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As social networks are ubiquitous in everyday life, problems such as misin-
formation, bots and polarisation of opinion gain more and more importance.
This paper focuses on the last one as we propose novel methods to reduce
the amount of polarisation in a social group. We leverage the voter model in
which users hold binary opinions and repeatedly update their beliefs based
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on others they connect with. Stubborn agents who never change their minds
(“zealots”) are also disseminated through the network. We are interested
in two equilibrium metrics, the diversity of opinions σ and the density of
active links ρ. The latter is a measure of the exposure to adverse opinions.
We derive formulas to compute them that are valid in any directed, weighted
network. Then we study the problem of finding optimal numbers of zealots in
order to maximise these quantities. We account for the presence of a backfire
effect, which may lead the group to react negatively and reinforce its level of
polarisation in response. We provide exact solutions in the specific context
of a complete unweighted graph, and propose a method for σ in the general
case. Finally we apply these problems to the network of the US House of
Representatives. The network exhibits high levels of opinion diversity but
lower levels of active links density. We find optimal numbers of zealots that
maximise these quantities and show that both can be efficiently increased in
some cases.

1 Introduction

In recent years, recommendation algorithms on social platforms have greatly enhanced
confirmation bias by showing users content that is the most susceptible to match their
interests — the so-called filter bubble effect (Pariser, 2011). As a consequence, more and
more isolated, tightly clustered online communities of similar-minded individuals, often
referred to as echo chambers, have arisen in various domains such as politics (Cota et al.,
2019; Del Vicario et al., 2017; Garimella et al., 2018), healthcare (Allington et al., 2020;
Holone, 2016; Mønsted and Lehmann, 2022) or science (Williams et al., 2015). Be-
cause of the so-called backfire effect, presenting these users with opposing informa-
tion might have the adverse effect of reinforcing their prior beliefs (Bail et al., 2018;
Schaewitz and Krämer, 2020). Finding ways to prevent such polarisation of opinion is a
great challenge in the actual world. This paper is a step in this direction, as we propose
ways of maximising the diversity of beliefs as well as the exposure to adverse views in a
social group.

To this end we rely on the well-known voter model, in which each user holds one of
two possible opinions (e.g. liberal of conservative, pro or anti-abortion) and updates
it randomly under the distribution of others’ beliefs. Independently introduced by
Clifford and Sudbury (1973) and Holley and Liggett (1975) in the context of particles
interaction, this model has since been used to describe in a simple and intuitive manner
social dynamics where people are divided between two parties and form their opinion
by observing that of others around them. We assume some of the users are stubborn
and never change opinion. We call them zealots as in Mobilia (2003); Mobilia et al.
(2007). They can represent lobbyists, politicians or activists for example. Long time
dynamics and limiting behaviour of such processes have been subject to several studies
(Mobilia et al., 2007; Mukhopadhyay, 2020; Yildiz et al., 2013).

To achieve our goal we propose equilibrium formulas for both the opinion diversity σ
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and density of active links ρ, which is the proportion of connections that join opposite-
minded users. The former is based on earlier results from Masuda (2015). The latter
uses a mean-field approximations and we show that it performs well when compared to
numerical simulations. We then study the problems of maximising these quantities by
turning free (i.e. non-zealous) users into zealots under the presence of a backfire effect.
This effect we model by assuming that any increase in the number of zealots entails the
radicalisation of some non-zealous users, turning them into zealots with the opposite
opinion. We provide exact solutions in the specific case of a complete, unweighted
network for both the problems of σ and maximising ρ. For σ we also propose a method
to optimise it in general networks.

Finally we apply our findings on a real-life dataset. Namely, we study the evolution
of the composition of the US House of Representatives since 1947. We assimilate it to a
realisation of the voter model and estimate the corresponding quantity of zealots based
on empirical values of the equilibrium metrics σ and ρ. We then solve our maximisation
problems in this case and find that maximising ρ by acting on Democrat zealots can
help increase both ρ and σ.

All code used is available online1.

2 Related Literature

Perhaps the earliest milestone in the study of opinion dynamics are the works from
French (1956) and DeGroot (1974) who studied how a society of individuals may or
may not come to an agreement on some given topic. Assuming the society is connected
and people repeatedly update their belief by taking weighted averages of those of their
neighbours, they showed that consensus is reached. That is, everyone eventually agrees.
Various other models have been developed since, to tackle the question of under which
circumstances and how fast a population is able to reach consensus. Amongst others,
Friedkin and Johnsen (1990) introduce immutable innate preferences, Axelrod (1997)
studies the effect of homophily, Banerjee and Fudenberg (2004) assume individuals are
perfectly rational and Jadbabaie et al. (2012) account for the influence of external events.

