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Abstract—Transparent and reflective objects are omnipresent
in our daily life, but their unique visual and optical character-
istics are notoriously challenging even for state-of-the-art deep
networks of semantic segmentation. To alleviate this challenge,
we construct a new large-scale real-world RGB-D dataset called
TROSD, which is more comprehensive than existing datasets
for transparent and reflective object segmentation. Our TROSD
dataset contains 11,060 RGB-D images with three semantic
classes in terms of transparent objects, reflective objects, and
others, covering a variety of daily scenes. Together with the
dataset, we also introduce a novel network (TROSNet) as a
high-standard baseline to assist other researchers to develop and
benchmark their algorithms of transparent and reflective object
segmentation. Moreover, extensive experiments also clearly show
that the proposed TROSD dataset has an excellent capacity to
facilitate the development of semantic segmentation algorithms
with strong generalizability.

Index Terms—RGB-D Dataset, Transparent and Reflective
Object, Semantic Segmentation.

I. INTRODUCTION

SEMANTIC segmentation is a fundamental task in com-
puter vision. Transparent and reflective objects are om-

nipresent in our daily life. However, it remains notoriously
challenging, even for state-of-the-art deep networks, to attain
accurate semantic segmentation of transparent and reflective
objects. This is mainly due to the unique visual and optical
characteristics of such objects, which are extremely distinct
from most types of objects in popular large-scale datasets for
semantic segmentation. The aim of this paper is to alleviate
this challenge.

There are two major obstacles to achieving our aim.
First, a proper dataset for training and testing semantic

segmentation algorithms, as we all know, is of the same
importance as the segmentation algorithms themselves [1],
[2]. However, unfortunately, existing segmentation datasets
seldom contain images of transparent or reflective objects,
causing the trained models lacking generalizability on such
objects. In the past few years, to tackle this obstacle, Yang
et al. [3] provide a large-scale RGB mirror segmentation
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dataset (MSD); Mei et al. [4] construct an RGB glass detection
dataset (GDD) to segment glass; and Seib et al. [5] provide a
depth dataset with transparent drinking glasses. Some other
researchers choose to make the concession by resorting to
synthetic RGB-D datasets. Sajjan et al. [6] construct a large-
scale synthetic RGB-D dataset to segment transparent objects.
However, none of these datasets contains real-world RGB-D
images of both transparent and reflective objects, making it
hard for researchers to train and test segmentation models on
real-world scenes where either or both of these two types of
objects can be present.

transparent 0.706

Fig. 1. Mis-segmentation by (left) Mask R-CNN [7] and (right) TransLab [8].

Second, most existing semantic segmentation algorithms do
not appreciate transparent and reflective objects, hence the
presence of such objects in a scene can significantly degrade
the performance of these algorithms. For instance, when there
are reflective objects in the scene, semantic segmentation
algorithms can falsely recognize the virtual image as a real
object. As shown in Fig. 1, the state-of-the-art Mask R-
CNN [7] is misled by the reflected visual texture (on the
left). As for transparent objects, relative low reflectivity and
ambiguous edge make it hard to be observed [9]. On the
right of Fig. 1, TransLab [8] fails to segment the base of
the goblet. Consequently, these will degrade the performance
in various 3D computer vision tasks (e.g., 3D reconstruction,
depth estimation).

Therefore, our research objective is to address these two
obstacles. To this end and to promote further research in this
area, we construct a large-scale real-world RGB-D dataset,
as well as a high-standard baseline method, for semantic
segmentation of transparent and reflective objects.

The novelties and contributions of this paper are summa-
rized as follows.

First, we construct a new large-scale transparent and re-
flective object segmentation dataset (TROSD), which contains
11,060 real-world RGB-D images with detailed annotations
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of transparent and reflective objects (e.g., glasses, plastics,
mirrors). We believe TROSD will substantially assist other
researchers to make further improvements for semantic seg-
mentation in future practice.

Second, we introduce a new semantic segmentation net-
work (TROSNet) as a high-standard baseline for segmenting
transparent and reflective objects. TROSNet pays particular
attention to low-level features, to identify and preserve content
discontinuity at the boundaries of transparent and reflective
objects. It also exploits the best of both RGB and depth
features through multi-modal fusion.

Last but not least, extensive experiments verify the validity
and generalization capability of the proposed TROSD dataset
and the superiority of TROSNet to many other state-of-the-art
semantic segmentation methods.

II. RELATED WORK

A. Semantic segmentation

Semantic segmentation is a fundamental computer vision
task and has many potential applications [10]. In the past few
years, semantic segmentation has achieved significant success
based on fully convolution networks (FCNs) [11]. Some
methods (e.g., PSPNet [12], RefineNet [13] and DeepLab [14])
aggregate different region based contexts. Others (e.g., OC-
Net [15] and ANNNet [16]) introduce a non-local block to
leverage the long-range dependencies via attention mecha-
nism. These algorithms are mostly trained and tested on
RGB datasets such as PASCAL VOC (RGB) [17], Cityscapes
(RGB) [1] and SUN RGB-D (RGB-D) [2].

