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Abstract  

We describe an architecture for organizing, integrating, and sharing neurophysiology data in 
single labs or collaborations. It comprises a database linking data files to metadata and electronic 
lab notes; a module collecting data from multiple labs into one location; a protocol for searching 
and sharing data; and a module for automatic analyses that populates a website. These modules 
can be used together or individually, by single labs or worldwide collaborations.  
 

Main text 

Improving technology allows neurophysiologists to record ever larger datasets. The need for 
technologies to organize and share this data is growing as scientists begin to assemble into large, 
international teams. The International Brain Laboratory (IBL) is a collaboration studying the 
computations supporting decision-making in the mouse1. We have developed modular data-
management tools that enable individual labs and collaborations to: 
 

● Manage experimental subject colonies and track subject- and experiment-level metadata 
● Integrate data from multiple labs in a central store for sharing inside or outside the 

collaboration 
● Access shared data through a programmatic interface 
● Process incoming data through pipelines that automatically populate a website 
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Current neurophysiological datasets comprise multiple recordings from multiple subjects, 
recorded using diverse devices. These data must be preprocessed, time-aligned, and integrated 
with data such as locations of recording electrodes before they can be used to draw scientific 
conclusions2–8. Distributed collaborations pose distinct challenges: while public data release must 
wait for careful quality control, scientists within the collaboration require immediate access to 
specific data. This store must be searchable and allow downloading and also revision of individual 
items, because preprocessing and quality control methods are still evolving9–11.  

We addressed these problems with an architecture consisting of four modules (Figure 1). The first 
module is a Web interface for colony management and electronic lab notebook, that links files 
arising from each experiment to relevant metadata. The second module integrates data from 
multiple labs into a central database and bulk data store, providing immediate access while 
allowing updates of individual items. The third automatically runs analyses on newly arrived data, 
providing results via a Web interface. The fourth allows standardization, access and sharing of 
the data. Full documentation can be found at https://docs.internationalbrainlab.org/ and through 
links at https://www.internationalbrainlab.com/tools.  

To manage data within each lab, we developed Alyx, a relational database that links colony 
management, metadata, and lab notes to experimental data files. A web GUI allows users to enter 
metadata as it arrives (such as birth, weaning, genotyping, surgeries or experiments), and a REST 
API allows experiment control software to automatically enter metadata with a one-line command. 
Bulk data files are stored on a lab server and linked to experiment and subject metadata in the 
database. This tool can be used by single labs as well as collaborations: it was developed in one 
member lab prior to IBL’s founding, and is now used by several labs worldwide for non-IBL work. 
An Alyx user guide can be found here, or linked via our main documentation page.  

Integrating data between labs raises challenges of size and complexity. Large-scale 
electrophysiology produces hundreds of gigabytes per experiment, for which we have designed 
a 3-fold lossless compression algorithm (Supplementary Note 1).  A single IBL experiment 
generates over 150 raw and processed data files. We have devised conventions for organizing 
and naming these files, termed the “Open Neurophysiology Environment” (ONE; Supplementary 
Note 2; https://int-brain-lab.github.io/ONE/), which formalizes how to encode cross-references 
between files, time synchronization, and versioning, and allows local and remote access via an 
API. ONE provides a way to standardize and share data from individual labs, by specifying 
standard filenames for common data types (Supplementary Note 3) and defining conventions for 
naming lab-specific data files. Files from multiple labs are integrated by uploading nightly from lab 
servers to a central server using Globus Online12, coordinated by a central Alyx database that 
also stores metadata from all labs.  

Neurophysiology data requires preprocessing, such as spike sorting and video analysis. We 
developed a task management system that uses computers in member labs as a processing pool. 
Computers query the Alyx database for a list of outstanding preprocessing tasks, determined by 
a dependency graph.  Because Alyx is accessed through http, this works despite different 
universities’ diverse firewall policies, and allows monitoring, logging, and restarting all 
preprocessing tasks.  Higher-level analyses are automatically run on newly preprocessed data 
using DataJoint14, which runs automated analyses and places the results on a website, including 
summaries of behavioral performance, allowing scientists to monitor training progress, and basic 
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analyses of spike trains. While manual curation of the full dataset will be required before public 
release, an illustrative curated subset of these data are available on a public website 
(https://data.internationalbrainlab.org).  
 
To access data, an API allows users to search experiments and load data from the ONE files 
directly into Python (Supplementary Note 3). This API allows both collaborations and individual 
labs to share data using the same standard. A large collaboration such as IBL can host files on a 
server such as AWS, and run an Alyx server which allows users to rapidly search and selectively 
download the data.  Individual labs can release data compatible with the same API by “uploading 
and forgetting” a zip of ONE files for users to download in toto (instructions here).  Users can also 
access data via Neurodata Without Borders (NWB)13,14 using software that translates from the 
ONE standard (https://github.com/catalystneuro/IBL-to-nwb; Supplementary Table 1), or through 
DataJoint15. A comparison of these and other sharing systems is in Supplementary Note 4. The 
analyses in a recently published paper1 were made using this system, and an additional example 
is provided in Supplementary Note 5.  
 

The IBL architecture was designed for our large-scale collaboration, but its modular design allows 
components to be used by individual labs and smaller-scale collaborations. The Alyx system 
provides easy-to-use colony management and electronic lab notebook features for labs or 
collaborations, linking experimental files to this metadata. The ONE conventions allow data to be 
organized within a lab and shared externally, using standards that scale to large collaborations. 
Larger collaborations can also benefit from other features such as the DataJoint architecture to 
perform automated analyses for web display. We hope that these tools, and additional software 
we have provided (Supplementary Table 1), will help pave the way forward to an era in which 
data from neurophysiology labs is integrated and shared on a routine basis. 

Example use case: evaluating training time 

To demonstrate how this system can manage data and metadata, integrate them across labs, 
and analyze the results, we evaluated the importance of multiple variables for predicting the time 
required for mice to complete behavioral training.  
 
