

1

A modular architecture for organizing,
processing and sharing neurophysiology data
The International Brain Laboratory, Niccolò Bonacchi1, Gaelle A. Chapuis2,3, Anne K.
Churchland4, Eric E. J. DeWitt1, Mayo Faulkner2, Kenneth D. Harris2, Julia M. Huntenburg5, Max
Hunter2, Inês C. Laranjeira1, Cyrille Rossant2, Maho Sasaki6, Michael M. Schartner1, Shan Shen6,
Nicholas A. Steinmetz7, Edgar Y. Walker6, Steven J. West8, Olivier Winter1, Miles Wells2

1Champalimaud Center for the Unknown, Av. Brasília, 1400-038 Lisboa, Portugal
2Institute of Neurology, University College London, London WC1N 3BG, UK
3Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
4Department of Neurobiology, University of California, Los Angeles, CA 90095, USA
5Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
6DataJoint, Houston, TX 77027, USA
7Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
8Sainsbury-Wellcome Centre, University College London, London WC1N 3BG, UK

Correspondence: info+data@internationalbrainlab.org, kenneth.harris@ucl.ac.uk

Abstract

We describe an architecture for organizing, integrating, and sharing neurophysiology data in
single labs or collaborations. It comprises a database linking data files to metadata and electronic
lab notes; a module collecting data from multiple labs into one location; a protocol for searching
and sharing data; and a module for automatic analyses that populates a website. These modules
can be used together or individually, by single labs or worldwide collaborations.

Main text

Improving technology allows neurophysiologists to record ever larger datasets. The need for
technologies to organize and share this data is growing as scientists begin to assemble into large,
international teams. The International Brain Laboratory (IBL) is a collaboration studying the
computations supporting decision-making in the mouse1. We have developed modular data-
management tools that enable individual labs and collaborations to:

● Manage experimental subject colonies and track subject- and experiment-level metadata
● Integrate data from multiple labs in a central store for sharing inside or outside the

collaboration
● Access shared data through a programmatic interface
● Process incoming data through pipelines that automatically populate a website

2

Current neurophysiological datasets comprise multiple recordings from multiple subjects,
recorded using diverse devices. These data must be preprocessed, time-aligned, and integrated
with data such as locations of recording electrodes before they can be used to draw scientific
conclusions2–8. Distributed collaborations pose distinct challenges: while public data release must
wait for careful quality control, scientists within the collaboration require immediate access to
specific data. This store must be searchable and allow downloading and also revision of individual
items, because preprocessing and quality control methods are still evolving9–11.

We addressed these problems with an architecture consisting of four modules (Figure 1). The first
module is a Web interface for colony management and electronic lab notebook, that links files
arising from each experiment to relevant metadata. The second module integrates data from
multiple labs into a central database and bulk data store, providing immediate access while
allowing updates of individual items. The third automatically runs analyses on newly arrived data,
providing results via a Web interface. The fourth allows standardization, access and sharing of
the data. Full documentation can be found at https://docs.internationalbrainlab.org/ and through
links at https://www.internationalbrainlab.com/tools.

To manage data within each lab, we developed Alyx, a relational database that links colony
management, metadata, and lab notes to experimental data files. A web GUI allows users to enter
metadata as it arrives (such as birth, weaning, genotyping, surgeries or experiments), and a REST
API allows experiment control software to automatically enter metadata with a one-line command.
Bulk data files are stored on a lab server and linked to experiment and subject metadata in the
database. This tool can be used by single labs as well as collaborations: it was developed in one
member lab prior to IBL’s founding, and is now used by several labs worldwide for non-IBL work.
An Alyx user guide can be found here, or linked via our main documentation page.

Integrating data between labs raises challenges of size and complexity. Large-scale
electrophysiology produces hundreds of gigabytes per experiment, for which we have designed
a 3-fold lossless compression algorithm (Supplementary Note 1). A single IBL experiment
generates over 150 raw and processed data files. We have devised conventions for organizing
and naming these files, termed the “Open Neurophysiology Environment” (ONE; Supplementary
Note 2; https://int-brain-lab.github.io/ONE/), which formalizes how to encode cross-references
between files, time synchronization, and versioning, and allows local and remote access via an
API. ONE provides a way to standardize and share data from individual labs, by specifying
standard filenames for common data types (Supplementary Note 3) and defining conventions for
naming lab-specific data files. Files from multiple labs are integrated by uploading nightly from lab
servers to a central server using Globus Online12, coordinated by a central Alyx database that
also stores metadata from all labs.

Neurophysiology data requires preprocessing, such as spike sorting and video analysis. We
developed a task management system that uses computers in member labs as a processing pool.
Computers query the Alyx database for a list of outstanding preprocessing tasks, determined by
a dependency graph. Because Alyx is accessed through http, this works despite different
universities’ diverse firewall policies, and allows monitoring, logging, and restarting all
preprocessing tasks. Higher-level analyses are automatically run on newly preprocessed data
using DataJoint14, which runs automated analyses and places the results on a website, including
summaries of behavioral performance, allowing scientists to monitor training progress, and basic

3

analyses of spike trains. While manual curation of the full dataset will be required before public
release, an illustrative curated subset of these data are available on a public website
(https://data.internationalbrainlab.org).

To access data, an API allows users to search experiments and load data from the ONE files
directly into Python (Supplementary Note 3). This API allows both collaborations and individual
labs to share data using the same standard. A large collaboration such as IBL can host files on a
server such as AWS, and run an Alyx server which allows users to rapidly search and selectively
download the data. Individual labs can release data compatible with the same API by “uploading
and forgetting” a zip of ONE files for users to download in toto (instructions here). Users can also
access data via Neurodata Without Borders (NWB)13,14 using software that translates from the
ONE standard (https://github.com/catalystneuro/IBL-to-nwb; Supplementary Table 1), or through
DataJoint15. A comparison of these and other sharing systems is in Supplementary Note 4. The
analyses in a recently published paper1 were made using this system, and an additional example
is provided in Supplementary Note 5.

The IBL architecture was designed for our large-scale collaboration, but its modular design allows
components to be used by individual labs and smaller-scale collaborations. The Alyx system
provides easy-to-use colony management and electronic lab notebook features for labs or
collaborations, linking experimental files to this metadata. The ONE conventions allow data to be
organized within a lab and shared externally, using standards that scale to large collaborations.
Larger collaborations can also benefit from other features such as the DataJoint architecture to
perform automated analyses for web display. We hope that these tools, and additional software
we have provided (Supplementary Table 1), will help pave the way forward to an era in which
data from neurophysiology labs is integrated and shared on a routine basis.

Example use case: evaluating training time

To demonstrate how this system can manage data and metadata, integrate them across labs,
and analyze the results, we evaluated the importance of multiple variables for predicting the time
required for mice to complete behavioral training.