The voter model was introduced independently by Clifford and Sudbury (1973) and
Holley and Liggett (1975) in the context of particles interaction. They proved that
consensus is reached on the infinite Zd lattice. Several works have since looked at different
network topologies, wondering whether consensus is reached, on which opinion and at
what speed. Complete graphs (Hassin and Peleg, 2002; Sood et al., 2008; Perron et al.,
2009; Yildiz et al., 2010), Erdös-Rényi random graphs (Sood et al., 2008; Yildiz et al.,
2010), scale-free random graphs (Sood et al., 2008; Fernley and Ortgiese, 2019), and
other various structures (Sood et al., 2008; Yildiz et al., 2010) have been addressed.
Variants where nodes deterministically update to the most common opinion amongst
their neighbours have also been studied (Chen and Redner, 2005; Mossel et al., 2014).

An interesting case to consider is the one where zealots – i.e. stubborn agents who
always keep the same opinion, are present in the graph. Such agents may for example

1https://github.com/antoinevendeville/howopinionscrystallise
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represent lobbyists, politicians or activists, i.e. entities looking to lead rather than fol-
low and who will not easily change side. One of those placed within the network can
singlehandedly change the outcome of the process (Mobilia, 2003; Sood et al., 2008). If
several of them are present on both sides, consensus is usually not reachable and instead
opinions converge to a steady-state in which they fluctuate indefinitely (Mobilia et al.,
2007; Yildiz et al., 2013).

Recently, Mukhopadhyay (2020) considered zealots with different degrees of zealotry
and proved that time to reach consensus grows linearly with their number. They also
showed that if one opinion is initially preferred — i.e. agents holding that opinion have a
lesser probability of changing their mind — consensus is reached on the preferred opinion
with a probability that converges to 1 as the network size increases. Klamser et al.
(2017) studied the impact of zealots on a dynamically evolving graph, and showed that
the two main factors shaping their influence are their degrees and the dynamical rewiring
probabilities.

With the increasing importance of social networks in the political debate and in-
formation diffusion, there has been a recent surge in research aiming at controlling
opinions, often with the goal to reduce polarisation. With the Friedkin-Johnsen model,
Goyal et al. (2019) provide algorithms for selecting an optimal sets of stubborn nodes in
order to push opinions in a chosen direction. Yi and Patterson (2020) formulate different
constrained optimisation problems under the French-Degroot and the Friedkin-Johnsen
models. They provide solutions in the form of optimal graph construction methods.

Still within the Friedkin-Johnsen paradigm, Chitra and Musco (2020) prove that dy-
namically nudging edge weights in the user graph can reduce polarisation while preserv-
ing relevance of the content shown by the recommendation algorithm. Garimella et al.
(2017) propose a method to reduce polarisation through addition of edges in the network.
The focus is put on which nodes to connect in order to get the best reduction in po-
larisation, while being sure that the edge is “accepted” — as extreme recommendations
might not work because of the backfire effect. Finally, Cen and Shah (2021) propose a
data-driven procedure to moderate the gap between opinions influenced by a neutral or
a personalised newsfeed. Importantly, they show that this can be done even without
knowledge of the process through which opinions are derived from the newsfeed.

Of particular interest to us, (Yildiz et al., 2013; Masuda, 2015; Moreno et al., 2021)
study the voter model and propose strategies to find optimal sets of zealots in order to
push opinions in a chosen direction. This work places itself in a similar vein but the
objective is different, as we are trying to adjust the balance between both opinions rather
than promoting one of the two.

Our contribution In a previous work (Vendeville et al., 2022) we studied the voter
model with zealots in connected graphs with arbitrary degree distribution. Extending
a result from the literature, we proved that the expected average opinion x̄∗ of the
population at equilibrium is given by the proportion of opinion 1 amongst zealots. Fur-
thermore we solved the problem of controlling x̄∗ via injection of zealots in the presence
of a backfire effect.
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In the present paper, we turn ourselves to the case where the network is weighted,
directed and not necessarily connected. The vector x∗ of individual average opinions at
equilibrium is then given by the solution of a linear system (Masuda, 2015, eq. (4)). We
adapt the problem of controlling x̄∗ under backfire effect to that of controlling diversity,
that we define as a function of x̄∗. We show that it can be solved efficiently by gradient
descent. This approach however does not guarantee the existence of a dialogue between
users, as even with x̄∗ ≈ 1/2 the network might clusterise into hermetic echo chambers
with opposite opinions. Thus we suggest a novel, alternative approach for the diver-
sification of opinion in social networks. Instead of controlling the average opinion, we
propose to control the density of active links – i.e. the proportion of edges that connect
users with different opinions.

