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Abstract 16 

Interactions between solitary waves and structures in a steady current are studied based on a fully 17 

nonlinear wave potential theory, and a higher order finite element method (FEM) with a mesh 18 

of 8-node quadrilateral isoperimetric elements is employed to simulate the interaction in two-19 

dimensions. Numerical examples are given by solitary waves propagating over an underwater 20 

rectangular cylinder in a steady current in a tank and solitary waves acting on single- and twin-21 

rectangular cylinders in a steady current on free surface. Waves and hydrodynamic forces are 22 

obtained at different current speeds. It is found that the peak of diffracted wave due to the first 23 

and second reflections by an underwater cylinder clearly increase in following current. 24 

Furthermore, a packet of periodic waves with constant peak and trough are found to appear when 25 

the absolute value of the Froude number becomes large enough in single- and twin-cylinder 26 

cases. For the twin-cylinder cases, the maximum wave and horizontal force are clearly affected 27 

by the current especially in larger incident wave amplitudes and smaller spacings. In addition, 28 

the nonlinearity of wave or force becomes stronger at larger Froude numbers and larger incident 29 

wave amplitudes. 30 

 31 

Key Words: Solitary wave; current; nonlinear interaction; potential flow theory; higher order 32 

finite element method.  33 
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 35 

1. Introduction 36 

The solitary wave is one typical nonlinear wave in ocean, which normally appears on the 37 

ocean surface in the coastal region. In ocean engineering and naval architecture, we normally 38 

consider the hydrodynamic properties of the designed offshore structures in such types of water 39 

waves. In reality, water waves and currents always coexist in ocean. In such a case, the 40 

hydrodynamic properties of offshore structures may be quite different when compared with the 41 
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cases without the currents. Thus, it is of great importance to consider the problem of a solitary 42 

wave interaction with structures in a steady current.  43 

Solitary wave propagation in shallow water and its interactions with coastal structures 44 

received extensive attention in the past decades. One important research topic is solitary wave 45 

propagation in ocean or in sloping beaches and quite a lot studies can be found. Typical 46 

numerical examples including Kim et al. (1983) and Maiti and Sen (1999) by using a boundary 47 

element method, and Synolakis (1987) by applying Carrier & Greenspan transformation (Carrier 48 

and Greenspan, 1958), and Knowles and Yeh (2018) through higher-order pseudo-spectral 49 

method. Besides, another interesting problem is the collision between two and multiple solitary 50 

waves. For example, Su and Mirie (1980) and Mirie and Su (1982) studied the two-dimensional  51 

interactions between two solitary waves by perturbation theory. Later the similar problem is 52 

investigated by Cooker et al. (1997) and Chambarel et al. (2009) through the boundary element 53 

method. Moreover, works about three-dimensional interaction between two equal steep solitary 54 

waves or the obliquely reflection of a solitary wave can be found in Miles (1977), Tanaka (1993) 55 

and Kodama and Yeh (2016), they found that the three-dimensional interactions between solitary 56 

waves are very complicated, the Mach reflection phenomenon will occur during the interaction. 57 

In addition to the analytical and numerical works above, typical experimental studies including 58 

Seabra-Santos et al. (1987) and Chen et al. (2015).  59 

 60 

For practical consideration, it is also important to consider the interaction between solitary 61 

waves and offshore structures. Sibley et al. (1982) analyzed the forces of a solitary wave on a 62 

fixed two-dimensional cylinder by an approximated approach. Later, this diffraction problem is 63 

investigated numerically by Chian and Ertekin (1992) through the boundary element method. A 64 

similar method is also employed by Cao et al. (1993) to study the two-dimensional solitary waves 65 

generated by a moving disturbance beneath the water surface. A more recent work by Sun et al. 66 

(2015) considered the fully nonlinear interactions between a solitary wave and two-dimensional 67 

structures floating on free surface based on a higher order finite element method.  Various cases 68 

of the forces by solitary wave acting on a single- or twin-cylinder rectangular cylinder on free 69 

surface are simulated and the effect of wave amplitude, initial draught and breadth of cylinder 70 

on waves and hydrodynamics forces have been discussed. For three-dimensional problems, 71 

Isaacson (1982) proposed a three-dimensional fully nonlinear boundary element method to 72 

analyze the interaction between a solitary wave and fixed or floating bodies. Based on the 73 

generalized Boussinesq equations, Wang et al. (1992) considered the diffraction of a solitary 74 

wave by a vertical circular cylinder, their results are further verified by experiments later in Yates 75 

and Wang (1994). Using the same equations, Wang and Jiang (1993) and Zhao et al. (2007) 76 

extended it to the diffraction of a solitary wave by an array of circular cylinders, such as two and 77 

four groups of cylinders. Based on the fully nonlinear velocity potential theory, Zhou et al. (2015) 78 
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considered the interactions between a solitary wave and a fixed or a floating circular cylinder, 79 

the wave forces on both cases are compared and discussed in detail. Besides, the first-order, 80 

third-order and fully nonlinear initial conditions are also applied and analyzed in their work.  81 

 82 

In the real ocean environment, wave and current always coexist. The wave-current interaction 83 

has been one of the most interesting, applicable topics in naval architecture and ocean 84 

engineering. Compared with the cases only water wave exists, wave loads on these ships and 85 

offshore structures and the corresponding wave run-ups will be significantly affected when wave 86 

and current coexist. Thus, it is of practical importance to consider the interaction between wave- 87 

current and structures theoretically. In the last two decades, the fully nonlinear potential flow 88 

model was used to simulate interaction problems of periodic waves and structures in a current. 89 

For example, Celebi (2001) investigated the transient and steady-state nonlinear wave–current-90 

body interactions by using a fully nonlinear three-dimensional numerical wave tank with a mixed 91 

