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The metacognitive sense of confidence can play a critical role in regulating decision-
making. In particular, a lack of confidence can justify the explicit, potentially costly,
instrumental acquisition of extra information that might resolve uncertainty. Human
confidence is highly complex and recent computational work has suggested a statis-
tically sophisticated tapestry behind the information that governs both the making
and monitoring of choices. However, the consequences of the form of such confidence
computations for search have yet to be understood. Here, we reveal extra richness
in the use of confidence for information seeking by formulating joint models of ac-
tion, confidence and information search within a Bayesian and reinforcement learn-
ing framework. Through detailed theoretical analysis of these models, we show the
intricate normative downstream consequences for search arising from more complex
forms of metacognition. For example, our results highlight how the ability to monitor
errors or general metacognitive sensitivity impact seeking decisions and can generate
diverse relationships between action, confidence, and the optimal search for informa-
tion. We also explore whether empirical search behavior enjoys any of the characteris-
tics of normatively derived prescriptions. More broadly, our work demonstrates that
it is crucial to treat metacognitive monitoring and control as closely linked processes.

Keywords: Computation, confidence, metacognition, information search, decision
making

After carefully deliberating between Scotland and
the Cote d’Azur, you have decided to spend your next
summer holiday in the north of Britain. You are rather
confident about this choice. Before it comes to book-
ing your train tickets, an article pops up in your feed:
"Skye or Saint-Tropez – the ultimate comparison". Do
you spend money and time on reading this article? Or
do you purchase the tickets right away? Conflicts like
this are sadly commonplace: Do you read another news
story before heading to the polls? Do you consult a
doctor before heading to the pharmacy? Each time, we
have to balance accuracy with (monetary or temporal)
cost (Cohen, McClure, & Yu, 2007; Dayan & Daw, 2008;
Wald, 1949). The decision to gather further informa-
tion rather than making the choice based on our cur-
rent knowledge thus depends critically on the initial
choice’s expected rectitude, given current information
– which is a form of subjective confidence (Pouget, Dru-
gowitsch, & Kepecs, 2016). In this paper, we examine

formal relationships between confidence and informa-
tion search.

Humans enjoy a sophisticated and explicit sense
of their expected accuracy, in forms of metacognition
(Fleming & Daw, 2017; Shekhar & Rahnev, 2020; Yeung
& Summerfield, 2012). Explicit metacognition refers
to conscious representations of performance that are
available for flexible usage in behavioural control or
communication to others (Shea et al., 2014). Metacog-
nitive evaluations duly accompany a wide range of de-
cisions, from basic judgments of perception and mem-
ory to reflective evaluations of our knowledge or the
"goodness" of subjective choices (De Martino, Fleming,
Garrett, & Dolan, 2013; Fischer, Amelung, & Said, 2019;
Nelson & Narens, 1990; Rahnev et al., 2020).

Recent research has begun to reveal complexi-
ties in how these metacognitive judgments arise –
both in terms of within-subject decision processes
and between-subject factors (Fleming & Daw, 2017;
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Shekhar & Rahnev, 2020; Yeung & Summerfield, 2012).
Of particular interest are the processes that contribute
to drops in confidence following errors. Such error
monitoring can occur even in the absence of exter-
nal feedback, and can rely on a purely internal eval-
uation mechanism (Atiya et al., 2020; Boldt & Yeung,
2015; Rabbitt, 1966; Yeung, Botvinick, & Cohen, 2004).
Moreover, the quality of confidence judgements differs
substantially between individuals even when their ob-
jective decision performance is equivalent (Fleming &
Lau, 2014; Shekhar & Rahnev, 2020). This indicates
personal-level influences on metacognition – a finding
with implications for phenomena ranging from psychi-
atric disorders to political radicalisation (David, Bed-
ford, Wiffen, & Gilleen, 2012; Hoven et al., 2019; Roll-
wage et al., 2018).

Models of confidence have attempted to address the
diversity of human confidence, often treating confi-
dence as an (approximately) Bayesian readout of de-
cision correctness. However, while Bayesian models
in which the same information underlies both deci-
sion and confidence can account for some confidence
phenomena (Cartwright & Festinger, 1943; Kepecs,
Uchida, Zariwala, & Mainen, 2008; Sanders, Hangya, &
Kepecs, 2016) , they struggle to capture error monitor-
ing or differences in the quality of people’s metacog-
nition. A particular focus of modelling has thus
been placed on dissociating action and confidence: In
essence, these accounts allow the specific information
underlying choice and confidence to differ. For exam-
ple, some propose that extra inputs are available for
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the confidence rating that accrue after, or in parallel, to
the decision itself (Moran, Teodorescu, & Usher, 2015;
Navajas, Bahrami, & Latham, 2016; Pleskac & Buse-
meyer, 2010). Others have suggested a range of covari-
ance structures governing the underlying information
sources (Fleming & Daw, 2017; Jang, Wallsten, & Hu-
ber, 2012).

In turn, the choice to collect more information has
been shown to be causally controlled by metacogni-
tive estimates. For instance, in a study of perceptual
decision-making, Desender, Boldt, and Yeung (2018)
used a perceptual manipulation to induce higher and
lower levels of confidence in different conditions, while
keeping subjects’ objective performance equal. In the
condition with lower confidence, subjects were more
likely to seek additional information, providing key
causal evidence for the role of confidence in the collec-
tion of information. In the memory domain, artificially
boosting people’s confidence when learning word pairs
makes them less likely to choose to study those pairs
again, even though performance remains unchanged
(Metcalfe & Finn, 2008). Other studies also support
this close relationship between confidence and infor-
mation search. For example, neural markers of con-
fidence have been linked to variability in information
search (Desender, Murphy, Boldt, Verguts, & Yeung,
2019) and different forms of confidence are proposed to
influence the trade-off between exploring new options
and exploiting old ones (Boldt, Blundell, & De Martino,
2019; Wilson, Geana, White, Ludvig, & Cohen, 2014;
Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018).

However, like metacognition, information-seeking
behavior is highly complex and differs substantially
between individuals. This has important implications,
for example for psychiatric symptoms such as paranoia
(Ermakova et al., 2018; Garety & Freeman, 2013; So,
Siu, Wong, Chan, & Garety, 2016), or for patients suf-
fering from obsessive compulsive disorder (Baranski &
Petrusic, 2001; Hauser, Moutoussis, Dayan, & Dolan,
2017; Navajas et al., 2016; Tolin, Abramowitz, Brigidi, &
Foa, 2003). Inter-individual differences in information
search are also linked to real-world attitudes, as is evi-
dent in a relationship between lowered search and dog-
matism (L. Schulz et al., 2020). The close coupling be-
tween metacognitive monitoring and control (Nelson
& Narens, 1990) makes it compelling to study how the
complexities of the former and the latter relate to each
other. However, they have yet to be studied within a
unified framework.

To do this, we probe the consequences for infor-
mation search of a recent, rather general, account of
metacognitive monitoring described by Fleming and
Daw (2017). Fleming & Daw’s main proposal, a
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Figure 1
Example task and schematic of information available for different actions. (A) A task encapsulating
the information-seeking problem presents a subject with a binary discrimination stimulus (more dots on the left,
d = −1, or right, d = 1) about which it has to make and report a decision aI and express its confidence in this
decision cI . It can then decide whether or not (sI) it wants to see another additional stimulus which it could then
use to make its final decision aF . We can conceptualize these sub-tasks as being made by three different agents
with differing information. The actor makes aI and aF , the rater expresses cI and the seeker decides sI . (B,C) The
information available for these different actions varies between the models: (B) In the postdecisional model, the
actor takes aI based on XI and the rater and seeker have access to this XI and an additional cue YI to rate confidence
and make the seeking decision. If the seeker decides to seek, the actor additionally receives XF for the final decision.
(C) In the second order model, the rater and seeker merely have access to YI (which can be correlated with XI)
and aI for cI and sI . Across models, the final decision is made based on XI , YI and, depending on the seeking,
XF . (D-E) Example stimulus distributions for d = 1 with example values for XI and YI (and their sufficient
statistic for d, namely ZI) highlighted. Within the distributions, we highlight zones in which the seeker would
decide to seek out further information in grey. In the postdecisional model, this is a function of XI and YI , and in
the second-order model a function of YI , and aI . (F-G) Example postdecisional (F) and second-order confidences
as a function of the relevant cue. Both support error monitoring by allowing confidence to be lower than 50 %.
Note how in the second-order model the action has a boosting influence, for example increasing confidence above
0.5 for entirely ambiguous values of YI .

second-order model of self-evaluation, posits that con-
fidence formation depends on a "rater" equipped with
an inferential mechanism that evaluates the (covary-
ing) evidence supporting an "actor’s" choice. Through
this mechanism, the second-order model can account
for diverse aspects of confidence, from error monitor-
ing to variations in both metacognitive sensitivity and
overconfidence. Following Fleming and Daw (2017),
we present the second-order model prefaced with two
architecturally simpler treatments, the first-order and
postdecisional models, which help introduce and illu-
minate the extra richness of the second-order model.

In general, the purpose of this paper is not to make
specific judgements about the merits of one particular
model of metacognitive monitoring over another. Such
arguments have been the focus of much debate in the
metacognitive literature, and we point the interested

reader to these works (Fleming & Daw, 2017; Khal-
vati, Kiani, & Rao, 2021; Rahnev et al., 2020; Shekhar
& Rahnev, 2022; Webb, Miyoshi, So, Rajananda, & Lau,
2021; Yeung & Summerfield, 2012). Rather, the inten-
tion of this paper is to probe the consequences of what
it means to posses more complex forms of confidence,
however they might arise, for metacognitive informa-
tion search and control more generally. In this endeav-
our, the three models we investigate are intended to be
broadly representative of larger groups of models.

This paper adopts a theoretical and computational
perspective that aims to elucidate what more complex
forms of metacognition should normatively mean for
search. To do so, we start by introducing the core com-
ponents of confidence and information seeking at an
abstract level, outlining the intuitions behind the re-
lationships between action, confidence and informa-
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tion search. We then zoom in on these computations
in more detail, first discussing different theories of
monitoring as delineated by Fleming and Daw (2017),
and then considering the downstream consequences
that arise in optimal control computations for informa-
tion seeking. In our main results section, we investi-
gate how normative metacognitive search should opti-
mally proceed under a diversity of situations implied
by these accounts. Finally, we seek to build a bridge
from our theoretical accounts of optimal metacognitive
information search to empirical data by analyzing suit-
able elements of a large existing dataset of human con-
fidence and information search behaviour.

The Information-Seeking Problem

General overview

Action, confidence, and information seeking can be
investigated in minimal settings such as the bare-bones
perceptual task presented in Figure 1A. There, partic-
ipants are presented with a noisy stimulus (for exam-
ple, two boxes each with a different number of flick-
ering dots), about which they have to first make an
initial binary decision (more dots in the left or right
box). They then express their confidence in this de-
cision. Following this, they can decide whether to (1)
see another helpful stimulus before making a final de-
cision or whether they want to (2) make this final deci-
sion without any additional evidence. Seeing the sec-
ond sample is associated with a cost, and the final (and
possibly the initial) decision is rewarded.

Such a set-up is similar to the controlled environ-
ments previously used to study confidence and infor-
mation seeking (Desender et al., 2018; Desender, Mur-
phy, et al., 2019; L. Schulz et al., 2020). In these tasks,
human subjects have been shown to modulate their
seeking decisions based on their confidence, and also
be sensitive to the cost of the additional information.

To illuminate this task from a computational per-
spective, we assign the paradigm’s different subtasks
to three notional agents. These agents have, depending
on the underlying confidence model, access to differ-
ent information. The actor makes the two "objective"
decisions (left or right). The rater expresses its confi-
dence in these decisions (for brevity we only consider
a first confidence rating here). A final agent, the seeker,
is responsible for deciding whether additional informa-
tion should be sought out (to improve the final decision
of the actor). This terminology adds the seeker to the
description of Fleming and Daw (2017), and makes it
straightforward to specify the information that is avail-
able at each point in time and for each computation
throughout the task. As we shall see, working with a

concrete task forces a set of choices, for example, that
the second choice of the actor can be informed by the
confidence report of the rater. These will turn out to
have a substantial impact on the results (for instance,
that the more accurate the rater, the less information
seeking is required).

In these terms: first, the rater perceives some ev-
idence XI , and then makes a decision, aI ∈ {−1,+1},
where aI = −1 represents choosing left and aI = 1
right. The rater then publicly expresses its confidence,
cI ∈ [0, 1] in this decision, based on the information to
which it has access. This information may or may not
include XI and/or some unique information of its own
YI . Third, the seeker decides whether more information
should be sought (sI ∈ {0, 1} , with sI = 0 representing
no search and sI = 1 representing search). The actor
then makes a final decision, aF ∈ {−1,+1}. In our simple
formulation, aF can be based on XI along with cI (since
the rater’s confidence judgment is veridical and public)
and, if extra information was sought, a further sample,
XF . We refer the reader to Table 1 for an overview of
the notation used throughout.

We now unpack the computations behind these
steps further, first discussing models of the initial deci-
sion and confidence, as outlined by Fleming and Daw
(2017), before elucidating their consequences for how
the seeker should optimally decide to search for infor-
mation. While we use a visual decision-making task
for illustration, the underlying computational problem
is more wide-reaching, and our computational-level
analysis is itself agnostic to the setting in which actor,
rater, and seeker are placed. For example, the stimuli
could equally address other sensory modalities. More
abstractly, the available actions could also represent
two objects of noisy value between which the actor de-
cides (De Martino et al., 2013; Lee & Daunizeau, 2021),
or a judgment of learning (Metcalfe & Finn, 2008). The
information-seeking act might then be asking a friend
for advice, or deciding to study further.

Formalising action and metacognitive monitoring

We can frame the decision-making problem as a par-
tially observable Markov decision problem, or POMDP
(Monahan, 1982; Sutton & Barto, 2018). In this, the ac-
tor’s first task is to use its cue XI to infer which of two
states of the world Id (with d ∈ {−1, 1}) it inhabits. These
two states can represent a multitude of stimuli and task
configurations, including more dots in the left (I−1) or
right (I1) box in the task of Figure 1A, but equally any
other binary judgement. The actor’s cue XI only af-
fords partial information about d and is conventionally
thought to be drawn from a normal distribution with
mean d and standard deviation σI .
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Table 1
Notation. We distinguish between (A) aspects of the task, (B) random variables, and (C) quantities/actions that the agent
computes

Notation Explanation
A. Experiment
States
Id ∈ {I−1, I1} Initial actual state of the problem
Fd ∈ {F−1, F1} Final state of the problem
d ∈ {−1, 1} Underlying state of the stimulus
Rewards and costs
rI , rF Reward for the initial and final decisions
rS Cost for obtaining the additional stimulus XF

B. Random variables and their attributes
Random variables
XI , XF Actor’s stimuli at Id and Fd

YI Rater’s stimulus at Id (in postdecisional and second-order model)
ZI Combination of XI and YI

ZF Combination of XI , YI and XF

Noise terms associated with random variables
σI , σF Standard deviation of XI and XF

τI Standard deviation of YI

ζI , ζF Standard deviation of ZI and ZF

ρI Correlation between XI and YI

ΣI Covariance matrix for XI and YI with σI , τI and ρI

C. Agent
Actions and expressions
aI , aF ∈ {−1, 1} The actor’s initial and final decisions
cI ∈ [0, 1] The rater’s confidence in the actor’s initial decision
sI ∈ {0, 1} The seeker’s decision whether (1) or not (0) to seek
aF,sI The actor’s final decision conditioned on the seeking decision
Values and action values
QS (sI) Action values for seeking QS (1) or not seeking QS (0)
V∗F,ZF

Value of having a specific cue ZF at final state F
V∗F,ZI ,sI

Value of having a specific cue ZI at final state F,
conditioned on whether agent will seek or not

V∗F,YI ,sI
Value of having a specific cue YI at final state F,
conditioned on whether agent will seek or not

XI ∼ N(d, σI) (1)

In a task only capturing the first decision, we might
incentivize the initial decision aI with a pay-off of rI

points for correct choices and 0 points for incorrect
choices. In this case, a reward-maximising actor should
optimally compare its sensory sample against a thresh-
old. Under our stimulus and pay-off regime with equal
noises and pay-offs and equally prevalent underlying
states, this optimal threshold is set to 0, implying that:

aI = sgn(XI) (2)

More complex schemes for pay-offs (e.g. more re-
ward for correctly identifying d = 1) or asymmetric
sources will impact this decision rule (Dayan & Daw,

2008), but we will focus on this simple set-up for clarity.
Our reward criterion also disregards any further no-
tions of timing. In general, the expected performance
of the actor is determined by σI , with higher values as-
sociated with more mistakes, on average (see below for
more details).

The rater’s task is now to compute a confidence,
cI , in aI . We assume that the rater follows Bayesian
precepts and reports its belief that aI was the correct
choice, given its information (which we here denote by
C) and the task parameters θ:

cI = P(d = aI |C; θ) (3)

We note that here we use the term "confidence" to
refer only to this specific posterior probability that an
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action was correct given the rater’s information. This
delineates it from the broader notion of ’certainty’ that
refers to estimates of precision about noisy sensory or
cognitive variables (Fleming & Daw, 2017; Pouget et
al., 2016). As previewed, Fleming and Daw (2017) dis-
cuss three different models for the nature of C, the first-
order, the postdecisional and the second-order model.
We now recapitulate these models before adapting
them to the information-seeking problem. Since the
first-order model is a special case of the postdecisional
model, we discuss them jointly.

Postdecisional and first-order models

In the postdecisional model, the rater knows the ac-
tor’s information XI and action aI . It also receives inde-
pendent postdecisional information, YI (see also Figure
1B). This postdecisional cue YI is sampled from a distri-
bution with the same mean d but with its own standard
deviation τI ,

YI ∼ N(d, τI) (4)

The first-order model is an instance of the postdeci-
sional model in which τI = ∞. In other words, in its
case, the rater has no extra postdecisional information
over and above the actor.

