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Abstract 

Biodiesel has been referred to as a perfect substitute for diesel fuel because of its numerous 

promising properties. They are renewable, clean, increase energy security, and improve the 

environment. The seed oil of Chrysobalanus icaco was characterised using Gas Chromatography-

Mass Spectrophotometer (GCMS) and Fourier Transform Infrared Spectroscopy (FTIR). The 

heterogeneous solid catalyst of periwinkle shell ash was prepared in 3 forms: raw, calcined and 

acid-activated. They were characterised using Scanning Electron Microscope (SEM) and FTIR. 

The results of the SEM analysis revealed the calcined samples to be a better choice because of 

their larger surface area. The result showed that the oil yield of the used crop was promising for 

commercial biodiesel production, with Chrysobalanus icaco having a yield of 51.90%. 

The reusability of the catalyst for continuous reaction runs showed that the yield of biofuel was 

still high after five cycles: 92.25 - 80.60% for calcined periwinkle shell ash (PSA) catalyst and 

89.26 - 78.50% for acid-activated PSA catalyst. The result of the fuel properties of the biodiesel 

and their blend indicated their suitability for biodiesel production. Methyl ester blends of 20:80 

had viscosity that placed them in 2D grade diesel (2.0-4.3mm2/s), helpful in powering stationary 

equipment. Other fuel properties, including acid value, pour point, flash point and density, were 

within the ASTM D6751 limits for biodiesels. Artificial Neural Network (ANN) was used to 

compare the experimental value to the simulated value using MATLAB 2020. The seed oil of 

Chrysobalanus icaco trans-esterified with methanol using Periwinkle Shell Ash (PSA) catalyst 

was proven to be a good source of biodiesel.  
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Highlights: 

• Extraction and characterisation of Chrysobalanus icaco (C. icaco) oil.  

• Production of biodiesel from the oil using prepared periwinkle shell ash (PSA) as a 

heterogeneous catalyst. 

• Investigation of the process parameters: catalyst concentration, temperature, time, alcohol 

ratio, agitation speed and percentage yield. 

• Determination of the fuel properties of the biodiesel and diesel blends. 

• Comparison of the experimental value with predicted values using an Artificial Neural 

Network 

1. Introduction 

The frailty of fossil-based fuels and their negative environmental outcome when utilised in diesel 

engines has stimulated the hunt for an alternate energy source. Biofuel appears to be a plausible 

option in this pursuit, as it is renewable and environmentally friendly (Dash & Lingfa, 2018). It 

consists of monoalkyl esters of long fatty acid chains synthesised from renewable vegetable oils 

or animal fats, as stipulated by the International Association for Testing and Materials (ASTM). It 

conforms to the standard of ASTM D6751. The non-recyclability of homogeneous alkali catalysts 

and waste generation due to subsequent water washing remained one of the industry's significant 



drawbacks of the biodiesel production (Gholami et al., 2020). Consequently, efficient and 

recyclable heterogeneous catalysts made from low-cost materials are a research goal in the 

biodiesel sector to reduce production costs and waste creation (Ogbu et al., 2018).  

 

Trans-esterification is a chemical process used to produce biodiesel that uses either homogeneous 

(acid or basic) or heterogeneous (acid, basic, or enzymatic) catalysts. Research has shown that 

heterogeneous base-catalysed trans-esterification is probably the most popular method because of 

its fastness and high product yields in short reaction periods (Kara et al., 2019). However, the 

water content of oils/fats and free fatty acids, the molar ratio of glycerides to alcohol, catalysts, 

reaction time, and reaction temperature all impact the trans-esterification reaction (Laskar et al., 

2018). An acid pretreatment is required to convert the free fatty acid (FFA) to the appropriate 

methyl/ethyl ester, which is then trans-esterified. The FFA of various feedstock-based triglycerides 

varies significantly depending on soil, environment and chemical composition (Okonkwo et al., 

2021). 

Feedstock for biodiesel production can be sourced from vegetable seed oils, waste cooking oil, 

and animal fats (Verma et al., 2016). Some cheap feedstocks have a significant potential for 

producing more competitive and sustainable biodiesel because they are high in free fatty acids 

(FFAs) and moisture (Pikula et al., 2020). Using a standard base-catalysed trans-esterification 

method creates processing difficulties when converting such feedstock into biodiesel. High FFAs 

and moisture deactivate base catalysts, resulting in unwanted product (soap) formation and 

difficulty separating the product, leading to a low biodiesel yield (Ogbu et al., 2018). Cocoplum 

(Chrysobalanus icaco) is a medium-sized shrub endemic to the coast of South America. They are 

used to cure leucorrhoea, bleeding, and persistent diarrhoea in traditional medicine. They are well-

known for their diuretic, hypoglycemic, and anti-antigenic properties. In Northern Brazil, the roots 

are used to cure diabetes. Several phytochemical investigations on its fruits have revealed the 

presence of myricetin and pomolic acid. There have also been claims that it has anti-hyperglycemic 

properties (Feitosa et al., 2012). The leaves have been found to restore insulin sensitivity and blood 

glucose levels while preventing weight gain in rats fed with a high-fat diet (White et al., 2016). 