Mice were on a visual discrimination task using the standard IBL training pipeline1. Training was
considered complete when performance met criteria for the fraction of correct responses, number
of completed trials, and fitted psychometric parameters, for 3 consecutive sessions. Behavior
upon reaching this criterion was similar across mice, but the training time required for mice to
meet these criteria was variable, ranging from 5 to 57 training sessions (Fig. 2A). We used the
data architecture described above to investigate which factors might predict this variability.
Because comprehensive data and metadata from all laboratories were integrated in a centralized
and standardized manner, we could quickly perform these analyses.

We investigated whether training time could be predicted from several classes of variables. The
first class was subject features: the sex of the animal, the age, weight and weight loss (relative to
pre-water-restriction weight) upon training start. The second was rig ambient measures:

4

temperature, relative humidity, and air pressure, averaged across all training sessions. Third,
some institute-specific experimental conditions such as the type of light cycle mice were housed
in, the protein content of the homecage food, and the weekend water regime in place (water
restriction versus 2% free homecage citric acid water16). Fourth, metrics assessed from early
training sessions including: task performance; median reaction time; total number of trials on the
first training session; the changes in those values over the first 5 training sessions; the total sum
of trials performed over the first 5 training sessions; the variance in the sign of the daily
performance change across the first 5 training sessions; the number of wheel movements per
second and the average wheel displacement bias (averaged across the first 5 training sessions).

A random forest classifier accurately predicted time to reach the performance criterion for each
mouse from this feature set (Fig. 2A). Time to criterion was grouped into quartiles and
classification accuracy was evaluated by 10-fold cross-validation, producing a confusion matrix
comparing the predicted and actual quartile for each mouse (Fig. 2B), summarized by an F1 score
(Fig. 2C). When trained with all available features, the classifier predicted the true quartile more
often than any other (Fig. 2B), with accuracy around two times higher than when trained after
randomly shuffling quartile labels (Fig. 2C).

To investigate the importance of each feature, we performed a permutation test on each of the
features. The importance of each feature was assessed by the decrease in the classifier’s
accuracy after randomly shuffling that feature’s values across mice. This revealed that one
predictor variable was more important than all others: the task performance change across the
first 5 training sessions (Fig. 2D), i.e. the percent correct achieved on session 5 minus the percent
correct achieved on session 1. Site-specific features that are hard to standardize across locations,
such as food protein content and humidity, were not important to the classifier’s accuracy. The
only predictive feature not related to task performance in early days was age.

Given the importance of the 5-day performance change feature compared to the remaining ones,
we further evaluated the accuracy of a classifier trained only with this one feature (Fig. 2C).
Prediction using only this feature was nearly as accurate as the full classifier, although including
other predictor variables resulted in a 14% increase in accuracy.

This large-scale analysis was made possible by the ease and speed of accessing large amounts
of behavioral data saved in a standard manner. The obtained results showed that tracking
changes in performance during the first few training days was enough to predict training time
above chance level, with even better accuracy achieved when also considering other behavioral
metrics. The ability to predict final training time after only 5 training sessions could allow
automated decisions about when to drop a subject from the training pipeline.

Methods

The experimental methods used to collect the data analyzed in this paper are described in Ref.

5

Acknowledgements

This work was supported by the Wellcome Trust (209558 to IBL, 216324 to IBL) and Simons
Foundation (to IBL).

Author contributions

Niccolò Bonacchi [Conceptualization] (supporting). [Data curation] Data, metadata, and pipeline
(equal). [Funding acquisition] (supporting). [Project administration] Meeting coordination
(supporting), attendance (equal). [Resources] Computing and data storage (equal). [Software,
Validation] Pipeline, core, quality control (equal), database and analysis libraries (supporting)..
[Writing – original draft] (equal). [Writing – review & editing] (equal).

Gaelle Chapuis [Data Curation] Helped with writing user guides detailing how to enter metadata
in Alyx (supporting). [Software, Validation] Acted as naive user tester for ONE and DJ
(supporting). [Project administration] Gathered and reported users’ requirements (supporting).

Anne Churchland Contributed to project administration, funding acquisition, writing and revising.

Eric E. J. DeWitt [Investigation] (supporting) Contributed to analyses for example use of data
[Writing] (supporting) Figures and draft text for example.

Mayo Faulkner. [Software] Contributed to implementation of backend data infrastructure and
analysis libraries. [Data Curation] Contributed to curating datasets and assuring quality
assurance.

Kenneth D. Harris. Contributed to design of overall data architecture, and to Alyx and ONE
systems. Contributed to project administration, funding acquisition, writing and revising.

Julia Huntenburg. [Software] Contributed to implementation of backend data infrastructure,
analysis libraries and continuous integration. [Data Curation] Contributed to dataset curation and
quality assurance.

Michael Schartner. [Conceptualisation] Contributed to the development of dataset types related
to video and their quality control metrics.

Max Hunter. Contributed to the design and development of Alyx.

Inês Laranjeira. [Investigation] Performed analyses for the example use case of the data
architecture (lead). [Writing - original draft] (supporting)

Cyrille Rossant. Contributed to design and implementation of overall data architecture, and to
Alyx and ONE systems.

Maho Sasaki Contributed to the design and implementation of the IBL Data Portal website.

Shan Shen Contributed to the design and implementation of the DataJoint pipeline and the IBL
JupyterHub

Nicholas A. Steinmetz contributed to the design, testing, and development of Alyx, of dataset
types, and of software tools for working with them.

6

Edgar Y. Walker Contributed to the design and implementation of the DataJoint pipeline and the
IBL Data Portal.

Steven J. West contributed to the design of data structures for histological alignment.

Olivier Winter [Software] Implemented the backend data infrastructure. [Validation/Methodology]
Designed full loop integration tests to allow maintenance of the codebase. [Data Curation] Fixed
and updated erroneous datasets.

Miles Wells. [Software] Contributed to the design, testing and implementation of Alyx, its dataset
types and of software tools that work with them. [Software, Validation] Contributed to the design
and implementation of continuous integration and quality assurance systems. [Writing]
Contributed to writing, reviewing and editing the text and Supplementary Notes.

Competing Interests

The authors declare the following competing interests: E.Y.W. holds equity ownership in Vathes
LLC, which provides development and consulting for the framework (DataJoint) described in this
work. E.Y.W., M.S., and S.S were employees of Vathes LLC at the time the work in this paper
was done. The remaining authors declare no competing interests.

Figure legends
Figure 1. IBL data architecture. The Alyx database links colony management and electronic lab notebook
metadata to experimental data files on a lab data server. Data from multiple labs are integrated on a central
server, and distributed job management coordinates pre-processing on lab servers. Data are accessed via
the Open Neurophysiology Environment (ONE) protocol, with adaptors for Neurodata Without Borders
(NWB)12,13 and DataJoint 14, which also performs pipelined analyses for automatic display on a website.

