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Abstract

Reward-guided choice is fundamental for adaptive behaviour and depends on several com-

ponent processes supported by prefrontal cortex. Here, across three studies, we show that

two such component processes, linking reward to specific choices and estimating the global

reward state, develop during human adolescence and are linked to the lateral portions of the

prefrontal cortex. These processes reflect the assignment of rewards contingently to local

choices, or noncontingently, to choices that make up the global reward history. Using

matched experimental tasks and analysis platforms, we show the influence of both mecha-

nisms increase during adolescence (study 1) and that lesions to lateral frontal cortex (that

included and/or disconnected both orbitofrontal and insula cortex) in human adult patients

(study 2) and macaque monkeys (study 3) impair both local and global reward learning.

Developmental effects were distinguishable from the influence of a decision bias on choice

behaviour, known to depend on medial prefrontal cortex. Differences in local and global

assignments of reward to choices across adolescence, in the context of delayed grey matter

maturation of the lateral orbitofrontal and anterior insula cortex, may underlie changes in

adaptive behaviour.

Introduction

A distributed network in the human brain supports learning from reward and making adap-

tive decisions. This network comprises several regions in lateral and medial prefrontal cortex

(PFC), including lateral and medial orbitofrontal/ventromedial prefrontal cortex, as well as

other areas such as anterior cingulate cortex, insula cortex, and the amygdala. In concert, they

contribute component parts to adaptive behaviour such as contingency learning, value com-

parison, and value representations [1–8]. However, so far, we only have rudimentary
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knowledge about the developmental dynamics of this brain network and accompanying beha-

vioural changes during adolescence and early adulthood [9,10].

Here, we focus on the development of component processes of reward learning that have

been strongly linked to neighbouring regions of orbitofrontal and anterior insula cortex in stud-

ies of nonhuman primates: local and global reward learning. Local reward learning refers to the

ability to form contingencies between choice options and outcomes, repeating choices that led

to positive outcomes and omitting choices that led to negative outcomes [11–13] (also referred

to as “contingent reward learning” or “contingent credit assignment”). By contrast, global

reward learning refers to a parallel mechanism where reward simultaneously reinforces not only

the choice that caused it but also unrelated choices made in close temporal proximity [6,7,14–

17]. This noncontingent global reward learning involves forming a representation of the global

reward state (GRS), i.e., how much reward was received overall recently independent of the spe-

cific choices that caused them [7]. Lesion studies in macaques and human patients have consis-

tently causally linked local reward learning to lateral orbitofrontal cortex [6,7,14,17], and this is

even engrained in variations of grey matter volume in these regions [18]. By contrast, global

reward learning mechanisms have been associated with BOLD activity in neighbouring anterior

insula cortex [7]. Notably, the function of both these regions contrasts with medial orbitofron-

tal/ventromedial prefrontal cortex, which harbours a variety of value signals linked to value

comparison and decision-making processes, as opposed to learning processes [14,16,19–25].

Informed by these animal models and the precise functional localisation of these mecha-

nisms, we consider the development of reward-guided learning in the context of the protracted

[26–33] and nonuniform [31,33] structural maturation of the brain. These considerations lead

to the hypothesis that specific cognitive abilities, particularly those related to lateral prefrontal

cortex, mature later than others, in particular, the more medial regions [31,33,34]. This tempo-

ral mismatch between protracted structural changes in prefrontal cortex and more rapid matu-

ration of subcortical areas has been suggested to account for increased risk-taking behaviour

in adolescence [35,36], and several studies link development of reward-related behaviour to

changes in prefrontal–subcortical interactions [37–39]. However, prefrontal cortex has often

been treated as a unitary structure, and, consequently, we only have a coarse understanding of

the different speeds at which subregions of the frontal cortex and, in parallel, subcomponents

of reward learning mature [40]. With tentative evidence that adolescents differ from adults in

terms of local reward learning, for instance, in terms of balancing positive and negative feed-

back [41–43,43–46], it becomes critical to understand the development of reward learning

mechanisms in combination with developmental maturation of their neural underpinnings.

Here, we combined behavioural and lesion investigations to suggest an important role for

neighbouring subregions of the lateral frontal cortex, specifically orbitofrontal and anterior

insula cortex in the development of local and global reward learning. We used the same multi-

option probabilistic learning task originally developed in macaques to dissociate local and

global reward learning (Fig 1) [4,6,14]. In study 1, we tested a large online sample (overall n =
422) of adolescents (11 to 17 years) and young adults (age 18 to 35 years) and showed that

both local and global reward learning change during human adolescence. We chose this age

range in accord with previous work [47] and with particular reference to the protracted matu-

ration profile of lateral prefrontal cortex [30]. Our findings suggest that young adults associ-

ated choices more strongly with local rewards and were simultaneously negatively influenced

by the GRS. The GRS influence became even more negative with age, meaning young adults,

more than adolescents, contextualised their choices within the longer-term reward context

and were less likely to persist with a choice if the alternatives afforded by this context were

attractive. By contrast, decision bias mechanisms that depend on the ventromedial portions of

the orbitofrontal cortex showed no relationship with age.
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The finding that the behavioural mechanisms of local and reward learning continue to

change during adolescence align well with the nonhuman primate literature [6,7,14,17] and

our knowledge about structural brain maturation in humans: Lateral frontal, compared to

medial frontal brain regions, appear to continue to mature during adolescence well into adult-

hood [31,33,34], and, hence, we would expect functions that depend on this part of the brain

to keep changing during this time period as well. However, only manipulation approaches can

provide evidence for a causal reliance of a cognitive function on a neural substrate [16,48].

Study 2 therefore examined the impact of broad lesions to lateral frontal cortex (lesions

included and/or disconnected both orbitofrontal and insula cortex) on local and global reward

learning. These studies used experimental tasks and analyses pipelines that were tightly

matched to study 1 in cohorts of adult patients with medial or lateral frontal lobe lesions. The

results indicated that indeed intact lateral frontal cortex is causally important for both local

and global reward learning. Finally, in study 3, we reanalysed nonhuman primate data [6,14]

that had initially suggested that these lateral frontal regions are important for local reward

learning, again using matched experimental tasks and analysis pipelines. This uncovered that

lateral lesions in macaques (that likely disconnected both orbitofrontal and insula cortex) also

impaired global reward learning. This offers new insights into how the GRS guides choices

Fig 1. Task design, reward schedule, and sample. (A) Trial timeline: Participants decided between three choice

options (red, green, blue squares; left-hand side) before receiving feedback for 1,500 ms (right-hand side) indicating

whether their choice yielded a reward (10 points and smiley face) or no reward (no points and sad face). Both possible

outcomes are displayed in this example. (B) Reward probabilities ranged between 0 and .9 and drifted throughout the

session with each option being competitive at some time during the session. (C) Age distribution of the final sample

with dashed line indexing the age groupings cutoff at 18 years. Participants younger than 18 are referred to as

adolescents; participants 18 years and older are referred to as young adults. Data for B and C are available in S1 Data

(Figure1 tab).

https://doi.org/10.1371/journal.pbio.3002010.g001
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differently in humans and macaques. While humans showed negative GRS effects, macaques

showed positive ones. Together, our results suggest that local and global reward learning

mature during adolescence (study 1) and that both learning mechanisms causally depend on

(subregions within) lateral frontal cortex (study 2 and study 3). This suggests that the pro-

tracted neural maturation in lateral frontal regions [31,33,34] is a key driver for the maturation

of local and global reward learning during adolescence.

Results

Study 1: Probabilistic reward learning performance increases during

adolescence

We collected developmental data from human participants on a well-characterised 3-choice

probabilistic decision-making task (Fig 1) adapted from paradigms previously used in

macaques and adult humans [6,14,16,22,49]. As in past studies, here, participants made

choices in an environment in which the reward probabilities varied probabilistically, and

reward contingencies reversed at specific times in the task.

We first assessed developmental differences in broad measures of task performance. We

found that overall task performance, as measured by total rewards acquired, increased across

age. Young adults earned more total rewards than adolescents (independent samples t test, t386

= 3.47, p = 0.001; Fig 2A). This age-dependent difference was confirmed by a linear correlation

between total rewards and age between 11 to 35 years (Pearson correlation, R = 0.16,

p< 0.001; Fig 2B). In accord with better overall performance, the frequency with which the

highest value option (as defined by value estimates from a Rescorla–Wagner-based reinforce-

ment learning model, see S1 Text was chosen, was significantly higher in young adults

Fig 2. Performance in probabilistic 3-choice learning task increased during adolescence. (A) Young adults,

compared to adolescents, earned more total rewards in the study. (B) This was also reflected in a linear increase in the

total rewards earned across age. (C) The frequency of choosing the highest value option was higher in young adults.

(D) It also increased across age. Note that chance performance in this 3-choice task is 0.33. (“x”s indicate individual

participants; left plots show mean −/+ SEM; solid line in the right plots indicate linear trend; dashed line represented

95th% confidence interval; � p< 0.05). Data for A-D are available in S1 Data (Figure2 tab).

https://doi.org/10.1371/journal.pbio.3002010.g002
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compared to adolescents (independent samples t test, t386 = 7.89, p< 0.001; Fig 2C) and corre-

lated with age (Pearson correlation, R = 0.29, p< 0.001; Fig 2D). Follow-up model fits suggest

that the relationship of age with total rewards and percentage best choices were best character-

ised by a quadratic function (Table A in S1 Text).

Study 1: Local and global reward learning change during adolescence

To dissociate local and global reward learning, we used an established general linear model

(GLM) approach (Methods) originally developed for the study of nonhuman primates [7]. The

analysis captured the temporal dynamics of learning by analysing participants choices in a ref-

erence frame of “stay” versus “leave” behaviour. For each trial t, we observed participants’

choice C and quantified their tendency to either stay with or switch away from that choice C

on trial t + 1. In this “credit assignment GLM,” we simultaneously accounted for several factors

driving choice (Fig 3A). This allowed us to discern whether the observed changes in general

task performance were driven by specific subcomponents of learning: the previous local

rewards that were delivered for choosing C (CxR-history or local reward learning), the pure

choice history (C-history) reflecting a tendency to repeat choices irrespective of reward receipt,

and, importantly, the GRS, which reflects the overall previous reward history irrespective of

choice.