The seed oil included triacylglycerides and a high concentration of unsaturated fats, particularly 

conjugated linoleic fatty acyls. The presence of palmitic, stearic, oleic, and linoleic acids in the 

hydrolysate was revealed by GC analysis of the hydrolysed fats (de Aguiar et al., 2017).  



 

An artificial neural network (ANN) is a computational system meant to evaluate and process 

information in the same manner as the human brain. It is the origin of artificial intelligence (AI), 

which provides answers to a wide range of issues that have been proven to be difficult or 

impossible by human or statistical criteria. It is a contemporary computation approach that uses 

non-linear modelling and complicated datasets. It is critical to link experimental evidence with 

theoretical truths in various disciplines. It is a statistical tool whose modelling formulation style is 

based on the simulation of the structure and functions of biological neural networks. Every ANN's 

fundamental building component is an artificial neuron, a simple mathematical model (function) 

(Bravo-Moncayo et al., 2019, Hamad et al., 2017, Steinbach & Altinsoy, 2019, Babalola et al., 

2018). A model of this type includes three basic sets of rules: multiplication, summation, and 

activation (Maran et al., 2013, Desai et al., 2008). The ability to detect accurately from minute to 

large data sets, which are relatively cheap with less time consumption, has made ANN more 

popular. It is adaptable to numerous disciplines like neuroscience, computation analyses, chemical 

and environmental engineering, engineering design and application (Khudsange & Wasewar, 

2017). The inputs are weighted at the entry of the artificial neuron, meaning that each input value 

is multiplied by the individual weight. The sum function, which sums all weighted inputs and bias, 

is located in the centre part of the artificial neuron. The total of previously weighted inputs and 

bias is passed through an activation function, also known as a transfer function, at the exit of an 

artificial neuron to create a response. The ANN toolbox from MATLAB is an excellent tool for 

such predictive analysis (Ayoola et al., 2020, Okwu et al., 2019, Ewim et al., 2022). 

There have been several reports and reviews on biodiesel production from different feedstocks 

ranging from vegetable oil, animal fats, waste cooking oil and algae (Verma et al., 2016, Singh et 

al., 2020, Ghazali et al., 2015). However, the use of edible vegetable oils as biodiesel feedstock 

has been of concern as its requirement is increasing, competing with the food supply in the long 

term. Prime importance is given to alternative biodiesel feedstocks like non-conventional seed oils 

as these oils will not cause a food crisis leading to economic imbalance. Only one report describing 

the influence of methanol, ethanol and propanol on the quality of biodiesel produced from icaco 

oil has been published (Ramirez, 2021). To the best of our knowledge, there has not been any other 

report of the use of Chrysobalanus icaco as feedstock (Sanjay, 2013, Singh et al., 2020, Ambat et 

al., 2018, Shahid & Jamal, 2011). Hence, our research focuses on the production and performance 



evaluation of biodiesel from Chrysobalanus icaco seed oil using a natural heterogeneous catalyst. 

It will complete the information gap of utilising other feedstocks to diversify feedstock available 

in our local environment for their bio-fuel property and usability. 

2. Materials and Methods 

2.1. Materials - All the reagents were obtained from Sigma Aldrich and used without further 

purification. The flashpoint was recorded with a Pensky Martens flashpoint tester, while the 

Soxhlet extractor was used to extract the oil from the raw seeds. Calcination was achieved with a 

Muffle furnace. The TECHNO R175A diesel engine was used to check the biodiesel's burning 

capacity. A digital density meter (model AP PAAR DMA 35) and a viscometer were used to test 

the seed oil and ester blends' densities and viscosity. Fourier-transform infrared spectroscopy 

(FTIR) was used to analyse the catalyst and seed oil functional group. A spectrophotometer 

(8400SSHIMADZU) and Emission Scanning Electron Microscope (JSM-670IF) were used to 

check the morphology of the catalyst. GC- MS QP2010 Plus Shimadzu Japan was used to identify 

the components of the produced ester. 

2.2. Sample Collection and Oil Extraction - A sample of cocoplum seed was purchased from a 

local market in Onitsha, Anambra State, Nigeria. A taxonomist identified the sample to be 

Chyrysobalanus icaco. The raw sample of Chyrysobalanus icaco was sun-dried before being 

crushed in an industrial blender. It was sieved via a sieve with a mesh size of 80 µm. 

