the matrix of associated task desirability functions Zi =[
z1

i z2
i · · · zNτ

i

]
as

Zi =
(
I−MiPT

i
)−1

MiPT
b Q. (6)

Now suppose we receive a new task to perform, with imme-
diate boundary rewards r, and suppose that we can express
these exponentiated rewards q = exp(r/λ) as a linear combi-
nation of the task exponentiated reward matrix,

q = Qw (7)

for some w ∈ RNτ . Then we can compute the optimal desir-
ability function zi by simply blending the desirability func-
tions of the component tasks linearly,

zi =
(
I−MiPT

i
)−1

MiPT
b q (8)

=
(
I−MiPT

i
)−1

MiPT
b Qw (9)

= Ziw. (10)

Hence, this multitask network can optimally perform any task
that lies within the span of its exponentiated rewards (we note

that tasks must also satisfy the technical requirement Qw≥ 0
due to the exponential relationship between r and q).

To find appropriate task blend weights w for a given new
task, define the task basis matrix B = Q† where † denotes the
pseudoinverse. We can take the exponentiated task rewards q,
and pass them through the task basis matrix to obtain the re-
quired weights, w = Bq. The matrix B thus decomposes new
reward functions into a weighted combination of previously
learned tasks.

Overall then, the computation of optimal actions in the
multitask LMDP framework can be cast as a particular neu-
ral network architecture, as shown in Fig. 1A. The network
contains two pathways (values and dynamics). The value
pathway receives the task to execute, specified as a vector
q of instantaneous boundary rewards. These pass through
synaptic weights corresponding to the task basis matrix B to
come up with activations representing the current task blend
w. This task blend is passed through synaptic weights encod-
ing the desirability matrix Z to obtain the composite desir-
ability function z, which constitutes the output of the value
pathway. In essence, the value pathway transforms instan-
taneous rewards into total expected future rewards under the
optimal policy for each state. The dynamics pathway receives
the current state, encoded as a one-hot vector s(t), and com-
putes the distribution over next states using the passive dy-
namics matrix P. The dynamics pathway thus predicts how
the state might evolve one time step into the future. Finally,
the value and dynamics pathways converge to construct the
optimal action, which is given by element-wise multiplica-
tion of the representations in each pathway followed by sum-
normalization. In contrast to many neural network schemes,
our architecture optimally performs any task that lies in the
span of the task basis. Further, the ‘synaptic weight’ param-
eters in the pathways (B,Z,P) are linked by specific relations
(the Bellman equation) which guarantee this optimality and
build in a principle of rational action.

In the following we will illustrate three key benefits of this
framework that all capitalise on the explicitly compositional
architecture of the network. As depicted in Fig. 1B, we will
show how the model can harness this architecture to fill in the
gaps if one of the inputs is missing and how it responds to
perturbations of the value pathway.

Flexible Action Selection
The choice problem we consider here is best described by
differences in the reward function: How can the agent make
decisions in novel situations when goals or reward have
changed? Here, the intentional action network enables the
agent to formulate novel policies by composing and blending
previously learned tasks. Due to the linearity of the LMDP,
the agent can harness its existing task base to behave opti-
mally as long as the new optimal reward function lies within
the span of the previously learned tasks. Importantly, this
simple linear combination of previous tasks is not commonly
optimal in standard MDP formulations. One notable excep-
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Figure 2: Flexible action selection. (A) After latent learning of the transition structure in a maze, the agent can immediately
navigate to a new rewarded location (red squares). Sample trajectories shown in black are overlaid on the inferred composite
desirability function. (B) Tower of Hanoi problem. The agent can solve the typical task (reward given for moving the tower
to the right-most peg). The rules of the game allow only some transitions between states (edges between points in the graph).
Novel goals such as ‘place the large block on the middle peg’ correspond to a collection of states being rewarded. The agent
can optimally act toward this new goal by decomposing it into the pathways illustrated in Fig.1. (C) Revaluation in sequential
choice. The classic ‘two-step’ task tests for the ability of agents to rapidly adapt to new reward contingencies (diagram to the
left). It yields different patterns of responses for model-free (left bar plot) and model-based behaviour (middle bar plot) after
an uncommon (low probability, in red) transition from the A states to following states. The multitask LMDP network (right bar
plot) behaves like model-based systems, immediately adapting to changes in terminal reward, as it does contain a model but
does not explicitly roll out possible futures.

tion to this is the Successor Representation and the associated
Successor Features framework, where a new reward function
may be represented linearly over previously learned policies
(Momennejad, 2020; Borsa et al., 2019; Tomov, Schulz, &
Gershman, 2021). However, unlike the MLMDP framework,
these composite policies evaluate the value function for a spe-
cific policy, not the optimal policy, and are therefore not guar-
anteed to be optimal for new tasks.