First, we examined the effects of local reward learning (CxR-history) across our entire sam-

ple (regardless of age). As expected, the effects of local reward on choices differed by time

point (1-way ANOVA: F3,1035 = 76.42, p< 0.001) with the most recent local reward at time

point t (CxRt) having a significantly larger effect than the previous ones, even after Bonferroni

correction (for all pairwise comparisons of CxRt using paired t tests: t> 9.095, p< 0.001).

When a chosen option was rewarded, then there was an increased tendency to stay with the

option and choose it again (one-sample t test; t352 = 10.92, p< 0.001). Comparing the effect

sizes of CxRt between adolescents and young adults showed that the size of this effect was big-

ger in young adults (independent samples t test, t351 = 4.34, p< 0.001; Fig 3B) suggesting

increasing associability between rewards and local choices. Correlation analyses showed a sig-

nificant positive relationship between age and CxRt (Pearson correlation, R = 0.22, p< 0.001;

Fig 3C), which follow-up model fits suggested was best characterised by a linear function

rather than a quadratic one (Table A in S1 Text). By contrast, we found no developmental

changes in reward-unrelated C-history effects (Fig A in S1 Text).

Next, we examined the influence of the GRS on staying with a currently pursued choice

using the same GLM model reported above: This assured that any identified GRS effects were

dissociated from those of local reward learning. GRS was calculated by averaging recent

rewards irrespective of choice and nonzero effects indicate that the overall average levels of

rewards influence decisions to stick with a choice. Previous work has shown that GRS effects

are positive in macaque monkeys [7]. However, in our human sample, strikingly, we found a

significantly negative effect of the GRS (one-sample t test on all participants, t352 = 7.00,

p< 0.001). The effects were significantly negative in both the adolescent (one-sample t test,

t154 = −2.78, p = 0.006) and the young adult sample (one-sample t test, t197 = −6.72, p< 0.001;

Fig 3D). That indicates that irrespective of directly reinforced choices, if participants had

observed many rewards in the recent past (high GRS), then they were more likely to switch

away from the current choice. By contrast, if the GRS was low, indicating the absence of better

alternatives in the past, then participants were more likely to continue pursuing their choice

even in the absence of local reward. Importantly, we predicted that if GRS effects are indeed

mediated by late maturing regions of cortex, they would change during adolescence. In accor-

dance with our prediction, we found that the GRS effect was more negative in young adults
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Fig 3. Local reward learning and GRS-based learning became more pronounced over the course of adolescence.

(A) In our “credit assignment GLM,” we reframed the 3-choice decision problem as a foraging-style decision between

staying and switching away from a currently pursued choice C. For every trial, we considered the chosen option C and

analysed whether participants would stay with C on the next trial. We analysed this decision as a function of three sets

of regressors: previous local (i.e., contingent) rewards for C (CxR-history), the pure choice history (C-history), and the

global reward state (GRS). The right-hand illustration indicates the quantities that encapsulate these three effects: the

reward outcome (schematized by a smiley face) contingent on a choice (i.e., the probability of reward given C), the

repetition of a choice per se (i.e., the probability of choosing C independent of reward), and the overall recent reward

probability irrespective of choice (i.e., the probability of reward independent of C). Panels B, C, D, and E show effect

sizes for component parts of this GLM. (B) Considering the effect of the most recent outcome on the tendency to

repeat a choice (CxRt), we found that young adults had a significantly stronger tendency to repeat rewarded choices

compared to adolescents. (C) The effect size linearly increased with age. (D) Independent and in addition to local

reward learning, the GRS had a negative effect on staying with an option: Participants tended to stick more with a

choice if it was encountered in the context of a low overall GRS. Such negative GRS effects were found in both

adolescents and young adults with a significant difference between them. This indicates that young adults, even more

than adolescents, had the tendency to contextualise rewards by the GRS. (E) This was replicated by a linear decrease of

GRS over time. (F) Plot shows residual probability of staying after a win and switching after a loss (i.e., a no-reward)

separated by low and high GRS (median split) for adolescents. (G) The same is shown for young adults. Note that in

this visualisation, the GRS main effect from panels B and E is expressed as an interaction with WinStay/LoseSwitch

strategy in panels F and G. The interaction effect increased for older participants: Participants were even more likely to

repeat rewarded choices when encountered in a low GRS (darker bars) and, simultaneously, more likely to switch away

from losing choices if encountered in a high GRS (lighter bars). (“x”s indicate individual participants; plots show mean

−/+ SEM; solid lines in the right plots indicate the linear trend. Dashed lines represent 95th% confidence intervals.
�p< 0.05). Data for B-G are available in S1 Data (Figure3 tab).

https://doi.org/10.1371/journal.pbio.3002010.g003

PLOS BIOLOGY Development of local and global reward learning in lateral frontal cortex

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002010 March 2, 2023 6 / 32

https://doi.org/10.1371/journal.pbio.3002010.g003
https://doi.org/10.1371/journal.pbio.3002010


compared to adolescents (independent samples t test, t351 = −2.89; p = 0.004; Fig 3D) and cor-

related negatively with age (Pearson correlation, R = −0.14, p = 0.011; Fig 3E). Again, follow-

up model fit analyses suggested that this relationship was best characterised by a linear func-

tion rather than a quadratic one (Table A in S1 Text).

Note that in contrast to the developmental changes in local and global reward learning–

computations linked to lateral orbitofrontal and anterior insula cortex, we found no evidence

for developmental changes associated with some decision variables previously associated with

medial orbitofrontal/ventromedial prefrontal cortex. We considered two markers of decision

computations: (1) the decision noise as calculated with a reinforcement learning model; and

(2) a “bias by irrelevant alternatives” effect. Both have been related primarily to medial orbito-

frontal/ventromedial prefrontal cortex functions in the past [5,7,14,16] and found neither

showed developmental changes across the age range tested, potentially suggesting that these

have already reached a relatively stable functional maturation point by adolescence (Fig B in

S1 Text).

Our results suggest that the GRS alters the behavioural response to rewards received for a

current choice over and above the effect of local rewards. To illustrate the effects of the GRS

more directly, we plot choice residuals as a function of the GRS and the most recent local

reward, CxRt, and age using a 2 × 2 × 2 ANOVA. We rearranged the data as a function of win-

Stay (staying with a choice after a local reward at time point t) and loseSwitch (switching away

from a choice after a negative local outcome at time point t; see Methods). The analysis

revealed an interaction of winStay/loseSwitch and GRS independent of age group (winStay/

loseSwitch × GRS interaction, F1,380 = 71.69, p< 0.001) illustrating the GRS effect observed

before: While participants were more likely to stay after a reward, they did this even more in a

low GRS; in a high GRS, they were quicker to switch away from unrewarded choices. However,

critically, the GRSxWinStay/loseSwitch interaction changed with age group in a manner sug-

gesting that adolescents were relatively less influenced by the GRS in value updating (winStay/

loseSwitch × GRS x age: F1,380 = 7.97, p = 0.005). Older participants, by contrast, showed a

stronger contrast effect after receiving reward: In low-GRS environments, they were particu-

larly likely to stay with rewarded options and less likely to switch away from unrewarded ones.

Notably, such a negative directionality of the GRS effect is in line with theoretical predic-

tions from behavioural ecology [50] and suggests that to maximise rewards over the long run,

reward outcomes should be referenced to the background rate of reward available in an envi-

ronment: Animals should spend longer foraging for reward if alternative options are scarce,

whereas they should be quick to abandon a depleting food source if the frequency of high-

value alternatives are high. By conceptualising participants’ choices as stay/leave decisions, we

were able to identify precisely this choice pattern in our human participants in a 3-option ban-

dit task: A negative GRS effect meant that participants switched away from an option more

readily when high-value alternative options were available and they persisted with poor

options when the value of the alternatives were low [50–55].

Interestingly, negative GRS effects and positive CxR effects were negatively correlated

across participants (Pearson correlation; R = −0.16, p = 0.002; Fig C in S1 Text) and both

mechanisms correlated with broad task success. Independent of age, there were significant

positive correlations between local reward learning and the total rewards earned on task

(r = 0.244, p< 0.001) and proportion of best choices (r = 0.543, p< 0.001). This pattern was

mirrored for global reward learning with a negative correlation with total rewards earned that

trended towards significance (r = −0.10, p = 0.069) and a significant negative relationship with

proportion of best choices (r = −0.17, p = 0.001). This pattern of results indicates that partici-

pants who performed particularly well in linking local rewards with the specific choices that

caused them also had more negative GRS effects. This suggests that both aspects of reward
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learning, local assignments of reward and the ability to switch away from unrewarded choices

more easily if the reward environment was rich, constituted complementary aspects of task-

adaptive behaviour with both processes significantly and simultaneously gaining more influ-

ence over behaviour during adolescence. Importantly, our GRS effects of interest also remain

stable when varying the history length over which the GLM is calculated (Fig D in S1 Text).

Note that the effect of local reward learning/contingent reward learning in our GLM is con-

ceptually similar to a learning rate fitted with a reinforcement learning algorithm. Both denote

the weight that a new outcome has for updating the value of the corresponding choice

[7,56,57]. Higher learning rates, just as a higher local reward learning effect sizes, indicate that

an outcome changes the future value of a choice more strongly. Correspondingly, there is a

strong positive relationship between the learning rate fitted from our reinforcement learning

model and local reward learning (r = 0.35, p< 0.001; correlation of learning rate with CxRt).

By contrast, the GRS effect is conceptually different from a reward learning rate, because it

indicates the effect of a longer-term average reward that is not specifically linked to a choice.

Hence, reinforcement learning rate and GRS effect size are uncorrelated (r = −0.05, p = 0.340).

The GRS effect therefore indicates a qualitatively different effect. Also as expected, neither

local nor global reward learning were associated with the inverse temperature from the rein-

forcement learning model, as the latter indices decision noise rather than the weighting of

reward outcomes (inverse temperature versus CxRt: r = 0.07, p = 0.168; inverse temperature

versus GRS: r = −0.04, p = 0.494).

