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Abstract

The annotation of domain experts is important for some med-
ical applications where the objective ground truth is ambigu-
ous to define, e.g., the rehabilitation for some chronic dis-
eases, and the prescreening of some musculoskeletal abnor-
malities without further medical examinations. However, im-
proper uses of the annotations may hinder developing reliable
models. On one hand, forcing the use of a single ground truth
generated from multiple annotations is less informative for
the modeling. On the other hand, feeding the model with all
the annotations without proper regularization is noisy given
existing disagreements. For such issues, we propose a novel
Learning to Agreement (Learn2Agree) framework to tackle
the challenge of learning from multiple annotators without
objective ground truth. The framework has two streams, with
one stream fitting with the multiple annotators and the other
stream learning agreement information between annotators.
In particular, the agreement learning stream produces regu-
larization information to the classifier stream, tuning its de-
cision to be better in line with the agreement between anno-
tators. The proposed method can be easily added to existing
backbones, with experiments on two medical datasets showed
better agreement levels with annotators.

Introduction
There exist difficulties for model development in applica-
tions where the objective ground truth is difficult to establish
or ambiguous merely given the input data itself. That is, the
decision-making, i.e. the detection, classification, and seg-
mentation process, is based on not only the presented data
but also the expertise or experiences of the annotator. How-
ever, the disagreements existed in the annotations hinder the
definition of a good single ground truth. Therefore, an im-
portant part of supervise learning for such applications is to
achieve better fitting with annotators.

In this learning scenario, the input normally comprises
pairs of (xi, r

j
i ), where xi and rji are respectively the data

of i-th sample and the label provided by r-th annotator.
Given such input, naı̈ve methods aim to provide a single
set of ground truth label for model development. Therein, a
common practice is to aggregate these multiple annotations
with majority voting (Surowiecki 2005). However, majority-
voting could misrepresent the data instances where the dis-

A work under development.

Figure 1: The proposed Learn2Agree framework regularizes
the classifier that fits with all annotators with the estimated
agreement information between annotators.

agreement between different annotators is high. This is par-
ticularly harmful for applications where differences in ex-
pertise or experiences exist in annotators.

Except for majority-voting, some have tried to estimate
the ground truth label using STAPLE (Warfield, Zou, and
Wells 2004) based on Expectation-Maximization (EM) al-
gorithms. Nevertheless, such methods are sensitive to the
variance in annotations and the data size (Lampert, Stumpf,
and Gançarski 2016; Karimi et al. 2020). When the number
of annotations per xi is modest, efforts are put into creat-
ing models that utilize all the annotations with multi-score
learning (Meng, Kleinsmith, and Bianchi-Berthouze 2011)
or soft labels (Hu et al. 2016). Recent approaches have in-
stead focused on leveraging or learning the expertise of an-
notators while training the model (Long, Hua, and Kapoor
2013; Long and Hua 2015; Healey 2011; Guan et al. 2018;
Ji et al. 2021; Yan et al. 2014, 2010; Tanno et al. 2019; Zhang
et al. 2020). A basic idea is to refine the classification or seg-
mentation toward the underlying ground truth by modeling
annotators.

In this paper, we focus on a hard situation when the
ground truth is ambiguous to define. On one hand, this could
be due to the missing of objective ground truth in a spe-
cific scenario. For instance, in the analysis of bodily move-
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ment behavior for chronic-pain (CP) rehabilitation, the self-
awareness of people with CP about their exhibited pain or
fear-related behaviors is low, thus physiotherapists play a
key role in judging it (Felipe et al. 2015; Singh et al. 2016).
However, since the physiotherapists are assessing the behav-
ior on the basis of visual observations, they may disagree on
the judgment or ground truth.

