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Entanglement-complexity geometric measure
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We propose a class of geometric measures of entanglement for pure states by exploiting the matrix product
state formalism. These measures are completely divested from the notion of separability and can be freely tuned
as a function of the bond dimension to target states which vary in entanglement complexity. We first demonstrate
its value in a toy spin-1 model where, unlike the conventional geometric entanglement, it successfully identifies
the AKLT ground state. We then investigate the phase diagram of a Haldane chain with uniaxial and rhombic
anisotropies, revealing that our measure can successfully detect all its phases; all of which are invisible to the
conventional geometric entanglement. Finally we investigate the disordered spin-1/2 Heisenberg model, where
we find that differences in our measure can be used as lucrative signatures of the ergodic-localized entanglement
transition.
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I. INTRODUCTION

The role of entanglement in many-body systems has be-
come one of the most important topics in modern quantum
physics. The geometric measure of entanglement—defined as
the distance of a state from the nearest separable state—and
its k-separable generalizations wherein the state is instead
separable into k subsystems, have been particularly valuable
and have seen widespread use in quantum information and
in the investigation of bipartite and multipartite entanglement
structures [1–5]. Indeed the conventional definition of mul-
tipartite entanglement is given in terms of separability [6,7].
However, many systems yield states which have interesting
entanglement structures that are not separable into any par-
titions of the system into subsystems. Examples include the
nonseparable AKLT state which saturates the geometric en-
tanglement [8], or the many-body localized eigenstates which
are complicated but area-law entangled [9]. Thus separability
alone, even when we extend the definition to separability
between arbitrarily partitioned subsystems, is not compre-
hensive enough to characterize how much entanglement is
required to accurately describe a many-body state. Thus, one
can naturally ask the question: Can a geometric measure of
entanglement be constructed that goes beyond separability?

We address this question by proposing a geometric mea-
sure based on the entanglement-complexity perspective of the
matrix product state (MPS) formalism. The central object of
this formalism, the MPS itself, is an alternative represen-
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tation of a generic pure state. This representation becomes
advantageous when the amount of entanglement in a state
is limited in some way; if this is the case, then much of the
exponentially large Hilbert space is irrelevant and can be dis-
carded [10]. This truncation of Hilbert space is controlled by
the bond dimension χ which quantifies how much information
the MPS representation of a state can contain. States with a
low amount of entanglement permit exact (or close to exact)
representations as an MPS of low bond dimension, while
states with a large amount of complicated entanglement struc-
tures require an MPS of large bond dimension that approaches

FIG. 1. Schematics showing (a) the diagrammatic equation for
our generalization of the geometric entanglement (an overview of
this diagrammatic notation is given in Appendix A) and (b) a Hilbert
space which has been organized into nested manifolds of states with
perfect representations as MPS of bond dimension χ . The χ = 1
manifold is a manifold of product states, and the full Hilbert space is
attained as χ → � where � is the total dimension of the space. The
compression procedure of a state |ψ〉 into its MPS representation
|MPS[ψ, χ ]〉 is given by the black arrow.
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the dimension of the total original Hilbert space [11,12].
We thus construct a geometric measure of entanglement with-
out appealing to separability by reversing this approach: the
entanglement of a given state can be quantified by how much
a low-χ MPS fails to represent it.

We begin by reviewing the relevant aspects of the MPS
formalism in Sec. II, namely, the decomposition procedure
of a state into its MPS representation and the origin and
interpretation of the bond dimension χ . In Sec. III we discuss
the geometric entanglement, its extant generalization in terms
of k separability, and introduce our MPS theoretic version.
The rest of the paper consists of an examination of different
systems in which our measure exhibits a clear advantage over
the conventional geometric entanglement; establishing it as
a vital tool in exploratory analysis of quantum systems. In
Sec. IV we examine the spin-1 Haldane model across the
AKLT point: a setting in which separability is not a useful sig-
nature of entanglement, and is thus the ideal setting in which
to introduce and justify our measure. In Sec. V we perform
an exploratory investigation of the phase diagram of a spin-1
Haldane chain with uniaxial and rhombic anisotropies. This
investigation reveals that using different values of the bond
dimension χ in our measure yields different phase diagrams,
with each value of χ revealing new phases or features; all
of which are invisible to the conventional geometric entan-
glement. This establishes a class of measures which together
form a set of highly tunable exploratory tools. Finally in
Sec. VI we investigate the many-body localization transition
in a spin-1/2 Heisenberg chain, establishing the value of our
measure away from ground-state transitions. Together, these
investigations demonstrate a range of contexts in which our
measure exhibits striking advantages; offering an approach by
which systems with limited but nonseparable entanglement
structures can be investigated using geometric measures.