Study 2: Local and global reward learning are impaired by lesions to lateral

frontal lobe

The finding that the behavioural mechanisms of local and reward learning continue to change

during adolescence align well with the nonhuman primate literature [6,7,14,17] and our

knowledge about structural brain maturation in humans. Specifically, compared to medial

frontal brain regions, lateral areas appear to continue to mature during adolescence well into

adulthood [31,33,34]. Hence, we would expect functions that depend on this part of the brain

to keep changing during this time period as well. Our own analysis of Human Connectome

Project data [58,59] in a set of selected reward-sensitive regions of interests (ROIs) confirmed

that the greatest age-related differences over our investigated age range existed in lateral and

not medial regions of the brain’s reward circuitry (Fig E in S1 Text). However, only manipula-

tion approaches can provide evidence for a causal reliance of a cognitive function on a neural

substrate. Study 2 therefore examined the impact of broad lesions to lateral frontal cortex on

local and global reward learning. In study 2, we reanalysed behavioural data in adult patients

with lateral (n = 4) and medial (n = 4) frontal lesions using the same experimental paradigm as

study 1 (Fig F in S1 Text [16]) and a matched analysis pipeline. As is often the case in patient

lesion studies, the lesions did not adhere to strict anatomical boundaries. The lateral lesions

encompassed regions related to local reward learning in lateral orbitofrontal cortex [6,14,17]

as well as more posterior regions in the anterior insula linked to global reward learning [7].

While this was a convenience sample, as the data already existed, the developmental beha-

vioural task was designed to specifically align with these previously published experimental

paradigms. We also used the same “credit assignment GLM” employed in study 1 (Methods).

We compared lateral frontal lobe patients to a brain damaged control group of patients

with lesions to the medial frontal lobe. We would expect participants with lateral lesions to rely

less on local rewards (decreased CxRt effect) and also to exhibit a less negative GRS effect com-

pared to subjects with medial lesions. In other words, we would expect a “lesion site” [lateral,

medial] by reward type [CxRt,GRS] interaction. This was indeed precisely the effect we found
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(F1,6 = 7.4; p = 0.035; Fig 4). Lateral frontal lobe lesions caused patients to rely less on local

rewards when learning about their choice options and at the same time their learning was less

influenced by global reward learning. This suggests that lateral frontal cortex is the likely neu-

ral substrate that enables intact local and global reward learning.

Study 3: Macaque lateral frontal lobe lesions change the impact of

contingent rewards and the GRS on choice

Finally, we reanalysed the nonhuman primate data that had initially contributed to the sugges-

tion that a subregion of the lateral frontal lobe, i.e., the lateral orbitofrontal cortex, is causally

important for credit assignment and local reward learning [6,14]. We did this for two reasons:

first, to follow up and confirm an intriguing effect in our data using more closely matched

tasks: GRS effects were negative in the human sample reported here, while they were positive

in previous macaque work [7]. This meant macaques stayed with a choice more when the GRS

was high [7], whereas human participants reported here switched more when the GRS was

high. The second reason was to examine, for the first time, whether changes in global reward

learning were also apparent after lateral frontal lobe lesions in macaques, like in our human

lesion data. We combined our “credit assignment GLM” with several previously published

data sets of macaque choice behaviour [6,14]. This allowed our analysis to be optimised

towards discovering fine-grained effects of the GRS in a uniquely large data set. We used linear

mixed effects (LME) models to account for the fact that multiple sessions belonged to the same

individual. We analysed 190 sessions from intact monkeys, 45 sessions from monkeys with lat-

eral prefrontal lesion, 55 sessions from monkeys with medial prefrontal lesion, from an overall

of 7 monkeys aged 4 to 10 years. Note, while these lateral lesions targeted orbitofrontal area 11

+13, there is strong reason to believe that they also disconnected lateral area 47/12o and likely

other neighbouring regions including anterior insula cortex (see [18,60] for discussion and

Fig 4. Lateral frontal lobe lesions impair both local and global reward learning. Compared to Medial patients

(blue), lesions to the lateral frontal lobe (pink) in adult humans reduced both local and global reward learning. This

was apparent by a simultaneous reduction of the CxRt effect sizes and a less negative GRS effect (�p< 0.05; symbols

indicate individual patients). Data for this figure are available in S1 Data (Figure 4 tab).

https://doi.org/10.1371/journal.pbio.3002010.g004
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refer to Methods for specifics of the lesions sites and nomenclature). In other words, just as in

our human lesion study, we must assume that multiple subregions of the lateral frontal lobe

that have dissociable functions were affected by the lateral lesions.

Controlling for local reward learning, we found a small but significantly positive effect of

the GRS on stay decisions in the baseline data (intercept-estimate = 0.007, SE = 0.003; χ2(1) =

5.122, p = 0.024; Fig 5A). Therefore, we indeed found a sign-reversed effect of the GRS in

macaques compared to our human participants using matched experimental paradigms and

the same “credit assignment GLM.” Moreover, comparing the effects of lateral frontal lobe

lesions to medial lesions in macaques, we found that lateral lesions, too, significantly impacted

global reward learning. This mirrored the findings from our human lesion study. However,

strikingly and in contrast to our human sample, the GRS effects we observed after lateral

lesions were significantly stronger (rather than weaker) compared to medial lesion groups

(estimate-lateral = 0.027, SE = 0.009; χ2(1) = 5.080,p = 0.024; Fig 5B). This finding further

strengthens the idea that both species use the GRS qualitatively differently during learning

within the context in which these experiments were conducted. While humans rely negatively

on the GRS and this capacity is abolished after lateral lesions, positive GRS effects are amplified

in macaques after lateral frontal lobe lesions. This supports the contention that the GRS effect

reflects a task-adaptive process in humans, which matures during adolescences and is compro-

mised by lesions, whereas in monkeys, the GRS effect may lead to a suboptimal “spread” of

reward, which is even increased by lateral frontal lobe lesions (Fig 6).

Collectively, the findings from study 2 and study 3 suggest that lesions to the lateral frontal

lobe, which included lateral orbitofrontal cortex and likely disconnected the neighbouring

anterior insula cortex, causally impacts both local and global reward learning. This result cor-

roborates the idea that both reward learning processes rely on closely adjacent neural sub-

strates in lateral frontal lobe. It further suggests that the extensive grey matter changes

observed in lateral orbitofrontal and anterior insula cortex during adolescence [31,33] (Fig E

in S1 Text) are likely anatomical correlates of the participants’ increased capacity for both local

and global reward learning across adolescent development.

Fig 5. Positive GRS effects in macaques increase after lateral frontal lobe lesions. (A) In intact monkeys, we found a

small but significantly positive effects of the GRS on stay decisions, which was sign-reversed relative to the negative

GRS effect we had found in humans. The inset shows the human GRS effect averaged for all ages (11–35 years) in the

matched experimental paradigm (see Fig 3, study 1). (B) We compared the effects of frontal lobe lesions in the

macaque monkey and revealed that the positive GRS effects after lateral frontal lesions were significantly stronger
compared to medial lesion groups. The pattern mirrored the human lesion results but in the opposite direction, with

lateral lesions in humans abolishing the negative GRS effect (inset: GRS effects from Fig 4, study 3; “Lat” abbreviates

“Lateral,” and “Med” abbreviates “Medial”) (�p< 0.05). Data for A and B are available in S1 Data (Figure 5 tab).

https://doi.org/10.1371/journal.pbio.3002010.g005
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Discussion

We investigated the development of component processes of reward learning that have been

linked to neighbouring regions of orbitofrontal and anterior insula cortex in studies of nonhu-

man primates: local reward learning (or “contingent credit assignment”) and noncontingent

global reward learning based on the GRS [6–8,14,17,18]. These reward-related brain regions

have a particularly protracted maturation profile and continue to change well into adulthood

[31,33,34] (Fig E in S1 Text). Therefore, we tested whether cognitive functions that are likely

to depend on these regions keep changing during this time period as well. Indeed, we have

shown that both local and global reward learning matured across development. We showed

that participants’ decision to switch or stay with the current choice was positively influenced

by local reward that was received for making a specific choice and negatively influenced by the

GRS. These mechanisms increased in their respective influence across adolescent development

(study 1; Fig 3). In contrast, we found that reward-guided decision mechanisms linked to

more medial frontal lobe regions did not show developmental differences over the same age

Fig 6. Conceptual summary of GRS effects across studies. Study 1: Upper two panels. People must behave adaptively in complex reward environments.

They pursue a current choice (banana symbol within circle) that is embedded in the GRS—the global levels of reward afforded by the environment over

time (tree symbols on the periphery of the circle). Adolescents switch away from the currently pursued choice if the GRS is high (small arrow pointing

outwards). This can be understood as a contrast effect comparing choice and GRS. Adults show such a contrasting effect of the GRS even more strongly.

They contextualise the current choice within the set of alternative options. Knowledge that rich alternatives exist makes adults switch away from their

current choice more easily. The current choices appear less valuable if the GRS is very high. The increased reliance on the GRS over the course of

development coincides with grey matter maturation in lateral frontal lobe regions including the anterior insula and lateral orbitofrontal cortex. Study 2:

Lower left panel: Lesions to lateral frontal lobe (affecting multiple subregions) reduces the GRS effect in human adults. Study 3: Lower right panel:

Macaques also contextualise current choices within the GRS. However, macaques use the GRS fundamentally differently compared to humans. They show

“spread of effect”: The GRS positively affects the value of a current choice, and this makes macaques stay more with a choice if the GRS is high. Strikingly,

lesions to lateral frontal lobe (again affecting multiple subregions) increase rather than decrease this effect (thick arrow surrounding small arrow indicates

stronger GRS effect after lesions to lateral frontal lobe).

https://doi.org/10.1371/journal.pbio.3002010.g006
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range (Figs A and B in S1 Text). However, only manipulation experiments such as lesion stud-

ies can reveal a causal relationship between a neural substrate and a cognitive process. There-

fore, we conducted two lesion studies—one in humans (study 2) and one in macaques (study

3)—that assessed the impact of lesions to broad parts of lateral frontal cortex (likely affecting

both the anterior insula and lateral orbitofrontal cortex; see below) to local and global reward

learning. The experimental paradigm was a 3-armed bandit task (Fig 1) and was closely

matched across studies. We used the same “credit assignment GLM” [7] in all studies to ensure

that all three studies measured local and global reward learning in the same way. Both lesion

studies showed that lateral prefrontal cortex is indeed causally necessary for intact local and

global reward learning in both species (Figs 4 and 5). This suggests that structural changes in

lateral parts of prefrontal cortex underlie the developmental changes we observed in behav-

iour. Strikingly, humans and macaques differed in the way they were guided by the GRS.