Additionally, the ground truth could be temporarily miss-
ing, at a special stage of the task. For example, in abnor-
mality prescreening for bone X-rays, except for abnormali-
ties like fractures and hardware implantation that are obvi-
ous and deterministic, other types like degenerative diseases
and miscellaneous abnormalities are mainly diagnosed with
further medical examinations (Rajpurkar et al. 2017). That
is, at prescreening stage, the opinion of the doctor makes
the decision, which could disagree with other doctors or the
final medical examination though.

Thereon, unlike the traditional modeling goal that usually
requires the existence of a set of ground truth labels to eval-
uate the performance, the objective of modeling in this pa-
per is to improve the overall agreement between the model
and annotators. Our contributions are four-fold: (i) We pro-
pose a novel Learn2Agree framework to directly leverage
the agreement information stored in annotations from multi-
ple annotators to regularize the behavior of the classifier that
learns from them; (ii) To improve the robustness, we propose
a general agreement distribution and an agreement regres-
sion loss to model the uncertainty in annotations; (iii) To
regularize the classifier, we propose a regularization func-
tion to tune the classifier to better agree with all annotators;
(iv) Our method noticeably improves existing backbones for
better agreement levels with all annotators on classification
tasks in two medical datasets, involving data of body move-
ment sequences and bone X-rays.

Related Work
Modeling Annotators. The leveraging or learning of an-
notators’ expertise for better modeling is usually imple-
mented in a two-step or multiphase manner, or integrated
to run simultaneously. For the first category, one way to ac-
quire the expertise is by referring to the prior knowledge
about the annotation, e.g. the year of experience of each
annotator, and the discussion held on the disagreed annota-
tions. With such prior knowledge, studies in (Long, Hua, and
Kapoor 2013; Long and Hua 2015; Healey 2011) propose to
distill the annotations, deciding which annotator to trust for
disagreed samples. Without the access to such prior knowl-
edge, the expertise, or behavior of an annotator can also be
modeled given the annotation and the data, which could be
used as a way to weight each annotator in the training of a
classification model (Guan et al. 2018), or adopted to refine
the segmentation learned from multiple annotators (Ji et al.
2021). More close to ours are the ones that simultaneously
model the expertise of annotators while training the classi-
fier. Previous efforts are seen on using probabilistic mod-
els (Yan et al. 2014, 2010) driven by EM algorithms, and
multi-head models that directly model annotators as confu-
sion matrices estimated in comparison with the underlying
ground truth (Tanno et al. 2019; Zhang et al. 2020).

While the idea behind these works may indeed work for
applications where the distance between each annotator and
the underlying ground truth exists and can be estimated in
some ways to refine the decision-making of a model, we ar-
gue that in some cases it is (at least temporarily) difficult to
assume the existence of the underlying ground truth.

Modeling Uncertainty. Modeling uncertainty is a popu-
lar topic in the computer vision domain, especially for tasks
of semantic segmentation and object detection. Therein,
methods proposed can be categorized into two groups:
i) the Bayesian methods, where parameters of the pos-
terior distribution (e.g. mean and variance) of the uncer-
tainty are estimated with Monte Carlo dropout (Leibig et al.
2017; Kendall, Badrinarayanan, and Cipolla 2017; Ma et al.
2017) and parametric learning (Hu, Sclaroff, and Saenko
2020; Charpentier, Zügner, and Günnemann 2020) etc.; and
ii) ’non-Bayesian’ alternatives, where the distribution of
uncertainty is learned with ensemble methods (Lakshmi-
narayanan, Pritzel, and Blundell 2016), variance propaga-
tion (Postels et al. 2019), and knowledge distillation (Shen
et al. 2021) etc.

Except for their complex and time-consuming training or
inference strategies, another characteristic of these methods
is the dependence on Gaussian or Dirac delta distributions
as the prior assumption.