2.3. Oil Extraction by Soxhlet Extraction - The dried sample (Chyrysobalanus icaco seeds) was 

weighed into the semi-permeable cotton material in the thimble of a Soxhlet extractor (500 mL). 

The Soxhlet was connected to a condenser fixed to a round bottom flask containing n-hexane (400 

mL). The Soxhlet extraction system was refluxed until all the oil had been removed from the 

sample. The de-fatted sample was discarded, and the bottom layer was concentrated in vacuo to 

afford the extracted Chyrysobalanus icaco oil, whose percentage yield was calculated. 

2.4. Catalyst Preparation and Characterisation - The periwinkle shell sample picked from a 

local restaurant in Uwani, Enugu, Nigeria, was cleaned, dried, and crushed into a fine paste. A 

sample of the periwinkle shell (5 g) was calcined to calcium oxide at 800 0C for 2 h. Some sample 

(10 g) of the ground periwinkle shell was acidified with conc. sulphuric acid (10 mL) and rinsed 

with distilled water (approx. 20 mL) until the pH was 7. The samples were dried in an oven 



thoroughly and characterised by SEM and FTIR. The characteristics of the catalyst are shown in 

Table 3. 

2.5. Biodiesel production (trans-esterification) - To the catalyst (0.5 g) in a three-neck reactor 

(500 mL) for each experiment, was added methanol (300 mL). The mixture was stirred for 10 min 

until complete dissolution. The oil (50 mL) was then added, and the reaction mixture refluxed 2 h 

at 70 0C. The reaction mixture was transferred into a separating funnel and allowed to stand for 12 

h to allow for glycerol separation. The layers were separated. The methyl ester (biodiesel) was 

washed with hot water and transferred into a beaker (250 mL). It was then heated to 105 0C to 

eliminate moisture and allowed to cool to room temperature. The process was repeated for the 

various forms of PSA catalysts (Okonkwo et al., 2021). 

2.6. Preparation of Biodiesel Blends - Biodiesel blends with fossil diesel of 20%, 40%, 60%, 

80% and 100% coded B20, B40, B60, B80 and B100, respectively, were prepared for characterisation 

studies. Fuel properties studied included acid value, density, flash point, pour point and viscosity 

at different temperatures.  

    

 

 

 

 

 



 

Figure 1: Various processes in the production of the biodiesel 

2.6. Artificial Neural Network (ANN) Model 

ANN Model comprises an input, hidden and output layer. The modelling has a high potential to 

contribute to developing renewable energy systems by accelerating biodiesel research (Satya 

Lakshmi et al., 2020). The experimental design indicates how to obtain the optimal response 

(Thiruvengadaravi et al., 2009). ANN determination aims to evaluate the performance of 

differently prepared samples of the periwinkle shell as catalysts in biodiesel yield in the trans-

esterification of C. icaco seed oil and formulate a system that relates process variables and 

biodiesel yield using the ANN modelling technique. 

3. Results and Discussion 

The results of the physicochemical properties of the extracted seed sample are presented (Table 

1). The oil obtained from Chysobalamus icaco was light brown, and the crop's percentage oil yield 

was high for large-scale biodiesel production. 

Table 1: Physicochemical Properties of the Extracted Oils from C.icao 

Properties                                C.icao seed 

oil 

Colour light brown 

Yield (%) 51.90  

Moisture (%) 3.5 

Kinematic viscosity @ 40 oc  

(mm2s-1) 

24.16 

Refractive index @ 29 oc 1.457 

Energy value (kJ/kg) 43729 

Acid value (mg KOH/g) 0.9 

Saponification (mg KOH/kg) 185 

Peroxide value (meq/kg) 0.93 



Iodine value (g/100 g of oil) 107 

Molecular weight (g/mol) 771.66 

Flashpoint (oc) 260 

Cloud point (0c) 12 

Pour point (oc) 6.00 

Fire point (oc) 269 

Density (gmL-1) 0.9278 

  

The overall properties depicted C.icao seed oil as a good source of oil for biodiesel production 

because most of the values conformed to the ASTM standard for oils used in biodiesel production.  

The acidic compounds possibly found in biodiesel were from the residual mineral acids from the 

production process, residual free fatty acids from the hydrolysis or post-hydrolysis process of the 

esters, and finally, from the oxidation by-products in the form of other organic acids (Berthiaume 

& Tremblay, 2006). Their acid value was low, indicating that the oil could be processed directly 

into biodiesel using the base-catalysed trans-esterification method (Thiruvengadaravi et al., 2009). 