The rater first combines its sample with the actor’s
sample in a precision weighted fashion, leading to a
sufficient statistic ZI which has a standard deviation of
ζI :

ZI =

XI

σ2
I
+ YI

τ2
I

1
σ2

I
+ 1
τ2

I

∼ N(d, ζI) where ζI =

√
1

1
σ2

I
+ 1
τ2

I

(5)
The rater’s confidence in the actor’s choice then

comes from the posterior distribution obtained through
Bayes’ rule. Here, the distance between the threshold
and ZI becomes a proxy for the rater’s confidence:

cI = P(d = aI |ZI ; ζI) =
p(ZI |d = aI ; ζI)∑

d p(ZI |d; ζI)
=

1

1 + e−2dZI/ζ
2
I

(6)

An important facet of the postdecisional model is
that ZI and aI can "contradict" each other. In other
words, the rater might have information that favours
one judgement (e.g. ZI = 0.7) while the actor might
have had information that favoured the other (e.g. XI =

−0.2). Such a disagreement will lead confidence to be
lower than 0.5, triggering what is known as error mon-
itoring (Boldt & Yeung, 2015; Fleming & Daw, 2017; Ye-
ung & Summerfield, 2012) as we see in Figure 1F.

In the first-order model, with τI = ∞, the actor and
rater have the same information (ZI = XI), but the con-
fidence computations outlined in equation 6 still hold.
As a consequence, the rater will always endorse the
actor’s choice in the first-order model. This, in turn,
prevents it from exhibiting error monitoring. Further-
more, and inconsistent with empirical observations of
dissociations between performance and metacognition
(Rahnev et al., 2020; Shekhar & Rahnev, 2020), it en-
sures the actor and the rater’s accuracy remain cou-
pled, as we will discuss in more detail below. 1

Second-order model

Fleming & Daw’s postdecisional rater is particularly
well endowed with information: it knows exactly what
the actor used to make its decision, plus some addi-
tional information (if σI < ∞). This assumption might
not hold under several scenarios, for example different
neural pathways for action and confidence formation.
It also does not allow the rater to know less than the ac-
tor, a fact that will be important when capturing empir-
ical metacognitive hyposensitvity, as we will see later.

The second-order model solves this problem by deny-
ing the rater direct access to the actor’s variable XI , and
rather only allowing correlational access to it. That is,
rather like two humans interacting, the second-order
rater only observes the actor’s binary decision aI , and
has to use this in concert with its own personal infor-
mation YI to form a confidence estimate in this deci-
sion. This is facilitated by the fact that, in contrast to
the postdecisional model, the actor’s (XI) and rater’s
(YI) information can be correlated, as is visible in Figure
1E: [

XI

YI

]
∼ N

(
d
[
1
1

]
,ΣI

)
(7)

ΣI =

[
σ2

I ρIσIτI

ρIσIτI τ2
I

]
(8)

Knowledge about this informational set-up and the
actor’s decision rule allows the rater to make partial
inferences about the value of XI through its observa-
tion of the actor’s action. Specifically, because the ac-
tor makes its decision based on its cue’s sign (as per

1Our postdecisional model somewhat extends Fleming
and Daw (2017) but uses a formally equivalent architecture.
Specifically, whereas Fleming and Daw (2017) only discuss
cases where τI = σI (and thus ζI =

σI√
2
), we allow the actor and

noise to vary independently and describe how the two can
be optimally combined. This additional flexibility enables us
to subsume the first-order model within the postdecisional
model and will become key in our results when we describe
different levels of metacognitive insight.
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equation 2), the rater can immediately exclude one half
of the stimulus space (either positive or negative) after
observing the action alone. Depending on the correla-
tional structure linking XI and YI , the rater can further
pinpoint the location of XI by leveraging knowledge
about the pattern of correlations between the samples.
In short, the rater’s confidence combines two actual,
and one inferential, source of information about d: the
action aI , its own YI , and the information provided by
these variables about XI via the covariance between XI

and YI :

cI = P(d = aI |YI , aI ;ΣI) (9)

We recapitulate the details of this computation, in-
cluding the inference of XI in the appendix (section
A). As with the postdecisional model, the second-order
model also supports error monitoring, and can give rise
to different levels of metacognitive insight. However,
in contrast to the postdecisional model, the rater can
have worse information than the actor, which, as we
will see, is critical to produce more complex forms of
confidence. 2

A crucial aspect of the second-order model is that
an agent (here, the rater) has to "[infer] the causes of
its own action" (Fleming & Daw, 2017). This (partial)
decoupling of action and confidence information gives
it more flexibility than the postdecisional model and
makes the action a crucial input to the computation,
in turn boosting confidence for ambiguous YI ’s. This is
visible in Figure 1G, and discussed at length in Fleming
and Daw (2017) 3.

Interim discussion of confidence computations

The previous section has recapitulated the accounts
of metacognitive monitoring investigated by (Fleming
& Daw, 2017). Their main idea is a (partial) disso-
ciation between action and confidence. Many non-
exclusive accounts exist about the source of these dis-
sociations. For example in perceptual decision-making,
evidence might further accumulate or degrade after
a motor action is initiated. In memory- or value-
based decision-making more information might arise
through additional pondering. Furthermore, rating
and acting might rely on partially different neural path-
ways (see Rahnev et al. (2020) for a recent overview
of dissociations between confidence and action). We
note that, in keeping with Fleming and Daw (2017), we
here largely stick to Marr’s computational level (Marr,
1982). This more abstract perspective also means that
we are a priori agnostic towards implementational and
algorithmic level questions, and the specific source of
information or error.

Modelling complex confidence phenomena through
a dissociation between evidence sources underlying
acting and rating is of course not unique to Fleming
and Daw (2017). However, locating other accounts
relative to the postdecisional and second-order mod-
els requires a careful look at their respective informa-
tional architectures. Perhaps the most significant fam-
ily which is at least subtly different includes those mod-
els that assume that evidence accumulates continually
(Moran et al., 2015; Pleskac & Busemeyer, 2010; Resulaj,
Kiani, Wolpert, & Shadlen, 2009; van den Berg, Zylber-
berg, Kiani, Shadlen, & Wolpert, 2016). These relate to
our models in two structurally different ways.

For an example of the first, consider what Pleskac
and Busemeyer (2010) call a two-stage model. Superfi-
cially, this looks like our postdecisional model: the ac-
tor makes its decision based on one source of informa-
tion XI , and the rater bases its confidence on a ZI which
is XI plus some additional, independent, information YI

(whose precision is usually governed by the time that
passes between the action and confidence). However,
in Pleskac and Busemeyer (2010), the actor uses an al-
gorithm based on diffusion-to-bound, and so XI is per-
fectly predicted by aI . Consequently, whereas our XI

can be accompanied by different degrees of (first-order)
certainty, the accumulation bound fixes this certainty.
As a result, the rater can use the actor’s decision as a
sufficient statistic for the rater’s random variable, and
will know (as a function of the bounds) how accurate
this decision is on average. In turn, this informational
set-up for the rater is an instance of what we would
call a second-order model with ρI = 0. There, the rater
also only knows the average accuracy of the actor, and
receives uncorrelated evidence which it combines with

2We note that theoretically, nothing prevents correlations
between the samples XI and YI of the the postdecisional
model. However, as we will see, the key distinction between
the second-order and postdecisional model is at the level of
the general access that the rater has to the actor’s informa-
tion. In the second-order model, knowledge of such corre-
lations between rater and actor becomes crucial to allow for
more precise confidence computations. In the postdecisional
model, in contrast, introducing such a correlation simply de-
grades the additional information carried by YI . As a result, a
hypothetical postdecisional ρI parameter and the already ex-
isting τI would only trade-off in the computations of the rater
and seeker and not add any additional subtleties. In keeping
with Fleming & Daw, we therefore do not further discuss the
role of correlation in the postdecisional model.

3We note that the specific distributions used for this sim-
ple form of second-order model have some previously unex-
plored peculiarities at various limiting values. Because these
are not essential for our investigations, we discuss them in
the appendix, section C.
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aI to to form its confidence.
The second structural relationship is to note that the

action threshold in dynamical diffusion-style models
already implements an implicit case of the optional in-
formation seeking computation that we study explic-
itly – allowing more information to be collected (typ-
ically at the expense of time) given insufficient confi-
dence.

While confidence models with dynamically accumu-
lating evidence can provide some additional insights
(for example into reaction times), we here focus on
the second-order model, and its postdecisional sibling.
This is because its flexible computational-level frame-
work provides a broader view of metacognitive mon-
itoring through the lens of partially shared informa-
tion between rating and acting and therefore subsumes
many other accounts.

Formalizing the information-seeking problem

Regardless of the model of metacognitive monitor-
ing, after a confidence estimate is formed, the seeker
needs to decide whether the actor should see addi-
tional information before making its final decision aF

about d. To conceptualize this more formally, we
extend our POMDP (Dayan & Daw, 2008; Gottlieb,
Oudeyer, Lopes, & Baranes, 2013) by adding a sec-
ond pair of states Fd that deterministically follow Id

(I−1 → F−1, I1 → F1). If the seeker decides to seek, the
actor receives a second stimulus XF at Fd which it can
use to make its final decision. We again assume this
second cue to be sampled from a normal distribution
with mean d and an associated standard deviation σF :

XF ∼ N(d, σF) (10)

A final correct decision again comes with a remuner-
ation rF whereas an incorrect choice leads to 0 points.
Finally, and crucially, seeking incurs a cost, rs

4.
Regardless of the metacognitive information config-

urations outlined above, the seeker’s choice involves
the same basic question: Is seeking worth the cost? To
decide, it computes two action-values, QS (sI): one for
seeking QS (1) and one for not seeking QS (0). In short,
these involve predicting how accurate the actor will
be on the final decision, with or without XF . We will
next outline these computations, first explaining the
details in the simpler case of the postdecisional model,
and then highlighting differences in second-order com-
putations. Across these models, we assume that the
seeker has the same information as the rater, i.e., that
there is a computational symmetry between metacog-
nitive monitoring and control. This will allow us to
capture key unique contributions of confidence to in-

formation search over and above the actor’s objective
performance.

To illustrate the computations involved, we follow
recent studies (Desender et al., 2018; L. Schulz et al.,
2020) who provide no reward for the initial decision
(rI = 0). We fix the reward for the final decision at rF = 1
and will show different costs for the additional stimu-
lus rS . Furthermore, we assume a noisier first (σI = 1.5)
than second (σF = 1) stimulus.

Seeking in the postdecisional / first-order case

To compute the two Q-values, we first need to con-
sider how the final decision aF might be made at Fd,
with and without XF .

If the seeker decides to collect no further informa-
tion, the actor’s final decision will be based on the same
information as the rater’s initial confidence. As a re-
sult, the final decision will just repeat its initial decision
aF,0 = aI if ZI and XI agree. If they contradict each other,
the actor will correct what it assumes to be an initial
mistake and change its mind. In confidence space, this
transition occurs at cI = 0.5

To compute the associated action value for not seek-
ing, QI(0), the seeker first computes the optimal ex-
pected value V∗F,ZI ,sI=0 of having a specific ZI at Fd con-
ditioned on its non-seeking behavior. This involves
multiplying the reward obtained through a correct fi-
nal decision with the probability of making a final cor-
rect decision based on ZI (assuming that incorrect deci-
sions incur no cost). In the postdecisional model, this
probability is simply max{cI , 1 − cI}. Figure 2 shows the
sub-components of the postdecisional seeker. For clar-
ity, we there assume that τI = ∞, reducing the prob-
lem to the first-order model. Figure 2A depicts the
posteriors and the associated values. Importantly, this
is the equivalent of the curves for the first-order con-
fidence. Since not seeking costs nothing, the optimal
action-value for not seeking is just this value:

Q∗S (0) = V∗F,ZI ,0 = max{P(d = −1|ZI), P(d = 1|ZI)}rF

= max{cI , 1 − cI}rF
(11)

In contrast, if the seeker decides to seek, the actor
can use the additional stimulus XF to disambiguate d
further for its final decision aF,1. It does this by first
forming a final combined variable ZF in a precision
weighted fashion equivalent to equation 5:

4We use this pay-off scheme for simplicity, but note the
possibility of others (including temporal discounting). Fur-
thermore, we assume that the agent has a linear utility func-
tion, which precludes forms of risk-aversion.
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Subcomponents of the information-seeking computation in a first-order / postdecisional model. (A)
To compute the Q-value of not seeking, QS (0) (bold line), the agent computes the max of the two posteriors over
d from ZI , P(d = −1|ZI) and P(d = 1|ZI). (B) If the seeker decides to search, it receives XF which it combines
in a precision-weighted fashion with ZI to form a ZF . Here, we plot the posterior P(d = 1|ZF). Because ZI is
noisier than XF (ζI > σF), the apparent slope of this posterior is not −1. Rather, XF is weighted more than ZI .
The converse posterior P(d = −1|ZI) = 1 − P(d = 1|ZI) is the remaining probability. (C) The seeker computes
the value associated with a given ZF from the maximum of these two possible posteriors. (D) Because it needs
to decide whether to seek or not before receiving XF , the agent needs to predict XF . It does this by summing the
two possible source distributions N(d, σF) weighted by their individual confidence values. (E) To compute the
value for seeking QS (0), the agent averages over the two quantities in C and D, based on its ZI . We here display
the Q-value for not seeking and for seeking overlayed, with the latter shown as a function of the seeking cost
rS . Note how the maximum of the Q-value for seeking QS (0) is defined by this cost. (F) The agent seeks when
seeking is more valuable than not seeking. We here display the difference between the two values, transformed
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(12)
Similarly to the first decision, the actor can then com-

pare ZF against a threshold (again, optimally ZF = 0
given our pay-off regime) to make the final decision.
We plot the posterior associated with this value for
d = −1 in Figure 2B. There, the threshold for aF is where
P(d = 1|ZF) = 0.5.

In our example, recall that we set the initial stimulus
ZI to be noisier than the final stimulus XF (σI = 1.5 and

σF = 1). As a result, XF is given more weight than ZI in
the posterior. For example, an XF = 1 will increase the
P(d = 1|ZF) posterior more than an equivalent ZI = 1.
Similarly, a less extreme XF will be necessary to over-
turn a ZI of a different sign. This is evident in the tilt
of the posterior, which is not fully diagonal but rather
slants towards XF .

As for ZI in the no-seeking calculations, we compute
the expected value of a given combination of ZI and
XF from the maximum of the two possible posteriors
(where P(d = −1|ZF) = 1 − P(d = 1|ZF)):

V∗F,ZF
= max{P(d = −1|ZF), P(d = 1|ZF)}rF (13)
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We plot this value V∗F,ZF
in Figure 2C as a function of

ZI and XF . Again, the slope of the relationship is deter-
mined by the greater contribution to ZF of XF than that
of ZI .

Crucially, however, the seeker has to decide whether
it wants to seek before the actor has seen XF . It therefore
needs to predict this second cue. The resulting distri-
bution p(XF |ZI) is a function of how likely the seeker
believes that the actor is to receive a stimulus from one
of the two means, or a sum of the two possible source
distributions weighted by the rater’s initial confidence
cI (see appendix A). Figure 2D shows this distribution
as function of ZI , a mixture of two Gaussians.

To compute the expected value, V∗F,ZI ,1
, without hav-

ing seen XF , the seeker then integrates over this distri-
bution and the previously defined value function for its
value of ZI given the prospect of seeking. Based on this
mean value the seeker can now work out the action-
value for seeking by considering the cost of the search:

Q∗S (1) = rS + V∗F,ZI ,1

= rS +

∫
XF

p(XF |ZI)V∗F,ZF
dXF

(14)

This value is shown in Figure 2E as a function of ZI

and for different seeking costs rS . It is highest when
the seeker expects the final choice to be likely correct,
that is when it is relatively sure about the identity XF .
With more ambiguous values of ZI , this prediction can
only be made with less certainty. The ceiling of the
seeking value is defined by the cost rS . We plot the
value for not-seeking in Figure 2E. It approaches 0.5 as
ZI becomes less distinctive, and cI therefore becomes
lower. The larger of the two Q-values then determines
the seeking choice:

sI =

1 if QS (1) > QS (0)
0 otherwise.

(15)

For ambiguous values of ZI , seeking is useful and
will likely produce a better final outcome, even when
taking into account the additional cost. When we trans-
form the difference between the two values into confi-
dence space (Figure 2F), we notice that seeking is more
valuable than not seeking in lower confidence ranges,
highlighting a crucial role of confidence in guiding the
decision to seek.

Seeking in the second-order case

The second-order model entails some additional
subtleties stemming from the different sources of infor-
mation of actor, rater, and seeker. Recall that, in the
second-order model, the rater only observes aI and YI

but does not have full access to the actor’s random vari-
able XI (compare Figure 1C). Similarly, one might as-
sume that the actor does not directly know YI but only
observes the rater’s utterance, cI . However, because
the actor knows its own first action, aI , it can leverage
the knowledge about the rater’s confidence algorithm
to infer the initial confidence variable, YI , underlying
cI . It can then combine this random variable with XI

to form ZI , taking into account the cues’ relative preci-
sions and their covariance (see appendix A). The reason
the actor can extract YI from cI but the rater cannot infer
XI from aI is that confidence cI is continuous, whereas
the action aI is discrete.