Eulerian–Lagrangian time stepping technique. Ryu et al. (2003) developed a two-dimensional 92 

boundary element based numerical wave tank to investigate two-dimensional wave-current 93 

interactions. They found that wave crests, troughs, and wavelength changed due to wave–current 94 

interactions.  Wang et al. (2018) developed an enhanced spectral boundary integral method to 95 

study the full nonlinear three-dimensional wave and current interaction.  96 

 97 

As far as we know, there is little work about the interactions between a solitary wave and a 98 

structure in a current. Some works are about solitary wave and current interactions only.  Zhang 99 

et al. (2015) used a RANS equations based VOF (volume of fluid) method to simulate a solitary 100 

wave traveling in a steady current. They found that the solitary wave becomes smaller in wave 101 

height and larger in wave width when the current advanced in the same direction as the wave 102 

propagates. On the contrary, they become larger and smaller, respectively, which is similar to 103 

the interaction between a periodic wave with a current. However, their work does not consider 104 

the wave interaction with a structure in a current. Cheng et al. (2020) considered the solitary 105 

wave slamming on an oscillating wave surge converter under the effects of a uniform current by 106 

a higher-order boundary element method. In the present paper, the fully nonlinear interactions 107 

between solitary waves with structures in a uniform current are studied based on a higher order 108 

finite element method. The problem without the current effect was considered by one of the 109 

authors and co-workers in Sun et al. (2015) and it is extended to the cases with a uniform current  110 

in the present study, which mainly tries to figure out how the uniform current affect the wave 111 

and hydrodynamic force subjected by the structure. When there is an incident current, the 112 

incident component of the velocity potential here should be re-derived. Besides, the former 113 

procedure to calculate the hydrodynamic force should also be revised by including a term 114 

induced by the current. Compared with the former cases without the current, the wave elevation 115 
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and hydrodynamic forces on the structures may be deeply affected. The nonlinearity of the 116 

numerical results may also be different. To illustrate the influence of the current, case studies are 117 

conducted for solitary waves propagation over an underwater rectangular cylinder in a tank with 118 

a steady current and solitary wave acting with single- and twin-rectangular cylinders in a steady 119 

current on free surface. 120 

 121 

2. Mathematical formulation 122 

 2.1 Governing equation and boundary conditions 123 

   124 

 125 

 126 

Fig. 1.  A sketch of a solitary wave interactions with a body in a current；(a) An underwater 127 

and bottom-mounted rectangular cylinder; (b) A rectangular cylinder on free surface.  128 

 129 

The problem of a solitary wave interaction with a two-dimensional structure is investigated 130 

in this article. Two different configurations are considered. The first is a submerged and bottom-131 

mounted rectangular cylinder, and the second is a rectangular cylinder floating on free surface, 132 

as given in Fig. 1. A Cartesian coordinate system O-xy is defined as shown in Fig. 1, the origin 133 

is located at the vertical centre line of the structure, the x-axis coincides with the undisturbed 134 

free surface, and the y-axis points upwards. The free surface and the cylinder surface are denoted 135 

as 
f

S  and 
b

S , respectively, and the  unit normal vector is directed outward from the fluid region 136 

is denoted by ),( yx nnn =


.The bottom of the fluid is assumed to be a horizontal plane at y=-h 137 

and it is denoted by Sbot, the artificial boundaries Sc in the figure are located at x=0 and x=L for 138 

left and right edges, respectively. The fluid is assumed to be incompressible and inviscid, and 139 
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the motion of the fluid is irrotational. Thus, the liquid motion can be described through a velocity 140 

potential  , which satisfies the Laplace equation in the fluid domain   141 

= in                                    02 .           (1) 142 

The   is subject to the following boundary conditions on the free surface Sf 143 

fS
yxxt

on         0=



−








+



 
,           (2) 144 

fSg
t

on        0
2

1 2
=++




 ,           (3) 145 

where g is the acceleration due to gravity. The condition on the cylinder surface can be expressed 146 

as 147 

   bS
n

on                              0=



,           (4) 148 

On the tank bottom the boundary condition is  149 

     on                               0 hy
y

−==



.         (5) 150 

In addition, the potential satisfies the radiation condition which is imposed through a suitable 151 

numerical procedure on Sc.  152 

For a problem with a steady current with speed U along the x-axis, the velocity potential   153 

may be split into two parts: 154 

Ux+=  ,                  (6) 155 

where   is the disturbed potential and Ux is the potential due to the current. The potential   156 

also satisfies Laplace equation 157 

   = in                                    02           (7) 158 

The boundary conditions mentioned above or Eqs. (2) ~ (5) may be expressed in terms of the 159 

disturbed potential   as  160 

f S
x

U
yxxt

on         0=



+




−








+



 
,        (8) 161 

 on          0
2

1 2

fS
x

Ug
t

=



+++



 



,        (9) 162 

bx SUn
n

on                          −=



,            (10)  163 

 on                                 0 hy
y

−==



.              (11) 164 

Eqs. (8) and (9) can be written in Lagrangian form 165 

U
xDt

Dx
+




=


,

yDt

Dy




=


,              (12) 166 
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2

2

1



+−= g

Dt

D
,               (13)  167 

where +



=

tDt

D
is the material derivative.   168 

In addition, the initial condition is usually based on the assumption that the free surface 169 

elevation is known together with the potential on the free surface, or  170 

)()0),(,(  ),()0,( xtxyxxtx III  ===== ,     (14) 171 

where the expression of )(xI  and )(xI  need to be re-derived below due to the effect of a 172 

uniform incoming current.  173 

 174 

2.2 Solitary wave elevation and potential in a steady current 175 

In this section, we derive the potential and elevation of a solitary wave in a steady current by 176 

following the work of Friedrichs and Hyers (1954).  Eq. (6) is rewritten as 177 

Uxy += ),( ,                 (15) 178 

where )( ctxk −= , k is wave number and c denotes phase velocity. Similarly, the wave 179 

elevation cab be expressed as 180 

)(),(  =tx .                  (16) 181 

Therefore, the governing equation (7) and boundary conditions (8), (9) and (11) can be written 182 

as, respectively,  183 

  0
2

2

2

2
2 =




+





y
k






,                (17) 184 

  
fS

y
kUck on      0)( 2 =




−








+




−−














,       (18) 185 

fSg
y

kUck on      0])()([
2

1
)( 222 =+




+




+


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
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,    (19) 186 

 on        0 hy
y

−==



.               (20) 187 

The initial conditions of the wave elevations are set to be 188 

00)( ,)0( ==



== 




 A .             (21) 189 

By employing the perturbation method in Friedrichs and Hyers (1954), the wave elevation , 190 

velocity potential  , phase velocity c and wave number k can be expanded into a series, 191 

respectively, 192 

  +++= 2

3

1

2

0  AAA ,             (22) 193 

)( 2

2

10

2/1 +++=  AAA ,            (23) 194 
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+++= 2