High FFAs in oil deactivate the base catalyst and lead to soap formation with a decrease in 

biodiesel yield.  

The results of iodine value showed 107 for C. icao seed oil, indicating that it is a non-drying oil. 

The greater the iodine content, the more unsaturated the oil, and the faster it oxidises and 

polymerises. The higher the degree of unsaturation in fatty acids, the more susceptible to lipid 

peroxidation (rancidity). However, antioxidants can protect lipids against lipid peroxidation. 

Biodiesel with a high iodine content may polymerise and produce deposits on injector nozzles, 

piston rings, and piston ring grooves. The polymerisation propensity rises with the degree of 

unsaturation of the fatty acids (Barabás & Todoruţ, 2011). As a result, biodiesel with a high iodine 

content will be less stable at higher temperatures. The Euro norm for iodine value in biodiesel EN 

14214 is 120, while the German standard for DIN 5160 is 115 (Calais & Clark, 2004). The type 

and ester content of the feedstocks used in biodiesel production significantly impacts the iodine 

value. Kinematic viscosity directly impacts fuel performance, such as atomisation and combustion 

quality. The kinematic viscosity of the oil was higher than that of the petrol-diesel due to the fatty 

acid composition and molecular weight of the oil (Ezekwe & Ajiwe, 2011). The oil's kinematic 

viscosity was within the ASTM range (Knothe & Steidley, 2018).  

GC-MS Chart of the Produced Biodiesel 

The chart of the produced biodiesel is presented (Figure 2).  



 

Figure 2: The produced biodiesel chart 

 

 Table 2:  Fatty acid profile of C. icao methyl ester seed oil 

S/no Common name  Systematic name Short-hand  R. A (%) 

1. Palmitic acid Hexadecanoic acid C16:0 6 

2 Stearic acid Octadecanoic acid C18:0 25 

3 Oleic acid cis-9-octadeaoic acid C18:1 20 

4 Linoleic acid cis-9,12,15-otacatrienoic acid C18:3 13 

5.  α-parinaric octadeca-9,11,13,15-tetraenoic 

acid 

C18:2 11 

5. α-licanic 4-oxooctadeca-9,11,13-trienoic 

acid 

C18:3 10 

6.  Almonic acid 4-oxo-octadeca-cis-9-trans-11-

trans-13-cis-15-tetraenoic acid 

C18:4 18 

7.  Arachidic acid 5,8,11,14-Eicosatetraenoic acid C20:1 Trace 

 

Palmitic acid is a natural antioxidant. Table 2 revealed that the principal saturated fatty acids 

contained in C.icao were stearic acid (25%) and palmitic acid (6%), with oleic acid (20%) being 

the sole unsaturated fatty acid while linolenic acid (13%) was the only polyunsaturated fatty acid. 

These findings indicated that C. icao might have high oxidation stability without the need for 

additives to promote oxidation stability. 

Table 3: Catalysts characterisation of PSA 

Parameter Raw  Acid activated Calcined 

Moisture (%) 0.05 0.06 0.04 



 

 

Bulk density (g cm-3) 

 

0.729 0.571 0.539 

pH 

 

6.74 5.73 6.07 

Surface Area (m2 g-1) 

 

755 821 856 

Carbon (%) 

 

4.08 1.24 2.17 

Organic Matter (%) 

 

12.09 3.68 6.44 

Loss On Ignition (%) 

 

9.29 3.96 0.85 

Particle Density (gcm-3) 1.52 1.39 0.83 

Total porosity (%) 

 

52.04 58.92 35.06 

Ash (%) 

 

3.09 2.44 1.76 

 

3.1. Surface Morphology of the Catalyst  

The scanning electron microscope (SEM) was used to elucidate the morphology of the catalysts 

(Fig 3). The SEM scans showed that the pore widths of the carbon structures in the PSA catalysts 

increased as the carbonisation period increased and collapsed afterwards. The pores in the calcined 

catalysts were the most extensive and most ordered. The high pore diameters improved the surface 

area of the catalyst and favoured bio-oil transformation. For the catalyst made from PSA, partial 

carbonisation at 800 oC took longer than 60 min to generate large pore diameters. The biomass 

conversion might cause the breakdown of the carbon structure after 1 h of carbonisation into 

graphite (Wang et al., 2014).  



 

                    PSA Raw                                                               PSA Calcined 

 

                                                               PSA Acidified 

Figure 3: SEM images of PSA catalyst obtained from the raw, calcined, and acidified form 

3.2. Catalyst Reusability 

The activity and stability of the catalyst were investigated by reusing it. The samples were calcined 

and re-acidified after each run. The calcined form was prepared by subjecting the raw PSA to 800 

0C for 2 h. The acidified form was prepared by acidifying the raw PSA (5 g) with Sulphuric acid 

(5 mL) and rewashed till no trace of acid was detected by testing with litmus paper.  

