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Travel Mode Choice Prediction Using Imbalanced
Machine Learning

Huanfa Chen and Yan Cheng

Abstract— Travel mode choice prediction is critical for travel
demand prediction, which influences transport resource alloca-
tion and transport policies. Travel modes are often characterised
by severe class imbalance and inequality, which leads to the
inferior predictive performance of minority modes and bias in
travel demand prediction. In existing studies, the class imbal-
ance in travel mode prediction has not been addressed with
a general approach. Basic resampling methods were adopted
without much investigation, and the performance was assessed
by commonly used metrics (e.g., accuracy), which is not suitable
for predicting highly imbalanced modes. To this end, this paper
proposes an evaluation framework to systematically investi-
gate the combination of six over/undersampling techniques and
three prediction methods. In a case study using the London
Passenger Mode Choice dataset, results show that applying
over/undersampling techniques on travel mode substantially
improves the F1 score (i.e., the harmonic mean of precision and
recall) of minority classes, without considerably downgrading the
overall prediction performance or model interpretation. These
findings suggest that combining over/undersampling techniques
and statistical/machine-learning methods is appropriate for pre-
dicting travel mode, which effectively mitigates the influence
of class imbalance while achieving high predictive accuracy
and model interpretation. In addition, the combination of
over/undersampling techniques and prediction methods enriches
the model options for predicting mode choice, which would better
support transport planning.

Index Terms— Class imbalance, machine learning, oversam-
pling, undersampling, travel mode choice.

I. INTRODUCTION

TRAVEL mode choice prediction is an essential step of
travel demand prediction. It affects not only resource

allocation in transport planning and operation, but also trans-
port policy-making with goals such as improving mobility
and decarbonisation. Travel mode choice prediction aims for
accurate aggregate prediction (i.e., prediction of market shares)
as well as precise disaggregate prediction (i.e., prediction of
modes of individual trips). Traditionally, travel mode pre-
diction is approached using discrete choice models (DCM),
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including the multinomial logit model and its variants [1], [2].
Recently, there is a growing interest in using machine learning
methods for modelling travel mode choice, including support
vector machine (SVM), deep neural network (DNN), and
extreme gradient boosting (XGB). It is reported that XGB
and DNN methods have higher predictive power than discrete
choice models in predicting travel mode [3], [4], [5], [6].

In travel mode prediction, the class imbalance between
modes has become a common and prominent issue, which
leads to the underestimation of the minority class. Due to
different levels of transport service provision and transport
policies, travel mode choice data are often highly imbalanced
[7], i.e., some modes are used much more frequently than
others. Table I shows the class imbalance of travel mode
choice in literature. The degree of class imbalance is measured
by the ratio of the number of trips of the minority mode
to the majority mode [8]. In most datasets, this degree is
less than 0.1, which indicates a high level of imbalance.
The class imbalance would severely compromise the model
estimation and predictive performance, as the model tends
to focus on the majority class whilst ignoring the minority
class [9]. Nevertheless, to the best of our knowledge, class
imbalance in travel mode choice prediction has not received
adequate attention and has not been well tackled. This study
aims to deepen the understanding of whether and how mode
choice imbalance can be tackled.

The rest of the paper is structured as follows. Section II
starts by surveying the methods used in previous studies
to tackle class imbalance in travel mode prediction and the
evaluation metrics for assessing the performance of travel
mode prediction; Section III firstly specifies the workflow of
this paper, then briefly introduces the selected travel mode
prediction models and over/undersampling (OUS) techniques
to be combined, followed with a comprehensive evaluation
framework proposed to assess the prediction using highly
imbalanced dataset; Section IV describes the London Passen-
ger Mode Choice dataset and variables used for prediction,
as well as the setup of experiments; Section V evaluates
the model performance using the framework proposed in
Section II and discuss the suitability of various combinations.
Finally, Section VI concludes this paper and proposes future
research directions.

II. LITERATURE REVIEW

A. Methods Used to Tackle Class Imbalance in
Travel Mode Prediction

Although the issue of class imbalance is one common
challenge of predicting travel mode choices, which may cause
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TABLE I

CLASS IMBALANCE OF TRAVEL MODE CHOICE IN LITERATURE

inferior performance for predicting modes with smaller shares
[6], [7], [10], [11], [12], [13], limited efforts have been
made to solve this problem. Hagenauer and Helbich [10]
tried to deal with the class imbalance in travel modes by
randomly oversampling the minority class and undersampling
the majority class when pre-processing data. However, whether
data over/undersampling improves the prediction is poorly
understood because the prediction performance on the original
and processed datasets was not compared. Pirra and Diana [11]
adopted a modified SVM method that assigns different weights
to different classes in the decision function of SVM, and found
out this method outperformed the plain SVM. Qian et al. [14]
introduced adjusting kernel scaling in developing an SVM
model and found it improved the accuracy of the minority
class classification in some cases. However, both methods
are specifically designed for SVM and do not generalise to
other machine learning models. Kim [12] used a class-specific
weighting scheme in which each instance is assigned weights
that are inversely proportional to the frequency distribution of
classes. However, this approach treats all instances of a class as
equally important to the classification. None of them proposed
a general approach for addressing mode class imbalance, and
there is a lack of systematic investigation into how and to what
extent class imbalance can be tackled.