II. THE MPS REPRESENTATION

The central object of the MPS formalism is the MPS itself:
a representation of an arbitrary pure state |ψ〉 as a product
of local tensors. This representation is formed by repeated
reshaping and decomposition of the original state until it has
been factorized into the MPS form, a process we review here.
Starting from the generic pure state

|ψ〉 =
d∑
{ j}

c j1, j2,..., jN | j1, j2, . . . , jn〉, (1)

where the j indices are “physical” indices which account
for physical degrees of freedom, we combine the indices
j2, j3, . . . , jN , reshape the tensor, and perform a singular
value (Schmidt) decomposition across the physical indices j1
and ( j2, j3, . . . , jN ):

c j1,( j2,... jN ) =
∑

s2

Uj1,s2 Ss2,s2V
†

s2,( j2, j3,..., jN ). (2)

The matrix U is left unitary, V † is right unitary, and S is a
diagonal matrix of the descending singular values across the
bipartition, of which some may be degenerate or exactly zero.

These singular values determine the quality of the de-
composition: low singular values contribute less to the

decomposition and can be discarded without a significant
decrease in the fidelity of our MPS representation. The bond
dimension χ is the positive integer number of these singular
values that we choose to keep and quantifies the amount of
information retained by our MPS. In general, the more singu-
lar values we discard at every partition, the more compressed
and less exact our MPS representation becomes. It is here that
the concept of entanglement complexity becomes important:
since the number of singular values across a bipartition is
an entanglement measure in its own right, states with less
entanglement have more singular values equal or close to zero
that can be readily discarded, and have correspondingly good
low-χ MPS representations [10,13]. The more entanglement
there is in a system, and the more complicated its entangle-
ment structure is, the higher the bond dimension required to
achieve a good MPS representation [12].

Returning to our derivation of the MPS representation
we reshape and suppress redundant rows and columns in
the singular matrix and separate out the indices ( j1, s2) and
(s2, j2, j3, . . . , jN ):

c j1, j2,..., jN =
∑

s2

Uj1,s2 Ss2,s2V
†

s2, j2, j3,..., jN
. (3)

We can now incorporate S into Uj,s → A[ j]
s and V † → Ṽ † as

is convenient, where we have relabeled U in accordance with
notational convention:

c j1, j2,..., jN =
∑

s2

A[ j1]
s2

Ṽ †
s2, j2, j3,..., jN

. (4)

Repeating this procedure on Ṽ † across the next physical bipar-
tition using the combined indices (s2, j2) and ( j3, j4, . . . , jN )
yields

c j1, j2,..., jN =
∑
s2,s3

A[ j1]
s2

A[ j2]
s2,s3

Ṽ †
s3, j3, j4,..., jN

. (5)

By continually decomposing the resulting Ṽ † we finally arrive
at the MPS representation of our tensor c:

c j1, j2,..., jN =
∑
{s}

A[ j1]
s1,s2

A[ j2]
s2,s3

A[ j3]
s3,s4

· · · A[ jN ]
sN ,s1

. (6)

The s indices are “auxiliary” indices which connect neigh-
boring tensors and describe the internal degrees of freedom
(thus they can be conveniently gauged). The auxiliary index
s1 connecting the first and final tensors has been inserted to
account for closed boundary conditions; in the case of open
boundary conditions it can be safely suppressed such that the
first and final A matrices become vectors.

The final state, by Eqs. (1) and (6), is thus.

|MPS[ψ, χ ]〉 =
∑

{ j},{s}
A[ j1]

s1,s2
A[ j2]

s2,s3
· · · A[ jN ]

sN ,s1
| j1, j2, . . . , jn〉 (7)

where the size of the A matrices is limited by the bond di-
mension χ which in turn controls the fidelity of the MPS
decomposition |〈ψ |MPS[ψ, χ ]〉|. For clarity we must forego
the usual notation |ψ[A]〉 for the MPS representation of a
state as a parametrization in terms of the A matrices, instead
introducing notation |MPS[ψ, χ ]〉 which clearly displays the
bond dimension χ (rather than leaving it implicitly defined as
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the dimension of the A matrices) and reframes the decompo-
sition of a state into its MPS representation as a compression
procedure rather than an exact parametrization:

|ψ〉 → |MPS[ψ, χ ]〉. (8)

In the case that (i) the original state |ψ〉 has a low amount of
entanglement, or that (ii) the bond dimension χ of the MPS
representation is sufficiently high, the compression of Eq. (8)
is close to lossless and the final MPS |MPS[ψ, χ ]〉 is close to
the initial state |ψ〉.

We conclude this section with four pertinent parting notes.
Firstly, that the decomposition of Eq. (8) is optimal in the
sense that it minimizes the distance between the initial state
and its MPS representation [12]. Secondly, that the decom-
position is not unique, as can be seen by simply gauging the
bonds, e.g., A[ j1]A[ j2] = (A[ j1]X )(X −1A[ j2] ) = Ã[ j1]Ã[ j2]; how-
ever, this corresponds to a local change of basis and does not
affect the physical properties of the MPS. Thirdly, that the
number (and value) of the singular values across a bipartition
does not change under local operations, rendering it a genuine
entanglement measure [14]. Finally, that the manifold of MPS
states of a fixed bond dimension χ contains the manifolds of
all MPS states of strictly lower bond dimension: with the χ =
� manifold being identical to the full Hilbert space and the
χ = 1 manifold being identical to the set of all fully separable
states (no entanglement is present across any physical cut).
The restructuring of Hilbert space into these nested manifolds,
and the decomposition process of Eq. (8) on a generic state,
are shown schematically in panel (b) of Fig. 1.