 

 

 



Table 4: Regeneration of PSA Catalyst 

Regeneration Runs The catalyst remains 

after each run 

Yield of CSO (vol. %) 

(acid-activated) 

Yield of CSO (vol. %) 

(calcined) 

1 1.8 89.26 92.25 

2 1.3 84.50 87.40 

3 0.9 82.80 85.90 

4 0.5 80.70 82.10 

5 0.2 78.50 80.60 

 

 

Figure 4: Regeneration of PSA Catalyst 

The reusability of the catalyst for subsequent transesterification runs was studied under the same 

operating conditions after trans-esterification at the optimum operating conditions: methanol: oil 

(10:1 ratio), catalyst (0.75 g) and 1.5 h reaction time. The initial regeneration run yielded 89.26% 

and 92.25% for the acid-activated and calcined catalyst for CSO conversion to biodiesel. After the 

fifth regeneration run, it dropped to 78.50% and 80.60%, respectively, for the catalyst's acid-

activated calcined form.  

The reusability of the catalyst was evaluated by observing process parameters. The percentage 

conversion for the calcined (carbon-based) was higher than that of the acid-activated. In the fourth 

cycle, there seemed to be a decrease in the catalytic activity due to some active sites’ deactivation 

by impurity. It can also be deduced that the leaching of calcium oxide content in the catalyst was 

the main reason for the sudden drop in conversion.(Kostić et al., 2016, Satya Lakshmi et al., 2020).  

 

Table 5: Fuel Properties of C. icaco Seed Oil and its Derivative. 
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Sample Density 

at 28 oC 

Flash

point 

(oC) 

Calorific 

Value 

(J/kg) 

Pour 

poin

t 

(oC) 

Viscosity at 

40 oC 

(mm2/s) 

Viscosity at 

70 oC 

(mm2/s) 

Viscosity at 

100 oC 

(mm2/s) 

Acid value 

(mgKOH/g) 

Diesel 0.8529 76 45179 -8 3.93 2.03 1.43 0.45 

C. icaco 0.9278 260 43729 6 24.16 14.06 6.05 1.35 

Sample 1 PSA  CALC.  METH.    

B100 0.890 190 44357 6 12. 20 6.08 3.80 1.12 

B80 4.0.884 176 44752 4 10.08 4.50 2.40 0.94 

B60 0.870 152 44938 2 8.20 3..45 1.95 0.88 

B40 0.854 138 44354 -2 6.02 2.78 1.68 0.62 

B20 0.844 112 45520 -4 4.20 1.38 0.80 0.32 

Sample 2 PSA  ACID  METH.    

B100 0.870 186 44938 4 11.80 5.82 3.20 1.38 

B80 0.863 174 45124 3 9.20 4.50 2.42 1.24 

B60 0.852 155 45334 2 7.56 3.56 1.87 0.98 

B40 0.834 132 45729 1 5.42 2.74 1.06 0.82 

B20 0.820 104 45915 -1 5.98 1.96 1.26 0.65 

ASTM 0.8-0.9 100 NA 16 1.9-6.0 NA NA 0.80 
NA= not available, min= minimum, max= maximum, PSA= periwinkle shell ash, CALC= calcined, ACID = acidified, METH = methyl ester,   

Most samples were within the ASTM range for standard diesel from the result of the blended diesel 

samples. Sample 1 was produced by trans-esterifying C. icaco seed oil with methanol using a 

calcined PSA catalyst. In contrast, sample 2 was produced by trans-esterifying C. icaco seed oil 

with methanol using an acid-activated PSA catalyst. Their viscosity decreased with continuous 

blending at a higher temperature.  

3.3. Experimental design  

The experimental data of the FAME yield for various catalyst amounts, speed of agitation, molar 

ratio, and temperature are presented (Table 6). The study's dependent variables were % FAME 

yield, and the independent variables were methanol/oil molar ratio, catalyst quantity, agitation 

speed, and temperature. The data were input into the ANN toolbox for kinetic simulation of the 

process with twenty-five experiment samples.   

 

Table 6: Experimental results illustrating the FAME yield from C. icao oil using PSA in 3 different forms.  

 
 

Input 

variable 
Exp. Value Exp. Value Exp. Value 

Std Run 
A:A 

Catalyst. 