Mice were on a visual discrimination task using the standard IBL training pipeline1. Training was 
considered complete when performance met criteria for the fraction of correct responses, number 
of completed trials, and fitted psychometric parameters, for 3 consecutive sessions. Behavior 
upon reaching this criterion was similar across mice, but the training time required for mice to 
meet these criteria was variable, ranging from 5 to 57 training sessions (Fig. 2A). We used the 
data architecture described above to investigate which factors might predict this variability. 
Because comprehensive data and metadata from all laboratories were integrated in a centralized 
and standardized manner, we could quickly perform these analyses.  
 
We investigated whether training time could be predicted from several classes of variables. The 
first class was subject features: the sex of the animal, the age, weight and weight loss (relative to 
pre-water-restriction weight) upon training start. The second was rig ambient measures:  
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temperature, relative humidity, and air pressure, averaged across all training sessions. Third, 
some institute-specific experimental conditions such as the type of light cycle mice were housed 
in, the protein content of the homecage food, and the weekend water regime in place (water 
restriction versus 2% free homecage citric acid water16). Fourth, metrics assessed from early 
training sessions including: task performance; median reaction time; total number of trials on the 
first training session; the changes in those values over the first 5 training sessions; the total sum 
of trials performed over the first 5 training sessions; the variance in the sign of the daily 
performance change across the first 5 training sessions; the number of wheel movements per 
second and the average wheel displacement bias (averaged across the first 5 training sessions).  
 
A random forest classifier accurately predicted time to reach the performance criterion for each 
mouse from this feature set (Fig. 2A). Time to criterion was grouped into quartiles and 
classification accuracy was evaluated by 10-fold cross-validation, producing a confusion matrix 
comparing the predicted and actual quartile for each mouse (Fig. 2B), summarized by an F1 score 
(Fig. 2C). When trained with all available features, the classifier predicted the true quartile more 
often than any other (Fig. 2B), with accuracy around two times higher than when trained after 
randomly shuffling quartile labels (Fig. 2C).  
 
To investigate the importance of each feature, we performed a permutation test on each of the 
features. The importance of each feature was assessed by the decrease in the classifier’s 
accuracy after randomly shuffling that feature’s values across mice. This revealed that one 
predictor variable was more important than all others: the task performance change across the 
first 5 training sessions (Fig. 2D), i.e. the percent correct achieved on session 5 minus the percent 
correct achieved on session 1. Site-specific features that are hard to standardize across locations, 
such as food protein content and humidity, were not important to the classifier’s accuracy. The 
only predictive feature not related to task performance in early days was age. 
  
Given the importance of the 5-day performance change feature compared to the remaining ones, 
we further evaluated the accuracy of a classifier trained only with this one feature (Fig. 2C). 
Prediction using only this feature was nearly as accurate as the full classifier, although including 
other predictor variables resulted in a 14% increase in accuracy.  
 
This large-scale analysis was made possible by the ease and speed of accessing large amounts 
of behavioral data saved in a standard manner. The obtained results showed that tracking 
changes in performance during the first few training days was enough to predict training time 
above chance level, with even better accuracy achieved when also considering other behavioral 
metrics. The ability to predict final training time after only 5 training sessions could allow 
automated decisions about when to drop a subject from the training pipeline. 
 

Methods 

The experimental methods used to collect the data analyzed in this paper are described in Ref.  
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Figure legends 
Figure 1. IBL data architecture. The Alyx database links colony management and electronic lab notebook 
metadata to experimental data files on a lab data server. Data from multiple labs are integrated on a central 
server, and distributed job management coordinates pre-processing on lab servers. Data are accessed via 
the Open Neurophysiology Environment (ONE) protocol, with adaptors for Neurodata Without Borders 
(NWB)12,13 and DataJoint 14, which also performs pipelined analyses for automatic display on a website. 

Figure 2 - Predicting time taken to complete training from diverse data and metadata. A. Histogram of the 
number of training sessions taken to reach the IBL ‘trained’ criterion (N=116 mice). Vertical dashed lines 
represent the split of the data in quartiles. B. Cross-validated confusion matrix of a random forest 
classifier, trained to predict training time quantile from multiple behavioral features. Rows represent the 
true quartile and columns represent the predicted quartile; results were normalized over the number of 
mice of the corresponding true quartile (row). C. Prediction accuracy for a classifier that uses all features 
(Full classifier), and a classifier that uses only task performance change across the first 5 training 
sessions (Task performance change classifier). Horizontal lines show classifier performance; boxplots 
show distribution of performance scores over random shuffles of the training-time labels (N=100 shuffles). 
D. Importance of each feature in predicting training time. Box plots show the distribution of importance 
scores obtained across multiple permutations (N=10 permutations). In all boxplots, the box shows median 
and interquartile range, whiskers show range, points show individual observations. 
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Methods 

The experimental methods used to collect the data analyzed in this paper are described in Ref. 
1.  
 
For the analysis described in this paper, we accessed the behavioral data using the public 
DataJoint protocol. Mice selected for the analysis consisted of all mice trained according to the 
standard IBL training pipeline, up until March 23 2020. Mice were excluded from the analyses if 
they were dropped from the pipeline before reaching the end of training. Training was 
considered complete when performance met criteria for the fraction of correct responses, 
number of completed trials, and fitted psychometric parameters, for 3 consecutive sessions1. 
 