Evaluation without Ground Truth. In the context of
modeling multiple annotations without ground truth, typ-
ical evaluation measures rely on metrics of agreements.
For example, (Kleinsmith, Bianchi-Berthouze, and Steed
2011) uses metrics of agreement, e.g. Cohen’s Kappa (Co-
hen 1960) and Fleiss’ Kappa (Fleiss 1971), as the way to
compare the agreement level between a system and an an-
notator and the agreement level between other unseen anno-
tators, in a cross-validation manner. However, this method
does not consider how to directly learn from all the anno-
tators, and how to evaluate the performance of the model
in this case. For this end, (Lovchinsky et al. 2019) pro-
poses a metric named discrepancy ratio. In short, the met-
ric compares performances of the model-annotator vs. the
annotator-annotator, where the performance can be com-
puted as discrepancy e.g. with absolute error, or as agree-
ment e.g. with Cohen’s kappa. In this paper, we use the Co-
hen’s kappa as the agreement calculator together with such a
metric to evaluate the performance of our method. We refer
to this metric as agreement ratio.

Method
An overview of our proposed Learn2Agree framework is
shown in Fig.2. The core of our proposed method is to
learn to estimate the agreement between different annotators
based on their raw annotations, and simultaneously utilize
the agreement-level estimation to regularize the training of
the classification task. Therein, different components of the
proposed method concern: the learning of agreement levels
between annotators, and regularizing the classifier with such
information. In testing or inference, the model estimates an-
notators’ agreement level based on the current data input,
which is then used to aid the classification.



Figure 2: An overview of our Learn2Agree framework, comprising i) (above) the classifier stream with original prediction
p̂θ(xi) that fits with available annotations {rji }j=1,...,J ; and ii) (below) the agreement learning stream that learns to estimate ŷi
of the agreement level αi between annotators, and leverage such information to compute the regularized prediction p̃θ(xi).

In this paper, we consider a dataset comprising N sam-
ples X = {xi}i=1,...,N , with each sample xi being an image
or a timestep in a body movement data sequence. For each
sample xi, r

j
i denotes the annotation provided by j-th an-

notator, with αi ∈ [0, 1] being the agreement computed be-
tween annotators. For a binary task, rji ∈ {0, 1}. With such
dataset D = {xi, rji }

j=1,...,J
i=1,...,N , the proposed method aims to

improve the agreement level with all annotators. It should be
noted that, for each sample xi, the method does not expect
the annotations to be available from all the J annotators.

Modeling Uncertainty in Agreement Learning
To enable a robust learning of the agreement between anno-
tators, we consider modeling the uncertainty that could exist
in the annotations. In our scenarios, the uncertainty comes
from annotators’ varying expertise exhibited in their anno-
tations across different data samples, which may not follow
specific prior distributions.

Inspired by the study of (Li et al. 2020) that proposed to
use a general distribution for uncertainty modeling in the
bounding box regression of object classification, without re-
lying on any prior distributions, we further propose a gen-
eral agreement distribution G(yi) for agreement learning
(see the upper part of Fig.3). Therein, the distribution val-
ues are the possible agreement levels yi between annotators
with a range of [y0

i , y
n
i ], which is further discretized into

{y0
i , y

1
i , ...y

n−1
i , yni } with a uniform interval of 1. The gen-

eral agreement distribution has a property
∑n
k=0 G(yki ) =

1, which can be implemented with a softmax layer with n+1
nodes. The predicted agreement ŷi for regression can be
computed as the weighted sum of all the distribution values

ŷi =

n∑
k=0

G(yki )yki . (1)

For training the predicted agreement value ŷi toward the
target agreement αi, inspired by the effectiveness of quan-
tile regression in understanding the property of conditional
distribution (Koenker and Hallock 2001; Hao, Naiman, and
Naiman 2007; Fan et al. 2019), we propose a novel Agree-
ment Regression (AR) loss defined by
LAR(ŷi, αi) = max[αi(ŷi − αi), (αi − 1)(ŷi − αi)]. (2)

Figure 3: The learning of the agreement αi between annota-
tors is modeled with a general agreement distribution G(yi)
using agreement regression loss LAR (above), with the X
axis of the distribution being the possible agreement lev-
els yi and the Y axis being the respective probabilities. This
learning can also be implemented as a linear regression task
that learns to approach the exact agreement level αi using
RMSE loss (below).