2

10 cAAccc ,              (24) 195 

)1( 2

2

10 +++= kAAkkk ,             (25) 196 

where A is wave amplitude. The zero, first and second order equations can be obtained by 197 

substituting Eqs. (23) and (25) into (17) and (20) and collecting the same order of both ends of 198 

each equation: 199 

Zero order: 200 
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First order: 202 

 













−==




=



+





.on       0

in       0

1

2

1

2

2

0

2

hy
y

y









               (27) 203 

Second order: 204 
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          (28) 205 

In Eqs. (27) and (28),  0

2/1 / kA  = . Through Eqs. (26)~(28), we can obtain 206 

00 f= ,                    (29) 207 

10

2

1 )(
2

1
ffhy ++−= ,              (30) 208 

2101

2iv

0

4

2 )2()(
2

1
)(

24

1
fffkhyfhy +++−+= .      (31) 209 

It should be pointed out that f0, f1 and f2 are only the function of . Here, we may assume that 210 

the velocity of current is of zero-order, or it has the same order with c0. Then, the terms in free 211 

surface boundary conditions (18) and (19) can be expanded to first order in a similar way:    212 
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0
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(33) 214 

By solving Eq. (31), we can obtain 215 

  ghUc +=0 ,                  (34) 216 

  00 
h

g
f = ,                  (35) 217 

and the following equation can be obtained by using Eq. (33) 218 

  0)(
2

2

3

3

1
010

2

00

3 =−−+  cUc
g

h ,           (36) 219 

and this equation is solved by using 10 =  and 00 =   at the wave crest according to 220 

Eq. (21) and we obtain 221 

   
h

g
c

2

1
1 = ,                  (37) 222 

   )(
4

3
sech

3

2

0 ctx
h

A
−= .             (38) 223 

 The wave elevation, potential and phase velocity can be obtained when it is considered 224 

to first order only  225 

)(
4

3
sech

3

2

0 ctx
h

A
AA −==  ,          (39) 226 

)(
4

3
tanh

3

2
30 ctx

h

A
gAhA −==  ,        (40) 227 

 )
2

1
1(10

h

A
ghUAccc ++=+= .          (41) 228 

The previous work by Cooker et al. (1997) and Zhou et al. (2016) have already indicated that 229 

the higher-order solutions will only have significant influence on the results when the amplitude 230 

𝐴/ℎ is very large. Our analysis below is restricted as A/h ≤ 0.4 Thus, using the first-order 231 

approximation here is reasonable. Besides, it should be noticed that the initial position of the 232 

peak of the solitary wave is located at 𝑥 = 0 in the above equations. Once it is located at 𝑥 = 𝑥𝑝, 233 

the 𝑥 in Eqs. (39) and (40) should be replaced as 𝑥 −  𝑥𝑝. From Eqs. (39) ~ (41), we can know 234 

that once the solitary wave and uniform current coexist in a steady state, only the wave speed 235 

will be affected by the uniform current. The expressions of 𝜙 and 𝜂 are in a same form as those 236 

of the cases without the current.  237 

 238 
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2.3 Evaluation of hydrodynamic forces 239 

Once the velocity potential has been obtained through solving Eqs. (7), (10~14), the pressure 240 

in the fluid can be determined by Bernoulli equation 241 

)
2

1
(

2
gy

x
U

t
p ++




+




−= 


 ,          (42)  242 

where   is the fluid density. The hydrodynamic force acting on the body can be expressed as 243 

=

bS

jj dspnF ,                           (43) 244 

where ),,(),,( 321 yxyx xnynnnnnn −= , j=1,2 corresponding to the force ),( yx FF and j=3 to the 245 

moment 
zM . In Eq. (43), the computation of the integration of t  may be a problem and 246 

the direct differencing of   with time may cause the force history to be unsmooth. To overcome 247 

this difficulty, we extend the method developed by Wu (1998), which is used in cases without 248 

current to the present study on wave-current-body interactions.   249 

      In the fluid domain, the time derivative t  satisfies the Laplace equation 250 

02 = t .                                                                                           (44) 251 

 On the fixed boundary it satisfies 252 

0=




n

t .                   (45)      253 

On the free surface t  is given by the Bernoulli equation as 254 

x
Ugyt



−−−=




2

1
 .             (46)  255 

where r


is the position vector of any point on the cylinder surface to the rotated centre.  Eqs. 256 

(44) ~ (46) can be easily solved to obtain t / . 257 

 258 

 259 

3. Finite element discretization and numerical procedures 260 

In the present simulations, we employed a finite element method with 8-node quadrilateral 261 

isoparametric element to calculate the velocity potential at each time step. Detailed finite element 262 

discretization can be found in Wang et al. (2011). The fourth-order Runge-Kutta method is 263 

adopted for updating the wave elevation and the potential on the free surface (Wang and Khoo, 264 

2005; Wang et al., 2013; Wang et al., 2011). A B-spline method is used for remeshing and an 265 

energy method is for smoothing the free surface (Wang and Wu, 2006). A damping zone is 266 

placed at each end of the fluid domain to minimize the reflected wave. All these numerical 267 

techniques were also employed for simulating wave resonance by the oscillation of two cylinders 268 

in a steady current in Huang et al. (2022).  269 
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The velocity potential has been found through solving Eqs. (7), (10) – (14) based on the finite 270 

element method, the velocity on the free surface and cylinder surface can be obtained through 271 

differentiating the shape functions directly. The simulation is conducted in time domain by 272 

updating the velocity potential and wave elevation through Eqs. (12) and (13). The 273 

hydrodynamic force on the cylinder surface can also be obtained through Eq. (43).    274 