With the profusion of theoretical works and models on opinion dynamics in recent
years, the need for real data validation has got more and more pressing. An attempt to
fit the voter model with election results in the UK and in the US was the object of a
previous publication from us (Vendeville et al., 2021). In the present paper we illustrate
our findings as we apply the developed methods to the evolving network of the House of
Representatives in the United States. With the gradual disappearance of independent
members and the fading of cross-party agreement, it has become a prime example of
a polarised network divided in two antagonistic camps (Andris et al., 2015). We find
that the network exhibits high levels of opinion diversity but lower levels of active links
density. In this context we solve the optimisation problems developed in the theoretical
sections, providing optimal numbers of zealots that maximise either σ or ρ. We find that
both can be increased in some cases.

3 The Voter Model with Zealots

In the traditional voter model, users are placed on the Z
d lattice and hold individual

opinions in {0, 1}. Given an initial distribution of opinion, each user updates their
opinion at the times of an independent Poisson process of parameter 1 by copying a
neighbour chosen uniformly at random. Letting xi(t) denote the opinion of user i at
time t, we say that consensus is reached if almost surely all users eventually agree, i.e. if

∀i, j, P (xi(t) = xj(t)) −→
t→∞

1. (1)

On any finite connected network, consensus is reached (Aldous and Fill, 2002). Intu-
itively, no matter the current number of opinion-0 and opinion-1 users, there exists a
succession of individual opinion changes with strictly positive probability that results in
everyone holding the same opinion.

It is might however seem unrealistic to imagine that all people in a group are will-
ing to change opinions. An interesting extension of the traditional voter model is to
include stubborn agents who never change their opinions, often referred to as zealots
(Mobilia et al., 2007; Yildiz et al., 2013). They form an inflexible core of partisans who
bear great power of persuasion over the population. If all zealots defend the same opin-
ion then via similar arguments as for eq. (1) this opinion is eventually adopted by all.
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When both camps count such agents within their ranks however, there always exists a
strictly positive number of users with each opinion. This prevents consensus and instead
the system reaches state of equilibrium in which it fluctuates indefinitely.

Framework Although we will consider a complete and unweighted user graph in our
application, most of the analysis is presented in the general case of a directed, weighted
network. We assume there are N users among which z are zealots. The remaining
F := N − z users are referred to as free. The set of free users is denoted by F , the set
of zealots with opinion 0 by Z0, the set of zealots with opinion 1 by Z1 and the set of
all zealots by Z := Z0 ∪ Z1.

For any pair (i, j) of users we let wij ≥ 0 be the weight of the directed edge j → i,
representing the power of influence that j has over i. If i ∈ Z we set wij = 0 for all
j. We do not assume uniform choice anymore and when updating their opinion, i will
copy j with probability proportional to wij. We assume wii to be zero, meaning users
cannot choose to copy themselves – this assumption may be relaxed in the future and
we expect the results presented here to hold.

Opinions thus evolve as follows. Assume i ∈ F updates their opinion at time t when the
vector of opinions is x(t). Then i will adopt opinion 1 with probability d−1

i

∑N
j=1wijxj(t)

where di is the total influence exerted on them, defined by di =
∑N

j=1wij . This quantity
can be seen as the in-degree of node i. Zealots do not update their opinions and receive
no external influence, thus they have in-degree 0.

Finally we let z0 and z1 be the F -dimensional vectors of zealot influence over free
users, where z0,i =

∑

j∈Z0
wij is the total influence exerted by all zealots with opinion 0

onto user i ∈ F . The definition of z1 is analog. The in-degree of a free node i can then
be written as di =

∑

j∈F wij + z0,i + z1,i.

4 Control of Opinion Diversity

We define the average diversity of opinion at equilibrium by

σ = 4x̄∗(1− x̄∗) (2)

where x̄∗ is the average opinion over all users at equilibrium, i.e. the expected result
when punctually observing the opinion of a random node. It is also the average share of
opinion 1 within the network and often referred to as magnetisation in the literature.

σ is the variance of the Bernoulli distribution of parameter x̄∗, scaled by 4 so that
it ranges in [0, 1]. It describes the diversity of the system in that it is maximal when
users are equally divided between both opinions (x̄∗ = 1/2), and minimal when only one
opinion is represented (x̄∗ = 0 or 1).