III. GEOMETRIC MEASURE OF ENTANGLEMENT

The geometric entanglement E over pure states is defined
as the distance between some pure state |ψ〉 and the nearest
fully separable state |φ〉 such that

E = min
φ

[1 − |〈ψ |φ〉|2] (9)

is minimized over |φ〉 ∈ S where S is the space of all fully
separable states [1,15]. The prevailing generalization of this
quantity considers instead minimization over |φ〉 ∈ Sk where
Sk is the set of all k-separable states Sk . A k-separable state
is a state that can be written as a product state of k sub-
systems which may be internally entangled but do not share
entanglement between them [16–18]. These quantities have
seen widespread success, notably in the identification and
analysis of bipartite and genuine multipartite entanglement
[1–5,16,19]. Despite this, Eq. (9) and its immediate general-
ization in terms of k separability have one major shortcoming:
they cannot readily differentiate between simple and compli-
cated entanglement structures. A product state of entangled
Bell pairs, for example, will saturate Eq. (9) despite its trivial
structure, and one can conceive of states with which are en-
tirely nonseparable but have simple entanglement structures,
e.g., the AKLT state [11,20]. Thus, while a generalization
of the geometric entanglement from the perspective of sep-
arability is invaluable, there are contexts where a different
generalization is more appropriate.

Our alternative generalization is simply the minimization
of Eq. (9) over the manifold of MPS of fixed bond dimension

χ insead of (k-)separable states:

Eχ = 1 − |〈ψ |MPS[ψ, χ ]〉|2 (10)

and is shown in diagrammatic tensor notation in panel (a) of
Fig. 1. An overview of this notation is given in Appendix A.
We have omitted the minimization from our notation because,
as discussed in Sec. II and noted in Ref. [12], the minimization
happens implicitly during the decomposition of Eq. (8). The
generalization Eq. (10) quantifies the representability of
|ψ〉 as an MPS |MPS[ψ, χ ]〉 of bond dimension χ , and is
geometric in that we quantify this representability in terms of
the distance between |ψ〉 and the closest (constrained) state
to it |MPS[ψ, χ ]〉. We also note that, similarly to the (k > n)-
separable generalization for an n-partite system, Eχ>1 = 0
does not necessarily mean that there is no entanglement;
rather that the entanglement present is not sufficient enough
to frustrate representation as an MPS of bond dimension χ .
Given these two points, and the discussion of the role of the
bond dimension χ in Sec. II, our generalization, Eq. (10),
can be interpreted as the geometric entanglement from the
perspective of entanglement complexity as opposed to k
separability.

Intuitively, rather than organizing the full Hilbert space
into nested sets of k-separable states like the existing gener-
alizations of the geometric entanglement, the MPS formalism
organizes it into nested manifolds of states with exact fixed-χ
MPS representations [see panel (b) of Fig. 1]. This picture
moves us away from separability and towards the alternative,
nuanced understanding of entanglement complexity given
by the MPS formalism. This nested structure also implies,
as every MPS manifold contains the manifolds of strictly
lower bond dimension within it, the hierarchy E1 � E2 � · · ·
� E� where � is the total dimension of the full Hilbert
space. Definitionally, and conveniently, the geometric entan-
glement of Eq. (9) and our generalization of Eq. (10) coincide
E = E1 at χ = 1 which defines a manifold of product states
[11]; this has been noted in Ref. [21] which uses the χ = 1
MPS representation to efficiently calculate the geometric
entanglement—though it lacks the extension to higher bond
dimensions. The restructuring of Hilbert space and interpre-
tation of entanglement from the perspective of complexity
rather than separability results in a quantity which, when it is
extended to higher bond dimensions χ > 1, captures behavior
which the geometric entanglement cannot.

Finally we remark that while MPSs have been used in con-
junction with the geometric entanglement before, these works
focus on efficient calculation of existing measures, rather than
in the construction of new measures (see, e.g., Refs. [2,5,21]).

IV. THE AKLT MODEL

In this section we demonstrate a situation in which the
notion of separability is irrelevant: the detection of the non-
separable AKLT ground state. Consider the spin-1 extended
Haldane chain

H =
n∑
j

S j · S j+1 + JAKLT

3

n∑
j

(S j · S j+1)2, (11)

where S j = (Sx
j , Sy

j , Sz
j )

� are vectors of spin-1 operators. At
the point JAKLT = 1, Eq. (11) becomes the AKLT Hamiltonian
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FIG. 2. The (left) geometric entanglement E1 and (right) our
generalized χ = 2 counterpart E2 of the ground state of Eq. (11)
across the AKLT point. Only our generalization successfully locates
the AKLT ground state.