B. Evaluation Metrics to Assess the Performance of Travel
Mode Prediction

Most studies on travel mode prediction adopt only one or
multiple overall performance metrics, such as accuracy [15],
[16], [17], recall (or sensitivity) [10], and log-loss [18].
These metrics are insufficient for highly imbalanced mode
distribution because they ignore class-specific performance.
Specifically, when the data is highly imbalanced, these overall
metrics can be achieved by a trivial classifier that always
predicts the most likely class. Furthermore, most studies only
use metrics based on discretising the classification by assign-
ing each prediction to the class with the highest probability.
This is inadequate for imbalanced data because it is highly
likely to result in non-representative mode shares. Therefore,
an evaluation framework that includes metrics representing

overall and mode-specific, aggregate and disaggregate perfor-
mance of travel mode prediction is imperative. Rezaei et al.
[19] tried to evaluate the impact of resampling techniques on
the performance of logit models. However, machine learning
models were not considered, and the research only investigated
the sign and magnitude of the coefficients when carrying out
behavioural analysis.

In summary, the tackling of the class imbalance in travel
mode prediction remains unexplored. In the machine learning
community, several techniques have been proposed to tackle
class imbalance: over/undersampling the original dataset [20],
[21], [22], [23], cost-sensitive learning [24], [25], [26], [27],
[28], active learning [29], [30], [31], [32], and kernel-based
methods [33], [34]. Among them, over/undersampling (OUS)
is a straightforward and effective method for the imbalance
problem and can be applied to a wide range of classifiers.
This study investigates whether OUS techniques can enhance
travel mode choice prediction by testing and comparing
various combinations of OUS techniques and statistical or
machine-learning methods with a comprehensive evaluation
framework.

This study contributes to the literature on travel mode
prediction as follows. Firstly, it proposes a comprehensive
and multifaceted evaluation framework for travel mode pre-
diction, which entails overall model performance, mode-
specific performance, and model interpretation. Secondly,
it presents a systematic investigation of over/undersampling
techniques for tackling class imbalance in travel mode pre-
diction. Thirdly, it verifies that it is viable and efficient
to combine over/undersampling techniques and statistical/
machine-learning models for predicting travel mode, which
mitigates the influence of mode imbalance while achiev-
ing high predictive accuracy and model interpretation. This
approach can inform transport planning and effectively avoid
bias in travel demand prediction.

III. METHODOLOGY

This paper aims to investigate the impact of
over/undersampling techniques on travel mode prediction.
We firstly introduced three prediction methods and six
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Fig. 1. Workflow of this study.

TABLE II

LIST OF ABBREVIATIONS AND ACRONYMS

over/undersampling (OUS) techniques to be investigated. The
prediction methods include one traditional discrete choice
model and two advanced machine learning models. Then
we proposed a comprehensive evaluation framework for
assessing the model performance of travel mode prediction
on highly imbalanced travel datasets. Different combinations
of prediction models and OUS techniques were evaluated
and the best-performing combinations were selected and
discussed, as shown in Fig. 1. Table II presents the list of
abbreviations and acronyms used in this paper.

A. Travel Mode Choice Models
1) Logit Models: Logit models assume that passengers

would choose a mode from a set of alternatives to maximise
their utility. Under the random utility theory [35], logit models
assume that each mode has a certain level of utility that
consists of two components: a component representing the
effects of observed explanatory variables (e.g., travel time,
cost) and a random error reflecting the effects of unobserved
variables. The utility of choosing mode i is:

Uni = Vni + εni = β�xni + εni (n ∈ N ; i ∈ Mn) (1)

where Mn is the set of available modes for trip n; N is
the total number of trips; Uni is the utility of alternative

travel mode i for trip n; Vni is the representative utility of
alternative travel mode i for trip n; xni is a 1× K vector
of explanatory variables of alternative mode i for trip n; β
is a K×1 vector of coefficients of variables representing the
weights attached to explanatory variables for trip i; and εni is
the random error of travel mode i for trip n. Different types
of logit models are developed by specifying different types
of random errors and choices of coefficients of explanatory
variables. Most notably, the MNL model is formed when the
error term is independently, identically Gumbel-distributed.
In the MNL, the probability of trip n to choose travel mode i
is given by (2). The coefficients of the MNL can be estimated
using the maximum likelihood method.

P̂ni =
eVni∑

j∈Mn

eVnj
(i, j ∈ Mn; n ∈ N) (2)

2) Machine Learning Models: Machine learning models
consider mode choice prediction as a classification problem,
i.e., given input variables, predicting the most likely mode
and/or the probability of all alternatives. The objective is to
learn a target function that maps input variables to the output
target. A range of machine learning models have been used to
predict travel mode choice, which include tree-based models,
Naïve Bayes, support vector machine, and neural network
[36]. Notably, the tree-based ensemble model (represented
by extreme gradient boosting) and DNN have been attracting
interest because of their high predictive power and capability
of estimating choice probability [3], [4], [5].