4.1 Maximisation in General Networks

Let L = (Lij)i,j∈F be the Laplacian of the free graph, i.e. the F×F matrix with elements
Lij = δij

∑

k∈F wik−(1−δij)wij where δij is the Kronecker delta. Masuda (2015) showed
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that the average opinion amongst free users is:

x̄∗f =
1

F
1⊤[L+ diag(z0 + z1)]

−1z1, (3)

where 1 is the N -dimensional vector filled with ones. The ith entry of the vector x∗f :=

[L+ diag(z0 + z1)]
−1z1 is the average opinion of i at equilibrium, given by

x∗f,i =

∑

j∈F wijx
∗
f,j + z1,i

di
. (4)

Finally we have

x̄∗ =
Fx̄∗f + |Z1|

N
. (5)

Now consider a network where the set Z0 of 0-zealots and their influence vector z0 is
fixed. Given a predetermined quantity Z1 of 1-zealots, how should we set the values of
z1 to maximise the opinion diversity at equilibrium? Formally, we seek to solve

argmax
z1≥0

σ. (P)

Recall that the objective is function of x̄∗ which is itself function of z1. Because x̄∗ is
increasing with ‖z1‖ and equals zero when ‖z1‖ = 0, there exists at least one optimal
vector z⋆1 for which x̄∗ = 1/2 and thus (P1) is solved. This optimal vector can be found
efficiently using gradient ascent on σ, as Moreno et al. (2021) show that x̄∗f (and thus
x̄∗) is concave with respect to z1.

4.2 Maximisation in Complete Networks

In our application, we will consider a complete, unweighted network: wij = 1i/∈Z for
all i. In that case all entries of z0 are equal to the same value, which is the amount
of 0-zealots nodes within the graph. For the sake of simplicity we denote this unique
value by z0. We proceed similarly for z1. In that case it is known (Mobilia et al., 2007;
Masuda, 2015) that

x̄∗ = x̄∗f = x∗f,1 = . . . = x∗f,F =
z1

z0 + z1
. (6)

In a previous work (Vendeville et al., 2022) we proved that this result also holds on
expectation for any connected, unweighted graph where the position of zealots is drawn
uniformly at random. Hence the following.

Theorem 1. In a complete unweighted user graph with z0 zealots with opinion 0 and z1
zealots with opinion 1,

σ =
4z0z1

(z0 + z1)2
. (7)

This quantity is trivially maximal when z0 = z1.
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In the same paper we studied the following problem: given a quantity z0 of 0-zealots
and a target diversity λ, what is the optimal number z⋆1 of free users that should be turned
into 1-zealots in order for x̄∗ to be as close to λ as possible? This is a generalisation of
the diversity maximisation problem presented above which corresponds to the specific
case λ = 1/2.

Numerous empirical studies have found that rather incentivising a change in opinion,
presenting certain people with opposing views might actually entrench them even deeper
in their beliefs. This is often referred to as the backfire effect. To account for this
phenomenon, we assumed that the creation of z1 zealots with opinion 1 will radicalise a
quantity αz1 of free users, who will then become 0-zealots. Thus necessarily z0 + (1 +
α)z1 ≤ N and the constraint z1 ≤ (N − z0)/(1 + α). The real parameter α ∈ [0, 1)
quantifies the intensity of the backfire effect.

We quickly summarise our findings as they will be useful to us. We also take this
opportunity to correct a small mistake that was found in the paper.

Theorem 2. Assume there are z0 zealots with opinion 0 into the system, and there
exists a backfire effect of intensity α. Set zmax

1 := (N −z0)/(1+α). After turning z1 free
users into zealots with opinion 1, z0 is updated to z0 + αz1 and the average equilibrium
opinion is

x̄∗ =
z1

z0 + (1 + α)z1
. (8)

The solution to the problem

argmin
0≤z1≤zmax

1

(x̄∗ − λ)2 (P1)

is given by
{

z⋆1 = min
(

zmax
1 , λz0d

−1
)

if d > 0,

z⋆1 = zmax
1 if d ≤ 0,

(9)

where d := 1 − λ − αλ. Discarding the constraint z1 ≤ zmax
1 results in an unbounded

problem if d ≤ 0 and z⋆1 = λz0d
−1 if d > 0.

In our previous work we had mistakenly claimed that z0 was updated to z0 + αz0z1,
leading to x̄∗ = z1/(z1 + (1 + αz1)z0) and d = 1− λ− αλz0. All results presented then
do still hold qualitatively. Finally note that in general z⋆1 will not be an integer so that
in practical cases it would need to be rounded.

In the present context we restrict ourselves to λ = 1/2. The objective function (x̄∗ −
1/2)2 is equal to 1

4−σ and the condition d > 0 becomes α < 1 which is true by definition.
Hence the following theorem.

Theorem 3. The problem of maximising diversity in a complete unweighted graph with
z0 0-zealots and backfire effect α is formally written as

argmax
0≤z1≤zmax

1

σz0,α(z1)

s.t. σz0,α(z1) =
4(z0 + αz1)z1

(z0 + (1 + α)z1)2

(P2)
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where zmax
1 = (N − z0)/(1 + α). Its solution is given by

z⋆1 = min

(

zmax
1 ,

z0
1− α

)

. (10)

5 Density of Active Links at Equilibrium

Because maximising diversity does not guarantee that the network will not clusterise
into echo chambers, we are also interested in maximising the proportion of active links
at equilibrium. A link is said to be active if it joins two users with opposite opinions. We
derive a mean-field approximation for this quantity that shows a tight fit with empirical
averages obtained via numerical simulations. Let us first precise what we mean by active
links and their average density.