In the case of no seeking, the actor makes its deci-
sion based on ZI in a similar vein to the postdecisional
model. In contrast to the postdecisional model, such a
change of mind is not necessarily coupled to cI < 0.5
given specific stimulus configurations, because of the
additional information possessed by the actor at the
second stage. Regardless, the value computations for
holding a given ZI are equivalent to the postdecisional
model (we detail this V∗F,ZI

in the appendix section A).
However, the seeker does not know ZI , because it does
not have access to XI . It therefore has to marginalize out
this quantity in a similar manner to the postdecisional
model’s seeking computations:

QS (0)∗ = V∗F,YI ,0 =

∫
ZI

p(ZI |YI , aI)V∗F,ZI
dZI (16)

=

∫
XI

p(XI |YI , aI)V∗F,ZI
dXI (17)

When the seeker decides to seek, the actor receives
XF (again as per equation 10) which it combines with
ZI to form a joint variable ZF (because there is no cor-
relation between XF and ZF this is optimally done in a
manner analogous to the postdecisional model, equa-
tion 12). This final variable ZF can then again be com-
pared against a threshold for aF,1 and is used to com-
pute a value. Similarly to the first-order and postdeci-
sional models, the seeker does not know all the parts
of ZF and has to marginalize over the unknowns. As
before these mean values are then used to compute the
Q-values associated with seeking and not seeking:

Q∗S (1) = rS + V∗F,YI ,1 (18)

= rS +

∫
ZF

p(ZF |YI , aI)V∗F,ZF
dZF (19)

= rS +

∫
XI

∫
XF

p(XI , XF |YI , aI)V∗F,ZF
dXFdXI

(20)
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Commonalities and differences between the models’
seeking computations

While their details diverge, the different models still
share some key commonalities. Crucially, they all em-
ploy their current confidence, cI , to predict the future
location of the second stimulus, XF , which is then com-
bined with the final value of a stimulus combination to
form the Q-value for seeking. For the postdecisional
(and first-order) model confidence is also a determi-
nant of the value of not seeking. The second-order
model additionally uses the confidence to compute the
non-seeking value, albeit by harnessing it to predict the
location of XI , similarly to the postdecisional seeking
value. All this highlights the crucial role metacognition
and confidence play in optimal seeking decision.

Theoretical Results

In the following, we discuss how these models be-
have in our information-seeking task thereby show-
ing intricate facets of optimal metacognitive informa-
tion search. The task allows us to investigate several
markers of action, confidence, and information search.
With regard to the initial decision, we can observe (1)
the average initial decision performance, (2) the ini-
tial confidence, and (3) an agent’s metacognitive ac-
curacy (their ability to tell apart correct from incor-
rect choices through their confidence). With regards
to the information-seeking decision, we can investigate
an agent’s (1) average level of information search (2) its
seeking criterion as well as (3) how calibrated search is
to their initial decision accuracy. Finally, we can ob-
serve how accurate an agent is in its final decisions.
Our models produce specific patterns of interactions
between these behavioural markers.

We note that the optimal model behavior we discuss
provides an upper bound as to how an agent could
optimally harness its metacognition to seek informa-
tion. These theoretical results thereby should not be
taken as strong predictions for human choices, which
need not be optimal. Rather, they reveal limits and
possibilities of what metacognitive monitoring might
mean for metacognitive control in the context of infor-
mation search. We investigate more general patterns
of metacognitive search and their link to human be-
havior in the second, more empirically focused, results
section. We also discuss broader deviations from this
normative behaviour in our closing discussion section.

Initial accuracy, average confidence and information
seeking

If an agent has perfect insight into its average lev-
els of correctness, it should use this insight to guide

its search decisions: In essence, the more likely it is
to make a mistake, the more additional information
should benefit it.

To investigate this in the context of our models, we
now first fix the quality of the second stimulus as well
as the cost for seeking, and investigate an agent’s aver-
age confidence and information search. We show these
markers as a function of the initial accuracy which,
across all models, is a function of σI :

P(correct) = ϕ(σI) =
∫ ∞

0
p(XI |d = 1;σI)dXI (21)

A plot showing this function is displayed in Figure
3A: The lower the actor’s noise σ becomes, the more ac-
curate the objective decision. 5 Of note is that in the
current model set-up, average confidence is correctly
calibrated and so tracks the objective accuracy (Figure
3B). For example, when the actor correctly responds in
71% of cases, the rater’s average confidence will also be
71%. Thus, it is worth noting that the relationships be-
tween average initial accuracy and average search will
be the same as between average confidence and aver-
age search. We discuss aberrations to this perfect cali-
bration in a later section.

Postdecisional and first-order models

Figure 3C shows how the first-order (τI = ∞) and
more general postdecisional models prescribe a rela-
tionship between accuracy and information seeking:
the lower the initial accuracy, the more likely it is
to seek out information. In fact, average search ap-
proaches an asymptote of 1 below a certain accuracy
for the first-order model given the final stimulus pre-
cision and information cost used here. In other words,
when objective accuracy is low it will almost always be
worthwhile for a first-order agent to seek despite the
cost.

The extra information provided by the postdeci-
sional stimulus YI impacts this average seeking over
and above the average objective accuracy. Specifically,
we see a marked reduction in seeking with lower τI

in comparison to the first-order model. This arises be-
cause the joint noise ζI associated with ZI decreases as
YI becomes more precise, and since, in our model, aF

can be informed by ZI even without extra seeking. In

5In terms of signal detection theory, the sensitivity d′ is
proportional to the ratio of the difference between the mean
signal for the two states and the standard deviation σI . We
followed Fleming and Daw (2017) in adjusting d′ (and hence
the accuracy) by adjusting σI ; we could equivalently have ad-
justed the difference between the means (Fleming, Putten, &
Daw, 2018).
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Figure 3
Initial accuracy, average confidence and information search (A) Across models, the accuracy of the agent’s
initial decision is governed by σI through the function ϕ(σI) (B) In all models, the average initial confidence
matches the average initial accuracy (C,D,E) Average seeking decreases with increasing initial accuracy for all
models. However, the precision of the rater’s stimulus, τI , moderates this relationship differently depending on
the model. (C) In the postdecisional model, lower rater noise leads to less seeking across the accuracy spectrum
because the rater and seeker have more additional information. (D, E) In the second-order model, high rater noise
is associated with reduced seeking at higher levels of initial accuracy. This is because the seeker lacks direct access
to the actor’s actual cue XI and thus has to trust its decision. The correlation between the two (ρI) modulates
this effect (D: ρI = 0.2; E: ρI = 0.5). In the seeking plots, final stimulus noise and cost are fixed at σF = 1
(ϕ(σF) = 0.84) and rS = −0.1, respectively. The effect of ρI is shown further in section C of the appendix.

fact, the cue-combination in equation 5 ensures that the
joint noise ζI will never be larger than the smallest of
each of the two underlying variances; instead, it will be
smaller than the smaller of the two when the postdeci-
sional noise is less than infinite. Consequently, a post-
decisional seeker with τI < ∞ always possesses infor-
mation that is at least as accurate as a first-order seeker
with an equivalent σI . It will thus always seek out less
information than its first-order sibling. The postdeci-
sional noise τI governs the difference between the pair
with more precise postdecisional cues leading to larger
differences.

This joint standard deviation ζI also impacts the
asymptote: specifically, the average search propensity
of an optimal postdecisional agent will never exceed a
specific proportion (for τI < ∞), even when its objec-
tive decision quality remains poor. This, and the gen-

erally lower search even before the asymptote, is par-
tially due to the inherent capability for error monitor-
ing in the postdecisional model: If the agent receives a
postdecisional cue with sufficiently low noise that con-
tradicts its initial cue, then it can infer that its initial
choice was erroneous. When this postdecisional sig-
nal is strong enough to trigger a high error probability,
then the agent can simply change its mind at aF with-
out requiring the additional information. In contrast,
when the actor has made an initially correct choice, a
precise postdecisional stimulus will likely increase the
rater’s confidence. The heightened confidence in turn
will also decrease the need to seek additional infor-
mation. Since the determinant of the average search
is optimally ζI , and this quantity is close to τI when
σI is large, a postdecisional agent’s average informa-
tion seeking normatively equals the average informa-
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tion seeking of a first-order agent whose actor noise σI

is equivalent to the postdecisional model’s rater noise
τI . In other words, when the actor knows almost noth-
ing, the average seeking behaviour of a postdecisional
agent will still resemble a first-order model whose de-
cision accuracy would be governed by τI .

Second-order model

The optimal seeking behaviour of the second-order
model differs in key aspects from the postdecisional
model (see Figure 3D;E). While normative second-
order agents should, broadly speaking, reduce their
search with increasing initial accuracy, their optimal
behaviour exhibits a marked interaction between ac-
tor and rater noise. Specifically, the average seeking
curves appear similar to those of the postdecisonal
model when the initial accuracy of the second-order ac-
tor is relatively low. There, rater/seekers with higher τI

cues will seek more than those with lower τI . Strikingly
however, when the actor is more reliable (the initial ac-
curacy is higher), second-order agents with higher τI

will seek less than those with more precise rater infor-
mation.

The peculiar interaction between objective accu-
racy and confidence-noise arises from the second-order
model’s informational set-up: Whereas the postdeci-
sional model makes use of both XI and YI , the second-
order architecture only affords the rater access to a sin-
gle cue, YI , and the actor’s initial decision aI . This
leaves it to make inevitably imperfect inferences about
XI .

When the actor is relatively accurate (e.g. σI = 1)
and the rater’s information relatively inaccurate (e.g.
τI = 3), the rater has little information about the ac-
tor, but knows that the decision is likely correct (be-
cause ϕ(σI = 1) = .84) – which will even be the case
if the rater has an entirely ambiguous or even some-
what contradictory YI . As a result, its confidence will
remain high, even when YI and aI contradict each other
(see appendix C and Figure 6F). In other words, the
rater will essentially resort to "trusting" the actor’s ac-
tion across a wide range of its own information YI . Be-
cause the seeker is equipped with the same information
as the rater, it will likewise have too little information
to justify the cost of seeking. Consequently, it will ei-
ther fully trust or distrust the actor’s initial decision. In
extreme cases, when τI approaches ∞, the relation be-
tween initial accuracy and average seeking will in fact
resemble a step-function.

Relatedly, there is a marked lack of seeking for high
accuracies in the second-order model when keeping τI

constant. Notice how under the conditions of the cost
of sampling and the accuracy of the second sample

in Figure 3C, the first-order model will still search on
up to a quarter of trials at 90% initial accuracy. In
comparison, our normative second-order agent does
not seek at all beyond that point with any but the
most insightful values of τI (Figure 3D;E). This again
comes down to the fact that the rater and seeker have
no alternative but to trust the actor’s decision when
τI ≫ σI . When the objective accuracy is very high (e.g.
ϕ(σI = .8) ≈ 90%) such an imbalance arises even when
the rater noise τI is objectively low.
While these general trends hold across different values
of the correlation ρI (see panels D and E of Figure 3)
we still note this parameter’s importance. In general,
ρI shapes both the additional information afforded by
combining XI and YI as well as the confidence rating
process itself. Briefly, one way ρI impacts normative
information seeking is by increasing the step-like
nature of the high τI curves which is visible in the
difference between the ρI = 0.2 and ρI = 0.5 settings
we depict. Also somewhat visible in our figures is
the fact that with lower rater noise τI and with low
accuracy, information seeking will in fact slightly
decrease. Both these aspects arise from intricacies in
the way signal and noise trade off in bivariate normal
distributions. Because we focus on the cognitive rather
than specifically mathematical implications of our
models here, we save the discussion of these aspects
for the appendix (section C).

Cue reliability and information seeking

The decision to seek out additional information
should naturally not only be influenced by the qual-
ity of the stimuli we have encountered, but also by the
quality of the stimuli that we will encounter in the fu-
ture. With regard to the latter, there is room between
two extremes: The second piece of information might
always perfectly disambiguate the judgment (smallσF)
or it might carry almost no information whatsoever
(large σF). While an optimal agent should want to al-
most always consult the former, it won’t profit much
from the latter.

Postdecisional and first-order models

The first-order and postdecisional models capture
this intuition in their normative behaviour, as evident
in the first-order model depicted in Figure 4A. There,
we show the average seeking for different levels of ac-
curacy afforded by the actor’s initial and final stimulus
ϕ(σI) and ϕ(σF) while again keeping cost constant at
rS = −.1. As before the agent will seek more as the
initial cue becomes noisier (right to left). In turn, de-
creasing final cue noise (higher values of ϕ(σF); top to
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Figure 4
Information search as a function of cue reliability Across models, average information seeking increases
with less accurate initial decisions (ϕ(σI)) and more precise final stimuli. To visualize the latter, we plot the
average accuracy ϕ(σF) that would be expected when encountering XF in isolation. (A) This relationship is most
clearly evident in the first-order model and persists in the postdecisional model (B). However, in the latter, more
precise postdecisional stimuli (lower τI) significantly decrease the (maximum) propensity to seek. (C) A similar
pattern to the postdecisional model is visible in the second-order model, where lower values of rater noise τI also
constrain the maximum average search. The transition from high to low seeking is more abrupt in the second-
order model for high values of rater noise as a result of the rater’s general trust in the actor’s choice (compare
especially the plots with τI = 3 in B and C). Note that the plots in Figure 3 are one-dimensional slices through
the two-dimensional figures presented here. The abrupt declines in the panels in C are equivalent to that shown
in panel E of Figure 3. Plots show a constant cost-level of rS = −0.1, and ρI = 0.5.

bottom) increases the usefulness of the additional cue
and with it the average information seeking for a given
level of initial actor noise σI .

Figure 4B shows different levels of postdecisional
noise. This produces similar patterns to the first-order
model, albeit with some added complexity. The im-
precision τI of the postdecisional cue again has con-
siderable influence on the maximum possible optimal
average seeking behaviour of the postdecisional agent.
When the rater’s cue contains little noise (low τI), al-
most no search is necessary. This is regardless of ini-
tial and final stimulus reliability. In turn, the norma-
tive information-seeking profile begins to again resem-
ble that of a first-order agent as τI becomes larger.

Second-order model

While optimal second-order search broadly traces
the postdecisional pattern arising from the interplay of
the three noise parameters σI , τI and σF , we can ob-
serve some further intricacies. Specifically, the second-
order model’s seeking does not progress as smoothly
from high to low information seeking with lower σI

and higher σF , especially with high levels of rater
noise, τI (as we have previously observed when only
varying accuracy). Rather, it begins to resemble more

of a step-function as the rater knows less and less. For
example, compare the highest levels of τI = 3 in pan-
els B and C of Figure 4. Whereas the postdecisional
model smoothly transitions from high to low search,
the second-order model remains with a high propen-
sity to search relatively long before terminating search
more abruptly. The reason for this can again be found
in the limited information of the rater: When the rater
knows little and the actor surpasses a specific relative
uncertainty, the decision to sample becomes more bi-
nary across the objective accuracy range.

Intermediate summary: Accuracy and search

In the two preceding sections, we demonstrated how
metacognitive search is normatively governed by the
information available to the seeker and the information
expected to be gained through search. Broadly, the less
information the seeker has and the more it can expect
to gain from the final cue, the more it should seek. We
highlighted how this relationship is complicated in a
second-order architecture. There, the seeker does not
have full access to what the actor already knows. When
the accuracies of the seeker/rater and the actor are par-
ticularly imbalanced, this can give rise to what looks
close to step-functions in the average search profiles. In
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Figure 5
Confidence-seeking thresholds (A,B) The confidence at which an agent stops sampling (confidence threshold)
is largely independent of initial accuracy in the postdecisional and second-order models. Rather, one governing
factor is the cost of the additional stimulus rS . By decreasing the Q−value of seeking (compare Figure 2E and
F), higher costs reduce the space of confidence where it is worth probing. In the second-order model, we can also
see the effect of the transition from seeking into no-seeking where the two confidence thresholds begin moving
together. We set σF = 1 (ϕ(σF) = 0.84), and for the second order model τI = σI as well as ρ = .5. (C,D)
The two main factors governing the confidence threshold are rS and the noisiness of the final stimulus σF , as is
visible when we plot the upper confidence threshold as a function of the two (C: postdecisional; D: second-order).
Specifically, the more expensive and the less reliable the information becomes, the lower the threshold is set and
the less information is sought given the same initial stimulus statistics. When the agent does not seek at all we
mark the threshold as 50%. Panels C and D use σI = 3 and τI = ∞ for the postdecisional model and σI = τI = 3
and ρI = 0.5 for the second-order model respectively.

other words, the seeker either fully trusts or distrusts
the actor, leading it to seek information almost always
or almost never.

Search threshold in confidence space

Apart from the average seeking propensity, another
important feature of an agent’s behaviour in our task
is its internal confidence threshold for search. Put dif-
ferently, how confident should an agent optimally be
to decide it has seen enough information? Our mod-
els allow us to investigate this phenomenon by find-
ing the value of the rater’s internal variable for which
the Q-values for seeking and not-seeking intersect and

computing the confidence at this point. For a better
intuition, compare Figure 2F, where the difference be-
tween the two values is plotted: The threshold is the
point where this difference is 0. Importantly, turn-
ing this threshold into a marginalized prediction about
how often an agent seeks information is not completely
straightforward, as will be apparent when we later con-
sider the underlying confidence distribution in more
detail.

Postdecisional and first-order models

In the postdecisional model, this threshold is norma-
tively largely independent of the initial rater and ac-
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tor statistics. Figure 5A demonstrates this by showing
the confidence at which an agent would start seeking
across a range of objective accuracies for the postdeci-
sional case, for a constant final stimulus noise σF . This
confidence varies neither as a function of accuracy nor
of postdecisional noise (which we do not display here).

This counterintuitive result arises from the Marko-
vian property of the first-order and postdecisional
models where the confidence cI is equivalent to a be-
lief state summarising all the previous information. In
the Q-value computations, only this belief matters, and
not how it came about. Put differently, it is unimpor-
tant whether cI was based on a large ZI and large ζI or
smaller ZI and smaller ζI .

Rather than the initial stimulus statistics, the deter-
mining factors for the optimal placement of the thresh-
old are the cost of the additional information and its
precision. For intuition, consider the Q-value func-
tions in Figure 2E (and Figure 2F). There, the cost al-
ters the intersection between the two Q-values, with
higher cost reducing the space of ZI in which seeking
is worthwhile and thus lowering the threshold. This
influence is apparent in panel A of Figure 5. In turn,
smaller σF afford less noisy predictions of XF in Figure
2D for a given ZI , especially when this ZI is relatively
unambiguous. Consequently, the Q(sI = 1) curve be-
comes steeper which leads to the intersection appear-
ing for lower confidences. The joint influence of the
final cue’s noise and cost are plotted in Figure 5C. The
less expensive and the more precise the final stimulus
is, the higher the boundary.