Figure 2 - Predicting time taken to complete training from diverse data and metadata. A. Histogram of the
number of training sessions taken to reach the IBL ‘trained’ criterion (N=116 mice). Vertical dashed lines
represent the split of the data in quartiles. B. Cross-validated confusion matrix of a random forest
classifier, trained to predict training time quantile from multiple behavioral features. Rows represent the
true quartile and columns represent the predicted quartile; results were normalized over the number of
mice of the corresponding true quartile (row). C. Prediction accuracy for a classifier that uses all features
(Full classifier), and a classifier that uses only task performance change across the first 5 training
sessions (Task performance change classifier). Horizontal lines show classifier performance; boxplots
show distribution of performance scores over random shuffles of the training-time labels (N=100 shuffles).
D. Importance of each feature in predicting training time. Box plots show the distribution of importance
scores obtained across multiple permutations (N=10 permutations). In all boxplots, the box shows median
and interquartile range, whiskers show range, points show individual observations.

References
1. The International Brain Laboratory et al. Standardized and reproducible measurement of

decision-making in mice. eLife 10, e63711 (2021).

7

2. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy.

BioRxiv 061507, (2016).

3. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with

deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

4. Giovannucci, A. et al. CaImAn an open source tool for scalable calcium imaging data

analysis. eLife 8, e38173 (2019).

5. Vogelstein, J. T. et al. Fast nonnegative deconvolution for spike train inference from

population calcium imaging. J Neurophysiol 104, 3691–704 (2010).

6. Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M. & Harris, K. D. Fast and

accurate spike sorting of high-channel count probes with KiloSort. in Advances in Neural

Information Processing Systems 29 (eds. Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon,

I. & Garnett, R.) 4448–4456 (Curran Associates, Inc., 2016).

7. Wiltschko, A. B. et al. Revealing the structure of pharmacobehavioral space through motion

sequencing. Nat. Neurosci. 23, 1433–1443 (2020).

8. Vogelstein, J. T. et al. Discovery of Brainwide Neural-Behavioral Maps via Multiscale

Unsupervised Structure Learning. Science 344, 386–392 (2014).

9. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy.

Nature 592, 86–92 (2021).

10. Hill, D. N., Mehta, S. B. & Kleinfeld, D. Quality metrics to accompany spike sorting of

extracellular signals. J Neurosci 31, 8699–705 (2011).

11. Harris, K. D., Quiroga, R. Q., Freeman, J. & Smith, S. L. Improving data quality in neuronal

population recordings. Nat. Neurosci. 19, 1165–1174 (2016).

12. Foster, I. Globus Online: Accelerating and Democratizing Science through Cloud-Based

Services. IEEE Internet Comput. 15, 70–73 (2011).

13. Teeters, J. L. et al. Neurodata Without Borders: Creating a Common Data Format for

Neurophysiology. Neuron 88, 629–634 (2015).

8

14. Rübel, O. et al. The Neurodata Without Borders ecosystem for neurophysiological data

science. eLife 11, e78362 (2022).

15. Yatsenko, D. et al. DataJoint: managing big scientific data using MATLAB or Python.

bioRxiv 031658 (2015) doi:10.1101/031658.

16. Urai, A. E. et al. Citric Acid Water as an Alternative to Water Restriction for High-Yield

Mouse Behavior. eneuro 8, ENEURO.0230-20.2020 (2021).

Methods

The experimental methods used to collect the data analyzed in this paper are described in Ref.
1.

For the analysis described in this paper, we accessed the behavioral data using the public
DataJoint protocol. Mice selected for the analysis consisted of all mice trained according to the
standard IBL training pipeline, up until March 23 2020. Mice were excluded from the analyses if
they were dropped from the pipeline before reaching the end of training. Training was
considered complete when performance met criteria for the fraction of correct responses,
number of completed trials, and fitted psychometric parameters, for 3 consecutive sessions1.

A Random Forest classifier was used to assess whether training time could be predicted from
several classes of variables: subject features, rig ambient measures, institute-specific
experimental conditions, and performance metrics from early training sessions. For that, data
were processed and organized as a design matrix with shape #mice x #variables. For each
mouse, we included the following variables: (1) sex; (2) age at the start of training; (3) weight at
the start of training; (4) weight loss at the start of training, calculated as the weight fraction
relative to the pre-water-restriction weight; (5) whether the mouse was housed on an inverted or
non-inverted light cycle scheme; (6) the percentage of protein content of the homecage food; (7)
weekend water regime in place: whether mice were on a traditional water restriction regime or
on had free access to 2% free homecage citric acid water16; (8) the training rig temperature,
averaged across the first 5 training sessions; (9) the training rig relative humidity, averaged
across the first 5 training sessions; (10) the training rig air pressure, averaged across the first 5
training sessions; (11) the fraction of correct responses on the first training session; (12) median
reaction time on the first training session; (13) total number of trials on the first training session;
(14) difference in fraction of correct responses between first and fifth training sessions; (15)
difference in the median reaction time between the first and fifth training sessions; (16)
difference in the total number of trials between the first and fifth training sessions; (17) total
number of trials performed over the first 5 training sessions; (18) the variance in the sign of the
daily performance change across the first 5 training sessions (daily performance change was
computed as the difference in the fraction of correct responses across consecutive sessions);
(19) the amount of wheel movement per second averaged across the first 5 training sessions;
(20) the wheel displacement bias averaged across the first 5 training sessions
(wheeldisplacement bias was calculated as the amount of wheel displacement divided by the

9

total amount of wheel movement). Missing data which prevented the calculation of any of the
above metrics led to the exclusion of the corresponding mouse from the analyses. The
predicted variable was the training time quartile of the mouse. Training time was calculated as
the number of training sessions until training completion. The quartiles of the distribution were
calculated after exclusion of mice with missing data.

To assess whether training time could be predicted from the listed variables, a Random Forest
Classifier was trained on the data, using 10-fold cross-validation. For that, scikit-learn functions
RanfomForestClassifier and KFold were used. Prediction accuracy of the classifier was
computed using the f1-score function. The F1-score reaches 1 for the highest accuracy value
and 0 for the worst. It is calculated according to the following formula:

𝐹 =
2 ∗ 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 ∗ 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Classifier performance was compared with that of a classifier trained on a control dataset in
which quartile labels were randomly shuffled (N=100 shuffles).
To investigate the importance of each feature to the classifier’s performance, we performed a
permutation test on each of the features. The importance of each feature was assessed by the
decrease in the classifier’s accuracy (f1-score) after randomly shuffling that feature’s values
across mice (N=10 repetitions).

Finally, we further evaluated the accuracy of a classifier trained only on the most important
feature, as concluded from the permutation test: the difference in fraction of correct responses
between first and fifth training sessions.

The code used to make the figure is available at https://github.com/int-brain-lab/paper-data-
architecture.

Reporting Summary Further information on research design is available in the Nature Research Reporting
Summary linked to this article.