Humans used the GRS to “contrast” it with the current choice and were likely to switch away

from a choice if the GRS was high [51,55,61,62]; macaques showed “spread of effect” [6,11,15]

and were more likely to stay with their choices if the GRS was high. Lesions to lateral frontal

cortex altered the GRS effect in both species. However, while it abolished the negative GRS

effect in humans, it increased the positive GRS effect in macaques (Fig 6).

These results suggest that over development humans are increasingly influenced by local

and global reward states in their decision to switch or stay with their current choice (Fig 3).

The increased influence over development of the local reward learning mechanism is particu-

larly interesting in the context of its proposed evolutionary adaptive role in reducing costly

errors in uncertain and changeable environments, compared to competing striatal-based rein-

forcement-learning systems [63]. Compatible with previous work, which has shown reduced

contingency learning abilities in young children [64], and impaired updating of stimulus–

reward associations from probabilistic feedback [65], here, we demonstrate that these mecha-

nisms continue to develop into early adulthood. Critically, we also observed differences in how

humans at different ages use the GRS to contrast new rewards with the baseline level of

rewards encountered in the past. More broadly though, such a process can support adaptive

choice switching and exploration [52,53]. Consistent with this idea and highlighting the utility

of a negative influence of the GRS, we found that participants that are strongly influenced by

the GRS are also more influenced by local reward learning (Fig C in S1 Text) and perform bet-

ter, further suggesting complementary neural substrates that contribute to cognitive and beha-

vioural flexibility. These findings may provide additional avenues towards understanding

developmental changes in attitudes towards exploration, risk, and uncertainty from a mecha-

nistic perspective [66–68] that have previously been interpreted as differences in feedback

monitoring, inhibitory and cognitive control, and risk-taking. Indeed, this may help explain

mixed developmental findings in which some studies report increases in risk tolerance

between adolescents and adults, while others find no differences [69–73]. For instance, our

results indicate that adolescents may display stronger persistence with unrewarded options in

cases when the GRS is high. By contrast, young adults may more readily switch away from an

unrewarded choice as the high GRS discourages exploring new choice options and incentivizes

switching back to previously rewarded options. This weaker reliance on the GRS in adolescents

may translate into increased persistence with bad choice options, risk-taking, and may help

explain adolescents’ greater tolerance of uncertainty [71,74–76]. However, note that learning

processes in adolescents, compared to older people, differ in style and not only in terms of

optimality [42,77,78]. For example, there is a shift from model-free mechanisms to model-

based and counterfactual learning strategies [45,79] across adolescence. Importantly, global

reward learning differs from model-based learning mechanisms [80,81] in that no knowledge

about state relationships is needed and its anatomical substrates appear distinctly tied to
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anterior insula [7,82]. However, in a similar manner to the shift towards model-based strate-

gies [80], the benefits of negative GRS effects, just as the ones of increased local reward learn-

ing in our older participants, might turn out to be adaptive only in environments where

exploration is relatively discouraged. In such instances, choices should be directed towards

options with high values at the expense of sampling more uncertain options that nonetheless

might prove more beneficial in the long run [23,83,84]. Indeed, the GRS may be dynamic and

dependent on the structure of the reward environment. In the current experiment, reward

schedules across all three studies were probabilistic and variable. In more blocked designs, the

GRS may be less informative than in quickly changing environments, and so be less influential

on the current choice.

Our results also contribute to the debate about the development of reinforcement learning

[9,44,85]. Studies indicate that overall, the learning rate, i.e., the speed of updating the value of

a choice, increases during adolescence [41–43,43–46]. We find the same in our study 1 (Fig B

in S1 Text). Indeed, the increase in local reward learning in our “credit assignment GLM”

could be interpreted along similar lines—as an increase of the weight that an outcome has on

changing an option’s value. The strong positive correlation between the learning rate from our

reinforcement learning model and local reward learning effect size is a further indication of

this. However, studies have begun to examine increases in reward learning rate in more detail,

and, as highlighted above, the particular task context plays a big role in whether increased

learning rates are observed and if they are desirable to optimise rewards [42]. Another consid-

eration is that learning from outcomes might differ depending on whether that outcome is

positive or negative, although these effects, again, appear context-dependent [43,45,86,87].

Our findings that the GRS exerts an increasingly negative effect during development adds to

these ideas and highlights influences on reward learning that go beyond changes in a unitary

reward learning rate. GRS effects were unrelated to a simple reward learning rate in previous

work [7] and also in our current data set. Instead, they contextualise a current choice based on

the global reward environment. This mechanism can add to the changes in value observed for

a choice and can, in effect, lead to different effective learning rates for positive and negative

outcomes [7,52,53]. The negative GRS effects observed here predict higher learning rates for

positive outcomes if the GRS is low, and higher learning rates for negative outcomes if the

GRS is high. A promising avenue for future research would be to follow up on these predic-

tions and conduct a more formal modelling analysis of the developmental GRS effects. It

might help explain diverging results by suggesting that analyses of reward learning rates should

take into account the global reward levels present in the experiments. Neurally, our results sug-

gest that subregions within lateral frontal cortex, specifically anterior insula and orbitofrontal

cortex, are particularly promising target regions to look for neural correlates of the develop-

ment of reinforcement learning mechanisms. These subregions have been shown to integrate

rewards with different time constants in adults [7,61,82], and, in adolescents, higher learning

rates for negative outcomes are linked to greater activity in the anterior insula [43].

Our hypothesis that local and global reward learning would increase during adolescence

was very much guided by studies of human brain maturation, suggesting that lateral parts of

prefrontal cortex mature later than medial ones [31–33]. Indeed, a selective analysis of comple-

mentary HCP imaging data indicated that lateral area 47/12o, as well as the anterior insula,

showed a longer developmental maturation profile compared to the medial orbitofrontal/ven-

tromedial prefrontal cortex, anterior cingulate cortex, and amygdala. These regions showed a

significant decrease in grey matter across adolescence that continued well into young adult-

hood (Fig E in S1 Text). Lateral orbitofrontal cortex and the anterior insula cortex are strong

potential candidates to underlie the behavioural differences in local and global reward learning

seen across the same period of development. While this conjecture is indirect, it is well known
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that localised regional grey matter volume correlates with motor, cognitive, and social skills

[18,27,88,89]. Indeed, we recently demonstrated in macaques that grey matter around the

principal sulcus is causally altered by extended training in discrimination reversal learning,

with grey matter variation in this region related to individual variation in training speed [18].

Longitudinal studies examining grey matter maturation and the development of reward learn-

ing in the same sample are needed to provide more direct evidence about this link between

cognitive and neural development.

However, even longitudinal studies are usually correlative and as such can only provide lim-

ited evidence about causal relationships. Study 2 and study 3 therefore used finely matched

experimental paradigms and analysis techniques to directly assess the causal importance of lat-

eral frontal regions in local and global reward learning. In humans, we show that the GRS

effect is reduced (i.e., closer to zero) after lateral prefrontal lesions, compared to medial orbito-

frontal lesions, in combination with decreased local reward learning (Fig 4). Note that the

direction of change in both local and global reward learning after lesions is highly compatible

with the correlation between those two variables in the sample from study 1 (Fig C in S1 Text).

This suggests that both learning processes are at least partly supported by neural mechanisms

in lateral frontal cortex. In study 3, we confirm in macaque monkeys that the GRS effect is

altered after lateral lesions (Fig 5). However, the macaque lesion effects appear qualitatively

different. First, as we know from the same data in past work [6,14], local reward learning is

reduced after lateral lesions. This means that both humans and macaques show a decrease of

contingent/local reward learning after broad lesions to lateral prefrontal cortex. However,

rather than decreasing the negative GRS effect as in humans, lateral lesions increased the posi-

tive GRS effect in macaques (Fig 6). One interpretation could argue that the GRS effect,

together with the decline of local reward learning, reflects a task-adaptive process in humans

that matures during adolescence and is compromised by lesions. By contrast, in monkeys, the

GRS effect could reflect a suboptimal “spread” of reward, which is even increased by lateral

frontal lobe lesions. However, an alternative account could argue that the overall positive shift

in GRS influence on choice after lesions in both humans and monkeys reflects a general role

for the lateral frontal cortex in contextualising the GRS to avoid or suppress the influence of

spread of effect mechanisms. In humans, this suppression is strong enough to produce a nega-

tive GRS effect, but it is less influential in macaque choices.

In all analysed macaque data sets here and consistent with previous work on the GRS [7]

and credit assignment [6,17], in macaques, the effect of the GRS on choice was positive. This

contrasted with the negative GRS effect in human participants (study 1 and study 2). This

potential species difference is striking, particularly considering that we used a variant of a

widely used probabilistic learning task that was matched across studies. However, species com-

parisons are inherently difficult to interpret. For example, despite the matched tasks, clear dif-

ferences persisted in the way subjects were introduced to the study (verbal instructions versus

weeks of training) and the setting in which the experiments were conducted. Nevertheless, one

interpretation of the observed GRS differences is that human behaviour was more in line with

ideas from optimal foraging theory, which suggest that a value’s choice should be contrasted

with the background reward rate of the environment [50,51,55,61,90]. This can promote opti-

mal choice switching and exploration [52,53,55]. However, this view assumes that participants

treated the trials in the experiment as discrete, unrelated instances. In contrast, the positive

GRS effect in macaques might suggest that nonhuman primates do not perceive the task as a

series of discrete and unrelated trials. Instead, they might expect intertrial contingencies. For

example, macaque might assume that an action on trial n has an influence on the outcome that

is received on trial n+1 (which is not the case; only the action on trial n+1 determines the out-

come of trial n+1). A positive GRS effect indicates that, in line with these considerations,
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reward on trial n can increase the unrelated choice that is made one trial later, on trial n+1.

Such positive GRS effects are therefore not optimal for this task. However, it can be beneficial

in environments that do have such dependencies across trials. Often natural environments are

structured in multistep action sequences [91], and in such a setting, positive GRS effects might

be adaptive.