A subtle difference regarding the lower threshold
appears between the first-order instance of the postde-
cisional model and regular postdecisional models with
τI < ∞. In the first-order version, the minimum confi-
dence is bounded at 50% because the rater has exactly
the same information as the actor. The rater will thus
always endorse its decision. As a result, we only ob-
serve one set of confidence-space thresholds for seek-
ing in the first-order model, namely the upper ones.
In contrast, when the postdecisional cue contains infor-
mation, the lower bound is simply the opposite of the
upper bound. This is because the net uncertainty of an
initial decision made with 45% confidence is essentially
the same as one made with 55%. In turn, if the rater
has high confidence that the actor has made a mistake,
then it can safely turn down the opportunity to acquire
additional information: The actor can change its choice
aF without any additional external information.

Second-order model

Similarly to the postdecisional model, the second-
order model’s optimal thresholds remain mostly unim-

pacted by the initial stimulus statistics, as is visible in
Figure 5B. There, we show the seeking threshold for
a model whose rater noise τI always equals its actor
noise σI across a range of initial accuracies. Rather, it is
again the cost and noise associated with the additional
stimulus that determine where the threshold optimally
falls (see Figure 5B and D). In fact, given their differ-
ences in knowledge, it is striking that this threshold
is largely equivalent between the postdecisional and
second-order models, at least for low initial accuracy
values. Additionally, because the second-order model
also produces confidence levels below 50% just like the
postdecisional model, it possesses a lower threshold
that mirrors the upper one, .

As discussed above, the second-order model differ-
entiates itself from the postdecisional model by pro-
ducing behaviour where it does not seek at all. This
allows us to investigate what optimally happens in the
transition to this state of uniform non-seeking. In these
cases, as we can observe that with higher cost levels
in Figure 5B, the two confidence cut-offs begin moving
closer together until they end up meeting at 50 %. At
this point, seeking stops. While the baseline threshold
for low initial accuracy is thus unaffected by the ini-
tial stimulus set-up, differentσI ’s can produce different
initial accuracies at which seeking becomes too costly.
This thus affects when the two thresholds begin mov-
ing toward each other.

The influence of the final cue noise σF and the
seeking cost rs on the confidence cut-off is equiva-
lent between the postdecisional and the second-order
model despite their somewhat different Q-value com-
putations (compare Figure 5C and D). This is because
the second-order’s additional task of predicting the
XI value is required to evaluate the Q-values for and
against seeking. The net effect is that this extra step
does not impact the threshold.

Metacognitive accuracy and information search

Metacognitive accuracy broadly describes an agent’s
ability to discriminate its mistakes from its successes.
In our task, this manifests in distinct confidence distri-
butions for correct and incorrect choices: Agents with
high metacognitive accuracy tend to have high confi-
dence ratings when they are correct and low confidence
ratings when they made a mistake.

We can delineate two measures of metacognitive ac-
curacy: metacognitive sensitivity and metacognitive ef-
ficiency (Fleming & Lau, 2014). Metacognitive sensi-
tivity describes the aforementioned separation of confi-
dence distributions, with less overlap between the two
functions a hallmark of high metacognitive sensitiv-
ity. In our framework, this sensitivity is largely gov-
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Metacognitive sensitivity, efficiency and search (A,D) Seeking as a function of the metacognitive sensitivity.
(A) As the metacognitive efficiency in the postdecisional model (σI/ζI) increases, the need to seek more infor-
mation decreases. (Note that metacognitive hyposensitivity is not possible within the discussed postdecisional
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erned by the quality of the rater’s information (ζI in the
postdecisional case, τI in the second-order case), with
higher values of ζIand τI resulting in lower metacogni-
tive sensitivity.

While metacognitive sensitivity provides a useful
marker of the quality of an agent’s metacognition, it
is often confounded with objective accuracy. Easier
tasks allow more insight into the quality of our deci-
sions – such that when objective (e.g.) perceptual sen-
sitivity is high, metacognitive sensitivity also tends to
be high (Fleming & Lau, 2014). Metacognitive efficiency
controls for this link between objective and metacog-
nitive sensitivity by normalizing the latter by the for-
mer. This statistic is expressed as a ratio, with values
less than 1 indicating metacognitive hyposensitivity,
where metacognitive sensitivity is worse than would
be expected based on objective performance, and val-
ues greater than 1 indicating metacognitive hypersensi-
tivtiy, in which case metacognitive sensitivity is higher
than expected based on objective performance (Flem-
ing & Daw, 2017; Fleming & Lau, 2014). We note that
what we refer to as metacognitive hyposensitivity has
also been discussed under the label of metacognitive
inefficiency (Shekhar & Rahnev, 2020).

The fact that the rater has different, possibly addi-
tional, sources of information from the actor is what li-
censes varying metacognitive efficiencies in our frame-
work. The different models operationalize this slightly
differently. In the postdecisional model, metacognitive
efficiency can be expressed through the ratio σI/ζI . The
larger this ratio, the more additional information the
postdecisional rater has, and the higher its metacogni-
tive efficiency. Note that in the present postdecisional
model, with its optimal calculations, this ratio can
never be below 1, precluding any forms of metacog-
nitive hyposensitvitiy. The metacognitive efficiency of
the second-order model is determined by σI/τI (for a
constant ρI), again because of the restricted informa-
tional access of the second-order model. 6

First-order and postdecisional models

To understand the relationship between seeking and
metacognitive accuracy, we first need to recapitulate in
detail how metacognitive accuracy arises in our mod-
els. To illustrate this better, we plot distributions of con-
fidence ratings conditioned on accuracy in Figure 6B-E.
These illustrate the overlap between the distributions
of confidence ratings for correct and incorrect answers.

In the first-order model (panels B; τI = ∞), objective
accuracy and metacognitive sensitivity are welded to-
gether. That is, higher objective performance (lower σI)
results in more clearly distinguishable confidence dis-
tributions and thus increasing metacognitive sensitiv-

ity. By design, the ratioσI/ζI is also always 1 in the first-
order model, pinning down metacognitive efficiency.

In Figure 6B, we demonstrate the relationship be-
tween metacognitive accuracy and search in the first-
order model. We plot the optimal seeking-thresholds
we introduced above in black and the zone of confi-
dence values where the agent seeks in grey. Recall that
these are not influenced by the statistics of the first de-
cision. Because the confidence distributions shift to-
gether for decreasing accuracy, this normatively results
in more search. In essence, this relationship simply re-
capitulates what we have seen in the first section on
objective accuracy and average search. Notably, sensi-
tivity will appear to be related to decreased informa-
tion search in the first-order model, but this is fully ex-
plained by the coupling of metacognitive and objective
accuracy. Finally, there is no relation between search
and metacognitive efficiency, as the latter is invariant
in the first-order model.

In contrast to the first-order model, the postdeci-
sional model with τI < ∞ can produce different lev-
els of metacognitive efficiency. Figure 6C demonstrates
this by keeping the objective accuracy (σI) constant,
but increasing the quality of the rater’s information
through τI . In essence, these plots take the first order
model of a given objective accuracy (τI = 2; middle of
right top row of panel B), but give the rater additional
information. The impact of this additional information
is clearly visible: A well-endowed rater with a low τI

and thus highly accurate postdecisional information is
almost perfectly able to distinguish its correct from in-
correct decisions, as expressed through its confidence.
The confidence for correct decisions will be very high
on average whereas the confidence for incorrect deci-
sions will almost always indicate an error, that is be
below 0.5. As τI increases, the rater’s additional infor-
mation decreases, resulting in a confidence distribution
very similar to the first-order model when noise is very

6In the experimental literature, a plethora of measures as-
say metacognitive sensitivity and/or efficiency (Fleming &
Lau, 2014). Most prominently, the meta-d′ statistic (Manis-
calco & Lau, 2012) allows metacognitive sensitivity to be es-
timated within a signal detection theoretic (SDT) framework.
Briefly, this approach estimates the d′ from a first-order SDT
model that best fits the observed confidence distributions.
This metric, known as meta-d′ can then be compared to the
d′ calculated from the participant’s choices to produce a ra-
tio meta-d′/d′, a typical measure of metacognitive efficiency
(Fleming & Lau, 2014). Both meta-d′ and meta-d′/d′ scale
with our parameters τI and, depending on the model, the ra-
tio σI/ζI or σI/τI (Fleming & Daw, 2017). However, for clar-
ity we will in this theoretical section use our parameters τI ,
σI and their relationship to characterize sensitivity and effi-
ciency.
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high (leftmost plot of panel C with τI = 10), albeit one
which still allows for some confidence values that are
less than 0.5.

The distributions in Figure 6C also provide insight
into the relationship between metacognitive accuracy
and optimal seeking in the postdecisional model. The
highly separated distributions that result from low τI ’s
mean confidence is pushed outside of the thresholds
on both ends of the confidence range. Mistakes will
likely be accompanied by a strong error signal (very
low confidence) that enables a change of mind without
the need for additional information seeking. In turn,
correct decisions will likely trigger confidences so high
that no information seeking is deemed necessary either.

We can further investigate the relationship between
objective accuracy, metacognitive efficiency and search
by quantifying metacognitive efficiency in the post-
decisional model as the ratio σI/ζI . Importantly, the
ratio is always equal to or greater than 1, because
the postdecisional stimulus set-up only allows for ad-
ditional knowledge (metacognitive hyper-sensitivity)
but not for reduced knowledge (metacognitive hypo-
sensitivity). Figure 6A illustrates the effect of this hy-
persensitivity on search. We again observe a main ef-
fect of decision accuracy as governed by σI (differently
shaded lines), but can now see the additional effect of
metacognitive efficiency: Higher levels of metacogni-
tive efficiency give rise to reduced search on average.

Second-order model

The rather diverse confidence distributions pro-
duced by the second-order model are visible in pan-
els E-F of Figure 6. In E, we again hold the objective
accuracy at σI = 2, but vary τI . The rater noise impor-
tantly plays a different role in the second-order model,
because the rater does not have direct access to the ac-
tor’s cue XI . We again see how low values of τI give
rise to clearly distinct confidence distributions and in-
crease the chance of successful error monitoring. How-
ever, in addition the second-order model also allows
for metacognitive hypo-sensitivity, when τI > σI . In
these cases, the rater has less information than the ac-
tor. The consequences of this are visible when compar-
ing the first-order plot with σI = 2 plots in panel B to
the second-order plot with σI = 2 and τI = 3 in panel
D: The second order model’s two distributions are less
distinguishable than the first-order model because of
the hyposensitivity produced by τI > σI .

In general, the relationship between metacognitive
accuracy and optimal average search holds in the
second-order model. The increased levels of metacog-
nitive insight resulting from lower values of τI push
the confidence distributions out of the zone defined by

the aforementioned seeking threshold. This results in a
lowered propensity for search. Consequently, the ef-
fects of metacognitive hypersensitivity on seeking in
the second-order model are comparable to those in the
postdecisional model (see Figure 6F) – when keeping
objective accuracy constant, higher efficiency again re-
sults in less need for additional information. The trend
continues into metacognitive hypo-sensitivity. How-
ever, striking non-linear effects appear. These are
again triggered by the specific knowledge states of the
second-order actor and rater: Recall that if the actor
is very accurate, and the rater has less knowledge, the
agent’s confidence will begin to be relatively constant.
In essence, the rater will begin to always trust the ac-
tor. This is visible in the leftmost plot in panel F, where
σI = 1 and τI = 2. Here, the rater will know signifi-
cantly less than the actor. The confidence ratings will
thus closely congregate around the actor’s average ac-
curacy, ϕ(σI) = .84, which represents the rater’s best
guess given its limited knowledge. This in turn will
lead to most of the confidence ratings to be above the
confidence threshold and reduce the average informa-
tion seeking in comparison to a rater with more infor-
mation. This effect of higher metacognitive efficiency is
particularly visible in the panel E of figure 6: With the
higher metacognitive efficiency of τI = 1.3 compared to
τI = 2, there is more confidence mass within the seek-
ing interval.

In summary, this means that search can be reduced
in the second order model through two distinct mech-
anisms. When a second-order agent becomes more
metacognitively hypersensitive, it will seek less be-
cause it has more information. However, counterintu-
itively, a second-order agent might also seek less when
it is metacognitively hyposensitive, but this time be-
cause it has less, or to be more precise too little, infor-
mation.

Metacognitive accuracy in search

Since search reflects metacognition, we can use
the quality of search as a measure of the quality of
metacognition that is formally distinct from the sort of
metacognitive sensitivity measured by meta-d’ or other
measures that target an agent’s confidence. Here, the
quality of search is assessed by how likely the agent
is to search on a trial when it was initially incorrect in
comparison to when it was initially correct (see Figure
7A for illustration). Searching when already correct is,
of course, a costly waste: Intuitively, an agent would
like only to seek information on trials when their initial
decision was incorrect, not paying the cost on occasions
where search would simply affirm an initially correct
decision. While such perfectly targeted seeking is of
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Figure 7
Sensitivity of search to accuracy (A) When an agent is initially incorrect, it should ideally seek more in-
formation than when it was initially correct. We can use the difference between these two conditional search
probabilities normalized with an agent’s average search as a measure of an agent’s search sensitivity. (B, C) Both
in the postdecisional and in the second-order model, this sensitivity in metacognitive control is determined by
the sensitivity in metacognitive monitoring, as indexed by τI , and the actor’s accuracy σI . Plots use σF = 1,
rS = −0.1, and ρI = .3.

course utopian, we can nevertheless ask how close an
agent gets to it.

Here, we compute this sensitivity in search by sub-
tracting the conditional frequency of search when ac-
curate from the conditional frequency of search when
inaccurate. To account for differences in baseline in-
formation search (caused, for instance, by differential
costs), we normalize this difference by the amount an
agent generally seeks to form a measure of metacogn-
tive search sensitivity:

Search Sensitivity =
[p(sI = 1|aI , d) − p(sI = 1|aI = d)]

p(sI)
(22)

Panels B and C of Figures 7 show search sensitiv-
ity as a function of the determinants of both rater and
actor accuracy for both the postdecisional and second-
order models. As expected, this is entirely positive – so
agents are less likely to seek information after a correct
decision than after a mistake. Because higher objective
accuracy generally helps the agent distinguish correct
from incorrect trials, the search sensitivity is impacted
by the actor’s accuracy σI .

The two plots also show how sensitivity in metacog-
nitive monitoring and control go hand in hand: The
lower the rater’s insight (the higher τI), the less search
distinguishes between correct and incorrect decisions.
This is the case for both the postdecisional and second-
order model. This link arises as a consequence of the

metacognitive sensitivity: Because confidence is what
the seeker uses to make its seeking decisions, the bet-
ter this confidence is calibrated to accuracy, the better
search will also be calibrated. From a more mechanis-
tic perspective, agents with high monitoring sensitiv-
ity will be highly confident in their correct decisions,
and will thus search less. While higher sensitivity in
monitoring also reduces the confidence for incorrect
decisions, these trials remain within the seeking zone
defined above for longer, pulling apart the two condi-
tional seeking averages. To put it another way, higher
metacognitive accuracy allows an agent to be more tar-
geted in its search behaviour.

Intermediate summary: Confidence and search

In the preceding two sections, we discussed the in-
tricate relationships between confidence and search.
In both models, the threshold of confidence at which
search is triggered is largely independent of the initial
stimulus characteristics due to its (quasi-)Markovian
property. Rather, the zone in confidence space where
seeking is adequate is governed by the cost and preci-
sion of the additional information that can be collected.

The confidence thresholds are however crucial
when considering the confidence distributions that fall
within or outside of them. In both the postdecisional
and the second-order models, metacognitive hypersen-
sivity shifts confidence outside of the seeking zone, re-
ducing search. In the second-order model, metacogni-
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tive hyposensitivity can trigger both increased and de-
creased search by either shifting more of the confidence
distribution into or above the seeking zone.

Increased sensitivity in the confidence rating in turn
enables an agent to target its search better to those de-
cisions that were initially incorrect. This shows the key
advantage that increased metacognitive sensitivity has
for an agent, essentially enabling it to not waste its re-
sources on ’useless’ search. It also leads to a new mea-
sure of metacognitive quality, namely search sensitiv-
ity.

Final accuracy

The accuracy of its ultimate, overall judgement, aF ,
constitutes a last crucial aspect of of an agent’s be-
haviour in our task. This final accuracy of course de-
pends on the decision of the seeker – but in a poten-
tially complex manner, because the seeker’s decision-
making in turn is partially a function of its estimates of
the benefits for this final accuracy of further search. We
show these relationships in Figure 8.

We distinguish between two kinds of final accuracy:
The final accuracy when the agent decided not to seek
additional information, and the final accuracy when
the agent decided to do so. For brevity, we will in the
following refer to these as the without-search accuracy
and the with-search accuracy.

Postdecisional and first-order model

To understand how the final accuracy comes about,
we need to consider what kind of cues are available to
the actor at the final time point (see Figure 8A). Recall
that in the postdecisional model, seeking is a function
of ZI : Ambiguous values of ZI (e.g. ZI = 0) give rise
to seeking, whereas extreme values of ZI (e.g. ZI = 3)
already come with sufficient confidence to make infor-
mation search unnecessary. Thus, as seen in Figure
8A, with-search final decisions will be made with am-
biguous, more intermediate, values of ZI . In contrast,
without-search final decisions will only be based on
more extreme values.

This division of the ZI clearly impacts the final ac-
curacy: In the without-search case, accuracy will be
higher than would be expected when making a deci-
sion on the entire ZI space (ϕ(ζI)). This increase is trig-
gered because the error-prone, intermediate ZI values
are excluded (by the fact of seeking). In contrast, in
the with-search case, the actor will have relatively poor
information before receiving XF due to the ambiguity
associated with these intermediate values. The results
of this division are visible in Figure 8B where we show
the two final accuracies as a function of the initial accu-
racy and the rater noise τI .