Conc. 
Yield 1 Yield 2 Yield 3 

  % wt of 

Oil 
vol.% (Raw) 

(vol.%) (acid 

activated)  

(vol.%) (calcined) 

1 23 0.75 51 65 69 

2 14 3.75 51 65 69 

3 12 0.75 61 65 69 

4 30 3.75 61 65 69 



5 20 0.75 51 73 69 

6 13 3.75 51 73 69 

7 5 0.75 61 73 69 

8 7 3.75 61 73 69 

9 9 0.75 51 65 75 

10 2 3.75 51 65 75 

11 16 0.75 61 65 75 

12 4 3.75 61 65 75 

13 18 0.75 51 73 75 

14 3 3.75 51 73 75 

15 11 0.75 61 73 75 

16 26 3.75 61 73 75 

17 6 -0.75 56 69 72 

18 25 5.25 56 69 72 

19 22 2.25 46 69 72 

20 24 2.25 66 69 72 

21 15 2.25 56 61 72 

22 21 2.25 56 77 72 

23 29 2.25 56 69 66 

24 28 2.25 56 69 78 

25 27 2.25 56 69 72 

26 10 2.25 56 69 72 

27 19 2.25 56 69 72 

28 17 2.25 56 69 72 

29 8 2.25 56 69 72 

30 1 2.25 56 69 72 

 

 

Table 6 shows the result of biodiesel production obtained using the design expert in MATLAB to 

simulate the values. The values corresponded to values obtained during the experiment in the 

laboratory. 

The results confirm that the transesterification of vegetable oils using methanol significantly 

improves their fuel properties (Table 5). The viscosity dropped as the oil was converted to methyl 

esters from 24.16 - 4.20 mm2/s for calcined PSA and 5.98 mm2/s for acidified PSA of the 

transesterified oil (C. icaco). That was within the ASTM range of 1.9 - 6.0 mm2/s for standard 

diesel. The reduction in their viscosity is because of replacing heavy alcohol (glycerol) in the oil 

with simpler alcohol (methanol). High viscosity is a significant drawback in using vegetable oil 

directly as an alternative fuel in diesel engines(Ajiwe et al., 2006, Jaichandar & Annamalai, 2011). 

The higher the viscosity, the greater the risk of causing problems (Knothe & Steidley, 2005). The 

aim of the transesterification of vegetable oils and animal fats for fuel purposes is to reduce their 

viscosity.  



The blending of methyl esters with petroleum diesel improved their viscosity significantly. Methyl 

esters/diesel (20: 80) of the feedstocks had viscosity that placed them in 2D grade diesel (2.0 - 4.3 

mm2/s) which attributed to their recommendation in the fuelling of mobile equipment while the 

higher blends fell within 4D grade diesel (5.0 - 34.0 mm2/s) and could be used for powering 

stationary equipment (Juliana & Egbulefu, 2015). 

The flash points of the feedstocks decreased as they were converted to methyl esters from 260 -

112 oC for calcined PSA and 260 -100 oC for acidified PSA. The flashpoint is the least temperature 

at which a fuel will start to vaporise to form an ignitable mixture when it comes in contact with 

air. It is a safety indicator of fuel. During the transesterification process, the volatile components 

of the parent oils were reduced. They thus gave a lower yield of the flash point of the fuels—the 

ASTM specified minimum of 130 oC flash point for sole biodiesel. European specifications require 

at least 101 oC, whereas in the US, as low as about 93 oC is allowed (Giakoumis & Sarakatsanis, 

2019).  

The pour point showed that the fuel would not have operational problems during cold weather (as 

low as 6 oC). Other fuel properties of the methyl esters/diesel blends, including acid values and 

density, were within ASTM D6751 limits. Therefore, the samples could be used as alternative 

diesel fuels.  

The results from the calcined PSA showed a slight disparity in the acidified PSA's acid values 

(Table 5). Their acid values were on the high side for the acid-activated compared to that of the 

calcined samples, although the acid values decreased with continuous blending (Ogbu & Ajiwe, 

2016). 

3.4. ANN Structure  

The neural network toolbox used is called from the MATLAB program 2021 version. Levenberg–

Marquardt (LM) ANN fitting tool and Logistic Sigmoid Activation Transfer Function 5–15–3 

(number of input layer, neurons in hidden layer and output layer nodes) model were implemented 

using the available experimental data (Fig. 5). Weight parameters were continuously iterated (or 

refined) to achieve a model with the best possible fit (see Table 7). 

 



 

Figure 5: Structure of the ANN Model with Input, Hidden and Output Layer 

 

Table 7: ANN Result for MSE and R-value of the FAME yield for the variables indicated 

 Samples MSE R 

Training 70%         14.35873e-0 8.65794 e-1 

Validation 15% 28.52223e-0 9.03240 e-1 

Testing 15% 8.56118e-0 9.46037 e-1 

 

Training is the manipulation of input weights (Arulsudar et al., 2005). Data processed by ANN 

must be classified into two groups. The training set group is used to train the ANN model. The 

other group, known as the validation and testing set, contains data that differs from the data in the 

training set. The validation and testing data are used to assess the conformity rate of the trained 

ANN model. There is no way to describe the relationships and formulas used by ANN once the 

network has been successfully trained. 