We denote by E ′ the set of all edges present in the graph that join two users, one of
them at least being free. We write (i, j) to designate the edge j → i pointing outwards
from j and towards i. Because the graph is oriented, (i, j) and (j, i) are two separate
objects and one might exist without the other. Moreover when both are present in the
graph we do not necessarily have wij = wji.

Definition 1 (Active link). At any time t the directed link (i, j) ∈ E ′ is said to be active
if xi(t) 6= xj(t), and inactive otherwise.

Definition 2 (Average density of active links). Let qij be the equilibrium probability of
the event {xi 6= xj}. We define the average density of active links at equilibrium by

ρ =
1

|E ′|

∑

(i,j)∈E ′

qij (11)

and its weighted version by

ρw =

∑

(i,j)∈E ′ wijqij
∑

(i,j)∈E ′ wij
. (12)

In the weighted case, heavier edges count more towards the average and lighter ones
count less. Note that q is a non-oriented metric in that qij = qji. When i and j are both
free users, qij will be counted twice in the sum above if both wij and wji are positive,
once if only one of them is and not counted at all if they are not connected with each
other. Because zealots receive no influence from others, if i is in Z then wij = 0 and qij
is counted once if wji > 0, not counted otherwise. If j is a zealot as well then qij is not
counted in the sum.

The following theorem is the main theoretical contribution of this paper.

Theorem 4. A mean-field approximation for the values qij is given by the solution of
the following linear system:

qij(di + dj)−
∑

k∈F\{i,j}

(wikqjk + wjkqik) = z̃jx
∗
i + z̃ix

∗
j + z1,i + z1,j , (13)
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where (i, j) describes E ′, z̃k := z0,k − z1,k, dk =
∑N

l=1wkl is the in-degree of node k,
x∗k := x∗f,k for k ∈ F , x∗k := 0 for k ∈ Z0 and x∗k := 1 for k ∈ Z1.

The proof can be found in Section 7. Consistent with intuition, if j ∈ Z0 (resp. j ∈ Z1)
then the above yields qij = x̄∗f,i (resp. qij = 1− x̄∗f,i), which is simply the probability for
i to hold opinion 1 (resp. opinion 0).

5.1 Numerical Validation

We validate the above through a series of numerical simulations. Let us place ourselves
in an Erdös-Rényi random graph with N = 100 users, |Z0| = 23 zealots with opinion 0
and |Z1| = 18 zealots with opinion 1. The graph is directed and we set its density to
0.1 so that about 10% of all possible edges are present. Each edge is then attributed a
weight generated uniformly at random between 0 and 1.

We perform a single simulation of the voter model on this graph for 50,000 time units.
The empirical density of active links ρ̂ is computed every 100 updates, starting once
10,000 time units have passed to ensure that the system has had time to stabilise. In
Figure 1 (top left) we plot ρ̂ over the last 1,000 time units against ρ. Averaging ρ̂ over
time yields our final empirical estimate. We proceed similarly for ρw (top right) and do
it all as well in a Barabasi-Albert graph with weights generated under an exponential
distribution of parameter 1 (bottom left and right). This graph has density ≈ 0.1 as well.

In all cases the theoretical values ρ and ρw are roughly the same. Thus for the same
density of edges, the topology of the graph does not seem to play an very important role
here. We obtain rather small errors between theory and simulation, in the order of 10−4

for the Erdös-Rényi graph and 10−3 for the Barabasi-Albert graph. Other experiments
with different quantities of zealots, weights distribution and graph topologies have shown
similarly small errors as well, confirming that our mean-field approximation of q performs
well in practice. The error for the Barabasi-Albert network being higher is not too
surprising, as the second graph is inherently less regular and the variance in the weights is
higher (exponential distribution of parameter 1 against uniform distribution over [0, 1]).
This can also be seen in the oscillations of ρ̂ and ρ̂w over time, which demonstrate more
variability by spanning a larger range in this case.

5.2 Maximisation in Complete Networks

Now consider a complete unweighted graph. Again we let z0 denote the amount of
0-zealots and z1 the amount of 1-zealots in the network. Becomes of the asymmetry
between free users and zealots it is convenient to still assume edges to be directed. Then
the following holds.