 275 

4. Numerical results 276 

 277 

4.1  Solitary waves propagate over a underwater and bottom-mounted cylinder 278 

We first consider interactions between solitary waves and a bottom-mounted rectangular 279 

cylinder (see Fig. 1a). The calm water depth is h=1m. The cylinder has height d=0.6h and breadth 280 

b=40h, and its central line is at x=0. The case without current has been studied by Lin (2004) 281 

based on the viscous flow theory . In our simulations, the length of the computational domain is 282 

L=216h. The solitary wave amplitude is first chosen as A=0.1h and its peak is initially located at 283 

xp=-50h. The nondimensional time is defined as ght / = . However, the situation becomes 284 

more complicated when there is a current because there are interactions between wave and 285 

current and also between current and cylinder besides wave-cylinder interaction.  286 

Fig. 2 shows convergence tests for mesh and time interval. The test of waves is at x =-21h 287 

or x/ h =-21with three current speeds U=-0.3, 0 & 0.3 m/s. Four meshes and two-time intervals 288 

are used to test the numerical convergence. The details are given in Table 1, in which nf is the 289 

segment number along the free surface, nd and nh are the segments along the vertical faces of the 290 

cylinder and that along the artificial boundaries Sc, respectively, ne and nn are the total number 291 

of elements and nodes in the whole fluid domain respectively. The results for Cases 1 to 4 are 292 

given in Fig. 2. It can be seen that Case 2 are in very good agreement over the entire simulational 293 

time of 200=  with Cases 3 and 4. The Case 1 with the coarse mesh, however, shows a clear 294 

difference at around 150=  for U=-0.3 m/s (see Fig.2a) and during 150=  and 200 for U=0 295 

(see Fig.2b) with Cases 2, 3 and 4. Thus, these tests show that Case 2 can provide convergent 296 

results.   297 

Table 1 Parameters of mesh schemes 298 

 nf nd nh ne nn d  

Case 1 780 4 7 4580 15323 0.02 

Case 2 1260 4 9 9900 32247 0.02 

Case 3 1890 6 13 21330 67809 0.01 

Case 4 2520 8 17 37080 116331 0.01 

 299 
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 300 
Fig. 2.  Comparisons of waves at x/h=-21 between different meshes and time intervals at (a) U=-0.3m/s; 301 

(b) U=0; (c) U=0.3 m/s. 302 

 303 

The wave profiles atτ=10, 40, 70 & 100 with U=-0.3, 0, & 0.3 m/s are given in Fig. 3. The 304 

waves atτ=10 is given in Fig.3a and it is seen that they have no clear difference since the time 305 

is short. However, with the development of time, it becomes clear atτ=40 in Fig. 3b. It can be 306 

seen from the figure that the wave surface outside cylinder within two regions of -55<x/h<-20 307 

and 20<x/h<55 rises or sinks at U=0.3 & U=-0.3 m/s, and they then expand to the ranges of -308 

80<x/h<-20 and 20<x/h<80 atτ=70 (see Fig. 3c) and to even wider range at τ=100 (see Fig. 309 

3d). The wave surface elevates on the left region of the cylinder and sinks on the right region at 310 

U=0.3 m/s but it is opposite at U=-0.3 m/s, and this is because of the Doppler effect: the 311 

propagation of reflected wave within the left region is opposite to the current direction when 312 

U>0 and hence make the peak larger; On the contrary, the wave within the right region propagate 313 

to the positive x-direction, which is identical to the direction of current at U=0.3 m/s and hence 314 

cause a smaller peak. A similar explanation can be made for U=-0.3 m/s. Furthermore, the wave 315 

peak has been affected by the current. Atτ=10, the peak at U=0.3 m/s is almost identical to 316 

those at U=0 & -0.3 m/s, and  it then becomes larger than that at U=0 whenτ=40.  In contrast 317 

to this, the peak at U=-0.3 m/s is smaller than that at U=0. This is because of interactions between 318 

wave-current and the cylinder after the wave peaks pass over above the front of the cylinder.  At319 

τ=70 (see Fig. 3c), the wave at U=0.3 m/s propagates faster and pass over the whole cylinder 320 

and hence its peaks becomes the smallest and that at U=0, which is around above the second half 321 

of the cylinder, becomes the second smallest. In addition, a series of waves followed the main 322 

peak are generated and gradually evolve periodic waves when the waves have passed over the 323 
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whole cylinder especially for U=0.3 m/s since it propagates faster than those at U=-0.3 & 0 m/s 324 

whenτ =100 (see Fig. 3d). 325 

 326 

Fig. 4 shows wave histories at x/h=-29, 19 & 49 corresponding to Fig. 3. As discussed by 327 

Lin (2004) about wave reflection and transmission without current effect or U=0 m/s, there are 328 

two reflected waves in front of the cylinder, e.g. x/h=-29 due to interactions between the waves 329 

and the front and rear of the cylinder. When the wave propagates to some location above the 330 

cylinder and near its rear (x/h=19), the wave split into a number of solitons with decaying 331 

amplitude, and it then evolves into a soliton followed by a packet of small surface waves after 332 

they pass over the whole cylinder (x/h=49). All these can be seen in Fig. 4 and it shows a 333 

consistent result with the cases in Lin (2004). Similarity can be found in the cases of current at 334 

U=-0.3 & 0.3 m/s. However, the difference is clear between  U=0 m/s and  U≠0 m/s. At x/h=-335 

29, one main peak at around 20=  followed by one secondary peak at around 38=  can be 336 

observed (see Fig. 4a) at each speed, and they become larger as the increase of the current speed. 337 