However, it is also important to acknowledge that our lesion results are spatially limited in

the precision with which they can pinpoint the functional roles of the anterior insula as the

lesion in both species are either relatively unspecific (in the case of human patients) or as a

likely result of disconnected fibres of passage (in the macaques). Despite this, there are several

reasons to believe the GRS effects localise to the anterior insula. First, macaque anterior agra-

nular insula BOLD signals encode the GRS strongly and bilaterally [7,82], and human anterior

insula also carries similar reward signals [61]. Furthermore, it is the bilateral agranular insula

that undergoes the most profound grey matter volume changes when training macaques in

reversal learning tasks such as ours [18]. Therefore, anterior insula cortex and lateral orbito-

frontal cortex are likely to harbour complementary reward learning computations that jointly

mature during adolescence as they gain influence over learning and choice.

Lateral prefrontal regions, beyond orbitofrontal cortex, are also all late to mature across

adolescence [33,92]. The more dorsolateral prefrontal regions are associated with intelligence,

fluid cognition, working memory, and attentional control [93–95]. A critical direction for

future work will be to examine the interactions between these developing cognitions, brain

network dynamics, and the learning mechanisms described here. Recent advances in network

neuroscience offer exciting methods to characterise individual differences in complex cogni-

tions as a function of local and global brain network topology and community structure [96–

98]. Characterising these interactions could ultimately improve predictions of transdiagnostic

features of neurodevelopmental and behavioural trajectories.

In summary, our multimodal approach suggests that lateral frontal cortex is a particularly

dynamic locus of neural maturation driving cognitive changes in both local and global reward

learning during adolescence and into young adulthood. Evidence of heterogeneity across the

developmental profiles of the reward-guided component processes and the underlying neural

network highlight the importance of understanding and quantifying the development of the

whole prefrontal cortex at a functionally meaningful resolution. Future longitudinal studies

should examine multimodal changes in lateral orbitofrontal and anterior insula cortex and the

respective parallel changes in the adaptive influence of local and global reward learning.

Understanding how and why reward learning mechanisms develop across adolescence could

not only begin to explain the frustrations of parents and carers of teenagers who perpetually

remind adolescents to consider the consequences of their choices, but also impact their ability

to adaptively learn from feedback in social, health, and educational contexts.

Methods

Study 1: Development of local and global reward learning across

adolescence

Participants. Participants between 11 and 35 years old were recruited. In total, 422 partic-

ipants completed the task. We refer to participants younger than 18 years as adolescents (i.e.,

�17 years), and we refer to older participants as young adults. Participants were excluded from

the analysis for failing to supply age or gender data. Participants were also excluded if they

only repeatedly chose one option or one location, indicated they had completed the game

more than once already, or did not have parental permission. A further 7 participants were

excluded from that sample as their median reaction time was more than three times the
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standard deviation from the mean. This left 388 participants (260 female, median age = 19).

Both adolescents and young adults were recruited via similar channels. Broad recruitment

methods, including direct advertisements on local public advertising forums and social media,

were used with to invite young adults and adolescents (via their parents). Adolescents were

additionally recruited via their parents through contact with local schools within the Oxford-

shire area. Young adults were additionally recruited via local university online advertisement

and via email lists. Collaborating schools forwarded documentation inviting parents to con-

sent to their children participating in the study by directing them to the study website. In

accordance with the Declaration of Helsinki, adolescents or adults assented or consented,

respectively, to participation in the study before the task began and had the option not to sub-

mit their data to the study once the task and questionnaires had been completed. They were

also free to quit the study at any time by closing the browser window. The study was approved

by the Central University Research Ethics Committee (Project Number: R59372/RE001). Par-

ticipants of all ages received no monetary compensation.

Task and procedure. Participants completed a 3-armed probabilistic bandit task (Fig 1A)

that was modelled after a paradigm previously established in monkeys [6,14]. The task was

coded in JavaScript, HTML, and CSS and hosted on JATOS (version 3.3.4). During the task,

participants saw three different coloured options (blue, green, and red), which were presented

in one of three locations that varied along the x-axis, with option locations randomised across

trials. Clicking on one of the options resulted in either the display of a smiley face and a

10-point win or a sad face and no win (0 points). The goal of the task was to win as many

points as possible. At the bottom of the screen, throughout the game, the number of points

participants had won so far and how many trials they had left to play was displayed. Also, par-

ticipants were specifically instructed that the “chance of winning points is different for each

color” and that throughout the game, “the most rewarding color might change.” The reward

schedule (Fig 1B) was adapted from the one used by Noonan and colleagues [14]. Reward

probabilities for each option were slowly and unpredictably drifting over time and ranged

between 0% and 90%. The probabilities of each option being rewarded were independent of

each other. The task was self-paced, with stimuli remaining on the screen until a decision was

made and feedback was presented for 1,500 ms. After a 10-trial practice run, participants

could either go back to the instructions, if they had remaining questions, or proceed to the

main task, which consisted of 100 trials and took approximately 7 minutes to complete. Partic-

ipants also submitted age and gender information.

First-level analyses: “Credit assignment general linear model (GLM)”

For all behavioural analyses, we used MATLAB 2020Ra (The MathWorks) and SPSS (version

25). We applied a first-level GLM to choice data (Fig 5A; see below), which sought to under-

stand the factors that influenced the decision to stay or switch from a current choice in relation

to contingent, local reward assignments, choice repetition irrespective of reward, and, impor-

tantly, the GRS. The latter variable captures the average recent reward levels irrespective of the

specific choices that have led to reward. In monkeys, a high GRS can increase the degree to

which animals stay with their currently pursued choice even if this specific choice was not

rewarded [7]. We adapted the logistic GLM used in Wittmann and colleagues [7]. For every

trial t, we identified the chosen stimulus C and examined whether it was chosen again on the

next trial. We then tested whether such a stay/switch decision was predicted by three sets of

regressors: [1] The local, contingent choice-reward history of C (CxR-history) [2]; the reward-

unlinked choice history of C (C-history); and [3] the choice-unlinked reward history (GRS).

The GRS regressor reflects our parameterization of the GRS and allowed us to test whether the
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GRS, regardless of the choice history and the contingent choice-reward history, influenced

stay/switch decisions. The regressors were constructed in the same way as in our past report

[7] as follows:

1. CxR-history: The model captures local, contingent reward effects (CxR-history) through

regressors that denote whether choices of C on trial t and also on the preceding three trials

were rewarded or not (CxRt, CxRt-1, CxRt-2, CxRt-3). CxR-history regressors were set to 1/0

for rewarded/unrewarded outcomes. Hence, positive effects of these variables indicate that

a choice is more likely to be repeated if that specific choice has received reward in the past.

Note that t refers to instances in which choices of C are made and not necessarily to its pre-

sentation on consecutive trials as only the former informs the conjunctive choice-reward

history of C.

2. C-history: The model includes three regressors to reflect the recent choice history of C (C-

history; Ct-1 Ct-2, Ct-3). Irrespective of the receipt of reward, this regressor codes whether C

was chosen or not, being set to 1/0 for each trial. In contrast to CxR-history, C-history cap-

tures the degree of choice repetition, i.e., the fact that past choices predict that these same

choices are made in the future independent of the receipt of reward.

3. GRS: The model took the simple average reward on the three trials before t as an index of

the overall current levels of reward. The three most recent trials were used for this in all

cases. In addition, we also included the interaction of GRS with CxRt (multiplying both var-

iables after they were normalised) to account for potential asymmetric effects of GRS and

rewarded and unrewarded trials.

We applied the GLM model to the stay/switch decisions and analysed the resulting beta

weights. To account for outliers, we log-transformed the beta weights and implemented an

outlier rejection procedure. We only included sessions whose beta weights were within

three standard deviations from the mean. From the above analysis, this led to the exclusion

of a further 35 participants. Beta weights were then further submitted to a second-level

analysis.

First-level analyses: Reinforcement learning modelling and bias by irrelevant alterna-

tives. In a separate analysis stream, we fitted a reinforcement learning model comprising two

model parameters: learning rate and inverse temperature. Specifically, we fit a reinforcement

learning model with a Boltzmann action selection rule that uses information about past

choices and rewards to estimate expected value for each option on each trial. The reward learn-

ing rate and inverse temperature were fitted individually to each session’s data using standard

nonlinear minimization procedures. These parameters, respectively, reflect the weight of influ-

ence of the prediction error and the influence of value difference of the probability of choosing

an option. To account for outliers in the inverse temperature estimates, we log-normalised this

parameter after fitting the model. The learning rate and inverse temperature parameters were

then submitted to second-level analyses.

The reinforcement learning model formed the basis for our investigation of choice biases

induced by irrelevant alternatives. This approach investigates whether choices were unduly

influenced by the value of an irrelevant alternative. Methodical details are specified in Fig B in

S1 Text.

Second-level analyses. Second-level analyses focused on age-related differences in first-

level effect sizes. Because there is some uncertainty about the precise age when developmental

changes in credit assignment might occur or whether they occur in a continuous fashion or

stepwise, we analysed age effects in two complementary analyses. Importantly, all our key

results survive both ways of analysing age effects. First, we performed an age split and

PLOS BIOLOGY Development of local and global reward learning in lateral frontal cortex

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002010 March 2, 2023 17 / 32

https://doi.org/10.1371/journal.pbio.3002010


compared an adolescent subgroup (age < 18; n = 159) with a group of young adults (age� 18;

n = 228) via independent samples t tests (Fig 1C). Should developmental differences in compu-

tational subprocesses of reward learning occur during adolescence, then we should expect sig-

nificant differences between the two age groups. However, we also analysed our data in a

continuous way as cognitive processes may slowly mature over time irrespective of precise age

boundaries. For this, we used Pearson linear correlation analyses across age.

We first used these analysis steps to perform two unique additional analyses that more

broadly describe our developmental data. As initial analyses of task performance, for each par-

ticipant, we calculated total rewards earned during the task. Next, we calculated the proportion

of choices of the best option. This measure was derived from the estimated expected value of

each stimulus option using the reinforcement learning model as described below.