Theorem 5. In a complete unweighted user graph with z0 zealots with opinion 0 and z1
zealots with opinion 1,

ρ =
2z0z1(N − z0 − z1)

(N − 1)(z0 + z1)(z0 + z1 + 1)
. (14)
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Figure 1: Verifying Theorem 4 in simulation. N = 100 users, simulation time 50,000.
Last 1,000 time units are plotted. Top: Erdös-Rényi graph with random
uniform weights. Bottom: Barabasi-Albert graph with random exponential
weights. Left: theoretical density of active links as per eq. (11) (dotted red
lines) and empirical value over time for a single simulation (blue oscillations).
Right: same with weighted density of active links (12). In each plot we
also indicate the average over the whole simulation (ρ̂ or ρ̂w) as well as the
theoretical value (ρ or ρw), both rounded to 10−4.

The proof can be found in Section 7. Now we are interested in finding the optimal
number z⋆1 of free users that should be turned into 1-zealots in order to maximise ρ (which
is equal to ρw as the graph is weighted). Because of the backfire effect α, creating z1
zealots with opinion 1 with entail a change in the number of 0-zealots, from z0 to z0+αz1.

Theorem 6. The problem of maximising the density of active links in a complete un-
weighted graph with z0 0-zealots and backfire effect α is formally written as

argmax
0≤z1≤zmax

1

ρz0,α(z1)

s.t. ρz0,α(z1) =
2(z0 + αz1)z1

(z0 + (1 + α)z1)(z0 + (1 + α)z1 + 1)

(P3)

where zmax
1 = (N − z0)/(1 + α). It has at least one solution which is either zmax

1 or a
real positive root of the derivative.

This results directly from the fact that the objective function is continue, one-dimensional,
and that the optimum cannot be reached for z1 = 0 as

ρz0,α(z1) > 0 = ρz0,α(0) (15)

for all z1 > 0.

6 Application to US Congress Data

We evaluate our results on real-life data from American politics. The Voteview dataset
(Lewis et al., 2022) contains very detailed information about the United States congress
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since its inception in 1789. Members of each Senate and House of Representatives are
listed with their affiliations and what they voted in each rollcall. We discard voting data
and simply focus on the composition of the House of Representatives since 1947. During
this time, the proportion represented by Democrats and Republicans therein is always
superior to 99.5%, which justifies a binary approach such as the voter model.

Let Dk, Rk be the respective amounts of Democrat and Republican representatives in
the House during the kth congress. In 1947 started the 80th congress and in 2021 the
117th one so that k would range in {80, . . . , 117}. For the sake of simplicity however we
shift the indices by 79 and let k ∈ {1, . . . , 38}. We discard members of other parties from
our analysis—they never represent more that 0.5% of the House. We find ourselves with
two vectors D,R of length K = 38 and assume they correspond to punctual observations
of a single realisation of the voter model with zealots on a complete, unweighted graph.

Because members of the House change between congresses, users cannot represent
persons here. Rather, they represent seats of the House, and their opinion is the party to
which the representative occupying it is affiliated. In an effort for clarity and consistency
we employ the traditional words of users and opinions, but it is important to keep in
mind what they precisely mean here.

In each congress there is a small number of non-voting delegates. They are included
in our analysis but their exact number may vary so that the total number of seats Nk is
not always the same. In the congresses considered here, and with non-Democrat, non-
Republican members discarded, Nk varies between 438 (3 non-voting delegates) and 453
(18 non-voting delegates).

6.1 Parameters Estimation

The quantity of zealots on each side is unkown to us. They represent the quantity of
seats that are “locked” by each party and we denote these by zD (Democrat zealots)
and zR (Republican zealots). To infer their number, one could for example consider as
zealots users who most often agree with others from their party. This would require
however the choice of aheuristic threshold to define what counts as “most”. Moreover,
we do not have the vote of every member for each rollcall, entailing the addition of
uncertainty and potential errors. Rather, we choose to infer zD and zR from the two
equilibrium metrics presented in sections 4 and 5: σ and ρ.

We propose the following estimate ẑ = (ẑD, ẑR) for (zD, zR):

ẑ = argmin
(zD ,zR)∈Z

ǫ

s.t. ǫ =
|σ̂ − σ|+ |ρ̂− ρ|

2
,

(Q)

where σ̂ is an empirical estimate of σ and ρ̂ is an empirical estimate of ρ. Thus ẑ is a
minimiser of the mean distance between theoretical and empirical values of our metrics.
The set Z := {1, . . . ,Dmin} × {1, . . . , Rmin} constrains the number of zealots in each
party to never be higher than the quantity of members this party has in the House.
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The empirical diversity of opinions is directly derived as

σ̂ :=
4

K

K
∑

k=1

DkRk

(Dk +Rk)2
(16)

where K = 38 is the total number of observations. The empirical estimation of ρ is a bit
trickier, as links are considered differently whether they join two free users, two zealots
or a free user and a zealot. Hence we need be aware of what nodes are free and which
ones are zealous. The empirical density of active links is given by

ρ̂ :=
1

K

K
∑

k=1

2DkRk −DkzR −RkzD
Nk(Nk − 1)

. (17)

Nk is the number of nodes in the kth observation, so that the denominator is the total
number of links in the corresponding graph. The numerator of the fraction was simplified
from

2(Dk − zD)(Rk − zR) + (Dk − zD)zR + (Rk − zR)zD (18)

where the first term is the number of links between all free nodes, the second term the
number of links between free Democrats and zealous Republicans, and the third term
the number of links between free Republicans and zealous Democrats.