[20], the ground state of which is a fused valence bond solid
which is nonseparable but admits an exact representation of
an MPS of bond dimension χ = 2 [11]:

A[+] =
√

2

3
σ+, A[0] = 1√

3
σ z, A[−] =

√
2

3
σ−, (12)

where the σ± and σ z operators are the standard Pauli ladder
and z operators [12,22]. In this setting it is clear that Eχ should
be able to detect the AKLT ground state, while the geometric
entanglement and its k-separable generalizations should not.
We take open boundary conditions, and fix the elements of
S1 and Sn (where n is the system size) as spin-1/2 operators
to lift the fourfold ground-state degeneracy [23]. We then
probe the system’s ground state using the geometric entan-
glement E1 and our first nontrivial generalization E2. Using
density-matrix renormalization group (DMRG) implemented
using a modification of QUIMB, we access large system sizes
up to n = 256 [11,24–26]. The results are shown in Fig. 2,
from which we can see that the geometric entanglement E1

fails to detect the AKLT point at all, even in small systems
in which it has not yet saturated to unity, while our χ = 2
generalization E2 successfully identifies the ground state in the
thermodynamic limit. Additional results of similar behavior
for the J1-J2 antiferromagnetic isotropic Heisenberg model at
the Majumdar-Ghosh ground point are given in Appendix B.

V. GROUND-STATE PHASE DIAGRAM OF
THE ANISOTROPIC HALDANE MODEL

The fact that the toy problem of the previous section is
best captured by E2 instead of E1 is—while an excellent
demonstration of why our generalization is valuable—fairly
obvious given the properties of the AKLT ground state. We
now consider a more complicated situation in which higher
generalizations χ � 2 gradually reveal more and more de-
tails about the known phase diagram of a given system. This
demonstrates the value of Eχ as an exploratory tool for inves-
tigating systems which are not so thoroughly understood, e.g.,
in systems where optimal values of χ are not known a priori.

FIG. 3. The ground-state phase diagram of the anisotropic Hal-
dane model of Eq. (13). Panel (a) shows the phase diagram as
determined in Ref. [30] (reproduced with permission). Panels (b)–
(d) show Eχ of the ground state for χ = 2, 3, 6, respectively. The
ground states were calculated for a system of n = 512 sites us-
ing a two-site DMRG implemented using an extension of QUIMB

[11,24–26].

We consider an anisotropic Haldane chain

H = J
L−1∑
j=0

S j · S j+1 + D
L∑

j=0

(
Sz

j

)2 + E
L∑

j=0

(
Sx

j

)2 − (
Sy

j

)2
,

(13)
where the parameter D tunes the strength of uniaxial
anisotropies, and E tunes the strength of rhombic anisotropies.
The Hamiltonian of Eq. (13) is widely used, albeit often with
one of the anisotropic terms set to zero, in the modeling of re-
alistic spin systems [27,28] (also see Ref. [29], and references
therein). The ground-state phase diagram of the system as
determined in Ref. [30] is shown in panel (a) of Fig. 3. There
are seven distinct gapless and gapful phases: the three
Néel-like phases, the large-Ex/Ey/D phases, and—most
notably—the central gapped Haldane phase. We discuss these
where relevant in the rest of this section. There are a litany of
associated phase transitions in different universality classes,
but we will only briefly mention the three Gaussian transitions
between the Haldane phase and the large-Ex/Ey/D phases
[marked as red dots with arrows through them in panel (a)
of Fig. 3] [31]. We consider an antiferromagnetic J > 0 cou-
pling and so the ground state prefers maximal values Sz

j = ±1
everywhere; the different phases occur when this antiferro-
magnetic coupling and the anisotropies D and E assist or
frustrate each other. The system is symmetric around E = 0 as
a negative E simply corresponds to an inversion of the x and
y axes on each site. The ground states of each phase are best
understood in terms of single-site ground states everywhere
except the Haldane phase around D = E = 0, and it is from
this perspective that we discuss them below. The point D =
E = 0 itself is adiabatically connected to the AKLT ground
state, as evidenced by the continuity of Fig. 2 across the
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interval JAKLT ∈ [0, 1], and thus the Haldane phase is best
understood as having similar properties to the fused valence
bond solid of the AKLT point.

We found [shown in panel (a) of Fig. 9 in Appendix C] that
the geometric entanglement E1 is close to saturation across
the entire region of phase space we investigate, D ∈ [0, 2]
and E ∈ [0, 2]; this is simply due to the fact that—even in
regions where single-site terms begin to dominate—the anti-
ferromagnetic coupling still generates some entanglement. As
the single-site terms dominate fully D/J → ∞ or E/J → ∞,
the geometric entanglement once again becomes a useful
investigative tool as the ground states become products of
single-site ground states.

In contrast to the geometric entanglement, our generaliza-
tions Eχ reveal more and more features of the phase diagram
as a function of increasing χ ; a feature related to the fact
that the different phases have different entanglement struc-
tures which are best captured by the MPS of different bond
dimensions. This is shown in panels (b)–(d) of Fig. 3 where
the phases of Eq. (13) are captured by Eχ for χ = 2, 3, 6,
respectively.

Panel (b) shows the first nontrivial generalization E2 which
successfully identifies states deep in the x/y/z-Néel phases.
These phases occur when the system’s ground state is close to
a Néel state (χ = 1) of eigenstates |Sx/y/z

j = ±1〉, respectively.
In the z-Néel phase this is assisted by low E which prefers
|Sx

j = 0〉 eigenstates and the antiferromagnetic coupling J
itself. In the x-Néel and y-Néel phases this is assisted by pos-
itive D which prefers |Sz

j = 0〉. As such all three Néel states
are not frustrated away from their respective phase boundaries
and these regions are revealed by low bond dimension χ = 2.