A Random Forest classifier was used to assess whether training time could be predicted from 
several classes of variables: subject features, rig ambient measures, institute-specific 
experimental conditions, and performance metrics from early training sessions. For that, data 
were processed and organized as a design matrix with shape #mice x #variables. For each 
mouse, we included the following variables: (1) sex; (2) age at the start of training; (3) weight at 
the start of training; (4) weight loss at the start of training, calculated as the weight fraction 
relative to the pre-water-restriction weight; (5) whether the mouse was housed on an inverted or 
non-inverted light cycle scheme; (6) the percentage of protein content of the homecage food; (7) 
weekend water regime in place: whether mice were on a traditional water restriction regime or 
on had free access to  2% free homecage citric acid water16; (8) the training rig temperature, 
averaged across the first 5 training sessions; (9) the training rig relative humidity, averaged 
across the first 5 training sessions;  (10) the training rig air pressure, averaged across the first 5 
training sessions; (11) the fraction of correct responses on the first training session; (12) median 
reaction time on the first training session; (13) total number of trials on the first training session; 
(14) difference in fraction of correct responses between first and fifth training sessions; (15) 
difference in the median reaction time between the first and fifth training sessions; (16) 
difference in the total number of trials between the first and fifth training sessions; (17) total 
number of trials performed over the first 5 training sessions; (18) the variance in the sign of the 
daily performance change across the first 5 training sessions (daily performance change was 
computed as the difference in the fraction of correct responses across consecutive sessions); 
(19) the amount of wheel movement per second averaged across the first 5 training sessions; 
(20) the wheel displacement bias averaged across the first 5 training sessions 
(wheeldisplacement bias was calculated as the amount of wheel displacement divided by the 
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total  amount of wheel movement). Missing data which prevented the calculation of any of the 
above metrics led to the exclusion of the corresponding mouse from the analyses. The 
predicted variable was the training time quartile of the mouse. Training time was calculated as 
the number of training sessions until training completion. The quartiles of the distribution were 
calculated after exclusion of mice with missing data.  
 
To assess whether training time could be predicted from the listed variables, a Random Forest 
Classifier was trained on the data, using 10-fold cross-validation. For that, scikit-learn functions 
RanfomForestClassifier and KFold were used. Prediction accuracy of the classifier was 
computed using the f1-score function. The F1-score reaches 1 for the highest accuracy value 
and 0 for the worst. It is calculated according to the following formula:  
 

𝐹 =  
2 ∗ 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 ∗ 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 
Classifier performance was compared with that of a classifier trained on a control dataset in 
which quartile labels were randomly shuffled (N=100 shuffles).  
To investigate the importance of each feature to the classifier’s performance, we performed a 
permutation test on each of the features. The importance of each feature was assessed by the 
decrease in the classifier’s accuracy (f1-score) after randomly shuffling that feature’s values 
across mice (N=10 repetitions). 
 
Finally, we further evaluated the accuracy of a classifier trained only on the most important 
feature, as concluded from the permutation test: the difference in fraction of correct responses 
between first and fifth training sessions.  
 
The code used to make the figure is available at https://github.com/int-brain-lab/paper-data-
architecture. 
 
Reporting Summary Further information on research design is available in the Nature Research Reporting 
Summary linked to this article. 

Data availability 

All IBL data is available online using the access protocols described in this manuscript. For 
further information see https://www.internationalbrainlab.com/data. The specific data used to 
create Supplementary Figure 1 can be accessed by the code that created this figure, available 
at https://github.com/int-brain-lab/paper-data-architecture. 

Code availability 

All code described in this manuscript is freely available and is listed in Supplementary Table 1 
along with links to their respective repositories. The behavior data were collected using Bonsai 
and pyBpod, available at https://github.com/int-brain-lab/iblrig.  Meta data were stored in a 
custom database available at https://github.com/cortex-lab/alyx. The data were processed using 
the custom data pipelines ibllib (https://github.com/int-brain-lab/iblrig) and DataJoint 
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(https://datajoint.io/).  The data were accessed using ONE (https://github.com/int-brain-lab/ONE) 
and DataJoint (https://github.com/int-brain-lab/IBL-pipeline). 
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Figure 1. IBL data architecture. The Alyx database links colony management and electronic lab notebook 
metadata to experimental data files on a lab data server. Data from multiple labs are integrated on a 
central server, and distributed job management coordinates pre-processing on lab servers. Data are 
accessed via the Open Neurophysiology Environment (ONE) protocol, with adaptors for Neurodata 
Without Borders (NWB)12,13 and DataJoint 14, which also performs pipelined analyses for automatic 
display on a website. 
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Figure 2 - Predicting time taken to complete training from diverse data and metadata. A. Histogram of the 
number of training sessions taken to reach the IBL ‘trained’ criterion (N=116 mice). Vertical dashed lines 
represent the split of the data in quartiles. B. Cross-validated confusion matrix of a random forest 
classifier, trained to predict training time quantile from multiple behavioral features. Rows represent the 
true quartile and columns represent the predicted quartile; results were normalized over the number of 
mice of the corresponding true quartile (row). C. Prediction accuracy for a classifier that uses all features 
(Full classifier), and a classifier that uses only task performance change across the first 5 training 
sessions (Task performance change classifier). Horizontal lines show classifier performance; boxplots 
show distribution of performance scores over random shuffles of the training-time labels (N=100 shuffles). 
D. Importance of each feature in predicting training time. Box plots show the distribution of importance 
scores obtained across multiple permutations (N=10 permutations). In all boxplots, the box shows median 
and interquartile range, whiskers show range, points show individual observations. 
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Supplementary Note 1: Lossless compression algorithm 
We have developed a lossless compression algorithm for electrophysiology data, which achieves 
a 3-fold reduction in file size. The software is called Mtscomp and can be found at  
https://github.com/int-brain-lab/mtscomp. This algorithm provides lossless compression, and also 
random-access to quickly load small segments of the data without needing to decompress the 
entire files. 