Extreme gradient boosting (XGBoost) [37] is an efficient
and scalable ensemble approach that uses decision trees as
base predictors. The XGBoost is trained in an additive manner
by starting from a low-accuracy decision tree and iteratively
building trees to minimise a loss function. In each iteration,
the instances that are misclassified by existing trees are given
more weight. The final prediction of XGBoost is based on
the weighted votes of base predictors, where the weight of a
predictor is proportional to its predictive accuracy. XGBoost
has proved suitable for mode prediction, due to the high
predictive accuracy, robustness, interpretability, and ability to
derive well-calibrated choice probabilities [4], [38].

Deep neural network (DNN) is an Artificial Neural Network
(ANN) with multiple layers between the input and output
layers. The DNN can model complex non-linear relationships
between variables as the data goes through the weighted
connections between DNN layers. The output of the DNN
consists of k units corresponding to k classes of mode choice.
Moreover, DNNs can reveal utility functions and behavioural
patterns when applied to mode choice analysis [39]. Because
of their extraordinary predictive power and satisfactory inter-
pretability, DNNs have been adopted in transportation studies,
including predicting travel mode, route choice, and automobile
ownership.

B. Oversampling and Undersampling Techniques
Oversampling and undersampling techniques adjust the

class distribution by replicating or synthesising samples in
minority classes or by removing samples in majority classes.
These techniques can be combined with various prediction
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methods and are likely to tackle imbalance in travel mode
prediction. Note that in prediction tasks involving a training
and testing set, a good practice is to apply oversampling and
undersampling to only the training set, not the testing set. This
guarantees fair and unbiased model evaluation on the testing
set. It is noteworthy that oversampling and undersampling
fundamentally differ from sampling or resampling in statistics.
Statistical sampling refers to extracting a subset of individuals
from the population to infer characteristics of the whole
population, and the extracted sample is expected to follow
the distribution of the population.

In this study, six OUS techniques were selected and com-
pared, as these methods represent the state-of-the-art sampling-
based solutions for imbalanced data [40], [41]. These methods
include two basic methods (RUS and ROS) and advanced
methods because of their good performance in existing studies.

1) Undersampling Methods: Random undersampling
method (RUS) works by randomly removing instances in
major classes until the predefined class balance is achieved.
This method is straightforward and efficient, with no
assumptions about the data distribution. However, its major
drawback is that potentially useful instances can be removed.
In order to tackle this problem, new undersampling techniques
have been proposed that identify and remove redundant, noisy
and/or borderline instances from majority classes. Specifically,
redundant instances are points that add little information
about the majority classes, while noisy instances represent
randomness in the data. Borderline instances are close to the
boundary between classes and are unreliable as small changes
to borderline instances’ attributes would lead to considerable
shifting of the decision boundary [42].

As one of the advanced undersampling approaches, One-
Sided Selection (OSS) [20] combines Condensed Near-
est Neighbour (CNN) (for removing redundant instances)
and Tomek Links (for removing borderline/noisy instances).
In Step 1, let S be the original data, a subset C is generated
that contains all instances of the minor classes and a randomly
selected majority instance. Then, for each instance in S, it is
classified using its nearest neighbour in C. The misclassified
instances are added into C. In this way, C does not contain
redundant instances that are correctly classified by its nearest
neighbours. In Step 2, minority class instances that belong to
Tomek Links are removed from C. Tomek Links [43] can be
briefly explained as follows: a pair of instances a and b is a
Tomek Links if three criteria are met: (i) a and b belong to
different classes, (ii) a’s nearest neighbour is b, and (iii) b’s
nearest neighbour is a. By definition, instances that belong
to Tomek Links are either noisy or boundary instances. The
resulting set C is the output of OSS.

Another undersampling approach is the Neighbourhood
Cleaning Rule [44], which adopts the rule of Wilson’s Edited
Nearest Neighbours (ENN) [45] to eliminate noisy/borderline
major class instances. In NCR, the three nearest neighbours
of each instance a are computed and used to classify a. If a is
from the majority classes and is misclassified by the three
nearest neighbours, a is removed as it is considered as a
borderline/noisy instance. If a is a minor class instance and is
misclassified by its nearest neighbours, then the majority class
instances within a’s nearest neighbours are removed.

2) Oversampling Methods: In random oversampling, minor-
ity class instances are randomly selected and repeated in
the data until a balanced class distribution is obtained. It is
subject to overfitting on the training data and thus fails to
generalise to the unseen dataset. To avoid overfitting, more
advanced oversampling approaches have been proposed that
smartly create synthetic instances of minority classes. Among
these approaches are Synthetic Minority Over-sampling Tech-
nique (SMOTE) and Adaptive Synthetic Sampling approach
(ADASYN).

SMOTE [46] works by firstly selecting a minority class
instance a at random and finding its k-nearest minority class
instances called S. An instance b is randomly picked up
from S. Then, a synthetic instance is generated as a weighted
combination of a and b. This approach is plausible as new
synthetic instances are generated from pairs of minority class
instances that are sufficiently close.