Panel (c) shows E3 which reveals the full extent of the Néel
phases and successfully identifies the large-Ex/Ey/D phases.
The former is due to the slight frustration that each of the Néel
phases experience close to their phase boundaries; an MPS
of bond dimension χ = 2 simply does not capture enough
information near these boundaries. The latter is due to the
fact that each of the large-Ex/Ey/D phases is frustrated. The
large-Ex/Ey phases have ground states close to product states
of |Sx/y

j = ±1〉 but this is frustrated directly by negative D
and the antiferromagnetic coupling J which prefer eigenstates
|Sz

j = ±1〉. The large-D phase experiences a similar frustra-
tion, but entirely between the antiferromagnetic coupling and
large positive D. We can also infer the existence of the Hal-
dane phase around D = E = 0, but not any of its properties or
its phase boundaries.

Panel (d) shows E6 which further narrows the phase bound-
aries and finally reveals the Haldane phase itself. A clear
decrease of E6 can be seen in the Haldane phase indicating that
it is area-law entangled; a feature of the fact that the ground
state at D = E = 0 is adiabatically connected to the area-law
AKLT ground state. In fact the AKLT ground state is a good
approximation of the true ground state near D = E = 0 in
general [32,33]. The reason the Haldane phase is only cap-
tured by a slightly higher bond dimension χ = 6 compared
to the other phases is simply due to the fact that all the terms
of the Hamiltonian are of the same order, the system is thus
highly frustrated, and is slightly more entangled—though it
is still a valence bond solid similar in structure to the AKLT
ground state.

Investigation of higher values of χ (shown in Fig. 9 in
Appendix C) reveals no new features aside from persistently
high values of Eχ , only disappearing at χ = 32, at the Gaus-
sian fixed points shown in panel (a) of Fig. 3 as red dots with
arrows through them [34]. For a more detailed discussion, see
Appendix C.

VI. MANY-BODY LOCALIZATION

Many-body localization (MBL) is a mechanism by which
an interacting many-body quantum system fails to thermal-
ize. The precise definition of thermalization in this context,
though addressed in part by the eigenstate thermalization
hypothesis [35–37], is still debated (see Ref. [38] for a
review); but certain hallmarks of MBL have been well es-
tablished. Notable features of the MBL regime include the
breakdown of internal energy and particle transport, the emer-
gence of local memory and local integrals of motion, and
midspectrum eigenstates exhibiting area-law-like entangle-
ment entropy (see Refs. [9,39,40]). This final point is what
we investigate here: area-law MBL states, while rich and
generally nonseparable, have efficient representations as low
bond dimension MPS. Thus our generalization Eχ is a natural
measure of bulk entanglement in MBL systems, and should
readily detect MBL eigenstates. It is worth explicitly noting
here that the MBL transition takes place across the entire
spectrum and is a departure from the ground-state transitions
we have considered thus far.

Consider the prototypical spin-1/2 Heisenberg Hamilto-
nian with quenched z-field disorder

H = J
∑

j

S j · S j+1 +
∑

j

h jS
z
j, (14)

where S j are vectors of the standard spin-1/2 spin operators
and the h j are quenched random fields box distributed in
the interval h j ∈ [−h, h]. The ratio of disorder strength to
Heisenberg coupling h/J tunes the model; for large disorder
h/J 	 1, the system is localized. We consider systems of
size up to n = 18 which, while too small to extract reliable
thermodynamic properties of MBL through, e.g., conventional
scaling analyses, allows us to differentiate ergodic and local-
ized regimes [41,42].

We first investigate Eχ for individual midspectrum eigen-
states across the MBL transition using both the conventional
geometric entanglement E1 in panels (a)–(c) and our first non-
trivial generalization E2 in panels (d)–(f) of Fig. 4. Each panel
shows Eχ for 1024 samples of 100 midspectrum eigenstates,
for a total of 102 400 data points; these are then colored ac-
cording to a Gaussian kernel density estimation. From panels
(a) and (d) we can see that both E1 and E2 are high in the
ergodic regime h/J = 1, implying the well-known property
that midspectrum eigenstates of generic Hamiltonians are vol-
ume law and thus have no efficient representation as low bond
dimension MPSs. Panels (b) and (e) indicate that, close to the
transition point h/J = 3.5, E1 remains high, but the average
value of E2—despite the existence of many individual eigen-
states which have E2 far from zero—drops suddenly. This
implies that eigenstates are far from product states, but are
starting to become area-law entangled as low dimension MPS
representations become increasingly viable. Finally panels (c)
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FIG. 4. Each panel shows Eχ of 100 midspectrum eigenstates of 1024 random realizations of Eq. (14). Each column shows a different
disorder strength h/J either (a),(d) in the ergodic regime h/J = 1, (b), (e) the middle of the ergodic-MBL transition h/J = 3.5, and (c), (f)
in the MBL regime h/J = 8. Each row shows either (a)–(c) the conventional geometric entanglement χ = 1 or (d)–(f) the first nontrivial
generalization χ = 2. Brighter yellow coloration indicates a higher density of states. The dimensionless quantity μ ∈ [0, 1] is the energy of
the eigenstate relative to the extremal eigenenergies (i.e., μ = 0 is the ground-state energy, and μ = 1/2 is the middle of the spectrum).

and (f) show slightly lower values of E1 and near-zero values
of E2 in the MBL regime h/J = 8. This indicates that, in
addition to almost all the eigenstates being entirely area-law
entangled, many of the states also have considerable overlap
with product states. This is evidence that we are witnessing
the onset of behavior similar to the h/J → ∞ case where
all ground states simply become product states of local Sz

j
eigenstates.