Next, we used the two-step analysis pipeline for the credit assignment GLM. We analysed

[1] CxR-history, [2] the Ct-1 within the C-history component (see Fig B in S1 Text), and [3] the

GRS. To complement the GRS analyses described above, and in line with the analysis approach

described previously [7], we conducted a follow-up analysis in our developmental data to

investigate the influence of the GRS on stay/switch decisions in more detail. We estimated the

residual probabilities of a choice to switch or stay by regressing out of all effects of the previous

GLM, except CxRt and GRS, and their interaction. The resulting choice residuals were then

binned by [1] the receipt of a reward on trial t and [2] GRS (low or high; calculated as a median

split of GRS). The estimated residual probabilities derived from the subsidiary GLM investigat-

ing the influence of the GRS on switch/stay decisions were split into adolescents and adult age

categories and subjected to a 2 (receipt of reward on trial t [reward; no reward]) × 2 (GRS

[low; high]) × 2 (age [adolescent; adult]) repeated measures ANOVA. According to the outlier

rejection procedure described above, now only a single participant was excluded from this fol-

low-up analysis.

We then examined a linear relationship between the global reward learning (GRS) effects

and local reward learning effect (CxRt). For this, we calculated a correlation between CxRt and

GRS, which reflects key markers of contingent credit assignment and GRS effects, respectively.

As this analysis aimed to show an age-general relationship, we performed a partial correlation

between the two variables controlling for age and the GLM constant. This was to ensure that

this finding would not be confounded by age differences and the baseline tendency of partici-

pants to stay or switch.

Finally, we ran a series of partial correlations between the reinforcement learning parame-

ters and local and global reward learning controlling for age. In addition to excluding subjects’

beta weights from the credit assignment GLM that were three times the standard deviation

plus or minus from the mean (see above; n = 35), we similarly applied the same exclusion crite-

ria to subjects’ learning rate and inverse temperature parameters. This resulted in an additional

7 subjects being removed from the partial correlation analysis. We also examined the utility of

these mechanisms to behavioural success as indexed by the total rewards earned by each sub-

ject. Again, we used partial correlation analyses to control for the influence of age and corre-

lated both local (indexed by the GLM’s CxRt effect) and global reward learning (indexed by

the GLM’s GRS effect) with total rewards earned.

As a follow-up analysis, we further characterised the trajectory of our key variables of inter-

est. We considered both linear and quadratic developmental trajectories to avoid overfitting

[99–101]. Following the identification of a correlation between ages, we then fitted linear and

quadratic link functions. Among these functions, we identified the one with the best fit as indi-

cated by the lowest AIC value. These are reported in Table A in S1 Text. The purpose of these

follow-up analyses was to develop a more detailed picture of the maturation of the variable of

interest over our entire age range of 11 to 35 years [46].
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Study 2: Human lesions to medial and lateral frontal cortex

Participants. Data from 8 adults (7 female) with focal lesions involving the medial and lat-

eral frontal lobes were reanalysed for the purposes of the current study. Patients were originally

recruited from the Cognitive Neuroscience Research Registry at McGill University to examine

the impact of medial and lateral lesions on the specific influence of the credit assignment

mechanism [16]. They were free from neurological or psychiatric disease and not taking any

psychoactive medication. For further neuropsychological screening and demographic infor-

mation, see [16]. We analysed choice data from four patients with lesions to lateral frontal lobe

(3 female, mean (and SD) age 60.25 (11.4) years) and four patients with lesions to the medial

frontal lobe (2 female, mean (and SD) age 61.5 (11.0) years). Age was not significantly different

between the two groups (t6 = −0.16, p = 0.880). Groupwise lesion overlap images were gener-

ated by registering patients’ lesions to the MNI brain. Due to the nature of patient lesions, we

refer to these lesion groups as “Lateral” and “Medial.” For further details of lesion locations

and cause of lesions, see Noonan and colleagues [16]. Patients were studied at least 6 months

after injury (median time since injury = 6.5 years, range = 2.4 to 11.8 years). All participants

provided written informed consent in accordance with the Declaration of Helsinki and were

compensated for their time with a nominal fee, plus earnings based on the rewards gained in

the task. The study was approved by the MNI’s research ethics board.

Task and procedure. Equipment, procedure, and schedules have all been fully described

in Noonan and colleagues [16]. However, for completion, we will briefly describe the task and

reward schedules (Fig F in S1 Text). Following instructions and practice sessions, participants

played a 3-armed bandit task contextualised in terms of a free trip to the casino. During the

testing session, three novel distinguishable fractal stimuli were presented on screen (Fujitsu,

Lifebook T, with Windows Vista) via Presentation Neurobehavioural Systems (version 14.9).

Stimulus location was computer-randomised within a triangle configuration. Participants

selected a stimulus by pressing a corresponding arrow on the keyboard. A question mark at the

center of the screen would disappear once the subject made a choice (Fig F(A) in S1 Text). Sti-

muli would remain on screen until feedback. Feedback was presented stochastically for a

choice according to the reward probabilities defined by one of two schedules. Correct and

incorrect feedback, a green checkmark or red cross, respectively, was presented at the center of

the screen for 1,500 ms. Correct responses caused a green money bar to increase by a fixed

number of pixels, tallying each subject’s winnings. The participants’ goal was to collect as

many points as possible. Feedback was followed by a 1,000-ms intertrial interval. Participants

completed two counterbalanced sessions, each with 500 trials, with new stimuli in each session

and a break in between. Testing took approximately 1.5 hour to complete. Reward probabilities

varied unpredictably over time and ranged between 0.1 and 1. The probabilities of each option

being rewarded were independent of each other. Regardless of what the subject chose, the best

option could change after approximately 25 trials (see Fig F(B) in S1 Text). Patients were tested

either in a quiet room of their home or in a quiet experimental testing room at the MNI.

First-level analyses: “Credit assignment general linear model (GLM)”. We applied the

exact same first-level GLM as detailed in study 1 but adjusted the length of the analysed trial

history to account for longer-term reward history effects that might bias our results (each ses-

sion had 500 trials). History trial length was extended to include 4 trials in the past in the GLM

(rather than 3 trials as for study 1). Beta weights were absolute log-transformed, but no outlier

procedure was introduced. Only the beta weights, which reflected local and global reward

learning, were passed to the second-level analysis.

Second-level analyses. Lateral frontal lobe lesion patients were compared to a control

group of patients with medial frontal lobe lesions. We compared the relative influence of local
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and global reward learning mechanisms, across the two lesion groups using a mixed ANOVA

2 (Lesion: lateral, medial) × 2(learning effect; CxRt, GRS) design.

Study 3: Macaque lesions to medial and lateral frontal lobe

Subjects. Data from six male rhesus macaque monkeys (Macaca mulatta), aged between 4

and 10 years and weighing between 7 and 13.5 kg, were reanalysed for the purposes of the cur-

rent experiment. These data were originally collected and analysed in Noonan and colleagues

(2010) and Walton and colleagues (2010) [6,14] to examine the impact of medial and lateral

frontal lobe lesions on the influence of the credit assignment mechanism. Six monkeys origi-

nally participated in an experiment reported by [6] in which three animals acted as unoperated

controls, whereas the other three received bilateral aspiration lateral orbitofrontal cortex

lesions following training and presurgical testing. The three unoperated control monkeys and

one additional monkey who had not participated in the Walton and colleagues study then par-

ticipated in [14] and were tested before and after bilateral aspiration lesions of medial orbito-

frontal cortex. All animals were maintained on a 12-hour light/dark cycle and had 24-hour ad

libitum access to water, apart from when testing. All experiments were conducted in accor-

dance with the United Kingdom Animals Scientific Procedures Act (1986).

Task and procedure. Apparatus, training histories, and schedules have all been fully

described in [6,14]. However, for the purposes of the present study, we will briefly describe the

task and reward schedules (Fig G in S1 Text). On every testing session, animals were presented

with three novel stimuli that appeared in one of four spatial configurations. Configuration and

stimulus position were determined randomly on each trial. Stimuli remained on screen until

an option was chosen. Reward was delivered stochastically for a choice towards each option

according to the reward probabilities defined by the session schedules. Stimulus presentation,

experimental contingencies, and reward delivery were controlled by custom-written software.

Here, we analysed data from three reward schedules employed by these studies and which

formed the basis of the experimental schedules used for our human study. In these schedules,

all three options were at some point competitively rewarded, and reward probabilities varied

over the course of the testing session. The probabilities of each option being rewarded were

independent of each other. Across different days, animals completed five sessions of 300 trials

under each schedule, with novel stimuli each time. For the first two schedules, the sessions

were interleaved across testing days, whereas for the last schedule, the data were run with con-

secutive sessions. Data were collected both pre- and postoperatively. Approximately 18 months

separated testing in the Walton and colleagues experiment and training in the Noonan and

colleagues study. Before testing in the latter study, all animals with medial lesions were brought

to a criterion of 80% correct on three choice-reversal schedules and both preoperative groups

were at roughly the same preoperative performance level as they were when they acted as

unoperated controls in the former study.

Surgeries. Surgical procedures and histology for the lateral and medial lesioned animals

have been previously described in full in [6,14]. In brief, animals were given aspiration lesions

to the lateral or medial orbitofrontal cortex using a combination of electrocautery and suction

under isoflurane general anaesthesia. The lateral lesion was made by removing the cortex

between the medial and lateral orbitofrontal sulci and as such predominantly targeted Walk-

er’s areas 11 and 13 but may also have included parts of area 12. Medial lesions removed cortex

between the medial orbitofrontal sulcus and the rostral sulcus, mainly including Walker’s area

14 but may have also included some parts of area 10. Note, the lateral aspiration lesion effects

on contingency learning reported by a number of studies [6,14] have recently been argued to

be caused not by cortical damage to Walker’s area 11 or 13 but by the damaged cortex laying
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adjacently lateral to this area beyond the lateral orbitofrontal sulcus, which transitions into

ventrolateral prefrontal cortex and aligns mostly with the gyral region of the orbital part of

inferior frontal gyrus [60]. This corresponds to the orbital part of area 12 (12o) in macaques

and Brodmann’s area 47o in humans (referred to from here as area 47/12o). The contingency

learning effects are now attributed to the disconnection between areas 11 and 13 and adjacent

cortex in area 47/12o [4,18]. We therefore refer to these lesions as “Lateral” and to the medial

orbitofrontal lesions as “Medial.”