Although SMOTE proves effective for continuous data,
it is not applicable for data consisting of continuous and
nominal variables. One such example is the travel survey
data which include continuous variables of travel duration
and cost, as well as nominal variables of gender, trip pur-
pose, and trip mode. To deal with a mixture of continu-
ous and nominal attributes, we use a variant of SMOTE,
SMOTE-Nominal Continuous (SMOTE-NC for short). It dif-
fers from the SMOTE in two aspects. Firstly, the distance
between two instances a and b consists of two components,
namely the difference of continuous variables and the penalty
term of differing nominal variables. The penalty term is
defined as the median of standard deviations of all continuous
variables across the minority class. Secondly, in the generation
of synthetic instances, while the continuous variables are inter-
polated using the same procedure as SMOTE, each nominal
variable is given the most frequent value in the k-nearest
neighbours.

Alternatively, ADASYN [8] adaptively generates minority
class instances based on the difficulty level of classifying
original minority class instances. Specifically, it tends to
generate synthetic instances close to the original instances
that are incorrectly classified by a k-nearest neighbours clas-
sifier. It uses the same procedure as SMOTE-NC to generate
synthetic instances by interpolation. Through this strategy,
ADASYN increases the density of hard-to-classify minority
class instances close to the borderline and then improves the
classification performance.

C. Evaluation Framework
We proposed a comprehensive evaluation framework to sys-

tematically assess the performance of mode choice prediction
from three aspects: overall model performance, mode-specific
performance, and model economic interpretation, as shown in
Part 2 of Fig. 1. The metrics of this framework not only assess
how well the market share is predicted, but also how accurately
the modes of individual trips are predicted. Furthermore, the
prediction performance of each mode was discussed to explic-
itly show the impact of imbalance and how OUS techniques
tackle this problem. Using economic interpretation metrics,
we validated that applying OUS techniques will not dis-
tort travellers’ behaviour patterns in mode choice prediction.
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This framework is applicable to both logit models and machine
learning models.

1) Overall Model Performance: The overall performance
refers to the model’s predictive power for the entire dataset
that consists of multiple travel modes. Specifically, the overall
performance includes three aspects, namely aggregate predic-
tion performance, disaggregate prediction performance, and
weighted performance.

Aggregate prediction performance of a model concerns the
model’s capability to reproduce and predict the aggregate
choice distribution of each mode, i.e., the market mode share.
This performance can be assessed using the mean absolute
deviations of market share (MADMS), which is defined as:

MADMS =
1

|M |
∑
i∈M

∣∣∣∣∣
1

|Ni|
∑

n∈Ni

(
P̂ni

)
− Pi

∣∣∣∣∣ (3)

where M is the set of travel modes; Ni is the set of trips
that choose travel mode i; | · | is the cardinality function that
outputs the number of elements in a set; P̂ni is the predicted
choice probability of travel mode i for trip n; Pi is the actual
market share of travel mode i. The MADMS metric is similar
to the L1-norm error for mode share prediction [36], which
is defined as the sum of the absolute differences between the
predicted and actual market share predictions.

On the other hand, disaggregate prediction performance
concerns the model’s ability to accurately predict the mode
of each trip record. In literature, this performance has been
evaluated by a range of metrics, including accuracy, precision,
recall, and F1 score. Herein, we mainly use accuracy and
macro-average F1 score to evaluate the disaggregate prediction
performance.

The metrics of accuracy, F1 score, and others are based
on a summary of individual predictions. Given the predicted
and actual labels, the prediction of each class can be sum-
marised by a confusion matrix (see Fig. 2), where columns
and rows represent predicted and actual labels, respectively.
In this matrix, True Positive (TP) and True Negative (TN)
are the numbers of positive and negative examples that are
correctly classified, respectively, while False Positive (FP) and
False Negative (FN) are the numbers of actually negative and
positive examples that are incorrectly classified, respectively.

The accuracy of travel mode prediction is defined as the
proportion of accurately predicted trip records to the total
number of records, as below:

ACC =
1
|N |

∑
i∈M

(TPi + TNi) (4)

where N is the set of all trips; M is the set of travel modes;
TPi and TNi are the frequency of True Positive and True
Negative instances of travel mode i, respectively.

Precision and recall are two common metrics to measure
the predictive performance of each class, and both range
from 0 to 1. Specifically, precision is the proportion of true
positive predictions in the total positive predictions, while
recall is the proportion of positive predictions that are correctly

Fig. 2. Confusion Matrix.

identified. They are defined as:

Precisioni =
TPi

TPi + FPi
(5)

Recalli =
TPi

TPi + FNi
(6)

where FPi and FNi are the frequency of False Positive and
False Negative instances of travel mode i, respectively.

There is often a trade-off between precision and recall,
meaning that improving one metric would lead to the reduction
of the other. For this reason, F1 score has been proposed
to reconcile both metrics, which is defined as the harmonic
mean of precision and recall. The F1 score of travel mode i
is expressed as:

F1i =
2

Precision−1
i + Recall−1

i

=
TPi

TPi + 1
2 (FPi + FNi)

(7)

In this study, F1 score is used in two ways. First, we use
the F1 score of each mode to describe the mode-specific
predictive performance. A higher F1 score indicates a better
predictive performance of the mode. Second, we use the
macro-average F1 score to describe the overall disaggregate
predictive performance, which is the average F1 score across
all modes, as shown in (8). Likewise, the higher the macro F1
score, the better the overall predictive performance.