Let us first inspect the with-search accuracy, pic-
tured in red. Strikingly, this is not influenced by ei-
ther the initial accuracy or τI . The reasons for this lie
in the aforementioned stimulus set-up and relate to the
confidence threshold: Because the agent only has rela-
tively ambiguous values ZI before it receives XF , it will
not have a strong preference for either option prior to
search. This in turn means that the accuracy of the fi-
nal stimulus σF is the crucial determinant of the with-
search accuracy. For example, in Figure 8B, σF would
afford an accuracy of around 84 % (ϕ(σF) = 0.84), and
the without-search accuracy is only marginally higher.
This slight boost over the accuracy afforded by a soli-
tary XF is in fact governed by the cost, which if lower,
increases the range of ZI ’s passed onto to seeking and
therefore decreases the quality of information prior to
the receipt of XF .

In contrast, the relationship between initial accuracy
and final without-search accuracy (plotted in blue) is
linear – at least in the first-order model. That is the
without-search accuracy is as accurate as the initial ac-
curacy plus an additional boost. This again results
from the ZI ’s available which tend to be less ambigu-
ous when the agent does not seek. Introducing addi-
tional information through τI < ∞ strongly modulates
the without-search accuracy. This is again the case be-
cause in these cases, the agent makes its decision not
based on a stimulus with σI but on a combined stim-
ulus with ζI which will always be more precise than
σI . Low noise in the postdecisional information will
thus considerably boost the final accuracy through the
aforementioned capability for error monitoring.

Curiously, the model sometimes produces a be-
haviour where it makes worse decisions with addi-
tional information than without it. At first, this can ap-
pear implausible: information should serve to increase
performance. However, the agent of course has to bal-
ance the gained accuracy with its cost, triggering it to
seek out information only when it is not very confident
that it has made a correct choice.

Second-order model

The limited informational access of the second-order
model becomes especially crucial when investigating
its final accuracy. Recall that the postdecisional seeker
has access to XI , and so already fully knows the quality
of the final decision if it were not to seek. In contrast,
the second-order seeker is less well informed. It only
has access to the rater variable YI and can make noisy
inferences about the actor variable XI based on the ac-
tor’s decision. The seeker thus lacks the perfect insight
afforded by the postdecisional model. As a result, seek-
ing is only a function of YI in the second-order model
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Final accuracy conditioned on search (A) Values of ZI that get passed on to the final accuracy with (red) and
without seeking (blue) in the postdecisional model. When seeking, the ZI values tend to be ambiguous whereas
when the agent decides against search, the values tend to be more extreme and therefore offer better accuracy. (B)
As a result, in the postdecisional model, the final accuracy with seeking (red) is independent of the initial stimulus.
The final accuracy without seeking (blue to purple) is governed by both the accuracy afforded through the initial
decision as well as the extra information contained in the postdecisional cue YI . (C, D) Because the seeking
decision is made without knowledge of the action variable XI , the final accuracy differs in the second-order model.
The final accuracy after seeking receives a boost through unambiguous values of XI that slip through. This fact
also lets the final accuracy without seeking remain relatively stable until the agent doesn’t seek any information
at all, at which point it becomes a function of the initial accuracy. B - D fix final stimulus noise and cost at
(ϕ(σF = 1) = 0.84)) and rS = −0.1. Note the different scaling in the x- and y-axis for visibility.

rather than the full ZI in the postdecisional model (com-
pare Figure 1, panels D and E). As a result, the stimu-
lus space is not, as in the postdecisional model, divided
along the crucial variable for the without-search accu-
racy (ZI), but only along part of it, YI .

The key problem for the second-order seeker result-
ing from its limited access to XI is that potentially un-
ambiguous ZI values can slip under its radar. As an ex-
ample, picture the extreme case when the rater obtains
a relatively ambiguous cue (YI = 0.3). Under most pa-
rameter combinations, this will result in low confidence
and trigger the agent to seek. We can broadly think
about two possible cases based on this: In one case, the
actor itself might have received an ambiguous cue (e.g.
XI = 0.1). In this case, in the counterfactual scenario

where the agent would not have searched, its final de-
cision would have been based on a rather ambiguous
ZI . Here, seeking would have been a good decision. In
another case, the actor might in fact have observed a
very distinct cue (XI = 3). In this case, the actor would
have already had a rather unambiguous cue ZI for a fi-
nal decision in the counterfactual non-seeking scenario.
Here, seeking wouldn’t be of much benefit. Whereas
the postdecisional agent would know this and thus not
seek, the second-order rater has no access to XI and will
thus sometimes sample even though it might not have
been necessary.

This divergent knowledge results in a different pat-
tern for the with-search accuracy, with influences for
both σI and τI . The less relative insight the seeker has
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(higher τI) the more the XI "leakage", which is visible in
panel C of Figure 8. Recall there that a constant level of
τI results in decreasing metacognitive efficiency when
increasing the objective accuracy. As a result, more ZI ’s
which would lead to no seeking on the part of a postde-
cisional agent with full insight are assigned to seeking
by the second-order model. This "unnecessary" seek-
ing increases the with-search accuracy until the highly
metacognitively inefficient agent stops seeking entirely,
as was visible in the average seeking figures (Figures 3
D & E).

The XI leakage inherent in the second-order model’s
seeking computations also affects the without-search fi-
nal accuracy, but to its disadvantage. Specifically, the
unnecessarily good values of XI included through the
myopic seeking are now no longer available to the ac-
tor when the final decision is made without search. The
final accuracy thus does not increase with increasing
initial accuracy while the agent still seeks (again, com-
pare Figure 3). In fact, under certain stimulus configu-
rations, the without-search accuracy can even slightly
decrease as a result of the good XI being "stolen" by
the seeking. It also worth noting that the amount of
additional decision information afforded by XI also de-
creases with heightened correlation ρ reducing the ad-
ditional information available. 7

The without-search final accuracy begins to fall into
a linear relationship with the initial accuracy once the
agent entirely stops seeking. It is then simply a function
of ζI (ϕ(ζI); by contrast with the postdecisional model
where it is greater than ϕ(ζI). Before then, the baseline
without-search accuracy is governed by τI , again as a
result of the increasing capability for error monitoring
that comes along with increasing metacognitive sensi-
tivity. The ignition point of this increase is governed
by the baseline rater noise τI which impacts when the
seeker will stop seeking entirely.

As before, the main patterns remain intact when al-
tering ρI in the second-order model (compare panels
C and D). However, some additional subtleties arise
which we will show in the appendix (section C). Briefly,
it is worth noting that the XI leakage is higher for the
increased ρI because in this case more information is
sought and the average seeking curve resembles more
of a step-function.

Interim Discussion: Normative metacognitive search

In the preceding theory sections, we approached
metacognitive information search through a normative
lens. In doing so, we examined the consequences of
diverse aspects of confidence for how metacognitive
agents should optimally elect to collect more informa-
tion in a partially observable decision problem through

the lens of more complex models of human metacog-
nition. This work shows how computations that have
thus far been solely conceptualized in metacognitive
monitoring can give rise to a number of non-trivial
downstream effects when extended to serve control
purposes - for example when the seeker must trust or
not trust the actor. On the whole, our work raises ques-
tions about how information is generally represented
and used within metacognitive systems. We will dis-
cuss these in more depth in our main discussion.

More broadly, these results also show advantages
that metacognition can have for agents over and above
simple benefits arising from non-metacognitive objec-
tive accuracy. Specifically, we showed that, if used ap-
propriately, good metacognition can be be harnessed to
allow agents to search less and target their search better
to incorrect trials. This is a very practical reason to have
good metacognition, a virtue that is more often extolled
than exhibited in investigations of confidence.

Empirical results

Our theoretical considerations raise the question as
to whether general patterns of optimal metacognitive
search hold in human data. We stress that here it is
not our intention to use search behaviour to arbitrate
between specific models of confidence. Such arbitra-
tion will require more targeted experiments, for exam-
ple ones that independently vary aspects of confidence
and action, or in the case of more extreme parameter
combinations, rely on specific sub-populations. These
are issues to which we will return in the discussion.

What we can do, however, is to investigate whether
general patterns of metacognitive search that straddle
postdecisional and second-order models are evident in
human choices. To this end, we next turn to a reanal-
ysis of data from a study that employed a task simi-
lar to the one we have discussed so far. Specifically
L. Schulz et al. (2020) investigated the confidence-based
information seeking decisions of 734 participants (see
Appendix B for a description of the methods).

We compare patterns of participant choices with
theoretical proposals derived from the second-order
model. Given the overlap between the postdecisional
and second-order models’ predictions, we choose the
latter as a convenient framework within which to gen-
erate both hypo- and hypermetacognitive sensitivity
(Fleming & Daw, 2017) as well as the the sort of over-
and under-confidence that is often evident in human
data (Fleming & Lau, 2014; Johnson & Fowler, 2011;

7How ζI stands in relationship with ρI , σI and τI is in fact
more complex under certain more extreme parameter combi-
nations, as we discuss in further detail in the appendix C.
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Kruger & Dunning, 1999; Rouault, Seow, Gillan, &
Fleming, 2018)

To introduce the latter point briefly: over- and
under-confidence comes about when the average con-
fidence that individuals report having about their de-
cisions deviates from their objective accuracy. These
dissociations from objective reality, also often termed
metacognitive bias, are conceptually distinct from
changes in the metacognitive sensitivity we discussed
above. The separation between actor and rater in the
second-order model makes it straightforward to create
such biases, and thus easily lets us probe the conse-
quences of metacognitive bias for otherwise normative
search Fleming and Daw (2017). Specifically, miscali-
bration arises when the rater’s belief (σR

I ) about the ac-
tor’s accuracy is incorrect, so σR

I , σI . For intuition,
imagine how one person might misestimate the skill of
another. 8

To preview our findings, we find key overlap be-
tween model predictions of patterns of metacognitive
search and empirical data on both a within-subject and
trial-by-trial basis, but also divergences. We begin by
investigating trial-by-trial correlates of metacognitive
search before investigating between-subject variation
in participants’ markers of average behavior.

Metacognitive search from the trial by trial perspec-
tive

Effects of confidence and cost

Our theoretical results showed that, when the ac-
curacy of the additional information available from
search is held constant across trials, as is the case in
L. Schulz et al. (2020), two factors should drive an
agent’s likelihood to seek out information on a trial-by-
trial basis: The cost of the additional information, and
an agent’s momentary initial confidence.

We already briefly discussed the within-trial effect
of confidence and cost on search when we introduced
the computations underlying the information seeking
choice. These are visible in the action values for or
against search in Figure 2F. In slightly broader terms,
these values simply mean the following: When the Q-
value for seeking is larger than the Q-value for not
seeking, an agent which seeks will, over the long run,
receive more overall reward than an agent who does
not seek. Because an optimal agent follows the policy
that maximizes its long-term reward, it will adhere to
this difference.

In actual behaviour, an agent is unlikely to follow
a noise-free greedy policy, where it purely decides as
in equation 15. Rather, behavior is typically found to
be more consistent with a softmax policy where the un-

derlying difference in Q-values is passed through a sig-
moid function to determine the probability of seeking
or not seeking. This function then returns choice prob-
abilities conditioned on an agent’s cost and confidence.
We plot such probabilities for an example second-order
model and the two costs in L. Schulz et al. (2020) ex-
periments in Figure 9A. This shows that an agent is
more likely to seek on trials when confidence is most
uncertain (i.e. around 50 % in the binary setting), and
when the additional information is cheaper. We note
that these curves are insensitive to participant-level pa-
rameters governing over- and under-confidence, and
instead fully rest on across-trial variation in subjective
confidence, rather than any environmental parameters
or distributions.

The participant’s choice probabilities in L. Schulz et
al. (2020) reflect these choice probabilities, as is visi-
ble in Figure 9E. Participants sought less information
as they became more confident in their choices and as
information became more costly. This is highlighted by
the results of a trial-by-trial mixed-effects model which
shows negative effects of cost and confidence on search
(βconfidence = −2.36, p < 10−15; βcost = −1.60, p < 10−15).9

Taken together, these results highlight qualitative
features of how humans solve the underlying decision
problem, taking into account both the cost and confi-
dence. Similar trial-by-trial effects of confidence are
also visible in other data, for example Desender et al.
(2018) and Pescetelli, Hauperich, and Yeung (2021) al-
though neither of these studies varied the cost of seek-
ing.

Metacognitive search sensitivity

As we have seen, the trial-by-trial modulation of
search by confidence enables an agent to adaptively
search more when it was initially mistaken than when
it initially made a correct choice. This is the case in
our data. Participants generally sought less informa-
tion when they were initially incorrect (Figure 9F, β =

8Disconnection between what a rater thinks about an ac-
tor is of course not limited to the second-order model, and
might similarly be implemented in other models, like the
postdecisional model. Nevertheless, in keeping with Flem-
ing and Daw (2017), we will limit ourselves to the second-
order model here. We also note that this form of miscali-
bration theoretically introduces additional noise in the rating
and decision making process because cues are not optimally
integrated any more. This can be expected to have a modest
negative impact on metacognitive sensitivity.

9To better analyze how search was modulated, we only
included participants who sought information on between 5
% and 95 % of trials (N = 568) in our analysis of trial-by-trial
results. For the analysis of the task averages reported below,
all participants are included.
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Figure 9
Second-order model captures across-trial effects of metacognitive search (A) Trial-by-trial probabilities of
search as a function of confidence in an example second-order agent (σI = τI = 1.25, ρI = .5, σF = 1, rF = 100).
(B-D) Association of trial-by-trial accuracy and search. (B) Simulated agents seek more information when they
are initially wrong, even when we introduce variability in over- and underconfidence (see appendix B for details
on parameters). The difference of the search averages conditioned on accuracy, normalized by the overall average
level of information seeking defines a measure of metacognitive search sensitivity. (C) In optimal agents, this
measure is always positive, and (D) correlates with an agent’s metacognitive sensitivity, as indexed through
meta-d’. (E-H) Participants in L. Schulz et al. (2020) show similar patterns. (E) On a trial-by-trial basis,
they seek less information the more confident they become and the more costly the information is. (F) They also
seek less information when they were initially incorrect, and (G) mostly have positive search sensitivities. (H)
Participants’ search sensitivity correlates with their meta-d’.

−0.85, p < 10−15). Indeed this was the case for the great
majority of participants as is visible in the distributions
of search sensitivities displayed in Figure (9G) (89.3 %
of participants have a positive value).

Crucially, our theoretical results showed how higher
sensitivity in metacognitive monitoring should give
rise to increased sensitivity in participant’s search. To
test this in our participants, we correlated their search
sensitivites with meta-d’ fit to their confidence ratings.
Participants who had more sensitive confidence ratings
as indexed by greater meta-d’ values also had greater
search sensitivities (R = 0.40, p < 10−15). This re-

sult shows that participants with higher metacognitive
sensitivity also were more targeted in their search be-
haviour, spending fewer resources on unnecessary tri-
als.

As we will discuss in more detail below, our partic-
ipants showed considerable variation in their degrees
of over- and under-confidence. Thus, we wanted to
make sure that our theoretical models still also pro-
duced similar patterns when we introduced agents that
were more or less confident than their accuracy should
have licensed. To this end, we simulated second-order
agents with randomly sampled combinations of actor
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σI and rater/seeker’s assumed σR
I , with the latter be-

ing used for confidence and search computations (de-
tails of the determination of these values from L. Schulz
et al. (2020) in appendix B). To examine the effects of
different degrees of metacognitive sensitivity, we also
randomly sampled τI . We held ρI fixed at 0.3. We
note that, to isolate the effects of over- and under-
confidence, these agents sought information optimally
except for their confidence miscalibration. This also
means that they made their seeking decision determin-
istically based on their individual thresholds in confi-
dence space.

These simulations revealed that our metacognitive
search results are indeed robust to perturbations in con-
fidence bias and so bridge well to data from L. Schulz
et al. (2020). On average, the simulated agents sought
more information when they had made a mistake than
when they acted correctly (Figure 9B). Computing each
individual agent’s search sensitivity and plotting their
distribution, we also found that this search sensitivity
was strictly positive (Figure 9C). In other words, no
matter how miscalibrated their confidence was, each
agent sought more information following a mistake
than following a correct judgement.

Finally, we find that even among over- and under-
confident agents, the connection between metacogni-
tive sensitivity in search and metacognitive sensitiv-
ity in confidence held. This is highlighted in Figure
9D where we plot the relationship between the agents’
search sensitivity and their metacognitive sensitivity,
as indexed through meta-d’ fitted to agents’ confidence
responses. We also show τI in this plot to indicate how
meta-d’ scales with this parameter.

Intermediate discussion: Trial-by-trial empirical
search

In summary, we find substantial overlap between
theoretical prescriptions of trial-by-trial metacognitive
search and participant data in L. Schulz et al. (2020).
Higher confidence and cost led to reduced search, and
participants sought less information when they made
a correct rather than incorrect choice. Finally, we find
that sensitivity in metacognitive monitoring is related
to search that is better calibrated to objective accuracy.
This shows that humans are at least partially able to
carry forward and adaptively employ their metacogni-
tive abilities in the control of future-oriented behaviour.

Relationship of task averages

Following on from these trial-by-trial analyses, we
next probed how key task averages were related to
each other. To do so, we first investigated this in the
context of our simulated optimally seeking, but under-

and overconfident agents before comparing these re-
sults to behaviour of the participants from L. Schulz et
al. (2020).