Comparing with the original quantile regression loss, the
quantile q is replaced with the agreement αi computed at
current input sample xi. The quantile q is usually fixed for
a dataset, as to understand the underlying distribution of the
model’s output at a given quantile. By replacing q with αi,
we optimize the general agreement distribution to focus on
the given agreement level dynamically across samples.

In (Li et al. 2021), the authors proposed to use the top
k values of the distribution and their mean to indicate the
shape (flatness) of the distribution, which provides the level
of uncertainty in object classification. In our case, all proba-
bilities of the distribution are used to regularize the classifier.
While this also informs the shape of the distribution for the
perspective of uncertainty modeling, the skewness reflecting
the high or low agreement level learned at the current data
sample is also revealed. Thereon, two fully-connected layers
with RELU and Sigmoid activations respectively are used to
process such information and produce the agreement indica-
tor ỹi for regularization.



Learning Agreement with Linear Regression. Straight-
forwardly, we can also formulate the agreement learning as
a plain linear regression task, modelled by a fully-connected
layer with a Sigmoid activation function (see the lower part
of Fig.3). Then, the predicted agreement ŷi is directly taken
as the agreement indicator ỹi for regularization. Given the
predicted agreement ŷi and target agreement αi at each in-
put sample xi, by using Root Mean Squared Error (RMSE),
the linear regression loss is computed as

LRMSE(ŷ, α) = [
1

N

N∑
i

(ŷi − αi)2]
1
2 . (3)

It should be noted that, the proposed AR loss can also be
used for this linear regression variant, which may help opti-
mize the underlying distribution toward the given agreement
level. In the experiments, an empirical comparison between
different variants for agreement learning is conducted.

Regularizing the Classifier with Agreement
Since the high-level information implied by the agreement
between annotators could provide extra hints in classifica-
tion tasks, we utilize the agreement indicator ỹi to regular-
ize the classifier training toward providing outcomes that are
more in agreement with annotators. Given a binary classifi-
cation task (a multi-class task can be decomposed into sev-
eral binary ones), at input sample xi, we denote the original
predicted probability toward the positive class of the classi-
fier to be p̂θ(xi). The general idea is that, when the learned
agreement indicator is i) at chance level i.e. ỹi = 0.5, p̂θ(xi)
shall stay unchanged; ii) biased toward the positive/negative
class, the value of p̂θ(xi) shall be regularized toward the re-
spective class. For these, we propose a novel regularization
function written as

p̃θ(xi) =
p̂θ(xi)e

λ(ỹi−0.5)

p̂θ(xi)eλ(ỹi−0.5) + (1− p̂θ(xi))eλ(0.5−ỹi)
, (4)

where p̃θ(xi) is the regularized probability toward the pos-
itive class of the current binary task, λ is a hyperparam-
eter controlling the scale at which the original predicted
probability p̂θ(xi) changes toward p̃θ(xi) when the agree-
ment indicator increases/decreases. Fig.4 shows the prop-
erty of the function: for the original predicted probability
p̂θ(xi) = 0.5, the function with larger λ augments the ef-
fect of the learned agreement indicator ỹi so that the output
p̃θ(xi) is regularized toward the more (dis)agreed; when ỹi
is at 0.5, where annotators are unable to reach an above-
chance opinion about the task, the regularized probability
stays unchanged with p̃θ(xi) = p̂θ(xi).

Combating Imbalances in Logarithmic Loss
In this subsection, we first alleviate the influence of class im-
balances present in the annotation of each annotator, by re-
fining the vanilla cross-entropy loss. We further explore the
use of an agreement-oriented loss that may naturally avoid
such imbalances during training.