MacroF1 =
1
M

∑
i∈M

F1i (8)

A main challenge in model evaluation and comparison is the
conflict between different metrics. In other words, it is often
impossible to simultaneously achieve the best performance
in all metrics. Therefore, we propose a weighted method to
combine the metrics into an overall score. All three metrics
are firstly standardised by min-max scalar to keep the same
scale, then each metric is multiplied with a weight. The sum of
three weights equals one, with each of them ranging in value
between zero and one. The overall score is defined as the sum
of weighted standardised metrics in Equation (9):

E = −W1 × S (MADMS) + W2 × S (ACC)
+ W3 × S (MacroF1) (9)

where S (·) represents the standardisation procedure.
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There are different approaches to determining the weights.
First, the weights can be selected based on expert knowledge
or the need for real-world applications. Second, if there is
limited prior knowledge of the weights, it is recommended to
try a range of weight values in a sensitivity test.

2) Mode-Specific Performance: The mode-specific perfor-
mance refers to the model’s predictive power for each travel
mode. The mode-specific performance may vary significantly
across modes, especially when the mode frequency is highly
imbalanced. Many studies paid much attention to the overall
model performance while ignoring the impact of imbalance
on each travel mode. Here, we measured the mode-specific
performance by the F1 score of each mode (as discussed
above), which provides a detailed understanding of the model’s
capability and would reveal whether OUS improves the pre-
diction of each mode.

3) Model Economic Interpretation: A well-performed pre-
diction model for travel mode should have not only high
predictive power but also accurate and reliable economic
information regarding travel behaviours. In this context, the
economic information includes the marginal effect and elastic-
ity of travel modes regarding input variables, the value-of-time
in different modes, and the substitution pattern of alternatives
[39]. Interpreting the economic information of logit models
is straightforward. Recent studies show that machine learning
models can readily provide as reliable economic information
as logit models [39].

In this study, the focus of the model interpretation is whether
using OUS on the data would alter the economic informa-
tion in the prediction models. To achieve this, we calculate
the average elasticities of four travel modes with regard to
travel duration or cost. Elasticity (also known as the stan-
dardised derivative) measures the per cent changes in the
choice probability of a mode as a result of one per cent
change in an input variable. Mathematically, it is defined
as:

Eik =
1
|N |

∑
n∈N

∂P̂ni

∂xnik

xnik

P̂ni

(10)

where Eik is the average elasticity of travel mode i with regard
to the kth variable; N is the total number of trips; P̂ni is the
predicted choice probability of trip n of choosing travel mode
i; xnik is the kth variable of travel mode i for trip n.

A positive elasticity means that an increase in the input
variable leads to an increase in the choice probability of the
given mode, while a negative value means an increase in the
variable causes a decrease in the choice probability. We note
that there are other metrics for economic information in travel
behaviours. A comprehensive discussion of behaviour analysis
in mode choice is available in Wang et al. [39].

IV. DATA AND SETUP OF EXPERIMENTS

A. Data
The dataset of London Passenger Mode Choice (LPMC)

from April 2012 to March 2015 [4] was used in this study.
This dataset was derived from the London Travel Demand
Survey (LTDS), an annual survey that captures a detailed

snapshot of journeys made by every over-five-year-old member
of the selected household on a selected day. The key steps that
generate the LPMC dataset from LTDS include: (1) removing
the trips that had the same postcode in origin and destination;
(2) assigning each trip to one of the four travel modes;
(3) simplifying the trip purposes to five main purposes;
(4) adding travel time and cost information of four modes
to LTDS by utilising Google Map API and Oyster cards.
The resultant LPMC dataset contains 81,086 trips generated
by 31,954 individuals across 17,616 households. The four
main travel modes accounting for 99.5% of trips are walking,
cycling, public transport, and driving (including car passenger,
taxi, van and motorbike). Table III indicates that the mode
shares are considerably stable between 2012 and 2015. Driving
accounts for more than 40% of total trips, followed by public
transport accounting for 35% of trips. In contrast, less than
3% of trips use cycling. The large difference between the
major and minor modes reveals the severe class imbalance in
mode choice, which is consistent with the mode choice data
mentioned above.

LPMC dataset contains a wide range of variables about
the household (e.g., household members, car ownership),
individual (e.g., gender, age, ticket types) and trip (e.g., trip
purpose, departure time, travel mode, trip duration and cost
of alternatives). Compared with LTDS, which provides only
the trip information of the chosen mode, one big improvement
of LPMC is that it provides the trip cost and duration of all
four alternative modes, which is estimated using an online
directions service. We selected 14 variables for this study (see
Table IV), which are in line with Wang et al. [39]. As the
cost of walking and cycling is zero for all trips, they were not
included in the list.

The duration and cost of travel modes are used differently
in discrete choice and machine learning models. In discrete
choice models, the duration and cost of a mode are only used
in the corresponding utility function. In contrast, in machine
learning, the duration and cost of all modes are fed into the
algorithm, and then the algorithm automatically determines the
variables for building models.