Theoretical effects of over- and under-confidence

Figure 10A shows the distributions of objective deci-
sion accuracies and mean confidence ratings produced
by the over- and under-confident second-order agents
we simulated for our trial-by-trial analysis above. In
this figure, we see both overconfident agents, meaning
that the agent’s average confidence is higher than their
objective accuracy (in purple, stemming from σR

I < σI),
as well as under-confident agents (in orange, σR

I > σI).
We observe two effects of this miscalibration on av-

erage search. Whereas, thus far, objectively higher ac-
curacy has gone hand in hand with lower search in our
normative and well-calibrated models, this accuracy-
search relationship becomes broken once accuracy and
confidence are uncorrelated (Figure 10B). This is be-
cause overconfident agents (purple in the figure) sam-
ple less than their well-calibrated or under-confident
peers, believing that their initial choice is already good
enough. Under-confident agents (orange in the figure)
do the opposite. When confidence and accuracy are
dissociated, these two biases balance each other out,
breaking the relationship between accuracy and search.

In contrast to this broken search-accuracy relation-
ship, our simulations show that the agents’ subjective
accuracies (their average confidence) still remain a key
determinant for search (Figure 10C). Agents who are
on average more confident display lower information
search than those agents who are on average less con-
fident. This is because in our model the rater’s sub-
jective assessment of the actor’s initial decision qual-
ity (rather than objective signal quality) feeds into the
seeker’s computations. Thus, if the rater/seeker be-
lieves an actor to be a good decision-maker, it will still
search less, even when this faith in the actor’s accuracy
is misplaced.

Finally, our results show that simulated agents who
had higher meta-d’ also sought less information, just as
they would have if their confidence was not biased. In
brief, this is because one rater by itself can still have
better information than another (smaller τI), even if
those two might be mistaken about the true accuracy of
the actor. We also note that the influence of over- and
under-confidence is reduced when agents have high
meta-d’. This is because these agents generally seek lit-
tle additional information because of the high quality
information the rater already possesses.

Summarizing these results, we show the individ-
ual contributions of average confidence, accuracy and
metacognitive sensitivity to average search in a mul-
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Figure 10
Over-/under-confidence and relationships between task averages in model and data. (A) We can simu-
late over- and under-confidence through dissociating subjective and objective actor noise σI . (B) This dissociation
breaks the link between average accuracy and average information seeking. However, (C) average confidence is
still inversely correlated with the degree to which an agent searches, as is (D) metacognitive sensitivity. (E)
Regression showing the effects of the variables in (B-D) on search. (F) In contrast to model predictions, more
accurate participants from L. Schulz et al. (2020) were also more likely to seek more information. However,
following the model predictions, participants who were more confident sought less information. There was no
significant effect of metacognitive sensitivity, as indexed by meta-d’, on average search.

tiple regression whose results we plot in Figure 10E
(standardized betas). Over and above our previous
theoretical results, this highlights how confidence is a
critical driver of information search, an effect which is
particularly apparent when it begins to dissociate from
accuracy. This is in contrast to the optimal models we
have investigated before where average confidence and
average accuracy perfectly correlate, and so average ac-
curacy will appear to predict average search.

Relationship between empirical task averages and
model simulations

As in our simulated population of agents, partici-
pants’ average confidence ratings did not strongly cor-
relate with their average accuracy (R = 0.07, p = 0.06).
Such a disconnect allowed us to ask how each of
these features of average behaviour predicted search,
and whether such relationships were aligned with
our normative models. To test this, we first probed
how participants’ average confidence, average accu-

racy, and metacognitive sensitivity predicted their av-
erage propensity to seek out information through a cor-
relational analysis. In key agreement with the crucial
role of confidence in information seeking, participants
who were more confident also sought out less informa-
tion (R = −.27, p < 10−12). However, in a curious dis-
agreement with the model’s behaviour, more accurate
participants sought out more, rather than less, infor-
mation (R = .19, p < 10−6). We also found no signifi-
cant correlation between participants’ level of metacog-
nitive accuracy, as indexed through meta-d’, and their
average search (R = 0.005, p = 0.89).

These results are also visible in a multiple regression
analysis where we predicted average search with these
three predictors after normalizing all variables (see Fig-
ure 10F). This revealed a positive effect of average ac-
curacy on average search (β = 0.19, p < 10−6), although
the positive effect of accuracy was smaller than the neg-
ative effect of average confidence (β = −.32, p < 10−14).
Finally, the regressor for meta-d’ was not significant



28 SCHULZ, FLEMING, DAYAN

(β = 0.08, p = 0.07).

Intermediate discussion: Over- and under-confidence

Why might participants in L. Schulz et al. (2020)
have searched as they did? First, in regard to the ef-
fect of average accuracy, one should note that L. Schulz
et al. (2020) did not causally manipulate participant’s
accuracy and rather relied on one staircased perfor-
mance level. This in contrast to, for example, De-
sender et al. (2018) who, within each participant, var-
ied the difficulty levels in a similar information seek-
ing task. In this within-participant case, participant
sought more information in conditions with lower ac-
curacy showing that individuals can generally be sensi-
tive to their decision accuracy in the direction predicted
by the model. Indeed, this is related to our own within-
participant finding that participants seek more on in-
correct in comparison to correct trials.

However it remains unclear how we can account for
the small positive effect of average accuracy on search.
One possible explanation rests in the way the second
stimulus strength was determined in L. Schulz et al.
(2020). Specifically, the second stimulus strength was
yoked to the initial stimulus strength, which was itself
determined by a staircase. As a result, participants who
saw a relatively easier initial stimulus were also more
likely to see an easier second stimulus. Consequently,
participants with higher initial accuracy were able to
reach close to perfect average levels of final decision
accuracy when they sought information (see Figure B2
for visualization). This possible certainty might have
been a ’bright line’ that gave participants an extra in-
centive to seek out additional information and might
thus have biased the average effect of accuracy. This
would have been especially relevant if participants, as
we will consider in the main discussion section, had
non-linear utility functions. This can be examined in
more detail in further work.

Additionally, the second-order model, even when
miscalibrated, cannot account for the lack of relation-
ship between metacognitive sensitivity and search ex-
hibited by the participants in L. Schulz et al. (2020).
We consider various possibilities in the main discus-
sion session, including the case that the seeker’s be-
lief (τs

I ) about the key source of the rater’s confidence
is miscalibrated in the same way that the rater’s belief
about the actor’s accuracy can be. It would be inter-
esting to extend the sort of methods that Desender et
al. (2018) adopted in order to manipulate explicitly the
factors that we suggest should drive search.

Further work will also have to investigate why meta-
d’ does not correlate with average search but correlates
with search sensitivity, as we showed in an earlier sec-

tion. Recall that the difference between these measures
is that average search represents a general propensity
to seek whereas search sensitivity is a trial-by-trial mea-
sure of how well each trial’s search decision is in line
with each trial’s objective accuracy. This difference in
correlation might arise because the two measures cap-
ture different characteristics of metacognition, similar
to the separation between metacognitive bias and sen-
sitivity in confidence ratings (Fleming & Lau, 2014).
Average search, like metacognitive bias, is a general
measure of an agent’s tendency to seek information,
similar to an agent’s tendency to have a specific confi-
dence level. The similarity between these two forms of
"bias" is apparent in the inverse correlation between av-
erage confidence and average search. As in measures of
average confidence, average search can be both closer
to and farther away from optimality. However, we note
while the average confidence should, across models, be
simply equivalent to the average accuracy, optimal av-
erage search is additionally subject to forces outside of
the average accuracy as we have explored throughout
this paper .

In contrast to these average measures, search sensi-
tivity is more a question of resolution – how well search
distinguishes between correct and incorrect trials. This
fact is apparent in the correlation between search sen-
sitivity and meta-d’, a measure of the trial-by-trial ac-
curacy of confidence ratings. Further work will have to
provide a more comprehensive treatment of how these
concepts can be optimally measured and how they in-
teract.

Most importantly, however, we still find a prominent
negative effect of average confidence, highlighting the
key role that the subjective feeling of correctness play
in our participants’ average information search, and
in line with the predictions of a miscalibrated second-
order model. More broadly these results underline the
primary role of confidence in search over and above ac-
curacy.

Apart from L. Schulz et al. (2020), a further interest-
ing link between our theoretical analysis of over- and
under-confidence in search and empirical data can be
drawn with the results of Desender et al. (2018). As
briefly outlined in the introduction, this study used the
perceptual positive evidence effect to investigate causal
links between confidence and information search in a
similar perceptual setting. The positive evidence ef-
fect refers to experimental manipulations that can boost
a participant’s average confidence while leaving their
objective accuracy untouched (Boldt, de Gardelle, &
Yeung, 2017; Peters et al., 2017; Zylberberg, Barttfeld,
& Sigman, 2012). In essence, it creates two levels of
metacognitive bias within a single participant. In our
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model, this positive evidence effect could be conceptu-
alized as biasing the rater’s/seeker’s appraisal of σI ,
mistakenly increasing the rater’s belief in the actor’s
accuracy. As we have demonstrated, this condition
would lead an agent to decrease its information seek-
ing. Indeed, Desender et al. (2018) show that this is the
case: In the condition in which the positive evidence
effect induced higher confidence, participants were less
likely to seek information.

This intuition also applies beyond the perceptual
domain. For example, Metcalfe and Finn (2008) ma-
nipulated participant’s confidence in their memory of
words through an elegant order-effect manipulation
which induced higher and lower levels of confidence.
Similarly to Desender et al. (2018), participants sought
less information in the condition with lower confi-
dence. We could again conceptualize this as a bias on
the rater’s/seeker’s part.

Discussion

Computational models of metacognition have re-
cently been highly successful in explaining many intri-
cate facets of human confidence (Fleming & Daw, 2017;
Rahnev et al., 2020; Yeung & Summerfield, 2012). How-
ever, it has long been noted that metacognitive moni-
toring exists to guide subsequent control of behaviour
(Nelson & Narens, 1990), such as knowing when to in-
vest time and effort in studying new material or seek-
ing new information (Desender et al., 2018; Goupil,
Romand-Monnier, & Kouider, 2016; Metcalfe & Finn,
2008; Pescetelli et al., 2021; L. Schulz et al., 2020). How
these two processes of monitoring and control interface
has attracted less attention from computational mod-
elers. Here, we considered the rather diverse conse-
quences that different assumptions about the informa-
tional structure underlying confidence have for opti-
mal search and how metacognitive search manifests
in human behavior. We did so by treating the pro-
cess of remunerated inference and costly information
acquisition in the face of uncertainty as a simple in-
stance of a partially observable Markov decision prob-
lem (POMDP).

We extended model architectures suggested by
Fleming and Daw (2017), exploiting the simplified ver-
sion of drift diffusion-like decision making discussed
by Dayan and Daw (2008). In the postdecisional mod-
els, the rating process that generates confidence judge-
ments has access to at least the information underly-
ing the original decision whose confidence it judges,
as well as in most cases additional information (Moran
et al., 2015; Navajas et al., 2016; Pleskac & Busemeyer,
2010). By contrast, in the second-order model, rater
and actor share only part of each other’s information

(Fleming & Daw, 2017; Jang et al., 2012). In our exten-
sion, this confidence is used to determine whether the
agent should, depending on the expense of doing so,
collect more information before gaining reward for a
final choice.

Our theoretical results highlight how seemingly
small changes in the informational architecture of act-
ing, rating and seeking can lead to diverse profiles of
what constitutes optimal search under these assump-
tions. The second-order model in particular contains
a number of non-trivial and often non-linear relation-
ships between action, confidence, and optimal informa-
tion search. For example, the average normative will-
ingness to search as a function of objective accuracy can
resemble a step-function for some parameter values in
this model. In addition, because of the specific distri-
butions of confidence associated with the second-order
models, metacognitive hypo-sensitivity can give rise to
both increased or decreased information search under
some more extreme parameter combinations, depend-
ing on the underlying objective accuracy. 10

Our empirical results reinforce the importance of
carefully considering metacognition in information
search. While, as we will discuss later, more targeted
paradigms will be necessary to make statements about
confidence models from search behavior, we show how
the quality of metacognitive monitoring is intricately
linked to the quality of search.

Here, we did not focus on the potential neural real-
ization of the seeker, and its interaction with the likely
regions involved in acting and rating (Fleming et al.,
2018; Shimamura & Squire, 1986; Vaccaro & Fleming,
2018) as well as the neuromodulators involved in in-
formation search and the representation of uncertainty
(Hauser, Moutoussis, Purg, Dayan, & Dolan, 2018; Vel-
lani, de Vries, Gaule, & Sharot, 2020; Yu & Dayan, 2005).
It would be interesting to probe the most obvious sub-
strates, such as those regions involved in model-based
and goal-directed control (Daw, Niv, & Dayan, 2005;
Dickinson & Balleine, 2002) or state inference (Behrens

10In fact, even the basic confidence judgements produced
by the second-order model can have counter-intuitive charac-
teristics in certain regimes – such as that the more the rater’s
private information contradicts the actor’s choice, the more
confident the rater can be that the actor’s decision was in
fact correct. We mainly focused on regimes in which predic-
tions are less unusual, in keeping with the likely psycholog-
ical unreality of these extremes. However, we point the in-
terested reader to the fuller picture in appendix (section C). It
would furthermore be interesting to consider what kinds of
consequences arise from the modest noise added to the sys-
tem through the over- and underconfidence miscalibration in
the second-order framework, and how this would manifest
in search.
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et al., 2018; Schuck, Cai, Wilson, & Niv, 2016), using sig-
natures derived from behaviour as potential correlates
of neural activity.

Informational flow and access

Our extensions to the postdecisional and second-
order model make particular choices about how infor-
mation flows after the confidence rating. That is, how
is the new information XF , if collected by the actor, in-
tegrated with the actor’s (XI) and rater’s (YI) original
information to make the final choice (aF)?

In our formulation of the postdecisional model, the
perfectly accumulating sequential sampling renders
unreasonable anything short of the full integration of
the three samples (XI ,YI , XF). The optimal computa-
tions would naturally be altered if the accumulation
were lossy or affected by noise, or the rater had less
knowledge about the actor.

In contrast to the full access afforded by our postde-
cisional account, in the second-order model, the initial
actor and rater are more separate. This in turn leaves
various credible possibilities for their subsequent inte-
gration. We endowed the final actor with the substan-
tial inferential ability of calculating the rater’s variable
YI from the reported confidence. However, especially if
the rater is not required to report this information "pub-
licly", this may not be possible. If the information about
YI available to the final actor is less than we assume
here, then the computations for search would differ, for
instance limiting the benefit of low rater noise τI .

A related question is whether and how information
is further propagated in the second-order model. Here,
we stopped at the final action, but the rater could, of
course, also compute its confidence in this second deci-
sion. For brevity, we have not included this here, but
note how an optimal rater would now need to infer
both the actor’s first and second cue based on the dy-
namics of the first and second decision. Even in the
case of no search, the rater could, in some cases, receive
additional information about the actor’s first cue by ob-
serving how the actor reacts to the rater’s initial confi-
dence (for example whether the actor changes its mind
after an error signal by the rater). This raises broader
issues about an internal recursive back- and forth infer-
ence between the actor and rater.

In contrast to humans, other animals’ metacogni-
tion cannot be directly assayed with confidence rat-
ings. Experimentalists have attempted to remedy this
through paradigms that indirectly probe representa-
tions of subjective correctness, such as post-decision
wagering (Kepecs & Mainen, 2012), opt-out experi-
ments (Hampton, 2001) or neural markers (Kepecs et
al., 2008; Kiani & Shadlen, 2009; Nieder, Wagener, &

Rinnert, 2020). Information-seeking tasks have also
seen wide use (Call, 2010; Call & Carpenter, 2001).
There, an animal is hypothesized to possess a form
of metacognition if it seeks information in situations
of uncertainty (which the experimenter controls), a be-
havior that already develops in human infancy (Goupil
et al., 2016).

However, there is ambiguity about whether
confidence-related behaviours and information search
in animals reflect a capacity for explicit metacognition
– the ability to form a distinct representation of confi-
dence about one’s knowledge or performance (Birch,
Schnell, & Clayton, 2020; Carruthers, 2008; Kornell,
2014). To the extent that second-order architectures
map onto a richer capacity for creating and using
explicit confidence representations, our computational
models could allow inferences about the varieties of
animal metacognition when applied to the kinds of
tasks used in this domain.

Ambiguity, computational noise, uncertainty and
normativity

The focus of our theoretical investigations was to
highlight the role different assumed metacognitive ar-
chitectures have on optimal information search. This
shows how strongly even optimal metacognitive com-
putations can affect seeking behaviour. However, vari-
ous other factors can influence search and might be cru-
cial in explaining some of the more idiosyncratic aver-
age results.

Following Fleming and Daw (2017), the agents in
our POMDP have first-order uncertainty about the
stimulus on a trial, but suffer no ambiguity (or second-
order uncertainty) about the inaccuracy or correlation
of their sources of information. The case in which sub-
jects receive information whose accuracy they are un-
certain about is common in dynamic decision-making
problems where, for instance, the contrast of input
stimuli may change in an unsignalled manner between
trials (Fleming et al., 2018; Gold & Shadlen, 2001, 2007;
Kiani & Shadlen, 2009). There has been work on this
in the equivalent of the first-order case. For instance,
the conventional reward-rate maximizing strategy for
the drift diffusion decision-making model in which ev-
idence accumulates up to a fixed threshold changes to
one involving what is known as an urgency function
(O’Connell, Shadlen, Wong-Lin, & Kelly, 2018; Ratcliff,
Smith, Brown, & McKoon, 2016). In such a model, if
the agent discovers from the length of time it is taking
to reach the threshold that the information it is receiv-
ing is not very accurate, it can make a quick, poten-
tially inaccurate, decision, and hope that the next prob-
lem will be easier (Drugowitsch, Moreno-Bote, Church-
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land, Shadlen, & Pouget, 2012).
It would be possible to extend our models in a sim-

ilar manner, allowing separate informational accumu-
lations over time for actor and rater; with the seeker
judging when to stop and allow the actor to perform.
The added complexity would be that the explicit com-
munication between actor and rater that we allowed
(with the actor’s first action aI observed by the rater;
and the rater’s confidence report cI being observed by
the second actor) would have to be adjusted.