On reason is that the wave is acted by the front of the cylinder and cause wave reflection and 338 

hence the second peaks appear at around 38= , which has been explained by Lin (2004); The 339 

other is due to the Doppler effect of interactions between the reflected wave and the current, 340 

which cause both main and secondary peaks to increase as the increase of the current speed. It 341 

is also noticed that the secondary peak at U=-0.3 m/s is much smaller that those at U=0 & 0.3 342 

m/s and its peak value is nearly equal to zero. In the case of the current at U=0.3 m/s, the wave 343 

is elevated until 115=  by the current and nearly keep a constant at 38.0/ =A  between  344 

42=  and 84 and then gradually goes down. By contrast, the wave has a trough at around 345 

33.0/ −=A  between  53=  and 71 at U=-0.3 m/s and it is then slowly ascended until 140= .  346 

 347 

Fig. 4b shows the wave at x/h=19, which is above the cylinder and is close to the rear corner 348 

of the cylinder. As discussed in the last paragraph, a series of solitons with decaying amplitude 349 

has already been generated at each speed and the main peak at U=0.3 m/s becomes the smallest 350 

due to current effect.  When the wave continues to propagate to the right direction to the location 351 

x/h=49 shown in Fig. 4c, the solitons mentioned above, degenerate into a wave with soliton 352 

shape and a packet of small surface waves. Furthermore, it is also seen that the waves generally 353 

become larger at U=-0.3 m/s than those at U=0. On the contrary, the waves at U=0.3 m/s shows 354 

an opposite variation to that at U=-0.3 m/s and the solitons disappear more quickly. This is 355 

because of the Doppler effect of interaction between a wave and a current: the transmitted waves, 356 

which pass over the whole cylinder, propagate along the positive x-axis and it is identical to the 357 

current direction when U>0 and hence make the peak smaller and the situation is opposite to 358 

this when U<0. 359 
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 360 

The snap shots of wave profile from 0=  to 100 with time interval 1=  are given in Fig. 361 

5, which exhibits wave evolution in space during a long period of time. It is shown from Fig. 5b 362 

that two reflected waves can be clearly seen when the solitary wave arrived at the front (x/h=-363 

20) and real (x/h=20) of the cylinder at U=0 m/s, which has also been observed by Lin (2004). 364 

When the current exists, the first reflected wave by the front of cylinder (x/h=-20) can also be 365 

observed at U=-0.3 m/s (Fig. 5a) and U=0.3 m/s (Fig. 5c), the difference is that the latter is much 366 

clearer than the former and this can also be seen in Fig. 3. The second wave reflected by the rear 367 

of the cylinder (x/h=20) at U=-0.3 m/s is almost graphically unseen and this is because this wave 368 

become smaller when it is acted by the adverse current. However, it becomes significant at 369 

current speed U=0.3 m/s, which is oppose to the reflected wave, and it is even clear than that at 370 

U=0. Meanwhile, a series of waves including a soliton followed by surface waves at the three 371 

speeds propagate toward the x-direction after they pass over the rear corner of the cylinder can 372 

be seen in the figure. In addition, the wave’s sink and rise can also be observed within the left 373 

region of the cylinder at U=-0.3 & 0.3 m/s, respectively.  374 

 375 

In order to exhibit the wave nonlinearity, three incident wave amplitudes A/h=0.1,0.2 & 0.4 376 

are used for calculating the waves at x/h=-21 and 19, which are close to the front and rear of the 377 

cylinder, respectively. The results are given in Figs. 6 and 7. It can be seen that the difference 378 

between the three nondimensional waves are evident at each current speed and location, which 379 

indicates the wave nonlinearity is clear. At x/h=-21, the nondimensional wave peak increases 380 

as the increase of A/h for U=-0.3 m/s. It then gradually reduces as A/h increases when the current 381 

speed is augmented to U=0 & 0.3 m/s and the trend of descent for latter is more evident.  When 382 

the waves arrive at x/h=19 (see Fig. 7), the situation becomes very different due to sufficient 383 

interactions between the wave-current and the cylinder. The wave with single peak has already 384 

split into a soliton and a packet of surface waves with gradually decreasing amplitude one by 385 

one at each current speed. The nondimensional main peak definitely declines as the increase of 386 

A/h at each speed, which is even clearer than those at x/h=-21 in Fig. 6.  387 

 388 

Fig. 8 give a comparison similar to Fig. 4 except that the initial draught is d/h =0.3. We 389 

compared the waves at x/h=-29 (see Fig.8a) with those at d/h=0.6 in Fig. 4a. It can be seen that 390 

the difference between three peaks at U=-0.3, 0 & 0.3 m/s is smaller than that in Fig. 4a. The 391 

three peaks become smaller when the waves arrive at x/h=19 (see Fig. 8b) at every speeds. 392 

Furthermore, the secondary peaks followed the main peak are much smaller at x/h=-29 and 19 393 

(see Figs. 8a & 8b) than those at d/h =0.6. At x/h=49, the wave evolves into a soliton followed 394 

by a packet of travelling waves is not as evident as that at d/h=0.6 (see Fig. 8c and Fig. 4c). In 395 

summary, the current effect on the wave is relative weak and it is because the cylinder d/h =0.3 396 
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is far away from the free surface that that at d/h =0.6 and hence it causes weaker interaction 397 

between the wave-current and the cylinder.  398 

 399 

Fig. 9 give another comparison similar to Fig. 4 except that the cylinder breadth is b/h =2.   400 

Compared with Fig. 4, the magnitudes of three wave peaks at three locations and U=-0.3, 0 & 401 

0.3 m/s have slight difference and not as clear as those at b/h=40. This is because it takes longer 402 

times when the wave passes over the cylinder at b/h=40, which causes a more sufficient wave-403 

current-body interaction.  404 

 405 
Fig. 3.  (a) wave profiles at (a)τ=10; (b)τ=40; (c)τ=70  (d)τ=100 at A/h=0.1. 406 

 407 

 408 
Fig. 4.  Wave histories at d/h=0.6 (a) x/h=-29; (b) x/h=19; (c) x/h=49.   409 

 410 

 411 
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 412 

 413 

 414 
Fig. 5.  Snap shots of wave profile from 0=  to 100 with time interval 1=  and A/h=0.1. 415 

 416 

 417 
Fig. 6.   Wave histories at x/h=-21; (a) U=-0.3m/s; (b) U=0; (c) U=0.3 m/s. 418 
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 419 