B. Setup of Experiments

To gain insight into the impact of class imbalance and
different OUS techniques, we tested 18 combinations of three
mode prediction models and six OUS techniques, as mentioned
in Section 2. These combinations were compared with the
models using the original dataset. The computation was con-
ducted on a Windows 10 desktop (Intel i7 CPU, 3.1 GHz with
15 GBytes memory). The logit and machine-learning models
were constructed and trained in Python using the packages
listed in Table V.

There are two sources of randomness in the mode predic-
tion: first, applying OUS techniques introduces randomness;
second, the model training of DNN and XGB involves random-
ness, as the model training may identify local minima rather
than global minima, which is called model non-identification
challenge of machine learning. Therefore, each combination
of models and OUS techniques is assessed 100 times and
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TABLE III

MODE SHARES OF SURVEY YEAR 2012/13-2014/15 IN LPMC

TABLE IV

EXPLANATORY VARIABLES FOR TRAVEL MODE CHOICE MODELLING

TABLE V

PYTHON LIBRARIES USED FOR BUILDING MACHINE LEARNING MODELS

the average metric is used. Specifically, the OUS is applied
ten times, which generates ten datasets; for each dataset, the
prediction model is repeated ten times.

We use holdout sample testing in order to emulate the
real-world application of predicting future trips and to
avoid data leakage. The dataset is split into a training set
(April 2012–March 2014, totalling 54,766 instances) and a
hold-out testing set (April 2014–March 2015, totalling 26,230
instances), which is consistent with the data splitting in Hillel
et al. [4]. While the training set is used for model optimisation
and final model training, the testing set provides an unbiased
performance evaluation of final models.

Regarding model optimisation, we used the optimum hyper-
parameters of the Opt-DNNs in Wang et al. [34] without

further tuning. This is reasonable as both studies use the
London dataset provided by Hillel et al. [4]. On the other
hand, we tuned the hyperparameters of XGB using the
sequential model-based optimisation algorithm (also known
as the Bayesian optimisation) via the hyperopt library (using
100 iterations). The XGB hyperparameters were optimised
on the original dataset without OUS techniques. The optimal
hyperparameters of DNN and XGB are shown in Table VI.

V. RESULTS AND DISCUSSION

A. Overall Model Performance

Figs. 3-5 show how the three metrics (MADMS, accuracy
and Macro F1 score) varied for each combination of travel
mode prediction models and datasets. The details of the three
metrics are available in Appendices A and B. Overall, machine
learning models outperform the MNL models, with the DNN
models showing the best aggregate predictive performance
while XGB models have the best disaggregate predictive
performance.

When aggregate predictive performance is considered, all
models achieved better performance on the original dataset
than on the resampled data. The DNN model had the lowest
MADMS (0.0040), followed by the MNL and XGB models
with comparable performance. The advanced undersampling
techniques (i.e., OSS and NCR) could keep the MADMS
at a low level. On the contrary, RUS and all the oversam-
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TABLE VI

THE HYPERPARAMETERS OF RANDOM FOREST AND EXTREME GRADIENT BOOSTING

Fig. 3. Mean absolute deviations of market share of different methods and
datasets.

Fig. 4. Predictive accuracy of different methods and datasets.

Fig. 5. Macro F1 score of different methods and datasets.

pling methods distort the results of market share. Particularly,
the combination of MNL models and RUS or oversampling

Fig. 6. Overall predictive power.

techniques should not be used if MADMS is the only criterion
of mode prediction.

In terms of the metrics indicating disaggregate predic-
tion performance, the accuracy showed a similar pattern as
MADMS. All the models achieved their highest accuracy when
the original dataset was used. In contrast, the Macro F1 score
demonstrates a different trend. Although the MNL models
still performed best when the original dataset was used, both
machine learning methods achieved their best Macro F1 score
when SMOTENC was used, followed by ADASYN. The
highest macro F1 score was 0.5703 when the XGB method
and SMOTENC-oversampled dataset were used. Thus, the
oversampling techniques showed the capability of improving
the Macro F1 score for XGB and DNN models. The trade-off
between the three metrics is illustrated in Fig. 6.

The optimal combination of the prediction model and OUS
technique depends on the relative importance of these metrics.
To this end, we designed ten scenarios with differing weights
and relative importance in the three metrics. Table VII presents
the optimal and sub-optimal combinations in each scenario.
Obviously, the machine learning methods achieve a more
balanced performance with the three metrics as 19 out of
20 optimal or sub-optimal combinations were XGB or DNN
models. The MNL model was the sub-optimal model only
when accuracy and Macro F1-score were neglected in the
evaluation (i.e., W1 =1.0). In addition, the original dataset
was among the optimal or sub-optimal combinations when
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TABLE VII

THE RECOMMENDED COMBINATIONS IN DIFFERENT WEIGHT SCENARIOS

the weights were similar or when the dominant metric is
MADMS or Macro F1-score. XGB models combined with
SMOTENC or ROS datasets were the optimal or suboptimal
combinations when Macro F1 score was the major metric
(i.e., W3 ≥0.8). These results indicate that XGB models
with oversampling techniques achieved better disaggregate
prediction performance at the cost of inferior performance in
the MADMS. Meanwhile, the models with the original dataset
had high accuracy and lower MADMS but do not perform well
on the Macro F1 score.