Our models focused on noise coming from the sig-
nals themselves, and so we assumed entirely noise-
free decision and confidence processes in our theoreti-
cal results and simulations. This allowed us to pinpoint
the influences of different confidence models on search.
However, it is of course also limiting. Decision noise
is ubiquitous in behaviour (Mueller & Weidemann,
2008; Wilson et al., 2014), and noisy computations of-
fer a different lens for understanding metacognitive in-
efficiencies (Shekhar & Rahnev, 2020) and exploration
(Findling, Skvortsova, Dromnelle, Palminteri, & Wyart,
2019). It is particularly interesting whether agents
might take into account such noise processes. For ex-
ample, in contrast to our noise-free agent, consider an
agent which would have the opportunity to collect very
accurate information, but has difficulty translating this
information to good actions. Here, the sources of such
noise are not crucial and might include forgetting that
degrades information over time, lossy accumulation of
evidence or noisy computations and action selections.
In turn, agents that know about their own inaccura-
cies should issue confidence judgements and seeking
decisions that take them into account. For instance,
Moutoussis, Bentall, El-Deredy, and Dayan (2011) hy-
pothesized that people with paranoia appear to "jump
to conclusions" by refusing to gather information, be-
cause decision noise renders such collection futile (al-
though see Ermakova et al., 2018).

Throughout, we modelled the information-seeking
choice as being made deterministically based on a
threshold. As briefly discussed in our data section,
other reinforcement learning scenarios would often
assume a softmax- or add a lapse-parameter to this
choice, making it stochastic. Both would naturally re-
duce the prevalence of extreme cases outlined in the
theoretical results where the agent currently seeks on
all or none of the trials.

A more complicated problem arises if agents are con-
fused about, or even not fully aware of, their own
metacognitive skill. Throughout, we assumed a form
of well-calibrated meta-metacognitive knowledge, in
that the rater knew the exact value of its variance τI .
While humans are indeed able to use the uncertainty

of internal or external stimuli and sensations in their
decision-making (Körding & Wolpert, 2004; Whitney,
Rinehart, & Hinson, 2008), these stimuli are what we
would consider first-order. Whether such capabilities
extend to our metacognitive sense is itself question-
able – and issues about how agents tune this capac-
ity, and its psychological and neural realizations have
yet to be thoroughly examined. For example, agents
might exist that are metacognitively highly accurate,
but might be unaware of this skill, or have low confi-
dence in it. Conversely, individuals might posses little
metacognitive skill, but could consider themselves to
be great raters, in essence a meta-Dunning-Kruger ef-
fect (Kruger & Dunning, 1999). If agents do not know
whether they can trust their own confidence, this natu-
rally also has implications for our information-seeking
problem, and metacognitive control more broadly.

Apart from these inference issues, human decision-
making based on inferred uncertain instrumental val-
ues is also widely known to be subject to distortions
(Hertwig, Barron, Weber, & Erev, 2004; Tversky &
Kahneman, 1992). Such distortions include temporal-
discounting or risk-aversion, and have been shown to
influence search (Gigerenzer & Garcia-Retamero, 2017;
Sadeghiyeh et al., 2020). In general, our value-based
approach allows for the integration of such effects, for
example by applying a discount rate to the second de-
cision, assuming a non-linear value function or even a
more complex coherent risk measure (Gagne & Dayan,
2022). Interindividual differences in such parameters
might exert a significant effect on average information
seeking and might be key in explaining some of the un-
expected characteristics of our average search results,
especially if factors like risk-sensitivity or discounting
are non-trivially related to factors governing metacog-
nition and objective accuracy (Fleming & Dolan, 2010).
We note however that our model is already rich in pa-
rameters and so dissociating individual parameter con-
tributions might present a challenge.

Beyond our current minimal task, valence and mo-
tivational effects impact information search over and
above the purely instrumental and accuracy-focused
seeking we discuss. Prominently, humans are more
likely to look for information that has positive valence
(Gesiarz, Cahill, & Sharot, 2019; Hart et al., 2009; Jonas,
Schulz-Hardt, Frey, & Thelen, 2001; Sharot & Sunstein,
2020). In turn, we tend to be reluctant to seek infor-
mation that might have negative valence, but might in
fact be instrumentally useful - like the results of a med-
ical test (Gigerenzer & Garcia-Retamero, 2017; Thorn-
ton, 2008). Our models do not accommodate these as-
pects at the moment. However, one might combine
our purely instrumental values with internal values for
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certain beliefs – which may or may not be in line with
the accuracy goals we specify (Bénabou & Tirole, 2016;
Bromberg-Martin & Sharot, 2020).

Even when there is no valence attached to the be-
liefs, empirical work in paradigms close to the one
we use here suggest that humans integrate cues that
favour an initial judgement more than those that dis-
confirm it, especially when confidence is high (Roll-
wage et al., 2020). Such a confirmation bias can be
straightforwardly modelled within our framework and
might assist in explaining behaviour (Fleming et al.,
2018). Recent simulation work (Rollwage & Fleming,
2021) has shown that this apparent confidence-induced
confirmation bias can in fact be adaptive when an agent
posseses second-order metacognitive hypersensitivity.
Notably, Rollwage and Fleming (2021) used a different
information flow for the final decision. However, this
still raises interesting questions about what constitutes
optimality in both the passive and active sampling of
information.

Also weakening the tie to normativity are recent
empirical findings that human confidence based on
choices with more than two options does not neces-
sarily resemble the full Bayesian posterior, but rather
tracks the difference between the two most likely op-
tions (Li & Ma, 2020). This has interesting implications
for more complex choices, and it will be important to
consider how search manifests in these settings. .

Future steps in dissociating action, confidence and
search

While our reanalysis of L. Schulz et al. (2020) pro-
vided insights into the empirical use of metacognition
when seeking, it left various open questions. As we
previewed, we believe more targeted paradigms and
experimental manipulations will be necessary to bet-
ter disentangle the role of metacognition and its infor-
mational architecture in search. Among them, tran-
scranial magnetic stimulation (TMS) (Fleming et al.,
2015; Rounis, Maniscalco, Rothwell, Passingham, &
Lau, 2010; Shekhar & Rahnev, 2018) or pharmacolog-
ical manipulations (Clos, Bunzeck, & Sommer, 2019)
are able to create dissociable effects on action and con-
fidence. Metacognition can also be trained (Carpenter
et al., 2019) and there are task conditions which selec-
tively impact decision and confidence quality like the
positive evidence bias we discussed above. (Bona &
Silvanto, 2014; Desender et al., 2018; Graziano & Sig-
man, 2009; Spence, Dux, & Arnold, 2016; Vlassova,
Donkin, & Pearson, 2014). Investigating how search
would manifest following such manipulations might
provide key insights into the interplay of metacognitive
monitoring and control and their underlying computa-

tions, especially with more of a focus on within-subject
effects.

Furthermore, some neurological (Del Cul, Dehaene,
Reyes, Bravo, & Slachevsky, 2009; Fleming, Ryu, Golfi-
nos, & Blackmon, 2014; Goldstein et al., 2009; Per-
saud, McLeod, & Cowey, 2007; Shimamura & Squire,
1986) and psychological disorders (David et al., 2012;
Hoven et al., 2019; Rouault et al., 2018) as well as ag-
ing (Palmer, David, & Fleming, 2014; Weil et al., 2013)
specifically affect an individual’s metacognition but
leave their "object-level" abilities relatively untouched.
These would have implications for information search.
For instance, agents might over- or under-estimate the
usefulness of the second cue or have higher thresholds
for stopping to seek, or for returning to check that some
action (such as turning off a gas stove) has been com-
pleted (Hauser et al., 2017; Tolin et al., 2003).

Experimental manipulations of or individual differ-
ences in metacognition might provide one way to get
a better understanding of metacognitive search. Partic-
ularly, there are other specific aspects of second-order
computations that warrant further investigation. Most
prominently, computing second-order confidence re-
lies on observing the actor’s decision (Fleming & Daw,
2017) and its insight is curtailed when it cannot do so, a
corollary also supported by empirical evidence (Pereira
et al., 2020; Siedlecka, Paulewicz, & Wierzchoń, 2016).
Future experiments could follow up on this by varying
whether participants make an initial decision. When
participants only rate their confidence but do not per-
form an action, this should lead to reduced metacog-
nitive insight, and the optimal seeking computations
would be more akin to a first-order model. It would
be especially interesting whether such conditions could
give rise to the step-like average seeking curves when
varying the underlying object-level accuracy.

The aim of this paper was not to make strong state-
ments about the veracity of one model versus another.
For simplicity, we presented a relatively limited post-
decisional model that in its current form is unable to
capture the sorts of hypo-sensitivity observed in the
empirical data, but could do so with relatively simple
changes (e.g., the addition of confidence noise). In con-
trast, we think that qualitative effects of action on con-
fidence provide a more promising route for clean tests
of the role of second-order inference – treating our own
actions as “data” – on a confidence computation. Re-
cent empirical studies have begun to identify the afore-
mentioned action-specific contributions to perceptual
confidence, which future modeling studies could har-
ness (also in the context of information seeking) to of-
fer a more precise test of different model architectures
(Fleming et al., 2015; Pereira et al., 2020; Siedlecka et al.,
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2016)
For more definitive comparisons between individual

confidence models, further research could also follow
the lead of Shekhar and Rahnev (2022), who compared
a host of metacognitive monitoring models in terms of
their fit to a large existing database of confidence rat-
ings (Rahnev et al., 2020). Richer tasks, such as those
involving three or more possible choices, together with
information search, may also aid in discriminating be-
tween different computational architectures (Li & Ma,
2020; Rahnev et al., 2022). Overall, we believe that
novel and bespoke experimental designs tailored to test
specific model predictions will be the most fruitful av-
enue for testing models of metacognition more broadly,
such as those aimed at evaluating the tell-tale effect of
self-action on confidence in the second-order model.

Links to other types of information search and
metacognitive control

Here we addressed a very restricted information-
seeking problem. In other laboratory tasks or in
real world situations, information seeking is itself
often embedded in more complex decision-making
tasks (Mobbs, Trimmer, Blumstein, & Dayan, 2018;
E. Schulz et al., 2019). For example, in reinforcement
learning problems with several options of unknown
value, agents face an exploration-exploitation dilemma
(E. Schulz & Gershman, 2019; Sutton & Barto, 2018).
Theoretical treatments of (optimal) exploration (Git-
tins, 1979; Schwartenbeck et al., 2019; Sutton & Barto,
2018) and empirical investigations (Boldt et al., 2019;
Speekenbrink & Konstantinidis, 2015; Wilson et al.,
2014; Wu et al., 2018) of human exploration also high-
light the key role of uncertainty in this decision prob-
lem.

At first sight, more sequential tasks might seem far
removed from the setting we discussed. However,
along with tasks that not only ask whether to sam-
ple information but also where to sample information
from, tasks with longer horizons in fact share the same
computational problem as the simple task we focus
on here. For example, belief states in the exploration-
exploitation problem are over action-reward contin-
gencies rather than ’world’ states, and the penalty
arises as an opportunity cost. Alternatively, an agent
faced with a similar task as ours but with several pos-
sible information sources whose quality is unclear will
have a belief state that quantifies both the uncertainty
about the state as well as the quality of the sources
(Pescetelli & Yeung, 2020a).

Optimal solutions to both our reduced task as well as
those more elaborate tasks rest on planning (Callaway
et al., 2021; Hunt et al., 2021). Essentially, our agent

plans one step ahead, considering all possible stimuli
associated with its one source to compute its action val-
ues (e.g. equation 14). In the richer tasks, planning ex-
tends over several steps and/or sources, but the key
idea remains equivalent. Of note is that optimal solu-
tions to these more complex planning problems quickly
become intractable. Any heuristic solution, however,
will try to approximate this optimal solution, or at least
be measured against it.

Models of exploration behaviour or of more com-
plex search almost always consider uncertainty in what
we would characterise a first-order computation – at
most wondering about the effect of different prior dis-
tributions over unknown quantities. It would be inter-
esting to think about the equivalent of postdecisional
and second-order models – where agents could gain
some extra, partially independent, information about
the quality of their actions, for instance by observing
other agents (Zhang & Gläscher, 2020). It might then be
possible to use the sort of methods we have discussed
to draw out the implications for exploration.

On a shorter timescale, the basic computations
we discussed line up with those performed in drift-
diffusion models. There, participants can infer their
chance of being correct from information that accumu-
lates over time, and have to decide whether to stop
or continue sampling evidence (Gold & Shadlen, 2001,
2007; Ratcliff & Rouder, 1998; Wald, 1949). These mod-
els have been highly successful in explaining the la-
tent speed-accuracy trade-off present in many percep-
tual tasks where participants decide implicitly to sam-
ple information (Bogacz, Wagenmakers, Forstmann, &
Nieuwenhuis, 2010; Ratcliff et al., 2016), and it would
be interesting to see how they are sensitive to more
metacognitive architectures.

Outside of areas related to information acquisition,
confidence also plays a key role in controlling other
processes. For example, cognitive offloading (Gilbert
et al., 2020; Hu, Luo, & Fleming, 2019; Risko & Gilbert,
2016), such as setting reminders, is closely tied to our
subjective feeling of future success. Humans also pri-
oritize the completion of different tasks as a func-
tion of their confidence (Aguilar-Lleyda, Lemarchand,
& de Gardelle, 2020) and use confidence to decide
adaptively when to deploy attention (Desender, Boldt,
Verguts, & Donner, 2019; van den Berg et al., 2016) or
engage in reflection about the value of options (Lee
& Daunizeau, 2021). All these decision problems es-
sentially boil down to a planning problem akin to our
information-seeking case where an agent needs to bal-
ance the benefits of an action like setting a reminder
with its (opportunity) cost. It would be furthermore in-
teresting to consider parallels to metacognitive search
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sensitivity in these areas, for example asking whether a
reminder was set in vein or not.

On a longer time horizon, confidence also shapes
learning (Bjork, Dunlosky, & Kornell, 2013; Metcalfe
& Finn, 2008). Here, computational modelling has
shown, that, on the one hand, we learn from our lo-
cal confidence about our own broader skills (Rouault,
Dayan, & Fleming, 2019). On the other, we use mo-
mentary estimates of uncertainty to steer how much we
learn from errors (Behrens, Woolrich, Walton, & Rush-
worth, 2007; McGuire, Nassar, Gold, & Kable, 2014;
Meyniel, Schlunegger, & Dehaene, 2015; Purcell et al.,
2010; Vaghi et al., 2017). Investigating the effects of con-
fidence on learning and on controlling future courses of
actions through a more detailed and integrated model
of metacognitive monitoring and control might pro-
vide insights into both their function and dysfunction.

Whether in our paradigm or in exploration-
exploitation, the collection of information serves to in-
crease an agent’s reward and thus has a direct instru-
mental purpose. However, there is also a large litera-
ture dealing with what at first glance appears to be non-
instrumental information seeking. Such "curiosity" for
seemingly (at least currently) reward-irrelevant infor-
mation has long been a puzzle to experimentalists and
theoreticians (Gottlieb & Oudeyer, 2018; Iigaya, Story,
Kurth-Nelson, Dolan, & Dayan, 2016; Kidd & Hayden,
2015; Kobayashi, Ravaioli, Baranès, Woodford, & Got-
tlieb, 2019). As in instrumental information search,
confidence often plays a key role in the treatment of
such behaviour, although its role is contested. Whereas
some propose a monotonic relationship between confi-
dence and curiosity similar to our instrumental results
(Berlyne, 1950; Lehman & Stanley, 2011), others argue
that intermediate levels of confidence are most con-
ducive to curiosity (Baranes, Oudeyer, & Gottlieb, 2014;
Kang et al., 2009; Kidd, Piantadosi, & Aslin, 2012).11

Others have attempted to reconcile these two perspec-
tives (Dubey & Griffiths, 2019). These various models
might benefit from the sort of explicit treatment of the
underlying confidence that we have discussed.

As briefly alluded to above, in the real world, infor-
mation is often not solely provided by faceless sources,
but by other agents with their own intentions. Over
and above just being noisy (and indeed nosey), such
social sources might have their own biases and inter-
ests of which successful agents need to be aware when
evaluating whether they should invest in hearing their
opinion and using them to inform themselves (Hütter
& Ache, 2016; Pescetelli & Yeung, 2020b; van der Plas,
David, & Fleming, 2019). This is a particular press-
ing issue when faced with mis- and dis-information
(Lazer et al., 2018; Pennycook & Rand, 2021). Such

scenarios will require adaptive metacognitive systems
to make inferences not only about themselves but also
about others. From a computational perspective, the-
ories such as cognitive hierarchy (Camerer, Ho, &
Chong, 2004), interactive POMDPs (Gmytrasiewicz &
Doshi, 2004) or Rational Speech Acts (Goodman &
Stuhlmüller, 2013) could be adapted to consider hier-
archies of partially self-aware agents interacting with
each other.

Finally, we note that hierarchies of ever more sophis-
ticated sub-agents that model each other inside a sin-
gle decision-maker constitute a form of theory of (an
internal) mind that is somewhat reminiscent of these
externally-directed cognitive hierarchies (Carruthers,
2009). If the internal sub-agents enjoy their own par-
tially individual rewards – so, for instance, the rater
might have an incentive to lie about its confidence if
it faces an overwhelming loss for being wrong or be-
cause it believes that the lie might have adaptive ben-
efits (Bénabou & Tirole, 2016; Johnson & Fowler, 2011;
Kurvers et al., 2021) – we can expect very rich patterns
of behaviour to emerge, with agents partially fooling
themselves as well as others.