Data availability

All IBL data is available online using the access protocols described in this manuscript. For
further information see https://www.internationalbrainlab.com/data. The specific data used to
create Supplementary Figure 1 can be accessed by the code that created this figure, available
at https://github.com/int-brain-lab/paper-data-architecture.

Code availability

All code described in this manuscript is freely available and is listed in Supplementary Table 1
along with links to their respective repositories. The behavior data were collected using Bonsai
and pyBpod, available at https://github.com/int-brain-lab/iblrig. Meta data were stored in a
custom database available at https://github.com/cortex-lab/alyx. The data were processed using
the custom data pipelines ibllib (https://github.com/int-brain-lab/iblrig) and DataJoint

10

(https://datajoint.io/). The data were accessed using ONE (https://github.com/int-brain-lab/ONE)
and DataJoint (https://github.com/int-brain-lab/IBL-pipeline).

Full List of Consortium Authors
Luigi Acerbi3, Valeria Aguillon-Rodriguez9, Mandana Ahmadi10, Jaweria Amjad10, Dora Angelaki11, Jaime
Arlandis1, Zoe C. Ashwood12, Kush Banga2, Hailey Barrell7, Hannah M. Bayer13, Julius Benson11, Brandon
Benson14, Jai Bhagat15, Dan Birman7, Niccolò Bonacchi1, Kcenia Bougrova1, Julien Boussard13,
Sebastian A. Bruijns5, Matteo Carandini15, Joana Catarino1, Fanny Cazettes1, Gaelle A. Chapuis2,3, Anne
K. Churchland4, Yang Dan16, Felicia Davatolagh4, Peter Dayan5, Sophie Denève17, Eric E.J. DeWitt1, Ling
Liang Dong18, Tatiana Engel9, Michele Fabbri13, Mayo Faulkner2, Ila Fiete18, Charles Findling3, Laura
Freitas-Silva1, Surya Ganguli14, Berk Gercek3, Naureen Ghani8, Ivan Gordeliy17, Laura M. Haetzel12,
Kenneth D. Harris2, Michael Hausser19, Naoki Hiratani10, Sonja Hofer8, Fei Hu16, Felix Huber3, Julia M.
Huntenburg5, Cole Hurwitz13, Anup Khanal4, Christopher S. Krasniak9, 20, Sanjukta Krishnagopal10,
Michael Krumin2, Christopher Langdon9, Inês C. Laranjeira1, Peter Latham10, Petrina Lau19, Hyun Lee13,
Ari Liu18, Zachary F. Mainen1, Hernando Martinez Vergara8, Conor Mcgrory9, Brenna McMannon12, Guido
T. Meijer1, Maxwell Melin4, Leenoy Meshulam7, Nathaniel J. Miska8, Catalin Mitelut13, Zeinab
Mohammadi12, Thomas Mrsic-Flogel8, Masayoshi Murakami1, 24, Jean-Paul Noel11, Kai Nylund7, Alex Pan
Vazquez12, Liam Paninski13, Alberto Pezzotta10, Samuel Picard2, Jonathan W. Pillow12, Alexandre
Pouget3, Cyrille Rossant2, Noam Roth7, Nicholas A. Roy12, Kamron Saniee13, Rylan Schaeffer18,22,
Michael M. Schartner1, Yanliang Shi9, Karolina Z. Socha15, Cristian Soitu9, Nicholas A. Steinmetz7, Karel
Svoboda21, Marsa Taheri4, Charline Tessereau5, Anne E. Urai9,23, Erdem Varol13, Miles J. Wells2, Steven
J. West8, Matthew R. Whiteway13, Charles Windolf13, Olivier Winter1, Ilana Witten12, Lauren E. Wool2,
Anthony M. Zador9

9 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
10 Gatsby Computational Neuroscience Unity, University College London, London, United Kingdom
11 Center for Neural Science, New York University, New York, NY, USA
12 Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
13 Zuckerman Institute, Columbia University, New York, NY, USA
14 Department of Applied Physics, Stanford University, Stanford, CA, USA
15 Institute of Opthalmology, University College London, London, United Kingdom
16 Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
17 Département D’études Cognitives, École Normale Supérieure, Paris, France
18 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA,
USA
19 Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
20 Watson School of Biological Science, Cold Spring Harbor, NY, USA
21 The Allen Institute for Neural Dynamics, Seattle, Washington, USA
22 current address: Department of Computer Science, Stanford University, Stanford, CA, USA
23 current address: Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and
Cognition, Leiden University, Leiden, Netherlands
24 current address: Department of Physiology, University of Yamanashi, Kofu, Yamanashi, Japan

11

Figure 1. IBL data architecture. The Alyx database links colony management and electronic lab notebook
metadata to experimental data files on a lab data server. Data from multiple labs are integrated on a
central server, and distributed job management coordinates pre-processing on lab servers. Data are
accessed via the Open Neurophysiology Environment (ONE) protocol, with adaptors for Neurodata
Without Borders (NWB)12,13 and DataJoint 14, which also performs pipelined analyses for automatic
display on a website.

12

Figure 2 - Predicting time taken to complete training from diverse data and metadata. A. Histogram of the
number of training sessions taken to reach the IBL ‘trained’ criterion (N=116 mice). Vertical dashed lines
represent the split of the data in quartiles. B. Cross-validated confusion matrix of a random forest
classifier, trained to predict training time quantile from multiple behavioral features. Rows represent the
true quartile and columns represent the predicted quartile; results were normalized over the number of
mice of the corresponding true quartile (row). C. Prediction accuracy for a classifier that uses all features
(Full classifier), and a classifier that uses only task performance change across the first 5 training
sessions (Task performance change classifier). Horizontal lines show classifier performance; boxplots
show distribution of performance scores over random shuffles of the training-time labels (N=100 shuffles).
D. Importance of each feature in predicting training time. Box plots show the distribution of importance
scores obtained across multiple permutations (N=10 permutations). In all boxplots, the box shows median
and interquartile range, whiskers show range, points show individual observations.

13

Supplementary Note 1: Lossless compression algorithm
We have developed a lossless compression algorithm for electrophysiology data, which achieves
a 3-fold reduction in file size. The software is called Mtscomp and can be found at
https://github.com/int-brain-lab/mtscomp. This algorithm provides lossless compression, and also
random-access to quickly load small segments of the data without needing to decompress the
entire files.