The training process is also available in various mechanisms and can be divided into two 

categories: supervised and unsupervised. The supervised training method divides the dataset into 

two groups: validation and testing. The conformity rate on the validation dataset is evaluated 

during the training iterations. Unsupervised training is used for system optimisation, such as 

reducing energy consumption or increasing profit (Balik et al., 2014). Once the ANN has been 

trained and tested with the appropriate weights, it can be used to predict the output. 

 

 

 



 

             Figure 6: ANN Regression Result for Training, Testing and Validation of Dataset 

The R values obtained for training, testing and validation were 0.866, 0.946 and 0.903, 

respectively. An overall value of 0.86985 was obtained (Fig. 6). The training outcome clearly 

showed a worthy agreement between the predicted ANN solution model and the result obtained 

from the experimental yield of biodiesel. The error was significantly minimal. As earlier stated, 

the satisfactory point is the point where there is a tendency to obtain a perfect connection between 

determined variables (Krenker et al., 2011). This further means that the solution obtained is 

satisfactory when the coefficient of determination falls between 0.7 and 1.0. A value of less than 

0.7 is considered below the range of acceptable solutions (Okwu et al., 2019).  



 

Figure 7: Error histogram of the model 

Figure 7 depicts the error histogram for the whole process, highlighting the training, validation, 

testing, and minimal error. The training set is represented by blue lines, the testing dataset by red 

lines, and the validation dataset by green text in the error histogram. A thin straight line in the 

orange text shows the point on the graph when the error tends to zero. Using the back-propagation 

algorithm method, an error histogram with 20 bins revealed the slightest error of -0.1667 in the 

study. A perfect validation check was reached at Epoch 3. A satisfactory regression plot was 

obtained for training, validation, test, and overall plot, using the result generated from the 

experiment for PSA raw, calcined and acidified catalysts. The satisfactory point is the point where 

there is a tendency to obtain a perfect connection between determined variables. 

Table 8: ANN solution for the predicted values of C. icao using the 3 forms of PSA in different 

forms (raw, acid-activated and calcined) 

 

Std 

Run 

A:A 

Input 

variable 

Catalyst. 

Conc. 

% wt of 

oil 

Output 

value 

Yield 1 

vol.% (Raw) 

Output 

Value 

Yield 2 

(vol. %) 

(acid-

activated) 

Output 

value 

Yield 3 

(vol.%) 

(calcined) 

ANN 

Predicted 

value 

Yield 

vol.% 

(Raw) 

ANN 

Predicted 

value 

Yield 

(vol. %) 

(acid-

activated) 

ANN 

Predicted 

value 

Yield 

(vol.%) 

(calcined) 

1 9 0.75 57.6666 68.9999 73.0000 57.6666 68.9999 73.0000 

2 6 3.75 56.7143 69.5715 71.5714 56.7143 69.5715 71.5714 

3 2 0.75 57.6666 68.9999 73.0000 57.6666 68.9999 73.0000 

4 14 3.75 56.7143 69.5715 71.5714 56.7143 69.5715 71.5714 



5 10 0.75 57.6666 68.9999 73.0000 57.6666 68.9999 73.0000 

6 8 3.75 56.7143 69.5715 71.5714 56.7143 69.5715 71.5714 

7 4 0.75 57.6666 68.9999 73.0000 57.6666 68.9999 73.0000 

8 19 3.75 56.7143 69.5715 71.5714 56.7143 69.5715 71.5714 

9 1 0.75 57.6666 68.9999 73.0000 57.6666 68.9999 73.0000 

10 13 3.75 56.7143 69.5715 71.5714 56.7143 69.5715 71.5714 

11 23 0.75 57.6666 68.9999 73.0000 57.6666 68.9999 73.0000 

12 11 3.75 56.7143 69.5715 71.5714 56.7143 69.5715 71.5714 

13 12 0.75 57.6666 68.9999 73.0000 57.6666 68.9999 73.0000 

14 24 3.75 56.7143 69.5715 71.5714 56.7143 69.5715 71.5714 

15 18 0.75 57.6666 68.9999 73.0000 57.6666 68.9999 73.0000 

16 3 3.75 57.6667 69.0000 73.0000 57.6667 69.0000 73.0000 

17 7 -0.75 57.6667 69.0000 73.0000 57.6667 69.0000 73.0000 

18 20 5.25 57.6667 69.0000 73.0000 57.6667 69.0000 73.0000 

19 15 2.25 57.6667 69.0000 73.0000 57.6667 69.0000 73.0000 

20 5 2.25 57.6667 69.0000 73.0000 7.6667 69.0000 73.0000 

21 25 2.25 57.6667 69.0000 73.0000 57.6667 69.0000 73.0000 

22 17 2.25 57.6667 69.0000 73.0000 57.6667 69.0000 73.0000 

23 21 2.25 57.6667 69.0000 73.0000 57.6667 69.0000 73.0000 

24 22 2.25 57.6667 69.0000 73.0000 57.6667 69.0000 73.0000 

25 16 2.25 57.6667 69.0000 73.0000 57.6667 69.0000 73.0000 

 