For action selection, our results closely follow those in
Saxe et al. (2017), but we apply the model to commonly stud-
ied tasks in cognitive science. We illustrate the network’s
behavior in Fig. 2 using three classical tasks from the cog-
nitive sciences. Firstly, in the four rooms environment, the
agent can immediately execute optimal policies to rewards at
several locations once it has acquired knowledge about navi-
gating to specific locations. Secondly, we consider the Tower
of Hanoi task, where the agent needs to move a tower of discs
onto a different peg (typically the right most peg), but can
only place smaller pieces onto larger ones. Having learned
the dynamics (in this case: the allowed transitions between
states) and policies to individual states, the model can im-
mediately compute the optimal policy for new targets (e.g.
move the largest disc to the middle peg). Lastly, we demon-
strate that the model can adapt to novel reward contingencies

in the classic sequential two-step task (Doll, Simon, & Daw,
2012). Here, the network behaves like a model-based system
(Piray & Daw, 2019). However, unlike many other model-
based systems, the model does not engage in active multi-
step planning, but rather contains the necessary information
to adapt to new rewards in its value and dynamics pathways.

Inferring Intentions
To infer intentions, we make use of the fact that the log prob-
ability of a controlled trajectory transitioning through a spe-
cific sequence of states s1, · · · ,sN has a simple expression
(Dvijotham & Todorov, 2010). For our multitask setting, it
is

L[w,P] =
N

∑
n=1

[
− logwT ZT sn+1 + logwT ZT Psn + logsT

n+1Psn
]
.

(11)
To infer the task blend that an agent is using, therefore, we can
find the task blend weights w that maximize the probability
of the observed trajectory. To do this, we perform gradient
ascent on w,

∆w = η
∂L
∂w

= η

N

∑
n=1

[
ZT sn+1

wT ZT sn+1
− ZT Psn

wT ZT Psn

]
(12)
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where η is a small learning rate. In essence, this procedure
attempts to find the task blend most likely to generate the ob-
served sequence of state transitions.

The gradient update in Eq. (12) requires observing and
memorizing the complete trajectory for performing the in-
ference. We can also create an approximate online scheme,
in which we update the task blend as a running average of
updates after observing each new state transition. After ob-
serving the nth transition, we make the update

∆w =−αw+η

[
ZT sn+1

wT ZT sn+1
− ZT Psn

wT ZT Psn

]
(13)

where the parameter α controls the length of the running av-
erage. This procedure is fully online, showing how approxi-
mate goal inference could be a relatively cheap and automatic
operation once Z and P are known.

We illustrate the network’s inference behavior in a task in-
troduced by Baker et al. (2009). Human participants observed
a sequence of state transitions in a grid maze and had to infer,
after different numbers of steps, which of three possible goal
locations the agent was aiming for (Fig. 3A, top panel). To
simulate this, we presented the model several steps of a trajec-
tory. The model then infers a task blend over the three possi-
ble goal locations, either using the entire observed trajectory
(batch update, Fig. 3A, middle panel), or in a step-by-step
fashion (online update, Fig. 3A, bottom panel). The results of
the two update schemes are remarkably similar, with the dif-
ferences in predicted goals slightly more pronounced in the
batched case. Note that a sparsity constraint could be added
here to associate more weight with the most likely goal. Im-
portantly, once the task blend w is inferred, by switching back
to selecting actions, the network can generate forward predic-
tions of where the agent is likely to go next without needing
to re-solve this forward problem for the inferred task weight
blend (Fig. 3B grey). Here, the forward prediction is greedy
with respect to controlled dynamics for the purpose of illus-
tration. Note that the forward prediction depends on all en-
tries in w, not just the highest weight. For instance, during the
early phase of observation in the top panel in B, the inferred
behaviour is indifferent between all three goals and the net-
work may thus predict navigating to the closest (rather than
the marginally most likely) goal. Fig. 3C shows a reproduc-
tion of Figure 4a-c of (Baker et al., 2009) across six example
trajectories with our model fits added in the bottom row. Our
results are qualitatively very similar to both observed partic-
ipant behaviour and the Bayesian model applied in (Baker
et al., 2009). Note, however, that our model would need to
be augmented with a prior to capture that participants’ infer-
ences are not uniformly distributed across goals at the first
judgment points.

Social Causal Learning
In social settings where the goal of the agent is known, we
can also observe controlled state transitions in order to in-
fer ‘causal’ structure, here formalized as the passive dynam-

ics P that describes how states evolve in the absence of con-
trol input. We use the word ‘causal’ in line with prior work
(Goodman, Baker, & Tenenbaum, 2009), but note that this
may differ from other definitions of causality.

To perform this inference, we start again from the prob-
ability of observing a controlled state sequence given by
Eq. (11). Now we observe the task blend w and a sequence
of states s1, · · · ,sN , and we find the state transition matrix
P which maximizes the probability of the sequence through
projected gradient ascent, ∆P = η

∂L
∂P , where after each up-

date we project P back to the probability simplex by clipping
negative elements to zero and renormalizing each column to
sum to one (we also note that when taking the derivative, Z
depends on P).