To do this, we took advantage of the temporal correlations in electrophysiological recordings, 
which show an approximate 1/f power spectrum. The input to the algorithm is represented as a 
flat binary multiplexed file of 2-byte integers, as typically produced by neurophysiology recording 
software. Data are compressed independently in consecutive chunks of one second, which allows 
random access to any part of the recording without decompressing the whole signal. To compress 
a chunk, we first compute discrete time differences independently for each channel, which 
approximately whitens the signal. We then compress the result using the zlib lossless 
compression algorithm. The initial values for each chunk and compressed difference signals are 
then appended to a compressed binary file on a chunk-by-chunk basis, and a companion JSON 
file stores the byte offset of every chunk. A decompression algorithm reads the JSON and binary 
files, allowing random “slices” of the data to be retrieved on the fly without decompressing the 
whole file. The compression code is unit-tested with 100% coverage. In our benchmarking we 
could achieve a ~3x compression ratio of our data. For our ~400 channel recordings, compression 
is ~4x faster and decompression is ~3x faster than real time on an Intel i9 10-core computer. This 
compression algorithm could be used in other applications that rely on multichannel time series 
of approximate 1/f spectrum, within and beyond neuroscience.  
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Supplementary Note 2: ONE dataset types and files 
The Open Neurophysiology Environment (ONE) defines a set of conventions for naming and 
organizing data files, which allow data to be shared between labs in a standardized manner. 
These files are also sometimes called “ALF” files, for historical reasons. 
 
The files for each experiment are stored in a single directory. Each file has a 3-part name of the 
form object.attribute.extension.  Each file stores a single “dataset”. Datasets are 

usually numeric arrays, but can be arrays of any dimensionality, lists of strings, movies, or 
arrays of structures.  The object and attribute together define what information is stored 

in the file (the “dataset type”), while the extension defines the file’s physical format. One can 

use any physical file format, provided that the extension alone makes it clear how to load the 
file. We recommend .npy files for numerical arrays (a binary format that includes array sizes) 
and .tsv (tab-separated text) files for text. However, flat binary files are not recommended as 
they do not encode array shape, and comma-separated .csv files are not recommended as they 
can become confused by strings containing commas. For movies we recommend .mj2 files, 
which allow random access loading of individual frames. 
 
The object and attribute together describe the data contained in each dataset.  All 

datasets pertaining to a specific object must have the same number of rows - i.e. the same size 
of their leading dimension. For example, the file clusters.waveforms.npy contains a 3d 

numerical array of size [nClusters, nTimepoints, nChannels],  storing the mean 

waveform of spikes in each electrophysiological cluster for each channel and time, while 

clusters.brainLocationAcronyms_ccf_2017.tsv contains a 1d string array of size 

[nClusters] containing the inferred brain location of these clusters according to the 2017 

Allen common coordinate framework. The leading dimension of both arrays is the number of 
clusters recorded.  
 
The naming of ONE files allows encoding of cross-references between datasets. If the attribute 
of one dataset matches the object of another, this represents a cross-reference. For example, 
spikes.clusters.npy contains an integer cluster assignment for each spike, which can be 
used to index all datasets in whose filename object is clusters. Thus, if the nth row of 

spikes.clusters contains the integer m, then the nth recorded spike was assigned to cluster 
m, and its waveform can therefore be looked up in the mth row of 
clusters.waveforms.npy. These cross-references must use Python/C conventions, with 

the first row having index 0. 
 
Several other conventions apply to ONE data. For example any dataset type whose attribute is of 
the form times or *_times represent the times of events, measured in seconds relative to 
experiment start. If data from multiple devices needs to be time-synchronized, this must be done 
before producing these times datasets, which are thus all on a comparable timescale. Datasets 
whose attribute is intervals or *_intervals are two-column arrays giving start and end 

times of particular events in the same timescale of seconds relative to experiment start. Datasets 
have specified measurement units. For example, locations in the brain are given in Allen CCF 
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coordinates1, measured in mm. The units of measurement for all dataset types are specified in 
the documentation.  
 
All files for an experiment are stored in the same directory, with directories organized by subject 
name,experiment date in ISO format and experiment number. For example, the files of the day’s 
first experiment for the subject “Hercules”, collected on 1 June, 2022 would be stored in the 
directory /Hercules/2022-06-01/001. Further subdirectories, known as “Collections”, 

provide a way to encode multiple datasets of the same type.  For example there may be multiple 
spikes.times datasets representing recordings from different probes.  These are organized 

in subdirectories of the main experiment directory: e.g. /Hercules/2022-06-

01/001/probe00/spikes.times.npy and /Hercules/2022-06-
01/001/probe01/spikes.times.npy.   

 
“Revisions” provide a way to store multiple versions of a dataset, for example following software 
updates.  Revisions are also stored in subdirectories (including subdirectories of the collection if 
there is one), whose name starts and end with pound signs and is typically an ISO date, e.g. 
#2021-07-13#.  For example, if spike sorting for probe 00 of the experiment conducted on 

June 1 in subject “Hercules” was revised on July 13, the results would be stored as 
/Hercules/2022-06-01/001/probe00/#2022-07-13#/spikes.times.npy. 

 
ONE defines a list of standard dataset names. If data sharers use these names, it allows data 
users to understand the data without needing to read experiment-specific documentation. The 
names are listed in the table below in the form object.attribute. The extension, which 

specifies the physical format, is left to the data provider. Not all data can be standardized:  many 
files will be specific to a particular experimental design. To enable both standardization across 
projects and extensibility, objects beginning with an underscore character are not expected to be 
standardized across projects, but objects not beginning with underscores are expected to be 
common across projects. The table below lists the dataset types currently used in IBL’s 
implementation of the ONE standard. Datasets objects whose name does not begin with an 
underscore character contain data we believe can be standardized with many projects; these are 
largely adopted from the NWB data model. Those beginning with _ibl_ contain data likely to be 

specific to our task or recording hardware. A live list of dataset types is linked at 
https://github.com/int-brain-lab/ONE/tree/main/docs.  
 