The cardinal of Z is small enough that (Q) can be solved by performing an exhaustive
search over the whole set. We find:

(Dmin, Rmin) = (190, 143),

(ẑD, ẑR) = (89, 63),

(σ̂, ρ̂) ≃ (0.97, 0.32),

ǫ ≃ 3.8 · 10−5.

The small error ǫ guarantees that the optimisation was efffective. The diversity is close
to the theoretical optimal, indicating that the number of members from both parties
is balanced over time. The majority switches back and forth between Democrats and
Republicans but neither seem to truly have an upper hand over time. The density of
active links is fairly high but could be better, as it pales in comparison to the values we
obtained during simulations on synthetic networks (Figure 1).

6.2 Optimising Diversity and Activity

In this section, we investigate how σ and ρ could be optimised by changing the number
of zealots. To this extent, we solve problems (P2) and (P3) for intensities of the backfire
effect α spanning the whole range [0, 1). In a first time we consider that Democrats
correspond to opinion 0, Republicans to opinion 1 and we optimise on zD keeping zR = ẑR
fixed. Doing this we obtain a optimal number z⋆D of zealous Democrats when the number
of zealous Republicans is given by the one inferred from the data. In a second time we
do the opposite and optimise on zR keeping zD = ẑD fixed, obtaining a maximiser z⋆R.

13



The two plots on the left part of Figure 2 describe the solution of (P2) function of
α. The upper plot contains the values of the maximiser z⋆D, its upper-bound zmax

D and
the empirical number of zealots ẑD inferred from the data. Similarly for the Republican
party with z⋆R, z

max
R and ẑR. The bottom plot contains the optimal values σ(z⋆D) and

σ(z⋆R) of the objective, when optimising respectively on zD and on zR. Its empirical value
inferred from data σ̂ is also represented. In addition we also show ρ(z⋆D), ρ(z

⋆
R) and ρ̂.

This is to assess what effect optimising the diversity has on the active link density.
We observe that for values of α up to about 0.7, σ can be fully optimised to its

maximum value 1 whether we act on Democrat or Republican zealots. Even for the
highest values of α it is very close to the empirical value. The impact of optimising σ on
ρ is rather negative, as for almost all α the resulting density of active links is lower than
its empirical value. Looking at the upper plot, we see that the maximisers are always
above empirical values, meaning zealots would have to be added in order to improve
diversity. Starting from α ≃ 0.6 (Republicans) and α ≃ 0.7 (Democrats), the maximiser
is equal to its maximum possible value so that the system is saturated, with all nodes
being zealots.

We now turn ourselves to the problem of maximising the density of active links (P3).
Its solution is described by the two plots on the right part of Figure 2. Unlike before, here
the optimal number of zealots decreases with α, is constantly lower than its empirical
estimate and never approaches its upper bound. Morevoer this time, optimising ρ can
also entail an improvement on σ. This happens when the number of Democrat zealots
is acted upon, and for α ≤ 0.5 roughly.

Finally, we remark that acting upon Democratic zealots is always more effective than
upon Republican ones. This might stem from the fact that the former are in supe-
rior number from our empirical estimation, leaving more room to act efficiently on the
objective functions.

7 Proofs

Proof of Theorem 4. Let λij be the average rate at which user i adopts the same opinion
as j while in equilibrium. Remember that each user updates their opinion at the times
of an exponential clock of parameter 1. There are four different events that lead to i
adopting j’s opinion, described below with the associated frequency rates.

• i may copy j directly, which happens at rate d−1
i wij , or

• i may copy a third free user k holding the same opinion as j, which happens at
rate d−1

i

∑

k∈F\{i,j}wik(1− qjk), or

• i may copy a 1-zealot while j has opinion 1, which happens at rate d−1
i z1,ix

∗
j ,

• i may copy a 0-zealot while j has opinion 0, which happens at rate d−1
i z0,i(1−x∗j ).