To do this, we took advantage of the temporal correlations in electrophysiological recordings,
which show an approximate 1/f power spectrum. The input to the algorithm is represented as a
flat binary multiplexed file of 2-byte integers, as typically produced by neurophysiology recording
software. Data are compressed independently in consecutive chunks of one second, which allows
random access to any part of the recording without decompressing the whole signal. To compress
a chunk, we first compute discrete time differences independently for each channel, which
approximately whitens the signal. We then compress the result using the zlib lossless
compression algorithm. The initial values for each chunk and compressed difference signals are
then appended to a compressed binary file on a chunk-by-chunk basis, and a companion JSON
file stores the byte offset of every chunk. A decompression algorithm reads the JSON and binary
files, allowing random “slices” of the data to be retrieved on the fly without decompressing the
whole file. The compression code is unit-tested with 100% coverage. In our benchmarking we
could achieve a ~3x compression ratio of our data. For our ~400 channel recordings, compression
is ~4x faster and decompression is ~3x faster than real time on an Intel i9 10-core computer. This
compression algorithm could be used in other applications that rely on multichannel time series
of approximate 1/f spectrum, within and beyond neuroscience.

14

Supplementary Note 2: ONE dataset types and files
The Open Neurophysiology Environment (ONE) defines a set of conventions for naming and
organizing data files, which allow data to be shared between labs in a standardized manner.
These files are also sometimes called “ALF” files, for historical reasons.

The files for each experiment are stored in a single directory. Each file has a 3-part name of the
form object.attribute.extension. Each file stores a single “dataset”. Datasets are

usually numeric arrays, but can be arrays of any dimensionality, lists of strings, movies, or
arrays of structures. The object and attribute together define what information is stored

in the file (the “dataset type”), while the extension defines the file’s physical format. One can

use any physical file format, provided that the extension alone makes it clear how to load the
file. We recommend .npy files for numerical arrays (a binary format that includes array sizes)
and .tsv (tab-separated text) files for text. However, flat binary files are not recommended as
they do not encode array shape, and comma-separated .csv files are not recommended as they
can become confused by strings containing commas. For movies we recommend .mj2 files,
which allow random access loading of individual frames.

The object and attribute together describe the data contained in each dataset. All

datasets pertaining to a specific object must have the same number of rows - i.e. the same size
of their leading dimension. For example, the file clusters.waveforms.npy contains a 3d

numerical array of size [nClusters, nTimepoints, nChannels], storing the mean

waveform of spikes in each electrophysiological cluster for each channel and time, while

clusters.brainLocationAcronyms_ccf_2017.tsv contains a 1d string array of size

[nClusters] containing the inferred brain location of these clusters according to the 2017

Allen common coordinate framework. The leading dimension of both arrays is the number of
clusters recorded.

The naming of ONE files allows encoding of cross-references between datasets. If the attribute
of one dataset matches the object of another, this represents a cross-reference. For example,
spikes.clusters.npy contains an integer cluster assignment for each spike, which can be
used to index all datasets in whose filename object is clusters. Thus, if the nth row of

spikes.clusters contains the integer m, then the nth recorded spike was assigned to cluster
m, and its waveform can therefore be looked up in the mth row of
clusters.waveforms.npy. These cross-references must use Python/C conventions, with

the first row having index 0.

Several other conventions apply to ONE data. For example any dataset type whose attribute is of
the form times or *_times represent the times of events, measured in seconds relative to
experiment start. If data from multiple devices needs to be time-synchronized, this must be done
before producing these times datasets, which are thus all on a comparable timescale. Datasets
whose attribute is intervals or *_intervals are two-column arrays giving start and end

times of particular events in the same timescale of seconds relative to experiment start. Datasets
have specified measurement units. For example, locations in the brain are given in Allen CCF

15

coordinates1, measured in mm. The units of measurement for all dataset types are specified in
the documentation.

All files for an experiment are stored in the same directory, with directories organized by subject
name,experiment date in ISO format and experiment number. For example, the files of the day’s
first experiment for the subject “Hercules”, collected on 1 June, 2022 would be stored in the
directory /Hercules/2022-06-01/001. Further subdirectories, known as “Collections”,

provide a way to encode multiple datasets of the same type. For example there may be multiple
spikes.times datasets representing recordings from different probes. These are organized

in subdirectories of the main experiment directory: e.g. /Hercules/2022-06-

01/001/probe00/spikes.times.npy and /Hercules/2022-06-
01/001/probe01/spikes.times.npy.

“Revisions” provide a way to store multiple versions of a dataset, for example following software
updates. Revisions are also stored in subdirectories (including subdirectories of the collection if
there is one), whose name starts and end with pound signs and is typically an ISO date, e.g.
#2021-07-13#. For example, if spike sorting for probe 00 of the experiment conducted on

June 1 in subject “Hercules” was revised on July 13, the results would be stored as
/Hercules/2022-06-01/001/probe00/#2022-07-13#/spikes.times.npy.

ONE defines a list of standard dataset names. If data sharers use these names, it allows data
users to understand the data without needing to read experiment-specific documentation. The
names are listed in the table below in the form object.attribute. The extension, which

specifies the physical format, is left to the data provider. Not all data can be standardized: many
files will be specific to a particular experimental design. To enable both standardization across
projects and extensibility, objects beginning with an underscore character are not expected to be
standardized across projects, but objects not beginning with underscores are expected to be
common across projects. The table below lists the dataset types currently used in IBL’s
implementation of the ONE standard. Datasets objects whose name does not begin with an
underscore character contain data we believe can be standardized with many projects; these are
largely adopted from the NWB data model. Those beginning with _ibl_ contain data likely to be

specific to our task or recording hardware. A live list of dataset types is linked at
https://github.com/int-brain-lab/ONE/tree/main/docs.

ONE Dataset Dimension Description

spikes.times [nspi]

Times of spikes (seconds, relative to experiment onset).
Note this includes spikes from all probes, merged
together.

spikes.clusters [nspi]

Cluster assignments for each spike (integers counting
from 0). Cluster assignment reflects the result of manual
curation.

16

spikes.depths [nspi]

Depth along probe of each spike (µm; computed from
waveform center of mass). 0 means deepest site, positive
means above this.

spikes.amps [nspi] Peak amplitude of each spike (µV).

spikes.templates [nspi]
Template ID of each spike (i.e. output of automatic spike
sorting prior to manual curation)

spikes.samples [nspi]
Time of spikes, measured in units of samples in their
own electrophysiology binary file.

template.amps [ntemp] Mean amplitude of each template (V)

templates.waveforms
[ntemp, nsw,
nchSub]

Waveform of each template spike (stored as a sparse
array, only for a subset of channels with large
waveforms).

templates.
waveformsChannels

[ntemp,
nchSub]

Channels of the raw recording on which the template
waveforms are defined.

clusters.uuids [nc]
Unique identifier assigned to each cluster when ALF files
created and during manual curation.

clusters.metrics
[nc,
nmetrics]

Quality control metrics for each cluster.

clusters.mlapdv [nc, 3]
Estimated coordinates of the cell relative to bregma (mm)
sein Allen Common Coordinate Framework (CCF)1.

clusters.
brainLocationIds_ccf_2017

[nc, 1]

Brain location id of clusters following ephys alignment
obtained from 25um resolution 2017 Allen Common
Coordinate Framework

clusters.
brainLocationAcronyms_ccf_2017

[nc, 1]