Conclusion

By offering a joint account of metacognitive monitor-
ing and control, our work provides theoretical ground-
ing for, and empirical evidence of, rich patterns of be-
havior that can emerge when considering both parts of
a metacognitive process. Such an integrated treatment
highlights the importance of considering the differ-
ent building blocks of (meta-)cognition together rather
than treating them as isolated processes. Our discus-
sion has described the wide conceptual applicability of
this integrated approach, and pointed to a range of re-
maining empirical and theoretical questions, from neu-
ral realizations to more detailed accounts of potential
irrationalities in human choice. Our hope is that this
will provide a better lens for understanding the rich-
ness of metacognitive control behavior, in search and
beyond.
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Model details
Postdecisional model

Predicting XF

To predict the location of XF for the value of
seeking, the seeker combines the two possible normal
distribution weighted them by the associated confi-
dence:

p(XF |ZI) = p(XF |d = −1)P(d = −1|ZI)+p(XF |d = 1)P(d = 1|ZI)
(23)

Second-Order Model

Confidence

Fleming and Daw (2017) describe the compu-
tations underlying their second-order model. Here, we
present them in our notation. Recall that the rater ob-
serves the actor’s decision aI and receives its own cue
YI . The rater then has to use this information to com-
pute the probability that the actor’s decision was the
correct one:

cI = P(aI = d|YI ;ΣI) =

P(d = 1|YI , aI ;ΣI) if aI = 1.
P(d = −1|YI , aI ;ΣI) if aI = −1.

(24)
As with the postdecisional model, we apply

Bayes-rule to compute this. In the following, we sup-
press ΣI for clarity:

P(d|YI , aI) =
P(d|YI)P(aI |YI , d)∑
d P(d|YI)P(aI |YI , d)

(25)

We begin teasing this apart, beginning with the
second term:

P(aI |YI , d) =
∫

XI

P(aI |XI)P(XI |YI , d)dXI (26)

Because P(aI |XI) is contingent on the threshold
(so that aI = 1 if XI > 0), this can also be expressed as:

P(aI |YI , d) =


∞∫
0

P(XI |YI , d)dXI if aI = 1.

0∫
−∞

P(XI |YI , d)dXI if aI = −1.
(27)

This is cumulative density function of the con-
ditional density of a multivariate Gaussian. This condi-
tional density of a multivariate Gaussian is itself simply
a univariate Gaussian.

P(XI |YI , d) ∼ N(µXI |YI , σXI |YI ) (28)

The conditional parameters of this distribution
are defined as follows:

µXI |YI = d +
σI

τI
ρ(YI − d) (29)

σXI |YI =

√
(1 − ρ2)σ2

I (30)

The first term is the normalized likelihood of
YI conditioned on a d:

P(d|YI) ∝ P(YI |d) (31)

P(YI |d) in turn equals the density of a unidi-
mensional Gaussian with mean d and standard devi-
ation τI at YI .

Optimal weighting of XI and YI for YI under covariance

In contrast to the postdecisonal model, we can-
not simply weigh XI and YI according to their variances
when combining them to ZI . Rather, we need to take
into account their covariance (Oruç, Maloney, & Landy,
2003). As a result, XI and YI are summed with their re-
spective weights wXI and wYI

ZI = wXI XI + wYI YI (32)

These weights are functions of the reliabilities
of the cues which in turn are corrected for the correla-
tion.

wXI =
r′XI

r′YI
+ r′XI

and wYI =
r′YI

r′YI
+ r′XI

(33)

r′XI
= rXI − ρI

√
rXI rYI and r′YI

= rYI − ρI
√

rXI rYI (34)

rXI =
1
σ2

I

and rYI =
1
τ2

I

(35)

This way we can also define the standard devi-
ation ζI of ZI .

ζI =

√
1

rZI

(36)

rZI =
rXI + rYI − 2ρ√rXI rYI

1 − ρ2
I

(37)

This form of cue combination can give rise to
several non-intuitive results which we discuss further
below.
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Value computations

In the following, we detail the value computa-
tions in the the second-order model. First, if there is no
seeking, the actor uses ZI (see above) to make its deci-
sion. The value of this combined stimulus is defined
as:

V∗F,ZI
= max{P(d = 1|ZI), P(d = −1|ZI)}rF (38)

This is then used in the Q-value computations
for the Q-value of not seeking (see equation 17)

However, the seeker does not know ZI , be-
cause it does not have access to XI . It therefore has to
marginalize out this quantity

V∗F,YI ,0 =

∫
ZI

p(ZI |YI , aI)V∗F,ZI
dZI (39)

=

∫
XI

p(XI |YI , aI)V∗F,ZI
dXI where (40)

p(XI |YI , aI) = p(XI |YI , aI , d = −1)P(d = −1|YI , aI)+
p(XI |YI , aI , d = 1)P(d = 1|YI , aI)

(41)

Given seeking, the actor receives XF (again as
per equation 10) which it combines with ZI to form a
joint variable ZF (see equation 12). This variable can
then again be compared against a threshold for aF,1.
Given this set-up, we can now consider the values that
go into the individual Q-value computations.

V∗F,ZF
= max{P(d = 1|ZF), P(d = −1|ZF)}rF (42)

Similarly to the first-order and postdecisional
models, the seeker does not know all the variables un-
derlying ZF , when it decides whether to seek, and it
also does not know ZI . Therefore, it has to marginalize
over them both:

V∗F,YI ,1 =

∫
ZF

p(ZF |YI , aI)V∗F,ZF
dZF (43)

=

∫
XI

∫
XF

p(XI , XF |YI , aI)V∗F,ZF
dXFdXI where

(44)

p(XI , XF |YI , aI) =p(XI |YI , aI)(p(XF |d = −1)P(d = −1|YI , aI)+
p(XF |d = 1)P(d = 1|YI , aI))

(45)

Notice how both the with- and without-search
value computation contain, P(d|YI , aI), or the rater’s
confidence.

Over- and underconfidence

As discussed in the main text, the second-order
model can produce over- and underconfidence by way
of dissociating the parameter underlying the sampling
of the actual actor stimulus, and the parameter that the
rater uses to invert the model and compute its confi-
dence. In more detail, this means that we use an objec-
tive and subjective σI , where the stimuli are still sam-
pled with σI as in equations 7 and 8. In contrast to this,
the rater and seeker proceed in their computations us-
ing the subjective σR

I , for example when forming the
confidence:

cI = P(aI = d|YI ;ΣR
I ) (46)

ΣR
I =

[
(σR

I )2 ρIσ
R
I τI

ρIσ
R
I τI τ2

I

]
(47)

This then also applies to the seeker’s computa-
tions outlined in equations 41-45.

Appendix B
Methods

We implemented our models, simulations,
and data analysis in R. Our code and data is
hosted openly on a dedicated GitHub repository
(https://github.com/lionschulz/SchulzFlemingDayan).
Our work only includes theoretical simulations and
additional analysis of previously published data from
Schulz et al. (2020). That study was not preregistered.

Simulation details

To simulate the effects of over- and underconfi-
dence on optimal search, we sampled values of σI and
σR

I to span the empirically observed accuracy range (60
- 85 %) from L. Schulz et al. (2020). Specifically, we
sampled accuracies individually from a uniform distri-
bution within this range and then transformed them to
σI and σR

I using the inverse of function 21:

σI =
1

ϕ−1(Accuracy)
(48)

Where ϕ−1 denotes the inverse cumulative den-
sity function of the normal distribution. To simu-
late different degrees of metacognitive sensitivity, we
furthermore sampled using the same procedure and
range. The correlation ρI was fixed to 0.3, and the cost
of the information rS to 0.1 (rF = 1).

To probe agent’s average confidence in these
simulations, we simulated 1000 trials for each stimulus
combination. To compute the agent’s meta-d’, we split
these confidences into five equally spaced confidence
bins (details on meta-d’ fit below).

https://github.com/lionschulz/SchulzFlemingDayan
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Data

Here, we reanalysed participant data from
L. Schulz et al. (2020) who collected choices and confi-
dence ratings from 734 participants in an information-
seeking task that shares many commonalities with the
theoretical task we discuss. A few subtle differences
between the task we describe in the theory section and
Schulz et al. (2020) exist: Our theoretical task uses
a continuous confidence report made after the initial
decision, offering an arbitrarily fine-grained picture of
confidence. In contrast, L. Schulz et al. (2020) employed
a discrete, three-step, scale that probed confidence con-
jointly with the judgement. This lowers the resolution
of possible confidence values. Such discrete confidence
ratings are usual in the field of metacognition (Rah-
nev et al., 2020). Because of the joint assessment of
choice and confidence, confidence could not fall below
50 %. Furthermore, L. Schulz et al. (2020) employed
just one, stair-cased, strength of the initial (and yoked
final) stimulus limiting our ability to probe changes in
accuracy level to post-hoc analyses (see Figure B2 for
the two accuracies). However, the task employed two
levels of costs, letting us probe the effects of cost on
participants search. A detailed description of this task
can be found in L. Schulz et al. (2020).

As is usual in the literature (Fleming & Daw,
2017; Rahnev et al., 2020; Shekhar & Rahnev, 2020),
participants displayed significant variation in their
metacognitive sensitivity. We show the distribution of
perceptual (d’) and metacognitive (meta-d’) sensitivi-
ties in Figure B1.

Data and simulation analyses

Trial-by-trial effects were computed using the
mixed logistic models in the "afex" (Singmann et al.,
2018). To analyze correlations in the data, we used
Pearson correlation, and for linear regression models,
we applied the lm() function. We employed HMeta-d’
(Fleming, 2017) using non-hierarchical fits to fit meta −
d′.

Appendix C
Further Second-Order Results

Confidence and general stimulus conditions

Signal, noise correlation

In the second-order model, the correlation can
give rise to counterintuitive confidence curves. This is
visible in Fig C1 where we plot confidence values for a
positive decision (aI = 1) varying the parameters indi-
vidually. We observe a few aspects already reported by
Fleming and Daw (2017):
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Figure B1
Distribution of perceptual and metacognitive
sensitivity in L. Schulz et al. (2020) The ratio meta-
d’/d’, known as metacognitive efficiency or M-ratio,
indexes the relative balance between the information
available for performance (d’) and confidence ratings
(meta-d’). Values greater than 1 indicate metacogni-
tive hypersensitivity and values smaller than 1 indi-
cate hyposensitivty.
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Figure B2
Average initial and final accuracies, and average
search in L. Schulz et al. (2020). Participants with
high initial average accuracy were able to reach almost
perfect final decisions through search. Plot uses a small
scatter for better visibility.

• Panel A: Increasing the accuracy of the actor
(lower σI) increases the boost that the confidence
receives through the action. If the actor is very
accurate, it takes a highly negative YI to overturn
the decision.

• Panel B: Higher rater noise (τI) means the confi-
dence curves will be less well-tuned.

• Panel C: Higher correlations (ρI) also results in a



CONFIDENCE IN CONTROL 45

reduced sharpness in the confidence curves.

However, what has yet to be reported is the fol-
lowing: Under conditions of metacognitive hyposen-
sitivity, that is when σI is sufficiently smaller than τI ,
and when ρI is large enough, confidence will begin ris-
ing again with seemingly contradictory YI ’s. This is
particularly visible in the rightmost panel where ρI is
most pronounced, but is also visible in the most ex-
treme cases in panels A and B. As an example, imagine
the actor has received XI = 0.5 and decides aI = 1. If the
rater receives YI = −5, this would usually be a strong
error signal and the confidence in the initial decision
very lower than when YI would have had more inter-
mediate values. However, under some parameter con-
ditions, the exact opposite is the case: There, when YI

strongly contradicts the decision sign, confidence will
in fact be higher for this very low YI than for YI = 0.

While we note that the marginal probability of
these cases is relatively low given the underlying corre-
lation, such a pattern is striking. The reason for it lies in
the the way the two possible sources occupy the XI and
YI space and create signal and noise (compare Figure 1
E). A crucial aspect of this is the line on which the pos-
terior based on ZI (i.e. the combination of XI and YI) is
uniform, so that P(d = 1|XI ,YI) = P(d = −1|XI ,YI) = 0.5.
It is this posterior that the rater only has partial infor-
mation about. The equality line subdivides the space
in two zones where the likelihood of d = 1 is larger
than the likelihood of d = −1 (or vice versa). Given the
equal prior, this line of equality in turn is defined by the
points at which the two likelihoods equal each other.

p(XI ,YI |d = −1) = p(XI ,YI |d = 1) (49)

The two likelihoods are defined by the bivari-
ate normal distribution’s density:

p(XI ,YI |d) =
1

2πσIτI

√
1 − ρ2

I

e
(XI−d)2

σ2
I
−

2ρ(XI−d)(YI−d)
σI τI

+
(YI−d)2

τ2I (50)

From this, we can can define the values of YI

for which the two posteriors equal each other as a func-
tion of XI :

YI = −mXI (51)

where from equation 49, we get:

m =
1
σ2

I
−
ρI
σIτI

1
τ2

I
−
ρI
σIτI

(52)

We plot this in Figure C1 D-F for a range of
parameter combinations. When there is no correlation

ρI = 0, m (panel F) this line is defined by τ2
I

σ2
I

and the
space is thus divided diagonally from a positive YI to
a negative YI with the slope defined by the relation-
ship between the two parameters. This general result
holds, even when re-introducing the correlation. Im-
portantly, what this division of space means is that for
every possible actor cue XI , more positive rater cues
YI will favour d = 1 and more negative YI will favour
d = −1. Crucially however, under metacognitive hy-
posensitivity (τI > σI) this diagonal becomes steeper
and steeper until it is fully vertical. This point is de-
fined when:

ρI =
σI

τI
(53)

In other words, at this point, the decision rule
based on YI and XI is the same as based on XI alone – YI

thus affords no additional help with the decision. Be-
yond this vertical point, the space is again divided di-
agonally, but the dividing line now has a positive rather
than negative slope. This only appears under relatively
extreme parameter combinations, but will crucially flip
the logic outlined above. Now, for every XI , lower val-
ues of YI will begin providing more evidence for d = 1
instead of d = −1. This then in turn gives rise to the
confidence rising with seemingly contradictory values
of YI . This phenomenon will appear once the equality
lines have ’flipped’, as is visible when comparing the
confidence curves and slopes depicted in Fig. C1.

Relationship between ζI and σI , τI , ρI

As alluded to in the main text, the joint stan-
dard deviation ζI produced from optimally combining
σI , τI and ρI stands in a non-trivial relationship with its
subparts.

For context, recall how the σI and τI are com-
bined when there is no correlation (see equation 5). As
we discussed in the main text, the maximum of ζI is
then defined by the smaller of the two standard devia-
tions σI and τI . Additionally, the smaller the larger of
the two is, the smaller ζI becomes. In other words, the
agent would benefit from a reduction of noise in both
cases. For an illustration of this effect, see the yellow-
most lines in Figure C2A that show a cue integration in
accuracy space (ϕ(ζI)) as a function of ϕ(σI) for ρI = 0.
Notice how lower τI ’s shift the baseline upwards and
how the better accuracy of afforded by σI increases the
accuracy afforded by ζI .

In most cases of optimal cue combination, two
independent sources (low ρI) of information hold more
information (lower ζI) than two correlated sources
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Figure C1
Second-order confidence across parameter regimes. (A-C) Second-order confidence as a function of YI for
aI = 1. In general, note how confidence for a completely ambiguous rater cue (YI = 0) doesn’t necessarily mean
that confidence cI will be 0.5. (A) This is mainly a function of the relationship between σI and τI . (B) High values
of τI for a fixed σI can lead to the confidence being less sensitive to YI . When τI is particularly large in relation to
σI , the confidence will in fact again begin to rise for negative YI ’s (which intuitively contradict aI). Grey line in
(A) and (B) highlights an equivalent parameter setting of τI = σI = 2, ρI = .5. (C) This rise of confidence with
contradictory rater cues YI is particularly pronounced for high correlations ρI . The rising confidence is tied to
the way the correlation affects signal and noise and in extension the line on which the joint posterior P(d|XI ,YI)
is equivalent between the two d. This line is plotted in (D-F). When an agent is metacognitively hyposensitive
(σI < τI) and when the correlation ρI between YI and XI is high enough, confidence will not decrease for negative
YI but rather again rise.

(high ρI). This is also the case for most parameter com-
binations in our scenario. Crucially however, this intu-
itive relationship fails for some specific combinations
of values, particularly for very high correlations. This
is visible in Figure C2A where for a fixed rater noise τI

lower accuracy σI produce more accurate ζI than higher
accuracy σI (especially τI = 2 in panel A and ρI = 0.8 in
panel B).

Figure C2 shows these non-monotonic rela-
tionships for a range of parameter combinations. This
broadly highlights that, if parameter combinations are
extreme, then there is no monotonic relationship be-
tween the three initial source parameters and the ac-
curacy afforded by their combination (ϕ(ζI).

These pattern again partially stem from how
the space is optimally divided by the two sources.

Specifically, when the equality line ’flips’, the pos-
teriors get compressed differently between the two
sources, allowing a better inference than in the classical
separation of XI , YI space.

The effects of this "flip" are formally analogous
to the way in population codes that correlations be-
tween the activities of units can either help or hurt dis-
crimination and decoding depending on their align-
ment relative to the way that signals are coded (the
mean difference) (Abbott & Dayan, 1999).

Seeking and final accuracy for the high ρI

The two aforementioned particularities of the
second-order model also impact the agent’s search be-
haviour and final accuracy, which we depict in Figure
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Figure C2
Accuracy obtainable through the standard deviation ζI of combined cue ZI in the second order model.
Optimally combining the parameters of the initial decision ( σI , τI and ρI) can give rise to non-monotonic rela-
tionships between initial accuracy and accuracy attained through ζI , i.e. ϕ(ζI).

C3.
The fact that confidence rises again with con-

tradictory values of YI will result in U-shaped seeking
curves for most τI . This is because the rising confidence
will favour not seeking, rather than seeking once the
actor accuracy is below a specific value while keeping
τI fixed.

With regards to the final accuracy, the maxi-
mum attainable accuracy from combining XI and YI

(and XF) will be impacted by the combination of σI , τI

and ρI giving rise to ζI (discussed above). This will
for example mean that more accurate (low τI) raters
can produce less accurate final judgements than noisier
(high τI) raters.
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Effects of high correlation between actor and rater signal. (A) Average search by average initial accuracy
and rater noise τI . (B) Final accuracy by average initial accuracy and rater noise, and conditioned on whether the
agent sought out information or not.
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