First-level analyses: “Credit assignment general linear model (GLM)”. We applied the

exact same “credit assignment GLM” as detailed in study 1. Again, the set of regressors

included local reward learning effects (CxR-history: CxRt, CxRt-1, CxRt-2, CxRt-3), choice his-

tory effects (C-history; Ct-1 Ct-2, Ct-3), and the GRS effect as well as the interaction of GRS with

CxRt. Beta weights were log-transformed, and the same outlier rejection procedure was imple-

mented as described in study 1. From the above analysis, this led to the exclusion of 6 sessions

across 3 monkeys. Only the beta weights, which reflected local and global reward learning,

were passed to the second-level analysis.

Second-level analyses. Second-level analyses (i.e., averaging over subjects and sessions)

were performed in a conceptually similar manner for monkeys and humans but differed in

their implementation because of the nature of the acquired data and the goals of the analyses.

We acquired several sessions’ worth of data for the same macaques, whereas there was only

one session per human participant.

For the macaque credit assignment GLM, we submitted resulting (outlier-corrected) beta

weights/parameter estimates to separate LME models (using Matlab’s fitlme) because the

LMEs allowed us to account for monkey identity (“Mk”) in our analyses. We grouped the data

for each second-level analysis in three conditions: a baseline condition (all data that were col-

lected in nonlesioned animals), a Lateral lesioned condition, and a Medial lesioned condition.

All analyses were collapsed over experimental paradigms. We coded monkey identity as a ran-

dom effect with a random intercept and random slopes for all fixed effects used in the LMEs.

For significance testing of fixed effects, we used a likelihood ratio test comparing a full model

with a model leaving out the particular fixed effect of interest. In addition, we report the fixed

effects slope estimates and their standard errors.

We examined effects of the GRS on choice. To first demonstrate that such effects exist in

our data at all, we tested whether the intercept of the LME differed from zero in separate LMEs

for each lesion condition. The LMEs comprised only an intercept and the random effect of

monkey identity and we compared them with LMEs without intercepts to demonstrate posi-

tive GRS effects in both conditions. The LME with intercept was constructed as follows, and

this procedure was separately applied to the baseline condition and the lesion condition:

LME1 : GRS � 1þ 1jMkð Þ

Finally, we tested whether the mechanism by which the GRS impacts reward learning is

impacted by Lateral lesions compared to Medial lesions. We therefore ran LME2 to determine

differences in effect sizes between the two lesion conditions themselves (LesionType: Medial

versus Lateral).

LME2 : GRS � LesionTypeþ 1þ LesionTypejMkð Þ
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Supporting information

S1 Text. Supplementary Material: Fig A. Influence of choice history on switch/stay deci-

sions does not change across adolescence. As a control analysis, we considered develop-

mental changes in a reward-unrelated learning mechanism that was also included in our

credit assignment GLM. We examined C-history, the tendency to repeat choices irrespective

of reward [1]. In general, participants were more likely to repeat the most recent choice, irre-

spective of reward (one-sample t test; Ct-1: t352 = 3.09, p = 0.002). (A) However, Ct-1 did not

differ between adolescents and adults (independent samples t test; t351 = 1.16, p = 0.245). (B)

Analogously, there was no correlation between age and Ct-1 (R = 0.07, p = 0.191). (“x”s indi-

cate individual participants; plots show mean −/+ SEM; solid line in the right plots indicates

best fitting linear trend. Dashed lines represent 95th% confidence interval). Data for B and C

are available in S1 Data (Fig A tab). Fig B. No developmental changes in decision computa-

tions. Complementing our analyses of global and local reward learning, we also considered

developmental changes in decision-related computations. (A) We first fitted a simple rein-

forcement learning model to our data. This model was fitted individually to each session’s

data using standard nonlinear minimization procedures and a Boltzmann action selection

rule. In line with the CxRt effects reported above, learning rates for young adults were signifi-

cantly higher than for adolescents (independent samples t test, t386 = −3.83, p< 0.001). (B)

This result was confirmed as a significant correlation with age (Pearson correlation, R = 0.19,

p< 0.001). (C) Notably, the age groups did not differ in their general levels of decision-mak-

ing noise, as the RL models’ (log-normalised, to account for outliers) inverse temperature

parameter did not differ with age (independent samples t test, t379 = −1.83, p = 0.068; Pearson

correlation, R = 0.02, p = 0.720). Note the effect remained nonsignificant when the inverse

temperature was not log normalised. This suggests that changes in learning rates cannot be

reduced to changes in decision noise. It furthermore also strongly indicates that our previous

results about GRS-related maturation are not driven by differences in decision noise between

the age groups. (D) Examining the developmental trajectory of this parameter over time also

failed to reveal a significant change. (E, F) Finally, following our analysis approach estab-

lished in human medial frontal lesion patients [2], we used a combination of multinomial

logistic regression analysis and reinforcement learning modelling (see above) to examine the

influence of a value-based decision bias. We considered each 3-choice decision as two binary

comparisons and rearranged them such that we can extract the biasing effect of the value of a

distractor option on choice. Using these expected values generated for each option on each

trial, we examined whether the interactive impact of the decision-irrelevant option’s value

(VD) on the choice between the two relevant Options (VX and VY). We applied a two-step

multinomial logistic regression analysis, which has been described in full, alongside the com-

plete set of equations, in Noonan and colleagues (2017). We chose this specific GLM to make

the findings directly comparable to our previous human lesion study. In short, this approach

reframes the 3-choice decision as two binary value comparisons between pairs of options.
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The GLM aims to predict the proportion of choices among the three options from their

expected values, with one option assigned in each decision frame as the reference category.

For example, Options X and Y are the options being compared; with Option Y as the refer-

ence, Option X as the comparator, and Option D denoting the irrelevant option. Each

option’s values (VX, VY, VD) were initially derived from a reinforcement learning model

described above. The present study examines distractor effects on choice as a function of

potential regional differences in the speed of brain maturation during adolescence. Previous

lesion studies have characterised this as a negative influence [2,3], and so we selected a

model that allowed us to focus on that specific factor. The key step in the model, for the pur-

poses of the present study, is the isolation of the contextual decision-making factor (VX

− VY)VD from the final step of the GLM outlined in Eq 1 (equation 7 in [2]). Intuitively, this

term reflects the modulation of the decision variable (the value difference between the

options) by the distractor.

ln
P Xð Þ
P Yð Þ

� �

¼ b0 þ
ðb1 � b2Þ

2
ðVX � VYÞ þ

ðb1 þ b2Þ

2
ðVX þ VYÞ þ b3VD þ b4VXVY

þ
ðb5 � b6Þ

2
ðVX � VYÞVD þ

ðb5 þ b6Þ

2
ðVX þ VYÞVD ð1Þ

This factor allows us to examine how the expected value of the irrelevant option VD affects

the comparison between X and Y (i.e.,
ðb5 � b6Þ

2
ðVX � VYÞVD), after controlling for the effects of

the difference between the two options (VX − VY), their total value (VX + VY) and their inter-

action (VX × VY), as well as the independent value of the distractor (VD) and the interaction

between the distractors value and the relevant options’ combined value ((VX + VY)VD). In

other words, the (VX − VY)VD beta weight reflects the degree to which the effect of value dif-

ference between X and Y on choices between these two options was modulated by the irrele-

vant distractor value (VD). For brevity, we refer to our variable of interest, the (VX − VY)VD,

as bias by irrelevant alternative (BIA). In addition to the standard exclusion criteria, the

regression model described below failed to fit a total of 32 participants and were excluded

from this analysis. Subsequently, the factor isolated from the GLM was subjected to an out-

lier rejection procedure (15 participants), and the beta weights were absolute log trans-

formed. Beta weights were then submitted to a second-level age-comparison analyses. The

current choice data showed that BIA did not differ with age (independent samples t test, t339

= 1.06, p = 0.291; Pearson correlation, R = 0.03, p = 0.522). Therefore, in contrast to the local

and global reward learning mechanisms linked to lateral prefrontal cortex, the influence of

the value of third option on the binary choice may already reflect a matured functional state

by the age of our sample. (“x”s indicate individual participants; plots show mean −/+SEM;

solid line in the right plots indicates best fitting linear trend. Dashed lines represent 95th%

confidence interval. �p< 0.05). Data for A-F are available in S1 Data (Fig B tab). Fig C. Local

and global reward learning correlated across participants. We investigated the relation-

ships between local reward assignments and negative GRS effects. Despite the theoretical

accounts arguing that a negative GRS effect might aid value learning, it could be argued that

GRS effects per se are suboptimal in the context of probabilistic learning tasks. To address

this, we examined the relationship of GRS with a marker of local contingent value assign-

ment, the CxRt effect, as the latter reflects a signature of successful learning in this task. Con-

trolling for participant age and their GLM constant, we examined the relationship between

GRS and RxCt using a partial correlation. (A) Our findings revealed a strong negative corre-

lation between contingent reward assignment and the global reward effect (Pearson correla-

tion, R = −0.16, p = 0.002). This suggests that individuals who are more influenced by local
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reward assignment mechanisms are also more likely to rely on a negative reward contextuali-

sation. This pattern of behaviour further supports the idea that negative GRS effects are

adaptive and may co-mature with contingent credit assignment mechanisms during adoles-

cence. Visual inspection might suggest that the correlation is potentially driven by three out-

liers with high contingent learning scores. (B) However, removal of these data points

confirmed that this was not the case; instead, the correlation became even more significant

(R = −0.23, p< 0.001). (“x”s indicate individual participants; solid line indicates linear fit).

Data for A and B are available in S1 Data (Fig C tab). Fig D. The effect of GRS on choice is

stable across a broad window of reward history length and does not depend on arbitrary

statistical choices. In our main GLM, the GRS is calculated as the arithmetic mean of

rewards occurring during the last three trials (see Methods). This history length was chosen

a priori based on previous work and based on the number of trials in the experimental sched-

ule. To show that the GRS effects are stable, we repeated our main GLM and varied the

length of this reward history. We varied it between including only the last two trials (A), the

last four (B), and the last five (C). The respective panels show the GRS effect from these three

GLMs. In accordance with varying reward history length, we adjusted the timescale of the

other relevant learning mechanisms (CxR-history and C-history) in the GLM. This ensured

that the GRS, CxR-history, and C-history were all calculated over the same set of past trials.