The key feature of interest of this formulation is that the
network’s inferences depend critically on the observed task
blend w. For instance, consider the case of observing an agent
operate a machine whose mechanism (its passive dynamics
P) is unknown and needs to be inferred. Settings of this type
have been studied in developmental psychology, where chil-
dren learn causal relations in the environment through social
observation (Waismeyer, Meltzoff, & Gopnik, 2014). We il-
lustrate such a setup in Fig. 4A. If the model (or child) knows
the agent’s intentions (via the task blends w), it can infer
likely causal relationships under the assumption that the agent
acts rationally, i.e. they behave optimally with respect to their
intentions. For instance, if the network knows that the agent
wants the tortoise, and sees the agent place both tokens in the
machine, it infers that the machine only dispenses the tortoise
toy when given both tokens (not one or the other) (Fig. 4B).
This inference can be made even before the machine in fact
produces the tortoise. However, if the agent’s intentions are
unknown to the model (e.g. uniform weights w), the model
will make no such attributions (Fig. 4C).

Goal-directed Induced Movement
Finally, formulating the multitask LMDP as a neural network
allows us to make links to neural recording and stimulation
studies. For example, (Graziano, Aflalo, & Cooke, 2005)
stimulate locations in monkey pre-motor cortex and find that
this elicits limb movements that end in a stereotyped location
or limb configuration irrespective of starting configuration as
if these neurons induced behaviour towards a ‘goal’. We sim-
ulate this here by assuming that a 2D space is mirrored in the
neural code, such that adjacent locations in physical space
are also represented in adjacent locations on the cortical sur-
face, similar to retinotopic maps in V1. We then stimulate a
given location (e.g. the centre point) in the value pathway,
elevating its desirability and that of surrounding points, and
pass this perturbed activation through the network. This elic-
its a feedback control loop towards the stimulated location,
Fig. 5A. By contrast, randomly perturbing the weight vector
w (to reflect intrinsic noise) elicits random movements similar
to those observed after ‘mock-stimulation’ (where no current
is applied) in (Graziano et al., 2005), Fig. 5B.
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model (bottom row) in the task employed by (Baker et al., 2009) (top three rows). Row (a) shows decision setting and judgment
points (numbered), row (b) shows averaged participant inferences over goals, row (c) shows the model fits from the original
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Discussion

Here, we presented a network model based on a recent multi-
task extension of the LMDP framework (Saxe et al., 2017)
which gives rise to compositionality across learned tasks.
This enables distributed representations of task goals, which
can be blended linearly to produce novel, optimal task poli-
cies so long as they lie within the span of learned tasks. In
the context of action selection, this scheme shares some sim-
ilarities with other recent advances, for instance the succes-
sor representation (Momennejad, 2020), successor features
(Borsa et al., 2019), and the default representation (Piray
& Daw, 2019). Going beyond this, the network model can
also capture well-known effects from social and causal learn-
ing by extending the inverse optimal control described in
(Dvijotham & Todorov, 2010) to the multi-task case. Notably,
inferring the intentions of other agents is achieved through
a cheap and simple iterative scheme that updates the likeli-
hoods of each hypothesis in proportion to the sum of two sim-
ple ratios, which only depend on the passive dynamics of the
environment and the previously learned task bases. The net-
work can readily be combined with other recent work (Earle,
Saxe, & Rosman, 2018) to scale the network to larger state
spaces using hierarchical decompositions of task bases. The
present work only considers the simple case in which most as-
pects of the task are known and have been learned perfectly.
Future work could build on our results using well-established
Z-learning algorithms to investigate the development of these

abilities, as they are learned in an incremental fashion. An-
other exciting future direction would be to use function ap-
proximators at every layer of the network to avoid the need
to pre-specify the state space and task bases. Together, these
directions would add flexibility to the framework.
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Azrieli Global Scholar programme.
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Figure 4: Network model applied to social causal learning. (A) The observer sees a machine with unknown mechanisms which
can be fed with one of four combinations of tokens and can return one of two different toys. The associated LMDP state space
is shown to the right. (B) If the observer knows the agent’s intention (in this case: to receive outcome C) and observes that
the agent feeds both tokens A and B to the machine, the model infers that both tokens are necessary to receive the desired
outcome, as illustrated by the higher probability mass associated with a transition from state AB to C. (C) By contrast, if the
model observes the same state transition, but does not know the agent’s intentions, it makes no specific causal attribution.
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Figure 5: Perturbation analysis of network. (A) Perturbation
applied to a spatial location, increasing desirability of stimu-
lation site and surrounding locations. The resulting vector qb
is then simply passed through the network to yield trajectories
in 2D space. (B) Random noise control analysis, where the
weight vector w is perturbed by Gaussian noise. This results
in random walks through 2D space, with no single attractor.
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