By using qjk and x∗j we made the mean-field assumption that i interacts with the aver-
age system at equilibrium rather than with its exact state. Through comparison with
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D ) ρ(z ⋆

R ) ⋆ρ empiriĉl

Figure 2: Optimal opinion diversity (left) and active links density (right) function of
the backfire effect α. Top: maximisers compared with empirical estimates and
maximum possible values. Bottom: objective values and impact on the other
metric, compared with empiriucal estimates.

simulations we will show that this approximation performs well numerically. Putting it
all together,

λij = d−1
i



wij +
∑

k∈F\{i,j}

wik(1− qjk) + z1,ix
∗
j + z0,i(1− x∗j)



 . (19)

Via an analogous reasoning, at equilibrium i adopts the opinion opposite of j’s with rate

µij = d−1
i





∑

k∈F\{i,j}

wikqjk + z1,i(1− x∗j ) + z0,ix
∗
j



 . (20)

We obtain λji and µji in a similar fashion. The discrete quantity 1xi 6=xj
describes a

continuous-time Markov chain with two states 0 and 1, transitioning from 0 to 1 with
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rate µij + µji and from 1 to 0 with rate λij + λji. The stationary probability of state 1
is exactly qij, so that

qij =
µij + µji

λij + µij + λji + µji
. (21)

After simplifications we obtain eq. (13).

Proof of Theorem 5. Let (i, j) ∈ E ′. First if i ∈ F is free and j ∈ Z0, then as discussed
before eq. (13) immediately yields qij = x̄∗. If j ∈ Z1 then qij = 1 − x̄∗ and in both
cases, qji = 0.

Now assume i, j ∈ F . Because all free nodes are topologically equivalent, they share
the same value qf for q—just as they have the same average opinion x̄∗ = z1/(z0 + z1),
c.f. (6). Replacing edge weights with 1, in-degrees with N − 1 and zealots influence
z0,k, z1,k with z0, z1, equation (13) becomes

2qf (N − 1)− (F − 2)2qf = 2(z0 − z1)x̄
∗ + 2z1 (22)

and after simplifications

qf =
2z0z1

(z0 + z1)(z0 + z1 + 1)
. (23)

Because there are F (F −1) directed edges between zealots, Fz0 edges between free users
and 0-zealots and Fz1 edges between free users and 1-zealots, the total number (and
not density) of active links is given by

nactive = F (F − 1)qf + Fz0x̄
∗ + Fz1(1− x̄∗). (24)

Replacing F by N − z0 − z1 and qf , x̄
∗ by their respective values we find

nactive =
2z0z1N(N − z0 − z1)

(z0 + z1)(z0 + z1 + 1)
. (25)

Finally there are N(N −1) directed edges in the complete graph so that we immediately
obtain (14) via ρ = nactive/(N(N − 1)).

8 Conclusion and Future Work

In this paper we analysed the voter model with zealots on directed, weighted networks.
We proposed formulas for the opinion diversity (σ) as well as for the density of active
links (ρ) at equilibrium. The latter relied on a mean-field approximation that we showed
performs well against numerical simulations. For both metrics we studied the problem
of maximising it by turning free (i.e. non-zealous) users into zealots in the presence
of a backfire effect. We provided explicit solutions for the specific case of a complete
unweighted network, and for opinion diversity we also exposed how it could be maximised
in the general directed, weighted case.

As an example application, we applied our findings to a dataset detailing the evolution
of members in the US House of Representatives since 1947. Assuming the data was
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a realisation of the voter model with zealots, we estimated the number of zealots by
minimising the distance between empirical and theoretical values of the equilibrium
metrics σ and ρ. The opinion diversity was found to be almost maximal, indicating a
balanced mix of Democrats and Republicans. We then used the optimisation problems
exposed in the theoretical sections to find optimal quantities of zealots users maximising
σ and ρ. Of note, we found that maximising ρ by acting on Democrat zealots can help
increase both ρ and σ.

There are many open leads for further investigation. First, we considered multiple
congresses at once. It could be interesting to subdivise in several windows, separated
by impactful historical moments (fuel crisis in the seventies, end of the USSR in the
early nineties, etc.). There might be patterns inherent to specific periods that are not
apparent in our analysis. Data from online social networks could provide interesting
examples of polarised systems.

On the theoretical side, an efficient algorithm for the optimisation of ρ on directed,
weighted networks could help study more refined data. In the case of social media data,
it could also be a good idea to optimise not on the number of zealots but on the edge
weights. This would mean standing from the point of view of a platform administrator,
trying to update its recommendation algorithm in order to improve opinion diversity or
active links density. Such approaches have been tried in other models of opinion dynamics
(Chitra and Musco, 2020; Santos et al., 2021). Finally because we are studying polarised
systems, incorporating signed edges in the model could also yield more informative
results (Keuchenius et al., 2021).

Data Availability

The data used in the application is taken from Lewis et al. (2022). All code used and sim-
ulation data are available online at https://github.com/antoinevendeville/howopinionscrystallise.
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