Figure 4: The property of the regularization function. X and
Y axes are the agreement indicator ỹi and regularized proba-
bility p̃θ(xi), respectively. p̃θ(xi) is regularized to the class,
for which the ỹi is high, with the scale controlled by λ.

Annotation Balancing for Each Annotator. For the clas-
sifier stream, given the regularized probability p̃θ(xi) at the
current input sample xi, the classifier is updated using the
sum of the loss computed according to the available annota-
tion rji from each annotator. Due to the various the nature
of the task (i.e., positive samples are sparse), the annota-
tion from each annotator could be noticeably imbalanced.
Toward this problem, we use the Focal Loss (FL) (Lin et al.
2017), written as follows.

LFL(p, g) = −|g−p|γ(g log(p)+(1−g) log(1−p)), (5)

where p is the predicted probability of the model toward the
positive class at the current data sample, g ∈ {0, 1} is the
binary ground truth, and γ ≥ 0 is the focusing parameter
used to control the threshold for judging the well-classified.
A larger γ leads to a lower threshold so that more samples
would be treated as the well-classified and down weighted.
In our scenario, the FL function is integrated into the fol-
lowing loss function to compute the average loss from all
annotators.

Lθ(P̃θ,R) =
1

J

J∑
j=1

1

Ǹ j

Ǹj∑
i=1

LFL(p̃θ(xi), r
j
i ), (6)

where Ǹ j ≤ N is the number of samples that have been
labelled by j-th annotator, P̃θ = {p̃θ(xi)}i=1,...,N , R =

{rji }
j=1,...,J

i=1,...,Ǹj
. rji = null if the j-th annotator did not anno-

tate at i−th sample, and the loss is not computed here.
Additionally, searching for the γ manually for each an-

notator could be cumbersome, especially for a dataset la-
beled by numerous annotators. In this paper, we compute
γ given the number of samples annotated by each anno-
tator per class of each binary task. The hypothesis is that,



for annotations biased more toward one class, γ shall set to
be bigger since larger number of samples tend to be well-
classified. We leverage the effective number of samples (Cui
et al. 2019) to compute each γj as follows.

γj =
(1− βn

j
k)

(1− β(Ǹj−nj
k
))
, (7)

where njk is the number of samples for the majority class k in
the current binary task annotated by annotator j, β = Ǹj−1

Ǹj
.

Agreement-oriented Loss. In (de La Torre, Puig, and
Valls 2018), a Weighted Kappa Loss (WKL) was used to
compute the agreement-oriented loss between the output of
a model and the annotation of an annotator. As developed
from the Cohen’s Kappa, this loss may guide the model to
pay attention to the overall agreement level instead of the lo-
cal mistake. Thus, we may be able to avoid the cumbersome
work of alleviating the class imbalances as above. This loss
function can be written as follows.

LWKL = log(1− κ). (8)

The linear weighted kappa κ (Cohen 1968) is used in this
equation, where the penalization weight is proportional to
the distance between the predicted and the class. We replace
the FL loss written in Equation 5, to compute the weighted
kappa loss across samples and annotators using Equation 6.
The value range of this loss is (−∞, log 2], thus a Sigmoid
function is applied before we sum the loss from each anno-
tator. We compare this WKL loss function to the logarithmic
one in our experiment.

Experiments
In this section, we evaluate our proposed method with data
annotated by multiple human experts, where the objective
ground truth is ambiguous to define.

Datasets
Two medical datasets are selected, involving data of body
movement sequences and bone X-rays.

EmoPain. The EmoPain (Aung et al. 2015) dataset con-
tains skeleton-like movement data collected from 18 partic-
ipants with CP and 12 healthy participants while they per-
form a variety of full-body physical rehabilitation activi-
ties (e.g. stretching forward and sitting down). In total, we
have 46 activity sequences collected from these 30 partici-
pants, with each sequence lasting for about 10 minutes (or
36,000 samples). A binary task is included to detect the pres-
ence of protective behavior (e.g. hesitation, guarding) (Keefe
and Block 1982) exhibited by participants with CP during
the performances. The detection of such behavior could be
leveraged to generate automatic feedback and inform thera-
peutic personalized interventions (Wang et al. 2021a). Four
experts were recruited to provide the binary annotations of
the presence or absence of protective behavior per timestep
for each CP participant data sequence.