 420 
Fig. 7.   Wave histories at x/h=19; (a) U=-0.3 m/s; (b) U=0; (c) U=0.3 m/s. 421 

 422 

 423 
Fig. 8.  Wave histories at d/h =0.3; (a) x/h=-29; (b) x/h=19; (c) x/h=49. 424 

 425 

 426 
Fig. 9.  Wave histories at d/h =0.6 and b/h=2; (a) x/h=-29; (b) x/h=19; (c) x/h=49. 427 
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 428 

4.2  Interactions between a solitary wave and a rectangular cylinder in a current 429 

Sun et al. (2015) simulated interactions between a solitary wave and a rectangular cylinder 430 

without current effect. In this section, we extend the work of Sun et al. (2015) to the situation 431 

with a steady current, which is related to interactions of a solitary wave with a ship advancing in 432 

offshore area. It should be noted that the present numerical method is already verified by 433 

comparing with the results without the current in Sun et al. (2015) by setting 𝑈 = 0 here. We 434 

consider a cylinder with breadth b=h and initial draught d=0.5h and its central line is located at 435 

x=0 (see Fig. 1b). The length of fluid domain on the left and right sides is Lleft=Lright=120h and 436 

the initial wave peak is at xp=-Lleft/2. In the simulation, h=1m. We calculate waves and 437 

hydrodynamic forces on the cylinder. To enable the interactions between the cylinder and current 438 

to develop smoothly, a modulation function M t( )  is applied to let the current gradually 439 

increase  440 
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and T is period of time. Fig. 10 shows the wave histories at the left side of the cylinder with 444 

current-cylinder interactions only at Fn=0.04, 0.08 & 0.16. Each wave changes quickly in the 445 

beginning and finally reaches to a constant. We chose T as 4.79 (sec), which corresponds to 446 

the nondimensional timeτ=15, at which each wave has already been stable.   447 

 448 

Fig. 11 shows the wave histories at the left and right sides of the cylinder at A/h=0.09 and 449 

five different Froude numbers Fn=-0.16, -0.08, 0, 0.08 & 0.16 are used, where Fn is the Froude 450 

number and it is defined as gbUFn /= . It can be seen that the main peaks of the solitary 451 

waves at both left and right sides increase as the increase of Fn and the former is clearer, which 452 

is similar to a periodic wave diffraction by the cylinder. The wave shape around the peak is 453 

sharper at larger Fn and hence has stronger nonlinearity. It is also interesting to see that the waves 454 

at the left and right sides finally evolves into a steady periodic wave with large constant peaks 455 

and troughs at Fn=0.16 and -0.16, respectively,  and the peak of the periodic wave is even larger 456 

than that of the solitary wave. However, no clear periodic wave appears at Fn=-0.08, 0 & 0.08.   457 

 458 

Fig. 12 shows wave histories at a large amplitude A/h=0.36. Similar to that at A/h=0.09, 459 

the main peak at each side also increases as Fn increase but those at the left side are even clearer 460 

than those at A/h=0.09 and hence has even stronger nonlinearity at larger Fn. At Fn=0.16 and -461 
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0.16, the waves at left and right sides also become stable with constant peak and trough after a 462 

shorter period of time than that at A/h=0.09. All these exhibit that the solitary wave has stronger 463 

nonlinearity at larger Froude numbers and also indicate that a clearly periodic wave can more 464 

easily appear at large absolute value of Froude number nF .  465 

 466 

We give further comparisons of waves at both sides with three incident wave amplitudes 467 

A/h=0.09, 0.18 & 0.36 and three Froude numbers Fn=-0.16, 0 & 0.16 are used. The result is 468 

shown in Fig. 13. The case without current or Fn=0 has been analyzed by Sun et al. (2015)  and 469 

they found that the nondimensional peak and trough of the solitary wave at the left side increase 470 

as the increase of incident wave amplitude. As expected, they also increase as the amplitude 471 

increases at Fn=-0.16 & 0.16. The peaks at the left side increases 28.1%, 14.6% & 18.1% from 472 

A/h=0.09 to 0.18 at Fn=-0.16, 0 & 0.16, respectively, and they are 40.3%, 37.1% & 44.0%, 473 

respectively from A/h=0.09 to 0.36. The discrepancy between the three amplitudes becomes 474 

larger at larger Froude numbers, which indicates sharper peaks or troughs at larger amplitudes 475 

and hence exhibit stronger nonlinearity. The nondimensional peak of the solitary wave at the 476 

right side, however, shows a reverse variation with the incident wave amplitude at each Froude 477 

number, and it can also be seen that the peak values have no evident difference between the three 478 

Froude numbers. Furthermore, it has already been noticed In Figs. 11a and 12a that the left wave 479 

at Fn=0.16 and the right wave at Fn=-0.16 finally evolve into periodic waves with larger constant 480 

peak and trough. Actually, the left wave at Fn=-0.16 (Fig. 13a) and the right wave at Fn=0.16 481 

(Fig. 13f) also trend to become periodic and stable but with much smaller peaks and troughs at 482 

all incident wave amplitudes. Figs. 13b & 13e gives  comparisons of right wave at Fn=-0.16 and 483 

the left at Fn=0.16 to show the variation from A/h=0.09 to 0.18 and to 0.36. It is clearly seen that 484 

the nondimensional peaks of periodic waves at both sides decline as the increase of incident 485 

wave amplitude.  486 

 487 

The corresponding hydrodynamic force excluding the initial buoyancy are shown in Fig. 14, 488 

in which Fx and Fy expresses the force components in the horizontal and vertical directions, 489 

respectively. It can be seen that the variations of the force peaks in the horizontal and vertical 490 

directions with the amplitude at each Froude number are similar to the wave at the left and right 491 

sides, respectively. The forces in both directions also become periodic and stable at 16.0=nF492 

after a period of time (see Fig. 14a, b, e & f).  Furthermore, the force components in both 493 

horizontal and vertical directions also finally beocme periodic after a period of time. It is noticed 494 

the part of the vertical force component after the peaks at 16.0=nF  (see Fig. 14b & f) move 495 

to the negative y-direction as the decrease of the amplitude. The main reason is that the current 496 
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causes a negative force in the vertical direction and the vertical force is dominated by the current 497 

at smaller amplitudes but by the wave at larger amplitudes.  498 

 499 

The wave profiles atτ=40 and 60 are given in Fig. 15.  As mentioned in Sun et al. (2015), 500 

there are wave transmission and reflection when a solitary wave acted a cylinder on free surface. 501 