The OUS techniques add more flexibility to model selection
for predicting travel mode. While machine learning models
combined with the original dataset had the best overall per-
formance in most scenarios, the combinations of XGB and
oversampling techniques are the best choices if Macro F1
score is the focus of the prediction task.

B. Mode-Specific Prediction

The mode-specific F1 scores provide a better understanding
of how different OUS techniques improve mode prediction.
Fig. 7 shows that the mode-specific F1 scores of all the travel
modes ranged from 0.50 to 0.78, except for cycling. Both
machine learning models had higher F1 scores compared with
the MNL model, especially for public transport and driving.
XGB models performed best not only in Macro F1 score, but
also in mode-specific F1 scores.

Notably, the F1 score of cycling is (nearly) zero for the
models using the original dataset and the OSS and NCR
datasets. This is because very few or no cycling records are
correctly predicted. Given that cycling accounts for 3% of the
total trips, the severe underprediction of cycling is problematic
and unacceptable. This implies that we should be cautious
about the overall performance (e.g., Macro F1 score), which
might hide the underprediction of minority modes. Therefore,
evaluating the prediction performance only at the overall level
may be misleading. To avoid this misleading, it is essential to
add mode-specific performance into our evaluation framework
to enable a deep look into the impact of imbalance on each
mode and how OUS techniques tackle this issue.

Another thing to note is that RUS exhibited good prediction
performance for cycling, which is different from the other
undersampling methods (OSS and OCR). This is because

RUS reduces the modes with a higher share and leads to a
dataset with equal share of different modes (or with no class
imbalance). Similarly, the oversampling techniques (i.e., ROS,
SMOTENC, and ADASYN) could mitigate the imbalance
in the original dataset. Thus, the issue of underprediction
for the minority class was substantially alleviated by using
RUS and oversampling techniques, in which the F1 score
of cycling is markedly improved in comparison with the
original dataset. The implication is that using appropriate OUS
techniques could lead to better predictive performance of the
minority class (i.e., cycling in this study) without degrading
the predictive performance of the other classes.

C. Model Interpretation

This section interprets the behavioural pattern and economic
information in the constructed models by computing the
elasticities of four travel modes regarding input variables.
Specifically, for the seven models that achieved a high overall
score (as recommended in Table VII), we calculated the
elasticities for trip-related variables, including mode-specific
duration, cost, and the number of interchanges in transit,
as shown in Table VIII. Figures presenting the elasticities
of each mode for recommended combinations are available
in Appendix C.

In each panel, each entry represents the average elasticities
of all respondents in the testing set, which indicates how much
per cent changes in the choice probability of a mode would
happen as a result of one per cent change of the corresponding
variable. The elasticities of mode choices regarding their
mode-specific variables are highlighted in Table VIII. It can
be found the average elasticities in the models selected were
largely reasonable in terms of signs. The highlighted entries
in Table VIII were mostly negative, which is aligned with
common sense as the higher travel cost and duration will
reduce the probability of selecting the corresponding mode.
However, a few exceptions of highlighted positive values did
exist. For example, the elasticities of the duration of cycling
were positive for the mode of cycling in Panels 2, 5 and 6.
This can be attributed to the local irregularity of DNN or
model non-identification of XGB and DNN models [39]. Local
irregularity refers to that DNN models have locally irregular
patterns (i.e., exploding gradients, the lack of monotonicity)
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Fig. 7. Mode-specific F1 scores.

such that certain choice behaviours revealed by DNNs are not
realistic. On the other hand, the model non-identification of
machine-learning models refers to that the objective function
of XGB or DNN is not globally convex and that the optimi-
sation of XGB or DNN models may identify local minima
or saddle points rather than global minima. In addition, it is
worth noting that all highlighted entries in Panel 1 were
negative except the number of interchanges in public tran-
sit (represented by pt_n_interchanges), which indicates the
MNL model had a good performance in travel behaviour
analysis.

The magnitudes of average elasticities in the models were
mostly valid and consistent with existing studies. Wang et al.
[39] reported the elasticities of travel modes in the same
dataset using DNN and MNL models, which are very similar to
Panels 1 and 5 in Table VIII. Notably, the elasticities of XGBs
were much smaller in magnitude than MNLs and DNNs,
although the relative magnitudes of the elasticity coefficients in
XGBs were similar to those of MNLs and DNNs. For example,
Panel 5 indicates that a 1% increase in accessing time, in-
vehicle travel time and interchange time of public transit
leads to a decrease of 0.55%, 0.34%, and 0.13% probabilities
in using public transit, while in Panel 2, the corresponding
probability decreases are 0.18%, 0.08%, and 0.05%. Although
it is challenging to assess the validity of these results due
to a lack of the ground truth of elasticity coefficients, it is
indicated that these results were reasonable in relative magni-
tudes. This implies a need for further machine-learning-based

mode choice studies that focus on validating the behavioural
outputs [16].

The average elasticities in the models with OUS techniques
were consistent with those using original datasets. If we
compare the results of XGB models in Panels 2, 3, and 4, the
corresponding average elasticities were quite close. Moreover,
the elasticities of DNN models in Panels 5 and 6 were largely
aligned with those reported by Wang et al. [39]. We can
conclude that a combination of OUS techniques and machine
learning models leads to models with valid and intuitive travel
behaviours and economic information.