MURA. The MURA dataset (Rajpurkar et al. 2017) com-
prises 40,561 radiographic images of 7 upper extremity
types (i.e., shoulder, humerus, elbow, forearm, wrist, hand,
and finger), and is used for the binary classification of abnor-
mality. This dataset is officially split into training (36,808
images), validation (3197 images), and testing (556 images)
sets, with no overlap in subjects. The training and validation
sets are publicly available, with each image labelled by a ra-
diologist. In the testing set, the authors of MURA recruited
six additional radiologists for annotation, and defined the
ground truth with majority-voting among three randomly-
picked radiologists. The rest three radiologists achieved Co-
hen’s kappa with such ground truth of 0.731, 0.763, and
0.778, respectively. To simulate the opinions of different ex-
perts for the data we have access to, three synthetic anno-
tators are created to reach Cohen’s kappa with the existing
annotator at 0.80, 0.75, and 0.70, respectively.

Implementation Details
For experiments on the EmoPain dataset, the state-of-the-
art HAR-PBD network (Wang et al. 2021a) is adopted as
the backbone, and Leave-One-Subject-Out validation is con-
ducted across the participants with CP. The average of the
performances achieved on all the folds is reported. The train-
ing data is augmented by adding Gaussian noise and crop-
ping, as seen in (Wang et al. 2021b). The number of bins
used in the general agreement distribution is set to 10, i.e.,
the respective softmax layer has 11 nodes. The λ used in the
regularization function is set to 3.0.

For experiments on the MURA dataset, the Dense-169
network (Huang et al. 2017) pretrained on the ImageNet
dataset (Deng et al. 2009) is used as the backbone. The orig-
inal validation set is used as the testing set, where the first
view (image) from each of the 7 upper extremity types of
a subject is used. Images are all resized to be 224 × 224,
while images in the training set are further augmented with
random lateral inversions and rotations of up to 30 degrees.
The number of bins is set to 5, and the λ is set to 3.0.

For all the experiments, the classifier stream is imple-
mented with a fully-connected layer using a Softmax acti-
vation with two output nodes for the binary classification
task. Adam (Kingma and Ba 2014) is used as the optimizer
with a learning rate lr =1e-4, which is reduced by 1/10 if
the performance is not improved after 10 epochs. The num-
ber of epochs is set to 50. the logarithmic loss is adopted
by default as written in Equation 5 and 6, while the WKL
loss (8) is used for comparison when mentioned. For the
agreement learning stream, the AR loss is used for its dis-
tributional variant, while the RMSE is used for its linear
regression variant. We implement our method with Tensor-
Flow deep learning library on a PC with a RTX 3080 GPU
and 32 GB memory.

Agreement Computation
For a binary task, the agreement level αi between annotators
is computed as follows.

αi =
1

J̀

J̀∑
j=1

wji r
j
i , (9)



Table 1: The ablation experiment on the EmoPain and MURA datasets. Majority-voting refers to the method using the majority-
voted ground truth for training. CE and WKL refer to the logarithmic and weighted kappa loss functions used in the classifier
stream, respectively. Linear and Distributional refer to the agreement learning stream with linear regression and general agree-
ment distribution, respectively. The best performance in each section is marked in bold per dataset.