 

ONE Dataset Dimension Description 

spikes.times [nspi] 

Times of spikes (seconds, relative to experiment onset). 
Note this includes spikes from all probes, merged 
together. 

spikes.clusters [nspi] 

Cluster assignments for each spike (integers counting 
from 0). Cluster assignment reflects the result of manual 
curation. 
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spikes.depths [nspi] 

Depth along probe of each spike (µm; computed from 
waveform center of mass). 0 means deepest site, positive 
means above this. 

spikes.amps [nspi] Peak amplitude of each spike (µV). 

spikes.templates [nspi] 
Template ID of each spike (i.e. output of automatic spike 
sorting prior to manual curation) 

spikes.samples [nspi] 
Time of spikes, measured in units of samples in their 
own electrophysiology binary file. 

template.amps [ntemp] Mean amplitude of each template (V) 

templates.waveforms 
[ntemp, nsw, 
nchSub] 

Waveform of each template spike (stored as a sparse 
array, only for a subset of channels with large 
waveforms). 

templates. 
waveformsChannels 

[ntemp, 
nchSub] 

Channels of the raw recording on which the template 
waveforms are defined. 

clusters.uuids [nc] 
Unique identifier assigned to each cluster when ALF files 
created and during manual curation. 

clusters.metrics 
[nc, 
nmetrics] 

Quality control metrics for each cluster. 

clusters.mlapdv [nc, 3] 
Estimated coordinates of the cell relative to bregma (mm) 
sein Allen Common Coordinate Framework (CCF)1.  

clusters. 
brainLocationIds_ccf_2017 

[nc, 1] 

Brain location id of clusters following ephys alignment 
obtained from 25um resolution 2017 Allen Common 
Coordinate Framework 

clusters. 
brainLocationAcronyms_ccf_2017 

[nc, 1] 

Brain location acronym of clusters following ephys 
alignment obtained from 25um resolution 2017 Allen 
Common Coordinate Framework 

clusters.waveforms 
[nc, nsw, 
nchSub] 

Waveform from spike sorting templates (stored as a sparse 
array, only for a subset of channels closest to the peak 
channel) 

clusters. 
waveformsChannels 

[nc, nchSub] 
Identities of the channels that are represented in 
clusters.waveforms for each cluster sorted by amplitude. 

clusters.depths [nc] 
Depth of mean cluster waveform on probe (µm). 0 means 
deepest site, positive means above this. 

clusters.peakToThrough [nc] Trough to peak time of mean cluster waveform (ms). 

clusters.amps [nc] Mean amplitude of each cluster (V) 

clusters.channels [nc] Channel which has the largest amplitude for this cluster. 

clusters.probes [nc, np] Which probe this cluster came from (counting from zero). 

probes.trajectory [np, 7] Trajectory coordinates of probe 
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probes.description [np] 
Text description of probe: label (folder name), Model 
(3A, 3B1, 3B2), Serial Number, Original file name. 

channels.probes [nch] 

Probe assignments for each channel (integers counting 
from 0). Can be used as direct indexing for the probes.* 
attributes. 

channels.rawInd [nch] 

Array of indices in the raw recording file (of its home 
probe) that each channel corresponds to (counting from 
zero). 

channels.mlapdv [nch, 3] Channel location relative to bregma (mm) in Allen CCF.  

channels.localCoordinates [nch, 2] 

Location of each channel relative to probe coordinate 
system (µm): x (first) dimension is on the width of the 
shank; (y) is the depth where 0 is the deepest site, and 
positive above this. 

eye.timestamps 
[nEyeSample
s, 2] 

Timestamps for pupil tracking timeseries: 2 column array 
giving sample number and time in seconds. 

eye.raw 
[nEyeSample
s, nX, nY] 

Raw movie data for pupil tracking. 

eye.area 
[nEyeSample
s] 

Area of pupil (pixels^2). 

eye.xyPos 
[nEyeSample
s, 2] 

Matrix with 2 columns giving x and y position of pupil 
(in pixels). 

eye.blink 
[nEyeSample
s] 

Boolean array saying whether eye was blinking in each 
frame. 

licks.times [nLicks] Times of licks is seconds. 

spontaneous.intervals 
[nSpontInt, 
2] 

Times when no other protocol was going on for at least 
30 seconds. 

_ibl_wheel.position 
[nWheelSamp
les] 

Absolute rotation of wheel (radians) where positive = 
CCW 

_ibl_wheel.timestamps 
[nWheelSamp
les, 2] 

Times of position in absolute seconds from session start, 
non-evenly spaced 

_ibl_wheel.velocity 
[nWheelSamp
les] 

Tangential velocity of the wheel (rad/s) where positive 
= CCW 

_ibl_wheelMoves. intervals 
[nWheelMove
s,2] 

2 column array of onset and offset times of detected 
wheel movements in seconds relative to session start. 

_ibl_wheelMoves.type 
[nWheelMove
s] 

String array containing classified type of movement 
('CW', 'CCW', 'Flinch', 'Other'). 

_ibl_trials. 
firstMovement_times 

[nTrials] 

1D array of first movement times in absolute seconds. 
The first movement is defined as the move onset time of 
the first movement that has an amplidue > 1/3 * target 
threshold. Movements considered for a trial must have 
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feedback time > onset < goCue - 0.2. 

_ibl_trials.intervals [nTrials,2] 

Start (i.e. beginning of quiescent period) and end (i.e. 
end of iti) times of each trial in seconds relative to 
session start. 

_ibl_trials.included [nTrials] 

Boolean array of which trials to include in analysis, 
chosen at experimenter discretion, e.g. by excluding the 
block of incorrect trials at the end of the session when 
the mouse has stopped. 

_ibl_trials.repNum [nTrials] 
The trial repetition number, i.e. how many trials have 
been repeated on this side (counting from 1). 

_ibl_trials.goCue_times [nTrials] 

Time of go cues in choiceworld - in absolute seconds from 
session start, rather than relative to trial onset NOTE: 
this is the time the sound is actually played. 