Given the results of Fig. 4 and the associated discussion,
we notice that E1 and E2 coincide in the ergodic phase E1 =
E2 = 1, diverge near the ergodic-MBL transition point, and
should coincide again deep in the MBL phase E1 = E2 = 0.
This is due to the fact that the MPSs of bond dimension
χ = 1 and χ = 2 are both equally bad representations of
thermal states on the ergodic side of the transition, and both
equally exact representations of product states on the extreme
h/J → ∞ MBL side of the transition. This behavior is cap-
tured by an equation of the form

�Eχ1,χ2 = Eχ1 − Eχ2 , (15)

which is strictly non-negative and bounded in the interval
[0, 1] for χ1 < χ2 [43]. Quantitatively, Eq. (15) captures how
much the fidelity of the MPS representation of a given state
improves when we increase the bond dimension χ1 → χ2

[44].
We restrict ourselves to an analysis of the χ1 = 1 and

χ2 = 2 case in the main body of this paper, but include an
analysis of up to bond dimension χ2 = 16 in Appendix D. In
all cases we average �E1,2 = E1 − E2 � 0 over 512 disorder
samples [realizations of the Hamiltonian of Eq. (14)] and 10
midspectrum eigenstate samples for each disorder sample.
The results of this analysis are shown in Fig. 5 where we
can clearly see �E1,2 = 0 in the ergodic regime, and �E1,2

decreasing linearly towards zero deep in the localized regime.
In the transition region we can see a crossover point around

h/J ∼ 3.5 (considering the largest three sizes available) indi-
cating scale-invariant behavior around the region where the
critical point hc � 3.5 is usually found for similar small sys-
tems in the canonical model of Eq. (14) [45]. We also note a
slight drift of this crossover which is not an atypical pathology
in extant analyses at similar scales. While Eχ , and by exten-
sion Eq. (15), cannot diverge by definition, its gradient can: a
feature we can see clearly in Fig. 5 close to h/J = 3.5 with
steeper gradients for larger system sizes. We found similar
behavior in �E1,χ2 up to χ2 � 16, the results for which are
shown in Fig. 11 in Appendix D; indicating that the coarse-
graining of entanglement found in MPS representations of low

FIG. 5. The difference �E1,2 = E1 − E2 between the conven-
tional E1 and generalized E2 geometric entanglements across the
ergodic-MBL transition. We can see clear peaks, as well as slow
linear decay after the peaks with increasing h/J . The intersection
of curves for the largest three systems near h/J = 3.5 indicates
scale-invariant behavior near this point.
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bond dimension does not erase the qualitative features of the
transition.

VII. CONCLUSIONS

In this paper we have introduced a scalable geometric
measure of entanglement that does not appeal to separability.
Rather, through the MPS formalism and the bond dimen-
sion χ , this approach encourages an alternative understanding
of entanglement in terms of entanglement complexity: the
efficiency of state representation under entanglement coarse-
graining. This change in perspective yields a geometric
measure of entanglement Eχ which succeeds in contexts
where the conventional geometric entanglement (coincident
with E1) and its immediate k-separable generalization cannot.
We additionally note that, due to the advantageous fact that Eχ

is still derived from an overlap between two states, it retains
the positive feature of being an experimentally measurable
quantity through, e.g., a SWAP test [46,47] or MPS tomog-
raphy [48]. We have demonstrated the value of Eχ in a variety
of different contexts. Firstly, at the AKLT point, which can be
detected by E2 but not by E1. Secondly, in a more exploratory
setting, we found that the phases of the anisotropic Haldane
model, each having their distinct signature in entanglement
complexity, are gradually revealed by Eχ as we vary χ ; these
phases are invisible to the conventional geometric entangle-
ment. And finally in the context of MBL where, away from
ground-state analyses, Eχ and relative entanglements �Eχ1,χ2

give us a tunable quantification of the transition between vol-
ume and area-law entangled eigenstates across the spectrum.
We finally note that the results of this paper rely on accurate
generation of the target state |ψ〉, which may not always be
possible for some systems, e.g., an experimentally prepared
state, or a state obtained by some numerical procedure for
which convergence is difficult. The question of extending our
measure to target states which are only partially known is
an interesting future topic of research. In summary, we have
introduced a measure which establishes a classification of
many-body entanglement through compressibility and entan-
glement complexity. Additionally, the connection it suggests
between entanglement measures and tensor networks warrants
further exploration.
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APPENDIX A: DIAGRAMMATIC TENSOR NOTATION

Diagrammatic tensor notation, alternatively named Pen-
rose notation for its originator R. Penrose in Ref. [49],
is a visual depiction of tensors and tensor networks. The
mathematical rules of tensor manipulation have correspond-

FIG. 6. The basics of diagrammatic notation. Panel (a) shows the
diagrammatic representation of the tensor Aμ

νμ, and (b) shows the
diagrammatic representation of the contraction Bμ

ν Cη
μ.

ing diagrammatic representations and so the tedious process
of calculation and tally keeping of indices is abstracted away
into doodles that are readable at a glance.