Framework/Annotator CE WKL Annotation
Balance Linear Distributional ∆↑

EmoPain
∆↑

MURA
Majority

√ √
1.0417 0.7616

Voting
√

1.0452 0.7638√
0.9733 0.7564

Learn-from-all
√ √

1.0189 0.7665√
1.0407 0.7751√ √ √
1.0477 0.7727

Learn2Agree
√ √ √

1.0508 0.7796
(Ours)

√ √
1.0471 0.7768√ √
1.0547 0.7801

Annotator 1 0.9613 1.0679
Annotator 2 1.0231 0.9984
Annotator 3 1.0447 0.9743
Annotator 4 0.9732 0.9627

where J̀ is the number of annotators that have labelled the
sample xi. In this way, αi ∈ [0, 1] stands for the agreement
of annotators toward the positive class of the current binary
task. In this work, we assume each sample was labelled by
at least one annotator. wji is the weight for the annotation
provided by j-th annotator that could be used to show the
different levels of expertise of annotators. The weight can
be set manually given prior knowledge about the annotator,
or used as a learnable parameter for the model to estimate.
In this work, we treat annotators equally by setting wji to 1.
We leave the discussion on other situations to future works.

Metric
Following (Lovchinsky et al. 2019), we evaluate the perfor-
mance of a model by using the agreement ratio as follows.

∆ =
C2
J

J

∑J
j=1 Sigmoid(κ(P̃θ,R

j))∑J
j,j′=1&j 6=j′ Sigmoid(κ(Rj ,Rj′ ))

, (10)

where the numerator computes the average agreement for
the pairs of predictions of the model and annotations of each
annotator, and the denominator computes the average agree-
ment between annotators with C2

J denoting the number of
different annotator pairs. κ is the Cohen’s Kappa. The agree-
ment ratio ∆ > 0 is larger than 1 when the model performs
better than the average annotator (Lovchinsky et al. 2019).

Results
Agreement-oriented Loss vs. Logarithmic Loss. As
shown in the first section of Table 1, models trained with
majority-voted ground truth produce agreement ratios of
1.0417 and 0.7616 with logarithmic loss and annotation
balancing (in this case is class balancing for the single
majority-voted ground truth) on the EmoPain and MURA
datasets, respectively. However, as shown in the second
section of Table 1, directly exposing the model to all the
annotations is harmful, with performances lower than the
majority-voting ones of 0.9733 and 0.7564 achieved on the
two datasets using logarithmic loss alone. By using the

balancing method during training, the performance on the
EmoPain dataset is improved to 1.0189 but is still lower than
majority-voting one, while a better performance of 0.7665
than the majority-voting is achieved on the MURA dataset.
These results show the importance of balancing for the mod-
eling with logarithmic loss in a learn-from-all paradigm.
With the WKL loss, performances of the model in majority-
voting (1.0452/0.7638) and learn-from-all (1.0407/0.7751)
paradigms are further improved. This shows the advantage
of the WKL loss for improving the fitting with multiple an-
notators, which also alleviates the need to use class balanc-
ing strategies.

The Impact of Our Learn2Agree Method. For both
datasets, as shown in the third section of Table 1, with
our proposed Learn2Agree method using general agreement
distribution, the best overall performances of 1.0547 and
0.7801 are achieved on the two datasets, respectively. For
the agreement learning stream, the combination of general
agreement distribution and AR loss shows better perfor-
mance than its variant using linear regression and RMSE on
both datasets (1.0477 with logarithmic loss and 0.7768 with
WKL loss). Such results could be due to the fact that the
agreement indicator ỹi produced from the linear regression
is directly the estimated agreement value ŷi, which could be
largely affected by the errors made during agreement learn-
ing. In contrast, with general agreement distribution, the in-
formation passed to the classifier is first the shape and skew-
ness of the distribution G(yi). Thus, it is more tolerant to
the errors (if) made by the weighted sum that used for the
actual regression in the agreement learning stream.

Comparing with Annotators. In the last section of Table
1, the annotation of each annotator is used to compute the
agreement ratio against the other annotators (Equation 10).