After heedful parametric studies, it became necessary to test the predictive strength of the model 

techniques using statistical variables such as R - correlation coefficient, R2 - regression coefficient, 

root-mean-square error (RMSE) are applied. The equations for computing the above-mentioned 

statistical variables are presented in systems of Equations 1-5.  

𝑅 =  (
∑ (𝑌𝑃𝑟𝑒𝑑.𝑚−𝑦𝑃𝑟𝑒𝑑)(𝑌𝑒𝑥𝑝.𝑚−𝑦𝑒𝑥𝑝)𝑛

𝑚=1

√∑ (𝑌𝑃𝑟𝑒𝑑.𝑚−𝑦𝑃𝑟𝑒𝑑)2𝑛
𝑚=1 ∑ (𝑌𝑒𝑥𝑝.𝑚−𝑦𝑒𝑥𝑝)

2𝑛
𝑚=1

)     (1) 

𝑅2 = 1 −
∑ (𝑌𝑖,𝑃−𝑌1,𝑒)

2𝑛
𝑖=1

∑ (𝑌𝑖,𝑃−𝑌𝑒,𝑎𝑣𝑒)
2𝑛

𝑖=1

          

            (2) 

𝑅𝑀𝑆𝐸 =  √∑ (𝑌𝑖,𝑒−𝑌𝑖,𝑝)
2𝑛

𝑖=1

𝑛
          

          (3) 

MAE =  ∑
⌊(Yi,e − Yi,p)⌋ 

n
                                                                                                   (4)

n

i=1

 

 



SEP =
RMSE

Ye,ave
                                                                                                                          (5) 

 

 

Ypred represents the predicted value of samples, Yexp is the experimental value, Yi is the observed 

value of samples, Ye is the estimated value of samples, and N represents the number of samples. 

A, B, and C denote independent variables, and βij is the coefficient of linear terms. 

The result obtained from the predicted values in Table 8 showed some similarities with the 

experimental results (Table 6). This led to the efficacy of using the ANN predictive tool to simulate 

the production of C. icaco using a PSA catalyst in 3 different forms (raw, calcined and acid-

activated). Using the statistical indicator showed that the coefficient of determination (R2) of the 

ANN models is 0.903. The root-mean-square-error (RMSE) for the best ANN is obtained at 

1.3723, mean average error (MAE) of 0.650, and a standard error of prediction (SEP) is 

0.57259489. 

4. Conclusion 

Biodiesel production as developing alternative fuels is intriguing. The use of C. icaco in biodiesel 

production reduces the cost of biodiesel. It is advantageous because C. icaco is inexpensive and 

widely available. We have shown potential for future commercialisation of biodiesel production 

from C. icaco using calcined PSA as a catalyst(Mishra & Goswami, 2018)(Mishra & Goswami, 

2018)(Mishra & Goswami, 2018)(Mishra & Goswami, 2018)(Mishra & Goswami, 2018)(Mishra 

& Goswami, 2018)(Mishra & Goswami, 2018)(Mishra & Goswami, 2018)(Mishra & Goswami, 

2018)(Mishra & Goswami, 2018)(Mishra & Goswami, 2018)(Mishra & Goswami, 2018). From 

our study, the oil yield of the crops was suitable for commercial biodiesel production of C. icaco 

(51.90%). The activities of the catalyst varied based on their pore sizes and hydrolytic stability. 

SEM images of the catalyst showed that the calcined form of the catalyst had a larger surface area 

than the raw and acid-activated. The reusability of the catalyst for continuous reaction runs was 

studied under the same operation conditions, and it was observed that the biofuel yield was still 

high after five runs. The ANN environment from MATLAB proved to be a beneficial tool for 

correlation and simulation. ANN offered an accurate analysis of complicated issues. As a result, it 

has been demonstrated that ANN may be used to forecast the performance of C. icaco seed oil as 



a potential oil for biodiesel. In this approach, instead of expensive and time-consuming 

experimental investigations, it would be able to perform time- and cost-effective experiments. 
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