_ibl_trials.goCueTrigger_times [nTrials] 

Time of go cues in choiceworld - in absolute seconds from 
session start, rather than relative to trial onset NOTE: 
this is the time the trigger command is sent. 

_ibl_trials.response_times [nTrials] 
Time in seconds relative to session start when a response 
was recorded (end of the closed loop state in bpod). 

_ibl_trials.choice [nTrials] The response ID: -1 (turn CCW), +1 (turn CW), or 0 (nogo) 

_ibl_trials.stimOn_times [nTrials] 
Times of visual stimulus onset in seconds relative to 
session start. 

_ibl_trials. 
stimOnTrigger_times 

[nTrials] 
Times of visual stimulus onset trigger command in seconds 
relative to session start. 

_ibl_trials.contrastLeft [nTrials] 
Contrast of left-side stimulus (0-1, nan if stimulus is 
on the other side). 

_ibl_trials.contrastRight [nTrials] 
Contrast of right-side stimulus (0-1, nan if stimulus is 
on the other side). 

_ibl_trials.feedback_times [nTrials] 
Time of feedback delivery (reward or noise) in seconds 
relative to session start. 

_ibl_trials.feedbackType [nTrials] 
Whether feedback is positive or negative (-1 for negative 
feedback, 1 for positive feedback). 

_ibl_trials.rewardVolume [nTrials] Volume of reward given each trial (µl). 

_ibl_trials.itiDuration [nTrials] 

Intertrial interval duration for each trial, from 
response time to end of trial (end of trial is beginning 
of quiescence period) this includes the feedback 
delivery and the 1or 2 seconds delay and the 0.5 sec iti 
at the end of each trial. 

_ibl_trials.probabilityLeft [nTrials] 

Probability that the stimulus will be on the left hand 
side for the current block. The probability of right is 
1 minus this 
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_ibl_passivePeriods. 
intervalsTable 

[2, 4] 

Intervals: choiceword / spont activity / RF mapping / 
replay task stim [start, end] times 
columns = ['passiveProtocol', 'spontaneousActivity', 
'RFM', 'taskReplay'] 
lines = ['start', 'stop'] 

_ibl_passiveRFM.times [nFrames] passive RFM frame times 

_ibl_passiveGabor.table 
[nRepeats, 
5] 

Gabor patch presentations table 
columns = [start, stop, position, contrast, phase] 
lines = nPresentations = 180 

_ibl_passiveStims.table 
[nRepeats, 
6] 

All other stimuli times 
columns = [valveOn, valveOff, toneOn, toneOff, noiseOn, 
noiseOff] 
lines = nStims = 40 

_iblrig_RFMapStim.raw 
[nFrames, 
nx, ny] 

RAW matrix RF mapping matrix (nframe_times, nx, ny) 

camera.dlc 
[nframes, 
npoints x 3] 

Coordinates of DeepLabCut (DLC) points (x position, y 
position, likelihood). Total points = 11 (fpaws-2, nose-
1, spout-2, tongue-2, eye-4). 

camera.times nframes 

Time of each frame acquisition (training rigs: 
leftCamera; ephys rigs: leftCamera, rightCamera, and 
bodyCamera). 

_iblqc_ephysTimeRms.timestamps [ntwin] 
Time scale for the RMS amplitude as a function of time, 
relative to the raw binary ephys file (s) 

_iblqc_ephysTimeRms.rms [ntwin, nch] RMS amplitude as a function of time (V) 

_iblqc_ephysSpectralDensity. 
freqs 

[nfreqs] Frequency scale for the spectrogram (Hz) 

_iblqc_ephysSpectralDensity. 
power 

[nfreqs, 
nch] 

Spectral Density for all channels (V**2/Hz) 

histology_3dimage.volume 
[20, nx, 
ny,nz] 

Raw histology imaging volume. Tiff file approximately 20 
x [nx, ny, nz] 

histology_3dimage.metadata [n/a] Histology imaging volume resampled or filtered. 

histology_transform.elastix [n/a] 
Text file used by elastix to perform transform from a 
volume to another 

 
The datasets “channels.mlapdv” and “clusters.mlapdv” define brain coordinates in 3 dimensions 
(mediolateral, anteroposterior, dorsoventral), relative to bregma defined as Voxel ML-566, AP-
540, DV-33 within the 10μm volume of the Allen CCF mouse Atlas1. Mediolateral coordinates are 
positive for the right hemisphere; anteroposterior coordinates are positive for anterior; 
dorsoventral are positive for dorsal. 
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Supplementary Note 3: Open Neurophysiology Environment API 

The Open Neurophysiology Environment (ONE) user interface allows users to search for 
experiments of interest and load data from them, without worrying about the format or location of 
the underlying files. This interface allows multiple backend instantiations, so users can run the 
same exact code to process data from multiple local or remote sources. We have provided two 
such instantiations: an “Alyx implementation” for large projects such as IBL, which requires a 
backend Alyx database;  and a “local implementation” that allows data access to files on the user’s 
local file system without an Alyx database. This local implementation allows data producers to 
release ONE-standardized data as a single zip file containing files in a variety of standard formats 
(npy, tsv, json, mj2, etc.), organized with one directory per experiment containing appropriately 
named data files.  
 
The ONE API is implemented in Python. Full documentation is at 
https://one.internationalbrainlab.org, Below, we provide a brief summary of how to use it. 
 