Brain location acronym of clusters following ephys
alignment obtained from 25um resolution 2017 Allen
Common Coordinate Framework

clusters.waveforms
[nc, nsw,
nchSub]

Waveform from spike sorting templates (stored as a sparse
array, only for a subset of channels closest to the peak
channel)

clusters.
waveformsChannels

[nc, nchSub]
Identities of the channels that are represented in
clusters.waveforms for each cluster sorted by amplitude.

clusters.depths [nc]
Depth of mean cluster waveform on probe (µm). 0 means
deepest site, positive means above this.

clusters.peakToThrough [nc] Trough to peak time of mean cluster waveform (ms).

clusters.amps [nc] Mean amplitude of each cluster (V)

clusters.channels [nc] Channel which has the largest amplitude for this cluster.

clusters.probes [nc, np] Which probe this cluster came from (counting from zero).

probes.trajectory [np, 7] Trajectory coordinates of probe

17

probes.description [np]
Text description of probe: label (folder name), Model
(3A, 3B1, 3B2), Serial Number, Original file name.

channels.probes [nch]

Probe assignments for each channel (integers counting
from 0). Can be used as direct indexing for the probes.*
attributes.

channels.rawInd [nch]

Array of indices in the raw recording file (of its home
probe) that each channel corresponds to (counting from
zero).

channels.mlapdv [nch, 3] Channel location relative to bregma (mm) in Allen CCF.

channels.localCoordinates [nch, 2]

Location of each channel relative to probe coordinate
system (µm): x (first) dimension is on the width of the
shank; (y) is the depth where 0 is the deepest site, and
positive above this.

eye.timestamps
[nEyeSample
s, 2]

Timestamps for pupil tracking timeseries: 2 column array
giving sample number and time in seconds.

eye.raw
[nEyeSample
s, nX, nY]

Raw movie data for pupil tracking.

eye.area
[nEyeSample
s]

Area of pupil (pixels^2).

eye.xyPos
[nEyeSample
s, 2]

Matrix with 2 columns giving x and y position of pupil
(in pixels).

eye.blink
[nEyeSample
s]

Boolean array saying whether eye was blinking in each
frame.

licks.times [nLicks] Times of licks is seconds.

spontaneous.intervals
[nSpontInt,
2]

Times when no other protocol was going on for at least
30 seconds.

_ibl_wheel.position
[nWheelSamp
les]

Absolute rotation of wheel (radians) where positive =
CCW

_ibl_wheel.timestamps
[nWheelSamp
les, 2]

Times of position in absolute seconds from session start,
non-evenly spaced

_ibl_wheel.velocity
[nWheelSamp
les]

Tangential velocity of the wheel (rad/s) where positive
= CCW

_ibl_wheelMoves. intervals
[nWheelMove
s,2]

2 column array of onset and offset times of detected
wheel movements in seconds relative to session start.

_ibl_wheelMoves.type
[nWheelMove
s]

String array containing classified type of movement
('CW', 'CCW', 'Flinch', 'Other').

_ibl_trials.
firstMovement_times

[nTrials]

1D array of first movement times in absolute seconds.
The first movement is defined as the move onset time of
the first movement that has an amplidue > 1/3 * target
threshold. Movements considered for a trial must have

18

feedback time > onset < goCue - 0.2.

_ibl_trials.intervals [nTrials,2]

Start (i.e. beginning of quiescent period) and end (i.e.
end of iti) times of each trial in seconds relative to
session start.

_ibl_trials.included [nTrials]

Boolean array of which trials to include in analysis,
chosen at experimenter discretion, e.g. by excluding the
block of incorrect trials at the end of the session when
the mouse has stopped.

_ibl_trials.repNum [nTrials]
The trial repetition number, i.e. how many trials have
been repeated on this side (counting from 1).

_ibl_trials.goCue_times [nTrials]

Time of go cues in choiceworld - in absolute seconds from
session start, rather than relative to trial onset NOTE:
this is the time the sound is actually played.

_ibl_trials.goCueTrigger_times [nTrials]

Time of go cues in choiceworld - in absolute seconds from
session start, rather than relative to trial onset NOTE:
this is the time the trigger command is sent.

_ibl_trials.response_times [nTrials]
Time in seconds relative to session start when a response
was recorded (end of the closed loop state in bpod).

_ibl_trials.choice [nTrials] The response ID: -1 (turn CCW), +1 (turn CW), or 0 (nogo)

_ibl_trials.stimOn_times [nTrials]
Times of visual stimulus onset in seconds relative to
session start.

_ibl_trials.
stimOnTrigger_times

[nTrials]
Times of visual stimulus onset trigger command in seconds
relative to session start.

_ibl_trials.contrastLeft [nTrials]
Contrast of left-side stimulus (0-1, nan if stimulus is
on the other side).

_ibl_trials.contrastRight [nTrials]
Contrast of right-side stimulus (0-1, nan if stimulus is
on the other side).

_ibl_trials.feedback_times [nTrials]
Time of feedback delivery (reward or noise) in seconds
relative to session start.

_ibl_trials.feedbackType [nTrials]
Whether feedback is positive or negative (-1 for negative
feedback, 1 for positive feedback).

_ibl_trials.rewardVolume [nTrials] Volume of reward given each trial (µl).

_ibl_trials.itiDuration [nTrials]

Intertrial interval duration for each trial, from
response time to end of trial (end of trial is beginning
of quiescence period) this includes the feedback
delivery and the 1or 2 seconds delay and the 0.5 sec iti
at the end of each trial.

_ibl_trials.probabilityLeft [nTrials]

Probability that the stimulus will be on the left hand
side for the current block. The probability of right is
1 minus this

19

_ibl_passivePeriods.
intervalsTable

[2, 4]

Intervals: choiceword / spont activity / RF mapping /
replay task stim [start, end] times
columns = ['passiveProtocol', 'spontaneousActivity',
'RFM', 'taskReplay']
lines = ['start', 'stop']

_ibl_passiveRFM.times [nFrames] passive RFM frame times

_ibl_passiveGabor.table
[nRepeats,
5]

Gabor patch presentations table
columns = [start, stop, position, contrast, phase]
lines = nPresentations = 180

_ibl_passiveStims.table
[nRepeats,
6]

All other stimuli times
columns = [valveOn, valveOff, toneOn, toneOff, noiseOn,
noiseOff]
lines = nStims = 40

_iblrig_RFMapStim.raw
[nFrames,
nx, ny]

RAW matrix RF mapping matrix (nframe_times, nx, ny)

camera.dlc
[nframes,
npoints x 3]

Coordinates of DeepLabCut (DLC) points (x position, y
position, likelihood). Total points = 11 (fpaws-2, nose-
1, spout-2, tongue-2, eye-4).

camera.times nframes

Time of each frame acquisition (training rigs:
leftCamera; ephys rigs: leftCamera, rightCamera, and
bodyCamera).