Consequently, in the analysis, variance associated with one learning mechanism was unlikely

to be misattributed to another learning mechanism as they cover the same duration of the

trial history. For example, when extending the history length of the GRS to five trials, we also

extended the history length of CxR-history and C-history by two trials. We then aggregated

these alternative regression models and showed that our effects of interest remained signifi-

cant. Aggregating the results across the 3 alternative choice history lengths, we compared the

beta weights against zero for adolescents and adults separately in 2 one-sample t tests and

found negative GRS effects both in adolescents (t153 = −2.79, p = 0.006) and adults (t176 =

−5.27, p< 0.001). Importantly, as in our main analysis, adults have a more negative GRS

effect than adolescents (F1,331 = 8.14, p = 0.005; main effect of age group in 2 [age group: ado-

lescents, adults] × 3 [reward history length: 2, 4, or 5] repeated measures ANOVA). Main

effects of history length or the interaction between history length and age group were not sig-

nificant (F2,666 = 0.578, p = 0.480, Interaction F2,666 = 0.711, p = 0.426). (D) Finally, again, as

in our main analysis, this developmental trajectory also manifests in a negative correlation

between age and GRS effect (r = −0.19, p< 0.001). For this correlation, we averaged the GRS

beta weights, within each subject, across the three GLMs with history length 2, 4, and 5. The

average GRS beta weights were then plotted against age. Critically, these analyses all used a

history length that is different from the one in the main GLM and demonstrate that our

results did not depend on arbitrary modelling choices. (“x”s indicate individual participants;

plots show mean −/+ SEM; solid line in the right plots indicates best fitting linear trend.

Dashed lines represent 95% confidence interval). Data for A-D are available in S1 Data (Fig

D tab). Fig E. Delayed grey matter maturation in lateral orbitofrontal and anterior insula

cortex relative to other networked learning and decision-making neural nodes. Study 1

showed significant changes in local and global reward learning across adolescent develop-

ment and into early adulthood. Here, we investigated the potential underlying neural

changes by examining grey matter maturation in prefrontal cortex during the same time

window as our behavioural sample, 11–35 years (see Supplementary Methods). We consid-

ered regions of interest (ROIs) that are related to reward processing. Local and global com-

ponents of reward learning have both been previously linked to lateral orbitofrontal (lOFC)

and anterior insula cortex (Ins), respectively [1,3–5]. Medial orbitofrontal/ventromedial pre-

frontal cortex (mOFC/vmPFC) is causally linked to value comparison mechanisms [3,6,7],
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while the dorsal anterior cingulate (dACC) is associated with learning from feedback with

BOLD activity in this region correlated with adapting learning rate [8]. Finally, amygdala

(amy) grey matter density increases with experience in reversal learning-like tasks such as

ours [9], lesions to the amygdala affect reversal learning [10], and amygdala signals deviation

from precise local reward learning [11,12]. Guided by past NHP work, we analysed structural

brain data from an independent data set of 125 individuals from the Human Connectome

Project data (HCP developmental and young adult data; [13,14]), evenly spread out across

our investigated age range. We conducted this study in parallel to study 1. Estimates of indi-

vidual participants grey matter thickness were extracted from anatomical masks of lateral

orbitofrontal cortex and medial orbitofrontal/ventromedial prefrontal cortex [15], dorsal

anterior cingulate cortex, amygdala, and anterior insula. Developmental trajectories of all

five regions were compared using ANCOVA analysis and showed significant differential GM

patterns across age (F4,492 = 12.35, p< 0.001). Follow-up subanalyses compared lateral orbi-

tofrontal cortex separately with the other four areas. Adults and adolescents were also com-

pared directly in independent samples t tests and Pearson correlational analyses. (A, B)

Supporting our hypothesis, we showed that grey matter in lateral orbitofrontal cortex was

significantly lower in young adults compared to adolescence (independent samples t test, t123

= 6.23, p< 0.001) and correlated negatively with age (Pearson correlation, R = −0.47,

p< 0.001; Fig 4B), with link functions suggesting that this relationship was best fit with a

quadratic function (Table A in S1 Text). (C, D) The GM trajectory of the anterior insula, a

region in which BOLD activity correlates with the GRS in macaques [1,9], also showed a sig-

nificant relationship with age (independent samples t test: t123 = −4.34, p< 0.001, Pearson

correlation, R = −0.39, p< 0.001). Follow-up tests suggest that this relationship was best

characterised by a quadratic function (Table A in S1 Text). Direct comparison between the

GM trajectories of lateral orbitofrontal cortex and the anterior insula revealed no significant

differences between the GM trajectory of the two regions (F1,123 = 0.16, p = 0.694). (E, F) The

medial orbitofrontal/ventromedial prefrontal cortex also showed continued maturation

across the age-range sampled (independent samples t test, t123 = 3.19, p = 0.002; Pearson cor-

relation, R = −0.21, p = 0.018; Fig 4C and 4D) with model fits again characterising this rela-

tionship as quadratic (Table A in S1 Text). However, as the ANCOVA results revealed

differential developmental trajectories of GM between lateral and medial orbitofrontal cor-

tex, indexed by a significant age × subregion interaction (F1,123 = 9.896, p = 0.002), which

suggested medial maturation was significantly less pronounced than lateral regions. (G, H)

By contrast, there was no relationship between age and grey matter in the amygdala, a sub-

cortical region heavily connected with lateral orbitofrontal cortex and intrinsically linked to

complementary components of local reward learning [10] (independent samples t test, t123 =

−0.79, p = 0.43; Pearson correlation, R = 0.03, p = 0.716). Note that this did not improve by

using a quadratic instead of a linear link function, see Table A in S1 Text, which replicates

past developmental GM studies [16,17]. Direct comparison between the GM trajectories of

lateral orbitofrontal cortex and the amygdala showed, as expected, that developmental GM

trajectory was significantly more pronounced in lateral prefrontal cortex compared to the

amygdala (significant age × region interaction F1,123 = 23.37, p< 0.001). (I, J) Finally, we

examined GM trajectory of the anterior cingulate cortex (focusing on the RCZa or more

commonly referred to as dorsal ACC). GM in this region did not vary as a function of age

(independent samples t test: t123 = −0.75, p = 0.456, Pearson correlation, R = 0.05, p = 0.549).

Direct comparison between the GM trajectories of lateral orbitofrontal cortex and the dACC

showed, as expected, that developmental GM trajectory was significantly more pronounced

in lateral orbitofrontal cortex (significant age × region interaction (F1,123 = 24.80, p<0.001).

(K) Illustration of the between-subjects interaction of the GM maturation (calculated as
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mean adolescents minus mean adults) between lateral orbitofrontal cortex, medial orbito-

frontal/ventromedial prefrontal cortex, amygdala, dorsal anterior cingulate cortex, and ante-

rior insula. This highlights the significantly stronger maturation of grey matter in lateral

orbitofrontal cortex and anterior insula compared to the other networked brain regions.

This pattern suggests the lateral orbitofrontal and anterior insula cortex undergo the most

extensive changes during adolescence, findings in line with a general pattern of maturation

across adolescence [18,19]. This suggests that cognitive functions supported by these regions

may also undergo more pronounced changes during development compared to those sup-

ported by the other areas in the learning and decision-making network. (“x”s indicate indi-

vidual participants; plots show mean −/+ SEM; solid line in the right plots indicate a linear

fit. Dashed lines represented 95th% confidence intervals. �p< 0.05, ��p< 0.001). Data for

A-K are available in S1 Data (Fig E tab). Fig F. Study 2: Task design, reward schedule, and

lesion overlap in human patients. (A) Trial timeline: In each testing session, human

patients made choices among three novel stimuli (fractal images; left-hand side) via a key-

board button press response. Visual feedback of choice was delivered according to the partic-

ular reward schedule (right-hand side). Both possible outcomes are displayed in this

example: A green tick was delivered in the case of a positive outcome (top panel) and a red

cross during no reward events (bottom panel). (B) Reward schedules comprised three

options whose reward probabilities ranged between 0.1 and 1 and drifted throughout the ses-

sion, with each option being competitive at some time during the session (i.e., each option

was the best one at least during a short phase of the session). Participants performed this task

twice using the same reward schedule but different stimuli. (C) Medial (Left) and lateral

frontal lobe (right) lesion outlines as based on patients’ most recent scan represented on the

MNI standard template. Colorbar indicates lesion overlap (n = 4 and n = 4, respectively). Fig

G. Study 3: Task design, reward schedule, and lesion. (A) Trial timeline: In each testing

session, macaques made choices among three novel stimuli (novel clip art images; left-

hand side) via a touch screen before receiving auditory feedback and, according to the par-

ticular reward schedule, a sucrose pellet (S) reward or nothing (right-hand side). The cho-

sen stimuli remained onscreen during feedback. Both possible outcomes are displayed in

this example: A reward pellet and auditory feedback was delivered in the case of a positive

outcome (top panel) and nothing happened during no reward events (bottom panel). (B)

Animals made choices across three similar reward schedules in which the reward probabili-

ties ranged between 0 and 1 and drifted throughout the session, with each option being

competitive at some time during the session (i.e., each option was the best one at least dur-

ing a short phase of the session). (C) Medial (left) and lateral frontal lobe (right) lesion

locations represented on an unoperated control, with redness indicating lesion overlap

(n = 4 and n = 3, respectively). Table A. Summary table of Pearson R values, R2 values,

and AIC values for linear and quadratic model fits. Table shows for key behavioural (per-

centages or beta weights) and neural (grey matter Jacobean values) results related to age. In

all instances, the coefficients of linear or quadratic polynomial fits were compared using a

likelihood-ratio test. The best fitting model was indexed by the lowest AIC value. The last

row summarises the winning model (linear or quadratic) for the key behavioural analyses

and five GM regions of interest; lOFC (lateral orbitofrontal cortex), mOFC (medial orbito-

frontal /ventromedial prefrontal cortex), amygdala, dACC (dorsal anterior cingulate), and

ains (anterior insula). �p < 0.05.
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S1 Data. Supplementary data for Figs 1–5 and Figs A-E in S1 Text.
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