The transmitted wave can keep its shape but with a smaller peak, and the reflected wave is a 502 

travelling wave with decaying peaks and troughs one by one. We now consider the effect of the 503 

current on the transmitted and reflected waves. Three current speeds at Fn=-0.16, 0 & 0.16 are 504 

used in the simulation and the incident wave amplitude is A/h=0.18. It is seen from Fig. 15 that 505 

the peaks of the transmitted waves have vey little difference at Fn=-0.16, 0 & 0.16 for bothτ506 

=40 and 60, and their peaks are clearly smaller than the incident wave amplitude. The reflected 507 

waves, however, obviously increase in all peaks and troughs as the Froude number increases. At508 

τ=40, the first peak at Fn=-0.16 is 28.1% smaller than that at Fn=0 but it is 36.9% larger at 509 

Fn=0.16 than that at Fn=0. For the troughs, they are 27.4% and 32.4%, respectively. This is 510 

because of the Doppler effect, which is similar to that in the underwater and bottom-mounted 511 

cylinder case mentioned above.  512 

 513 

 Fig. 16 shows the wave run-ups denoted by R at the left and right sides as functions of the 514 

Froude number. It can be seen that the nondimensional wave run-up at the left side nearly linearly 515 

increases with the increase of Fn at every A/h. The run-ups at the right side, however, are less 516 

affected by the current and all of them are smaller than those at the left, which is consistent with 517 

the results mentioned above.     518 

 519 

The peaks and troughs of the hydrodynamic force corresponding to Fig. 16 are plotted in 520 

Fig. 17, in which max and min denote the force peak and trough, respectively, and hereinafter 521 

for other figures. It is seen that the force peaks and troughs in the x-direction also nearly linearly 522 

increase as Fn increases at every A/h and they also enhance when A/h becomes larger at every 523 

Fn. The vertical forces show more complicate variations. The peak generally decreases as Fn 524 

increases at each A/h. It becomes smaller as A/h increases at smaller Fn and its change is opposite 525 

in larger Fn. The trough decreases as Fn increases at smaller Fn and then show a trend of increase 526 

at larger Fn. Based on the potential flow theory, there is no hydrodynamic force in the horizontal 527 

direction but a negative force exists in the vertical if a current only acts on a symmetric body in 528 

calm water surface. Thus, the current has smaller effect on the composite horizontal force acted 529 

by both wave and current. However, its effect is more important on the vertical force and hence 530 

may cause relatively complicate variation with the change of the Froude number.    531 

 532 
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Fig. 18 shows wave profiles from 0=  to  80=  with time interval 1=  at A/h=0.36, 533 

which exhibits the process of wave evolvement in space over a long period of time. The 534 

development of transmitted and reflected waves with time can be clearly seen. In particular, the 535 

reflected waves within the left region of the cylinder become more evident as the increase of Fn.  536 

 537 

Fig. 10.  Waves at the left side of cylinder due to current. 538 

 539 

 540 

Fig. 11.  Histories of waves at A/h=0.09; (a) left side; (b) right side. 541 

 542 

 543 
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 544 

Fig. 12.  Histories of waves at A/h=0.36; (a) left side; (b) right side. 545 

 546 

Fig. 13.   Histories of waves at both sides of cylinder 1; (a), (c) & (e) left side; (b), (d) & (f) right side. 547 

 548 

 549 
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 550 

Fig. 14.  Histories of hydrodynamic forces on the cylinder. 551 

 552 

 553 

Fig. 15.  Wave profiles at (a) 40= ; (b) 60= . 554 

 555 

 556 
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 557 

Fig. 16.  Wave run-ups versus the Froude number; (a) left side; (b) right side. 558 

 559 

Fig. 17.  Force peak and trough versus Froude number 560 

 561 
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 562 

Fig.  18.  Snap shots of wave profiles from 0=  to  80=  with time interval 1=  at A/h=0.36; (a) 563 

Fn=-0.16; (b) Fn=0; (c) Fn=0.16. 564 

 565 

4.3  Interactions between a solitary wave and  twin rectangular cylinders in a current 566 

Following the work of Sun et al. (2015), we further study interactions between solitary waves 567 

and a twin-cylinder but with considering the existence of a steady current. The dimension of 568 

each cylinder is identical to the single cylinder mentioned-above. The spacing between central 569 

lines of both cylinders is denoted as lc, and the centerlines of cylinders are located at x=0 and lc, 570 

respectively. Fig. 19 gives wave run-ups at lc/b=4 with three incident wave amplitudes A/h=0.09, 571 

0.18 & 0.36. Compared with the single cylinder cases in Fig. 16a, it seems that the run-ups for 572 

the left cylinder (cylinder 1) are slightly affected by the existence of the right cylinder (cylinder 573 

2). The run-ups for cylinder 2 are relatively smaller than those for cylinder 1. Just like the 574 

situation in the single isolated cylinder cases given in Fig. 16, the run-ups of the solitary waves 575 

gradually increase and decrease as Fn increases at the left and right sides of both cylinders, 576 

respectively, at every A/h, but they have little change at the right sides of both cylinders. A 577 

difference with the single isolated cylinder case is that the wave peaks at the left side of cylinder 578 