_iblqc_ephysTimeRms.timestamps [ntwin]
Time scale for the RMS amplitude as a function of time,
relative to the raw binary ephys file (s)

_iblqc_ephysTimeRms.rms [ntwin, nch] RMS amplitude as a function of time (V)

_iblqc_ephysSpectralDensity.
freqs

[nfreqs] Frequency scale for the spectrogram (Hz)

_iblqc_ephysSpectralDensity.
power

[nfreqs,
nch]

Spectral Density for all channels (V**2/Hz)

histology_3dimage.volume
[20, nx,
ny,nz]

Raw histology imaging volume. Tiff file approximately 20
x [nx, ny, nz]

histology_3dimage.metadata [n/a] Histology imaging volume resampled or filtered.

histology_transform.elastix [n/a]
Text file used by elastix to perform transform from a
volume to another

The datasets “channels.mlapdv” and “clusters.mlapdv” define brain coordinates in 3 dimensions
(mediolateral, anteroposterior, dorsoventral), relative to bregma defined as Voxel ML-566, AP-
540, DV-33 within the 10μm volume of the Allen CCF mouse Atlas1. Mediolateral coordinates are
positive for the right hemisphere; anteroposterior coordinates are positive for anterior;
dorsoventral are positive for dorsal.

20

Supplementary Note 3: Open Neurophysiology Environment API

The Open Neurophysiology Environment (ONE) user interface allows users to search for
experiments of interest and load data from them, without worrying about the format or location of
the underlying files. This interface allows multiple backend instantiations, so users can run the
same exact code to process data from multiple local or remote sources. We have provided two
such instantiations: an “Alyx implementation” for large projects such as IBL, which requires a
backend Alyx database; and a “local implementation” that allows data access to files on the user’s
local file system without an Alyx database. This local implementation allows data producers to
release ONE-standardized data as a single zip file containing files in a variety of standard formats
(npy, tsv, json, mj2, etc.), organized with one directory per experiment containing appropriately
named data files.

The ONE API is implemented in Python. Full documentation is at
https://one.internationalbrainlab.org, Below, we provide a brief summary of how to use it.

Setting up ONE

1. Installation

ONE can be installed as a standalone package with python 3.8 or later by running,

pip install ONE-api

2. Setup

To start using ONE, we must first configure some settings that tell ONE whether it should
connect to a database or use a local file system, and which database to access. By default ONE
is configured to connect to the public IBL database (which until curation is complete contains
only a small number of experiments). This can be setup by typing the following

from one.api import ONE
one = ONE(silent=True, password='international')

Experiment IDs
ONE stores a collection of datasets for each experiment. Each experiment is uniquely identified
by a string termed the experiment ID (eID), which for the Alyx implementation are UUID strings.
One can find the eIDs of experiments matching desired criteria using the one.search
command. For example, to find the eIDs of all experiments on the database conducted in the
year 2020, one would type

eids = one.search(date_range=['2020-01-01', '2021-01-01'])

Further information on searching for experiments can be found by typing help(one.search)

or one.search_terms().

21

Datasets
The data associated with each experiment is collected in datasets, with two-part names of the
form object.attribute, following the conventions described in Supplementary Note 2. The

extension in the ONE files is hidden from users of the API, which returns the data as arrays,

saving the user from needing to worry about the physical format.

To view the data available with the first eID in the list returned by the one.search command above,
one would type:

one.list_datasets(eIDs[0])

To load an individual dataset one uses the one.load_dataset command. For example, to load

spike times, the user would type:

st = one.load_dataset(eIDs[0], 'spikes.times')

To load all datasets belonging to an object, the command

spikes = one.load_object(eID, 'spikes')

will return a dictionary with one entry for each dataset associated with that object (times,
clusters, depths, amps, etc.). Data from specific collections or revisions can be requested

with optional arguments to the one.load_* commands.

In the Alyx version, data are downloaded from a remote server to a cache directory, then
returned to the user. This means that the data only need to be downloaded from the server
once.

Running without a database, or connecting to an alternative database

ONE can be used independently of a database by running from files in a local directory. This
can be setup in the following way

from one.api import ONE

one = ONE(cache_dir='/home/user/downloads/ONE/behavior_paper')

To connect to a specific database other than the default, a base-url argument must be given.
For example, to connect to a server from the (fictional) “mybrainlab” project one would type

from one.api import ONE
one = ONE(base_url='https://alyx.mybrainlab.org')

22

Data access from servers may be password protected and/or restricted to a whitelist of specific
URLs; this feature is currently used for non-curated IBL data.

Supplementary Note 4: Comparison of data access protocols

There exist several ways to distribute and access neurophysiology data. Each has its own
strengths, which are discussed below.

ONE comprises a set of conventions for naming the datasets associated with an experiment, and
a lightweight API allowing users to search and load required data from these experiments. The
user thus need not worry about underlying file formats or network connections, and data are
cached on their local machine to avoid repeated downloads. Although format independent, we
have favored widely supported data formats such as .npy, .tsv, and Parquet, allowing users to
easily load data in the language of their choosing. ONE datasets are simple and readable: the file
name and folder organization are descriptive, meaning users can work with the data without
needing special loaders or preprocessing functions. ONE has additional features that make it
suitable for a growing dataset with frequent contributions and diverse access needs. For
example, ONE allows users to search and load specific data items, without downloading all data
for an experiment, enabling analyses such as a comparison of behavior performance from all
experiments to be performed quickly, without having to download the bulky physiology and video
data. The versioning feature allows individual data items to be updated in real time without
perturbing others, and allows users to “freeze” their analysis to the items available on a given
date, for example when revising a paper. ONE’s standardized data access functions allow
conversion to other formats such as NWB (converter available at
https://github.com/catalystneuro/IBL-to-nwb), and will also allow flexibility as neurodata standards
evolve in the future. Finally, the local implementation of ONE allows single labs and collaborations
to release ONE-standardized datasets with minimal effort, by naming files appropriately and
“uploading and forgetting” on a website.

Neurodata without borders (NWB) was created by neurophysiologists and software developers to
be a unified data standard suitable for diverse neurophysiological and behavioral data. NWB can
store multimodal experimental data in a single file and thus is well suited for long-term distribution
and storage of finalized data. Depending on an individual lab’s needs, storing data in NWB format
internally may further streamline data sharing: the metadata are stored in the same file as the
data, so the full dataset is guaranteed to remain intact.

The Allen SDK is a library for accessing neurophysiology data produced by the Allen Institute for
Brain Sciences. The ONE library has several different design features to this SDK. First, in ONE,
dataset types are passed as string arguments rather than encoded in method names. Thus rather
than running the AllenSDK command data_set.get_spike_times(), an ONE user would

run the command one.load_object(eID, 'spikes'); this feature allows data producers to

add new dataset types without needing to rewrite the API code, and thus will allow the API to be
used by labs or collaborations other than IBL, who require different dataset types. Second, the
ONE API allows users to access specific datasets from an experiment without downloading all
data from that experiment in an NWB file; this feature allows users to quickly integrate data from

23

many experiments, for example the behavioral analyses reported in Ref. 2 could be produced
without downloading the bulky electrophysiology data for each experiment.