Setting up ONE  

1. Installation 

ONE can be installed as a standalone package with python 3.8 or later by running, 

pip install ONE-api 

2. Setup 

To start using ONE, we must first configure some settings that tell ONE whether it should 
connect to a database or use a local file system, and which database to access. By default ONE 
is configured to connect to the public IBL database (which until curation is complete contains 
only a small number of experiments). This can be setup by typing the following 

from one.api import ONE 
one = ONE(silent=True, password='international') 
 

Experiment IDs  
ONE stores a collection of datasets for each experiment. Each experiment is uniquely identified 
by a string termed the experiment ID (eID), which for the Alyx implementation are UUID strings.  
One can find the eIDs of experiments matching desired criteria using the one.search 
command. For example, to find the eIDs of all experiments on the database conducted in the 
year 2020, one would type 
 
eids = one.search(date_range=['2020-01-01', '2021-01-01']) 
 
Further information on searching for experiments can be found by typing help(one.search) 

or one.search_terms(). 
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Datasets 
The data associated with each experiment is collected in datasets, with two-part names of the 
form object.attribute, following the conventions described in Supplementary Note 2. The 

extension in the ONE files is hidden from users of the API, which returns the data as arrays, 

saving the user from needing to worry about the physical format. 
 
To view the data available with the first eID in the list returned by the one.search command above, 
one would type: 

one.list_datasets(eIDs[0]) 

To load an individual dataset one uses the one.load_dataset command. For example, to load 

spike times, the user would type: 

st = one.load_dataset(eIDs[0], 'spikes.times') 
  
To load all datasets belonging to an object, the command 

spikes = one.load_object(eID, 'spikes') 

 
will return a dictionary with one entry for each dataset associated with that object (times, 
clusters, depths, amps, etc.).  Data from specific collections or revisions can be requested 

with optional arguments to the one.load_* commands. 

 
In the Alyx version, data are downloaded from a remote server to a cache directory, then 
returned to the user. This means that the data only need to be downloaded from the server 
once. 

Running without a database, or connecting to an alternative database 

ONE can be used independently of a database by running from files in a local directory. This 
can be setup in the following way 

from one.api import ONE 

one = ONE(cache_dir='/home/user/downloads/ONE/behavior_paper') 

To connect to a specific database other than the default, a base-url argument must be given. 
For example, to connect to a server from the (fictional) “mybrainlab” project one would type 

from one.api import ONE 
one = ONE(base_url='https://alyx.mybrainlab.org') 

 



 
22 

Data access from servers may be password protected and/or restricted to a whitelist of specific 
URLs; this feature is currently used for non-curated IBL data. 

Supplementary Note 4: Comparison of data access protocols 

There exist several ways to distribute and access neurophysiology data.  Each has its own 
strengths, which are discussed below. 
 
ONE comprises a set of conventions for naming the datasets associated with an experiment, and 
a lightweight API allowing users to search and load required data from these experiments. The 
user thus need not worry about underlying file formats or network connections, and data are 
cached on their local machine to avoid repeated downloads.  Although format independent, we 
have favored widely supported data formats such as .npy, .tsv, and Parquet, allowing users to 
easily load data in the language of their choosing. ONE datasets are simple and readable: the file 
name and folder organization are descriptive, meaning users can work with the data without 
needing special loaders or preprocessing functions. ONE has additional features that make it 
suitable  for a growing dataset with frequent contributions and diverse access needs. For 
example, ONE allows users to search and load specific data items, without downloading all data 
for an experiment, enabling analyses such as a comparison of behavior performance from all 
experiments to be performed quickly, without having to download the bulky physiology and video 
data. The versioning feature allows individual data items to be updated in real time without 
perturbing others, and allows users to “freeze” their analysis to the items available on a given 
date, for example when revising a paper. ONE’s standardized data access functions allow 
conversion to other formats such as NWB (converter available at 
https://github.com/catalystneuro/IBL-to-nwb), and will also allow flexibility as neurodata standards 
evolve in the future. Finally, the local implementation of ONE allows single labs and collaborations 
to release ONE-standardized datasets with minimal effort, by naming files appropriately and 
“uploading and forgetting” on a website. 
 
Neurodata without borders (NWB) was created by neurophysiologists and software developers to 
be a unified data standard suitable for diverse neurophysiological and behavioral data. NWB can 
store multimodal experimental data in a single file and thus is well suited for long-term distribution 
and storage of finalized data. Depending on an individual lab’s needs, storing data in NWB format 
internally may further streamline data sharing: the metadata are stored in the same file as the 
data, so the full dataset is guaranteed to remain intact. 

The Allen SDK is a library for accessing neurophysiology data produced by the Allen Institute for 
Brain Sciences. The ONE library has several different design features to this SDK. First, in ONE, 
dataset types are passed as string arguments rather than encoded in method names. Thus rather 
than running the AllenSDK command data_set.get_spike_times(), an ONE user would 

run the command one.load_object(eID, 'spikes'); this feature allows data producers to 

add new dataset types without needing to rewrite the API code, and thus will allow the API to be 
used by labs or collaborations other than IBL, who require different dataset types. Second, the 
ONE API allows users to access specific datasets from an experiment without downloading all 
data from that experiment in an NWB file; this feature allows users to quickly integrate data from 
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many experiments, for example the behavioral analyses reported in Ref. 2 could be produced 
without downloading the bulky electrophysiology data for each experiment.  
 

DataJoint can be used to share data, especially for larger organizations, and was used to publicly 
release IBL’s behaviour dataset. Datajoint is a framework not only for data release, but also for 
pipelined computation. It thus provides an opportunity to allow users to work on data in the cloud 
without explicit downloads, creating new pipelines for their own exploratory analysis; while 
powerful, this way of working is currently unfamiliar to many neurophysiologists. Hosting a 
DataJoint database costs money, and given the flexibility in user queries and computational 
resource use, resources must be closely monitored if these facilities are made widely available.   
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Supplementary Note 5: Auxiliary software 

In developing the IBL data architecture, we have written several auxiliary open-source libraries 
that can be used by individual neurophysiology labs, collaborations large or small, as well as in 
fields beyond neuroscience. 

Mtscomp (https://github.com/int-brain-lab/mtscomp) is a library that performs 3x lossless 
compression of raw neurophysiology data (Supplementary Note 1). This algorithm makes use of 
a statistical regularity in neurophysiology signals - their 1/f power spectrum - and thus could be 
used to compress data with similar properties in any field. The library allows users to extract data 
from the middle of a long recording without uncompressing the whole file, and thus also allows 
streaming random-access data from a remote server. As raw electrophysiology comprises the 
bulk of data stored required by IBL (and other similar projects), this provides a threefold saving 
on storage costs for such projects. 