The basic object, the tensor itself, is represented as a blob
with legs attached: each leg corresponds to an index of that
tensor. Legs going up correspond to contravariant indices (up
indices), and legs going down correspond to covariant indices
(down indices); though this is often ignored for indices that
are contracted over or in situations where the difference is
irrelevant. The tensor Aμ

νη, for example, is shown in panel (a)
of Fig. 6. Contractions over pairs of indices are drawn simply
by connecting the indices in question; the tensor network
Bμ

ν Cη
μ, for example, is shown in panel (b) of Fig. 6.

The standard tensor manipulations then become simple
diagrammatic tricks. For example, raising or lowering an
index via the metric tensor corresponds to extending the cor-
responding leg until it points upwards or downwards. More
complicated algorithms can also be readily represented; con-
sider the singular value decomposition of Eq. (3) (in which we
have omitted any notion of upper or lower indices), which has
been drawn diagrammatically in Fig. 7. Note that we have the
contraction over the single index s2 which is represented by
two contractions over the same index s2 going into and out of
S; this can be understood either as equivalent to the promotion
of S to a diagonal tensor of increased rank, or as notational
convenience in representing a contraction over three indices.

APPENDIX B: THE MAJUMDAR-GHOSH POINT

Consider the J1-J2 model defined by the Hamiltonian

H = J1

n∑
j

S j · S j+1 + J2

n∑
j

S j · S j+2, (B1)

where S j are vectors of standard spin-1/2 operators, across
the Majumdar-Ghosh point J2 = J1/2. At this point, for open
boundary conditions, the bulk of the unique ground state is
a simple valence bond solid: a product state of singlets [50].

FIG. 7. A diagrammatic version of the singular value decompo-
sition of Eq. (3).
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FIG. 8. The (left) geometric entanglement E1 and (right) its first
nontrivial generalization E2 of the J1-J2 ground state across the
Majumdar-Ghosh point. While the conventional geometric entangle-
ment initially shows a small peak at the Majumdar-Ghosh point, only
E2 successfully locates the ground state in the thermodynamic limit.

Such a ground state has an exact representation as an MPS of
bond dimension χ = 2 and is n/2 separable.

We fix J1 = 1 and investigate the generalized geometric
entanglements E1 and E2 across the Majumdar-Ghosh point
using a two-site DMRG implemented using QUIMB to reach
ground states of Eq. (B1) for large system sizes (n = 256).
These results are shown in Fig. 8, from which we can see
clearly that—despite an initial peak at small system sizes—
the conventional geometric entanglement completely fails to
identify the point in the thermodynamic limit, while the χ = 2
generalization successfully captures the expected behavior.
Despite the clear advantage of E2 in this context, existing
generalizations of the geometric entanglement based on k sep-
arability can also detect the n/2-separable Majumdar-Ghosh
ground state.

APPENDIX C: ADDITIONAL RESULTS FOR
THE ANISOTROPIC HALDANE MODEL

This section concerns itself with the ground-state phase
diagram of the anisotropic Haldane model of Eq. (13) as
discussed in Sec. V of the main text. In addition to the gen-
eralized geometric entanglement Eχ of the ground states for
χ = 2, 3, 6 considered in the main text and shown in panels
(b)–(d) of Fig. 3, we provide results here for the geometric
entanglement itself E1 and larger values of χ = 8, 16, 32.
Unlike in the main text, the color scale is logarithmic to ensure
visibility of Eχ even in the large-χ regime wherein the fidelity
of the MPS representation is very high almost everywhere.
These results are shown in Fig. 9.

As noted in the main text, panel (a) shows that the geo-
metric entanglement E1 is close to saturation over the entire
region we investigate. This is due to the fact that the antifer-
romagnetic coupling J generates some entanglement. Panel
(b) shows E8 in which the Haldane phase has become very
clearly defined, reinforcing the idea that—while it is more
entangled than the other phases’ ground states and the AKLT
state—it is still area-law entangled and admits a low-χ MPS
representation as expected. Panels (c) and (b) show E16 and

FIG. 9. The ground-state phase diagram of the anisotropic Hal-
dane model of Eq. (13). Panel (a) shows the geometric entanglement
E1. Panels (b)–(d) show Eχ of the ground state for χ = 8, 16, 32,
respectively. The ground state was calculated for a system of n = 512
sites using a two-site DMRG implemented using an extension of
QUIMB [26].

E32, respectively, in which we see an exponential drop-off
in the fidelity loss due to high bond dimension MPS rep-
resentations. The critical regions near the Gaussian critical
points from the Haldane phase to the large-Ex/Ey/D phases
are the brightest regions; this aligns with the understanding
that, close to criticality, low-χ MPS representations generally
fail. An interesting aspect of these plots that warrants further
research is that the phase diagram persists even at high bond
dimension, suggesting a potential scaling in bond dimension
and fidelity.