DataJoint can be used to share data, especially for larger organizations, and was used to publicly
release IBL’s behaviour dataset. Datajoint is a framework not only for data release, but also for
pipelined computation. It thus provides an opportunity to allow users to work on data in the cloud
without explicit downloads, creating new pipelines for their own exploratory analysis; while
powerful, this way of working is currently unfamiliar to many neurophysiologists. Hosting a
DataJoint database costs money, and given the flexibility in user queries and computational
resource use, resources must be closely monitored if these facilities are made widely available.

24

Supplementary Note 5: Auxiliary software

In developing the IBL data architecture, we have written several auxiliary open-source libraries
that can be used by individual neurophysiology labs, collaborations large or small, as well as in
fields beyond neuroscience.

Mtscomp (https://github.com/int-brain-lab/mtscomp) is a library that performs 3x lossless
compression of raw neurophysiology data (Supplementary Note 1). This algorithm makes use of
a statistical regularity in neurophysiology signals - their 1/f power spectrum - and thus could be
used to compress data with similar properties in any field. The library allows users to extract data
from the middle of a long recording without uncompressing the whole file, and thus also allows
streaming random-access data from a remote server. As raw electrophysiology comprises the
bulk of data stored required by IBL (and other similar projects), this provides a threefold saving
on storage costs for such projects.

Interactive inspection and analysis of the large volumes of data acquired in the collaboration
require effective visualization solutions. We have developed a toolbox, called Datoviz, that
provides a unified GPU-based visualization platform for desktop applications combining 2D
graphics, 3D objects, and graphical user interfaces. Datoviz is available at
https://github.com/datoviz/datoviz, and is based on the Vulkan API, a successor to OpenGL that
allows much faster dynamic visualization of large scientific datasets, in neurophysiology and
beyond.

Finally, the code used to perform general neurophysiological data analyses are available in a
growing toolbox termed Brainbox, which is written in Python and can operate independently of
DataJoint and ONE. These tools are publicly available at https://github.com/int-brain-
lab/ibllib/tree/master/brainbox, and are intended to be independent of the rest of the data
architecture.

25

Supplementary Table 1: Resource list

i. Resources contributed through this paper

Resource Description Code Documentation

Alyx A user-friendly database for
neuroscience data and
colony management

https://github.com/cor
tex-lab/alyx

Install instructions:
https://github.com/corte
x-lab/alyx/#installation

Usage:
https://docs.google.co
m/document/d/1cx3XL
ZiZRh3lUzhhR_p65Bg
gEqTKpXHUDkUDagvf
9Kc/edit

mtscomp A lossless compression
scheme for
electrophysiological data

https://github.com/int-
brain-lab/mtscomp

https://github.com/int-
brain-
lab/mtscomp#multicha
nnel-time-series-
lossless-compression-
in-python

ONE A scheme for searching and
loading ALF datasets

github.com/int-brain-
lab/ONE

one.internationalbrainla
b.org

Pykilosort A python port of the Kilosort
GPU spike sorting software,
with template matching,
clustering and drift
correction

https://github.com/int-
brain-lab/pykilosort/

https://github.com/int-
brain-lab/pykilosort

brainbox A python library of
independent analysis
functions oriented towards
behavior and
neurophysiology

github.com/int-brain-
lab/ibllib

docs.internationalbrainl
ab.org/_autosummary/
brainbox.html

Datoviz A generic interactive data
visualization library
leveraging the graphics
processing unit for high
rendering performance

https://github.com/dat
oviz/datoviz

https://datoviz.org/

iblenv A unified environment and
issue tracker for all IBL
Github repositories.

github.com/int-brain-
lab/iblenv

github.com/int-brain-
lab/iblenv#iblenv-
installation-guide

26

LabCI A small continuous
integration server for
remotely triggering tests in
MATLAB and Python

github.com/cortex-
lab/LabCI

github.com/cortex-
lab/LabCI/#labci

IBL-to-NWB A library for converting ONE
files to NWB format

https://github.com/cat
alystneuro/IBL-to-
nwb

https://github.com/catal
ystneuro/IBL-to-
nwb#IBL-to-nwb

ii. Existing resources deployed as part of this architecture

Resource Description Code Documentation

Neurodata Without
Borders (NWB)

A data standard for
neurophysiology that
can be used to share,
archive, use, and build
analysis tools for
neurophysiology data

pynwb.readthedocs.io/
en/latest/getting_starte
d.html#installation

pynwb.readthedocs.i
o/en/latest/api_docs.
html

Kilosort2 A MATLAB toolbox for
spike sorting on GPUs
with template
matching, clustering
and drift correction

github.com/MouseLan
d/Kilosort

github.com/MouseLa
nd/Kilosort/wiki

DataJoint A relational data
processing pipeline for
the science lab in
MATLAB and Python

github.com/datajoint

Table implementation
within IBL:

github.com/int-brain-
lab/ibl-pipeline

docs.datajoint.io/

Globus An API for securely
and robustly
transferring large
datasets between
computers

globus.org/ docs.globus.org/

NPY-MATLAB A small set of functions
to read and write
Numpy files in
MATLAB

github.com/kwikteam/
npy-matlab

github.com/kwiktea
m/npy-matlab#npy-
matlab

27

Supplementary Table 2: Terminology

 What is it? What is an example? What is it for?

Bulk data Large-scale raw
recordings or derived
preprocessed results.

Raw electrophysiology
signal, spike sorting results,
behavioral outcomes

Bulk data are processed, analyzed, and
visualized to draw scientific conclusions.

Metadata Small data items that
provide information on
bulk data.

Mouse strain/sex/lineage,
electrode location,
experimenter ID, recording
hardware configuration and
lab

Metadata allows users to search for bulk
datasets they want to analyze, and is
essential to interpret results.

Relational
Database

A system that stores
complex information in
easily searchable and
interdependent tables.

PostgreSQL, MySQL Users search the database to find data they
need. Searches are flexible, and can include
queries not originally conceived of by the
designers, eg, “Find all data run on male
mice on a Tuesday”.

Data
Standard

A set of rules specifying
how data will be
represented on a
computer system.

Open Neurophysiology
Environment, Neurodata
Without Borders

A data standard allows users to read data
from multiple providers without having to
learn a new convention each time.

Data
Pipeline

A software tool that
allows complex multi-
step computations to be
run automatically.

DataJoint, joblib, Dask Allows a standard analysis to be run
repeatedly on multiple standardized
datasets, saving intermediate results and
continuing after interruptions.