For the EmoPain dataset, the best method in majority-
voting (1.0452) and learn-from-all (1.0407) paradigms show
very competitive if not better performances than annotator 3
(1.0447) who has the best agreement level with all the other
annotators. Thereon, the proposed Learn2Agree method im-



Table 2: The experiment on the EmoPain dataset for ana-
lyzing the impact of Agreement Regression (AR) loss on
agreement learning. The best performance in each agree-
ment learning type is marked in bold.

Classifier
Loss

Agreement Learning
Type

Agreement Learning
Loss ∆↑

Linear RMSE 1.0477
CE AR 0.9976

Distributional RMSE 1.0289
AR 1.0508

Linear RMSE 1.0454
WKL AR 1.035

Distributional RMSE 1.0454
AR 1.0482

proves the performance to an even higher agreement ratio of
1.0547 against all the annotators. This performance suggests
that, when adopted in real-life, the model is able to analyze
the protective behavior of people with CP at a performance
that is highly in agreement with the human experts.

However, for the MURA dataset, the best performance so
far achieved by the Learn2Agree method of 0.7801 is still
lower than annotator 1. This suggests that, at the current
task setting, the model may make around 22% errors more
than the human experts. One reason could be largely due
to the challenge of the task. As shown in (Rajpurkar et al.
2017), where the same backbone only achieved a similar if
not better performance than the other radiologists for only
one (wrist) out of the seven upper extremity types. In this pa-
per, the testing set comprises all the extremity types, which
makes the experiment even more challenging. Future works
may explore better backbones tackling this.

The Impact of Agreement Regression Loss. The pro-
posed AR loss can be used for both the distributional and
linear agreement learning stream. However, as seen in Table
2 and Table 3, the performance of linear agreement learning
is better with RMSE loss rather than with the AR loss. The
design of the AR loss assumes the loss computed for a given
quantile is in accord with its counterpart of agreement level.
Thus, such results may be due to the gap between the quan-
tile of the underlying distribution of the linear regression and
the targeted agreement level. Therefore, the resulting esti-
mated agreement indicator using AR loss passed to the clas-
sifier may not reflect the actual agreement level. Instead, for
linear regression, a vanilla loss like RMSE promises that the
regression value is fitting toward the actual agreement level.

By contrast, the proposed general agreement distribution
directly adopts the range of agreement levels to be the dis-
tribution values, which helps to narrow such a gap when AR
loss is used. Therein, the agreement indicator is extracted
from the shape and skewness of such distribution (probabil-
ities of all distribution values), which could better reflect the
agreement level when updated with AR loss. As shown, the
combination of distributional agreement learning and AR
loss achieves the best performance in each dataset.

Conclusion
In this paper, we targeted the scenario of learning with mul-
tiple annotators where the ground truth is ambiguous to de-

Table 3: The experiment on the MURA dataset for ana-
lyzing the impact of Agreement Regression (AR) loss on
agreement learning. The best performance in each agree-
ment learning type is marked in bold.

Classifier
Loss

Agreement Learning
Type

Agreement Learning
Loss ∆↑

Linear RMSE 0.7727
CE AR 0.7698

Distributional RMSE 0.7729
AR 0.7796

Linear RMSE 0.7707
WKL AR 0.7674

Distributional RMSE 0.7724
AR 0.7773

fine. Two medical datasets in this scenario were adopted for
the evaluation. We showed that backbones developed with
majority-voted ground truth or multiple annotations can be
easily enhanced to achieve better agreement levels with an-
notators, by leveraging the underlying agreement informa-
tion stored in the annotations. For agreement learning, our
experiments demonstrate the advantage of learning with the
proposed general agreement distribution and agreement re-
gression loss, in comparison with other possible variants.
Future works may extend this paper to prove its efficiency in
datasets having multiple classes, as only binary tasks were
considered in this paper. Additionally, the learning of an-
notator’s expertise seen in (Tanno et al. 2019; Zhang et al.
2020; Ji et al. 2021) could be leveraged to weight the agree-
ment computation and learning proposed in our method for
cases where annotators are treated differently.
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