APPENDIX D: ADDITIONAL ANALYSES
OF THE MBL TRANSITION

In this section we discuss some additional results of the
investigation of the ergodic-MBL transition found in Sec. VI
of the main text. We consider the relative generalized geo-
metric entanglement �E1,χ = E1 − Eχ [defined in Eq. (15)]
for χ � 2, unlike the χ = 2 case considered in the main text.
First we note that due to the restructuring of Hilbert space into
a hierarchy of nested manifolds of MPS with fixed bond di-
mension there is an associated hierarchy E1 � E2 � · · · � E�

in the generalized geometric entanglement (where � is the
dimension of the total Hilbert space). Two corollaries to this
fact are (i) that �E1,χ � 0 with equality only when the state in
question is a product state or when χ = 1, and (ii) that there
exists a similar hierarchy in �E1,χ :

�E1,2 � �E1,3 � · · · � �E1,�. (D1)

In all cases we average �E1,χ over 512 disorder samples [re-
alizations of the Hamiltonian of Eq. (14)] and 10 midspectrum
eigenstate samples for each disorder sample; calculations are
carried out using QUIMB [26]. The hierarchy of Eq. (D1) is
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FIG. 10. The relative generalized geometric entanglement �E1,χ

across the ergodic-MBL transition for different values of χ in a
system of size n = 18. We see clear peaks in the transition region
close to h/J = 3.5, as well as slow linear decay after the peaks with
increasing h/J .

shown for a system of size n = 18 in Fig. 10, and in addition
we see a clear peak in the critical region near h/J = 3.5. This
supports the argument made in the main text that low-χ MPS
representations are equally bad in the ergodic regime as even
χ = 16 MPSs are poor, and become equally good in the MBL
regime. We also investigate �E1,χ for a range of different
system sizes, the results of which are shown in Fig. 11. From
this figure we can see that the characteristic intersection of
lines indicating scale invariance close to h/J = 3.5 and the
drift of this point with increasing n noted in the discussion of

FIG. 11. The relative generalized geometric entanglement �E1,χ

across the ergodic-MBL transition for different values of χ and dif-
ferent sizes. We see clear peaks and an intersection in the transition
region near h/J = 3.5, as well as slow linear decay after the peaks
with increasing h/J . This indicates scale-invariant behavior close to
criticality.

Fig. 5 in the main text are also present here. The results of
this section motivated the exclusive use of �E1,2 in the main
text: no new qualitative information is revealed by accessing
higher values of χ aside from a more pronounced critical peak
in Fig. 10. Whether or not different �Eχ1,χ2 yield different
quantitative results under a sophisticated scaling analysis or
in other situations is beyond the scope of this paper.
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Žnidarič, Can we study the many-body localisation transition?,
Europhys. Lett. 128, 67003 (2020).

[43] A trivial feature of the nested structure of the variational mani-
folds shown in (1), i.e., that increasing the size of the variational
parameter space will never produce a worse representation of
the state.

[44] For a related discussion, see Appendix D.
[45] V. Khemani, S. P. Lim, D. N. Sheng, and D. A. Huse, Crit-

ical Properties of the Many-Body Localization Transition,
Phys. Rev. X 7, 021013 (2017).

[46] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa,
and C. Macchiavello, Stabilization of quantum computations by
symmetrization, SIAM J. Comput. 26, 1541 (1997).

[47] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum
Fingerprinting, Phys. Rev. Lett. 87, 167902 (2001).

[48] B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C.
Hempel, P. Jurcevic, I. Dhand, A. S. Buyskikh, A. J. Daley,
M. Cramer, M. B. Plenio, R. Blatt, and C. F. Roos, Efficient
tomography of a quantum many-body system, Nat. Phys. 13,
1158 (2017).

[49] R. Penrose, Applications of negative dimensional tensors, in
Combinatorial Mathematics and Its Applications (Academic
Press, New York, 1971), Vol. 1, pp. 221–244.

[50] C. K. Majumdar and D. K. Ghosh, On next-nearest-neighbor
interaction in linear chain. I, J. Math. Phys. 10, 1388 (1969).

013041-10

https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1007/s11128-017-1633-8
https://doi.org/10.1142/S0217984914300178
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.21105/joss.00819
https://doi.org/10.1103/PhysRevB.40.4709
https://doi.org/10.1103/PhysRevLett.69.3571
https://doi.org/10.1103/PhysRevA.97.042318
https://doi.org/10.1103/PhysRevB.96.060404
https://doi.org/10.1103/PhysRevLett.96.247206
https://doi.org/10.1080/10408436.2020.1852911
https://doi.org/10.1103/PhysRevB.67.104401
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1002/andp.201700169
https://doi.org/10.1103/PhysRevLett.124.186601
https://doi.org/10.1209/0295-5075/128/67003
https://doi.org/10.1103/PhysRevX.7.021013
https://doi.org/10.1137/S0097539796302452
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1038/nphys4244
https://doi.org/10.1063/1.1664978