Interactive inspection and analysis of the large volumes of data acquired in the collaboration 
require effective visualization solutions. We have developed a toolbox, called Datoviz, that 
provides a unified GPU-based visualization platform for desktop applications combining 2D 
graphics, 3D objects, and graphical user interfaces. Datoviz is available at 
https://github.com/datoviz/datoviz, and is based on the Vulkan API, a successor to OpenGL that 
allows much faster dynamic visualization of large scientific datasets, in neurophysiology and 
beyond. 

Finally, the code used to perform general neurophysiological data analyses are available in a 
growing toolbox termed Brainbox, which is written in Python and can operate independently of 
DataJoint and ONE. These tools are publicly available at https://github.com/int-brain-
lab/ibllib/tree/master/brainbox, and are intended to be independent  of the rest of the data 
architecture.   
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Supplementary Table 1: Resource list 

i. Resources contributed through this paper 

Resource Description Code Documentation 

Alyx A user-friendly database for 
neuroscience data and 
colony management 

https://github.com/cor
tex-lab/alyx  

Install instructions: 
https://github.com/corte
x-lab/alyx/#installation  
 
Usage: 
https://docs.google.co
m/document/d/1cx3XL
ZiZRh3lUzhhR_p65Bg
gEqTKpXHUDkUDagvf
9Kc/edit  

mtscomp A lossless compression 
scheme for 
electrophysiological data 

https://github.com/int-
brain-lab/mtscomp 

https://github.com/int-
brain-
lab/mtscomp#multicha
nnel-time-series-
lossless-compression-
in-python  

ONE A scheme for searching and 
loading ALF datasets 

github.com/int-brain-
lab/ONE  

one.internationalbrainla
b.org  

Pykilosort A python port of the Kilosort 
GPU spike sorting software, 
with template matching, 
clustering and drift 
correction 

https://github.com/int-
brain-lab/pykilosort/ 

https://github.com/int-
brain-lab/pykilosort 

brainbox A python library of 
independent analysis 
functions oriented towards 
behavior and 
neurophysiology 

github.com/int-brain-
lab/ibllib  

docs.internationalbrainl
ab.org/_autosummary/
brainbox.html  

Datoviz A generic interactive data 
visualization library 
leveraging the graphics 
processing unit for high 
rendering performance 

https://github.com/dat
oviz/datoviz  

https://datoviz.org/  

iblenv A unified environment and 
issue tracker for all IBL 
Github repositories. 

github.com/int-brain-
lab/iblenv  

github.com/int-brain-
lab/iblenv#iblenv-
installation-guide  
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LabCI A small continuous 
integration server for 
remotely triggering tests in 
MATLAB and Python 

github.com/cortex-
lab/LabCI 

github.com/cortex-
lab/LabCI/#labci  

IBL-to-NWB A library for converting ONE 
files to NWB format 

https://github.com/cat
alystneuro/IBL-to-
nwb 

https://github.com/catal
ystneuro/IBL-to-
nwb#IBL-to-nwb 

 
ii. Existing resources deployed as part of this architecture 

Resource Description Code Documentation 

Neurodata Without 
Borders (NWB) 

A data standard for 
neurophysiology that 
can be used to share, 
archive, use, and build 
analysis tools for 
neurophysiology data 

pynwb.readthedocs.io/
en/latest/getting_starte
d.html#installation 

pynwb.readthedocs.i
o/en/latest/api_docs.
html 

Kilosort2 A MATLAB toolbox for 
spike sorting on GPUs 
with template 
matching, clustering 
and drift correction 
 

github.com/MouseLan
d/Kilosort  

github.com/MouseLa
nd/Kilosort/wiki  

DataJoint A relational data 
processing pipeline for 
the science lab in 
MATLAB and Python 

github.com/datajoint  

 

Table implementation 
within IBL:  

github.com/int-brain-
lab/ibl-pipeline  

docs.datajoint.io/  

Globus An API for securely 
and robustly 
transferring large 
datasets between 
computers 

globus.org/  docs.globus.org/  

NPY-MATLAB A small set of functions 
to read and write 
Numpy files in 
MATLAB 

github.com/kwikteam/
npy-matlab 

github.com/kwiktea
m/npy-matlab#npy-
matlab  
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Supplementary Table 2: Terminology 

 What is it? What is an example?  What is it for? 

Bulk data Large-scale raw 
recordings or derived 
preprocessed results. 

Raw electrophysiology 
signal, spike sorting results, 
behavioral outcomes 

Bulk data are processed, analyzed, and 
visualized to draw scientific conclusions. 

Metadata Small data items that 
provide information on 
bulk data. 

Mouse strain/sex/lineage, 
electrode location, 
experimenter ID, recording 
hardware configuration and 
lab 

Metadata allows users to search for bulk 
datasets they want to analyze, and is 
essential to interpret results. 

Relational 
Database 

A system that stores 
complex information in 
easily searchable and 
interdependent tables. 

PostgreSQL, MySQL Users search the database to find data they 
need. Searches are flexible, and can include 
queries not originally conceived of by the 
designers, eg, “Find all data run on male 
mice on a Tuesday”. 

Data 
Standard 

A set of rules specifying 
how data will be 
represented on a 
computer system. 

Open Neurophysiology 
Environment, Neurodata 
Without Borders 

A data standard allows users to read data 
from multiple providers without having to 
learn a new convention each time. 

Data 
Pipeline 

A software tool that 
allows complex multi-
step computations to be 
run automatically.  

DataJoint, joblib, Dask Allows a standard analysis to be run 
repeatedly on multiple standardized 
datasets, saving intermediate results and 
continuing after interruptions. 

 
 

 
 