D. Limitation

In the LPMC dataset, each trip is labelled as one of the four
modes: walking, cycling, public transport, and driving (which
includes car passenger, taxi, van, and motorbike). For journeys
consisting of multiple modes, the assigned mode is the one that
covers the longest distance. This leads to the bias of the travel
modes. The mixed mode prediction can be formulated as a
multi-label classification [47], which predicts one or multiple
labels (from a given label set) for unseen journeys. Another
approach is to create more label classes by combining the
current four modes (e.g., ‘walking-public-transport’); however,
the combination would result in 16 classes of travel modes,
which is challenging for classification. We expect that the class
imbalance issue will exist for both approaches, and therefore
the OUS techniques are likely valid for the mixed mode
prediction.
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TABLE VIII

AVERAGE ELASTICITIES OF FOUR TRAVEL MODES WITH RESPECT TO INPUT VARIABLES

VI. CONCLUSION

Class imbalance is a common and prominent problem in
travel mode data, which leads to the underprediction of the
minority class in travel mode prediction and causes biases
in transport planning and policy-making. Although machine
learning methods have obtained a high predictive accuracy in

predicting travel modes, the problem of class imbalance has
not been adequately discussed and addressed. This paper fills
this research gap by proposing an evaluation framework for
assessing the performance of travel mode prediction methods
and OUS techniques. The contribution of the framework
consists of at least two aspects: first, it examines not only the
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overall performance of prediction with both aggregate and dis-
aggregate metrics, but also the mode-specific performance that
highlights the potential underprediction of minority modes.
This framework also incorporates economic interpretation that
examines whether the prediction provides valid travel behav-
iours. Second, because of the conflict between the aggregate
and disaggregate metrics, we propose the overall score (i.e., the
weighted sum of these metrics) that enables the performance
comparison of travel mode prediction in different scenarios.

Using this framework, we conducted a systematic inves-
tigation of the combinations of statistical/machine-learning
methods (i.e., MNL, DNN, and XGB) and six OUS tech-
niques. It is found that although prediction models with the
original dataset had better aggregate prediction performance,
most OUS techniques could help improve the disaggregate
prediction performance of machine learning models. RUS and
oversampling techniques substantially improve the prediction
of minority modes whilst keeping the overall prediction per-
formance and model interpretation. On the other hand, the
undersampling techniques of OSS and NCR fail to accurately
predict the minority mode. Researchers should be careful about
the selection of OUS techniques based on the purpose of travel
mode choice prediction.

This research suggests that combining OUS techniques
and statistical/machine-learning methods is appropriate for
predicting travel mode, because it can effectively mitigate
the influence of class imbalance while achieving high pre-
dictive accuracy and model interpretation. This methodology
can effectively avoid bias in travel demand prediction and
inform transport policy. For example, cycling is a healthy
travel mode and has been advocated by many countries to
improve micro-mobility and reduce carbon emissions [48],
[49], [50], [51]. Since the outbreak of COVID-19, cycling
has become more popular in many countries by substituting
public transport in short and medium-distance journeys while
keeping social distancing. However, as cycling is much less
popular than driving or buses, the travel demand for cycling
is often underestimated, which causes further problems in
transport resource allocation and policy. While the minor-
ity class differs from area to area, a general principle is
that no mode should be disadvantaged in prediction because
each transport mode benefits some population groups while
excluding others [52]. The methodology proposed in this
research makes it possible to mitigate class imbalance in travel
mode prediction. Moreover, this methodology enriches the
model options for predicting mode choice, thereby providing
greater flexibility of models for decision-making in transport
planning.

The proposed methodology is generalisable to other
classification-based transport studies that are subject to class
imbalance. Some examples are driving safety risk prediction
and driver sleepiness detection [53], [54], [55], where the
frequency of incidents and sleepiness is very low and the data
distribution is highly imbalanced. The proposed combination
of OUS techniques and prediction methods is likely to mitigate
class imbalance and improve the prediction for the minority
classes. The evaluation framework proposed in this paper can
serve to assess whether the class imbalance is addressed.

This research sheds light on several topics that are worth
further investigation to improve mode choice prediction. One
is the prediction of mixed-mode journeys, as this application
is realistic and relevant. Another topic is preference hetero-
geneity in machine-learning mode choice prediction. While
the DNN and XGBoost models in this paper are based on the
average effects of mode choice, it would be interesting to look
beyond the average effects in order to create models with better
performance. Another topic is combining machine learning
and causal inference in travel mode choice. While most
machine learning models are based on associational relations
between variables (e.g., Random Forest and XGBoost), they
are subject to spurious correlation and might have limitations
in model generalisation. Emerging methods that integrate
machine learning with causal inference (e.g., causal forest)
[56] might lead to an accurate and robust model for travel
mode prediction, which is yet to be developed.

APPENDIX

A. Further Details of Mean Absolute Deviations
of Market Share

See Table IX shown in the Supplementary Material.

B. Details of Accuracy and Macro F1 Score

See Tables X and XI shown in the Supplementary Material.

C. Elasticities of Each Mode for Recommended
Combinations

See Fig. 8 shown in the Supplementary Material.
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