2 decline as the increase of A/h at every Fn (see Fig. 13c), which is similar to that at the right 579 

side of each cylinder. 580 

Fig. 20 shows the results of wave histories and only cylinder 1 is given because the wave 581 

peaks around it are larger. Compared with the single cylinder cases in Fig. 13, the wave 582 

interference is clearly seen. At the left side, the waves are a little affected by the interference. 583 

However, the main peaks of solitary waves and the peaks and troughs of the periodic waves seem 584 

to not be nearly identical to those in the single isolated cylinder cases through comparing Fig.20a, 585 
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c &e and Fig.13a,c &e; at the right side (see Figs. 20b,d &f), they are very different from those 586 

in Figs. 13b, d & f due to the interference by the right cylinder.   587 

Figs. 21 and 22 show the maximum and minimum hydrodynamic forces on both cylinders 588 

versus the Froude number. The horizontal components on both cylinders always increase as Fn 589 

and A/h, and the difference between them is that it is much clearer for cylinder 1. The situation 590 

of vertical components is similar to that in the single cylinder cases. 591 

Fig. 23 shows that the wave run-up versus the spacing lc/b at A/h=0.18. It is seen that the 592 

wave peaks at different lc/b are generally larger at larger Fn except those at the right of cylinder 593 

2. At smaller lc/b, The wave peak at each Froude number grow up or down more quickly as the 594 

change of lc/b especially for those at the right side of cylinder 1 and left side of cylinder 2 (see 595 

Fig. 23b, c), which means smaller spacing has more influence on the waves peaks at every Fn; 596 

With lc/b continuing to increase, they almost reach constants at every Fn. It is also noticed that 597 

the waves at the right side have very little difference at larger lc/b for cylinder 1 and all lc/b for 598 

cylinder 2. 599 

Fig. 24 shows the hydrodynamic forces corresponding to Fig. 23. Similar to the wave runups 600 

in Fig. 23, the effect of the spacing on the forces is also clear within smaller lc/b. The maximum 601 

and minimum values of horizontal force generally increase as lc/b in the beginning and finally 602 

reach a constant at each Fn, and they become larger at larger Fn within all lc/b. The maximum of 603 

vertical force also become a constant at each Fn when lc/b is large enough. However, it is 604 

decreases as Fn increases at every lc/b. 605 

 606 

 607 
Fig. 19.  Wave run-ups at the (a) left side of cylinder 1; (b) right side of cylinder 1; (c) left side of 608 

cylinder 2; (d) right side of cylinder 2. 609 

 610 

 611 
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 612 
Fig. 20.  Histories of waves at both sides of cylinder 1; (a), (c) & (e) left side; (b), (d) & (f) right side. 613 

 614 

 615 

 616 
Fig. 21.  Maximum and minimum forces on cylinder 1 versus Froude number 617 

 618 
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 619 
Fig. 22.  Maximum and minimum forces on cylinder 2 versus Froude number 620 

 621 

 622 

 623 
Fig. 23. Wave peak versus cylinder spacing at A/h=0.18; (a) left of cylinder 1; (b) right of cylinder 624 

1; (c) left of cylinder 2; (d) right of cylinder 2. 625 

 626 

 627 
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 628 
Fig. 24.  Maximum and minimum forces on cylinder 1 versus cylinder spacing at A/h=0.18. 629 

 630 

 631 

 632 

5. Conclusions 633 

A higher order finite element method with a mesh of 8-node quadrilateral isoperimetric 634 

elements has been utilized to analyze the fully nonlinear interactions between solitary waves and 635 

structures in a steady current. The velocity potential at each time step is obtained through solving 636 

linear equation system based on an iteration method. The fourth order Runge-Kutta method is 637 

used to update the wave elevation and potential on the free surface at each time step. The 638 

radiation condition is imposed through placing a damping zone at one or both ends of the tank. 639 

The conclusion of this study is summarized as below: 640 

 641 

Solitary wave propagation over an underwater rectangular cylinder in a current has been 642 

simulated. It is found that the following current cause the wave level in the upstream zone or the 643 

left range of the cylinder to elevate and that in the downstream zone or the right range to sink, 644 

and it is just the opposite for the adverse current. Furthermore, the effect of current on wave 645 

reflection and transmission has been investigated. Both the first reflection by the front of cylinder 646 

and the second reflection by its rear are more serious in the case of the following current, which 647 

causes the main peak and the travelling wave peaks to increase; the peak of transmitted wave is, 648 

however, less affected by the current but with faster propagation as the increase of current speed. 649 

In addition, the effect of cylinder breadth and height on waves and forces at different speeds has 650 

also been investigated. The simulations show that they can affect the wave diffraction and 651 
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transmission and cause the maximum of waves and forces to increase or decrease clearly and 652 

regularly.  653 

 654 

Further simulations of solitary wave interactions with a single rectangular cylinder on free 655 

surface in a steady current have been made. The features of wave diffraction and transmission 656 

have been studied.  It is found that a packet of periodic waves follows a soliton at each side of 657 

the cylinder and the periodic waves become clearly stable with constant peak and trough when 658 

the absolute value of the Froude number become large enough. Also, the peak of the periodic 659 

wave at the upstream side is much larger than that at the downstream. The nondimensional peaks 660 

of the soliton and the periodic waves due to the wave diffraction increase with the increase of 661 

the incident wave amplitude and Froude number or current speed; the transmitted wave peak is, 662 

however, a little affected by the Froude number. The peak and trough of the horizontal 663 

component of force generally increase as the Froude number increases at each incident wave 664 

amplitude but the vertical is not necessary.   665 

 666 

Solitary waves interacting with a twin-cylinder has also been made. The effect due to current, 667 

incident wave amplitude and cylinder spacing on the wave and force is discussed in detail, and 668 

it is shown that the interference is more serious in larger currents, lager incident wave amplitudes 669 

and in smaller spacing.    670 

 671 

 In all the cases mentioned above, the nonlinearity at different incident wave amplitudes has 672 

also been studied. The numerical simulation exhibits the nonlinear features of wave and the 673 

hydrodynamic force at different current speeds and it is found that it is clear. 674 

 675 
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