With the emergence of RGB-D sensors, researchers turn
to investigating how to assist image processing with 3D in-
formation [18]–[21], including depth images and point cloud.
Wang et al. [22] introduce D-CNN and average pooling to
improve the capability of handling geometric information from
depth images. Jiao et al. [23] use a distilling geometry-aware
embedding method to exploit the helpful depth information.
Zhang et al. [24] propose a novel PAP framework to pre-
dict depth, surface normal and semantic segmentation. Qi et
al. [25] design PointNet, a unified architecture for applications
including part segmentation and scene semantic parsing. Fan
et al. [26] propose PST convolution to achieve informative
representations of point cloud sequences and improve semantic
segmentation. Thomas et al. [27] present KPConv, which
operates on point clouds without intermediate representation.
However, as shown in Fig. 1, directly applying these algo-
rithms to transparent and reflective object segmentation can
be problematic.

B. Transparent and reflective object segmentation datasets

In recent years, researchers pay much attention to transpar-
ent and reflective object segmentation, but one of the main
obstacles is the lack of relative datasets. Therefore, some
researchers work to construct segmentation datasets for certain
types of transparent or reflective objects, such as mirrors and
glasses.

Xie et al. [8] build Trans10k-v2, a large-scale dataset of
10,428 images of glass and corresponding masks for seg-
menting glass from a single RGB image. Yang et al. [3]
introduce a large-scale dataset named MSD (RGB-D) of 4,018
RGB-D images with mirrors and corresponding masks. Seib
et al. [5] provide an RGB-D dataset of 440 images with depth
information for four different types of transparent drinking
glasses. The ClearGrasp dataset (RGB-D) [6] is a large-scale
synthetic RGB-D dataset with over 50,000 synthetic images
and 286 real-world images. However, these works only focus
on limited types of objects, either transparent or reflective,
instead of building a comprehensive dataset for segmenting
both transparent and reflective objects.

Different from past works, we construct a segmentation
dataset that contains both transparent and reflective objects
(e.g., mirrors, drinking glasses, transparent plastic), which is
more general than other datasets mentioned above.

C. Transparent and reflective object segmentation methods
Recently, more and more researchers are working on trans-

parent and reflective object segmentation. Yang et al. [3] pro-
pose a binary classifier MirrorNet (RGB) for mirror segmenta-
tion from RGB images, which achieves a good performance on
the MSD dataset. Li et al. [28] introduce Mirror-YOLO (RGB)
with an outstanding result on MSD. Seib et al. [5] propose an
RGB network to detect the existence of transparent drinking
glasses via exploiting undefined values in the depth images.
ClearGrasp (RGB) [6] uses deep convolution networks to
segment transparent objects from RGB images for robotic ma-
nipulation with synthetic training data. Mei et al. [4] explore
abundant contextual cues for robust glass segmentation with a
novel large-field contextual feature integration method (RGB).
Mei et al. [29] introduce a novel mirror segmentation method
that leverages both RGB and depth information obtained by
ToF-based cameras. However, most of these methods only
use a single modality (RGB or depth) to detect reflective or
transparent objects. What is more, none of these works builds
a unified framework for segmenting both transparent objects
and reflective objects.

In this context, to offer a high-standard baseline, we in-
troduce a novel multi-modal method for segmenting both
transparent objects and reflective objects. This baseline method
exploits both depth distribution and RGB visual appearance.

III. TROSD: A NEW TRANSPARENT AND REFLECTIVE
OBJECT SEGMENTATION DATASET

We construct a large-scale dataset termed TROSD, which
contains 11,060 RGB-D images with transparent objects and
reflective objects. In the following subsections, we shall detail
the construction and analysis of TROSD 1.

A. Dataset construction
TROSD is an RGB-D image dataset for segmenting both

transparent and reflective objects. As shown in Table I,
TROSD consists of images from three sources: SUN RGB-
D [2], ClearGrasp [6] and new data captured by ourselves.

1TROSD is available at http://www.tsinghua-ieit.com/trosd.
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TABLE I
COMPOSITION OF THE PROPOSED RGB-D DATASET TROSD. TROSD
CONTAINS SOME RGB-D IMAGES OF TRANSPARENT AND REFLECTIVE

OBJECTS FROM TWO EXISTING RGB-D DATASETS AND THE IMAGES
COLLECTED BY OURSELVES.

Part Source Number
Train Test

1 SUN RGB-D [2] 673 455
2 ClearGrasp (real) [6] - 752
3 Our new data 6,748 2,432

Total 7,421 3,639

The new data captured by ourselves compose the majority
in TROSD, making up more than 80 percent of all data. We
capture RGB-D images that contain different kinds of trans-
parent objects (e.g., glass bottles, plastic bottles, windows) and
reflective objects (e.g., mirrors, metals). In total there are more
than 50 different types of transparent and reflective objects in
the TROSD dataset.

For new data collection, we use an iPad 2018 equipped with
a Structure Sensor [30] to capture RGB-D images (640⇥480)
of transparent and reflective objects. Structure Sensor is an
infrared structured light sensor. It has one infrared sender and
one infrared receiver. The sensor projects an IR speckle pattern
to the target object. This pattern is then reflected back to the
sensor, and the depth is calculated based on the time between
sending and receiving. The depth image is sent back to iPad
and processed to match the RGB image pixel-by-pixel.

For object selection, we consider common items (mainly
including glass products, mirrors, plastic and metal) in dif-
ferent sizes, shapes or colors. As for scenes, the proposed
TROSD dataset contains 14 different scenes (e.g., living room,
bathroom, office) in total.

For the processing of new data, we first use a calibration
procedure [31] to obtain camera parameters for both RGB and
depth sensors and align the RGB images with depth images.
Then, we split the dataset into a training set and a test set.
Moreover, we make sure that the scenes in the training set do
not appear in the test set. As a result, 6,748 RGB-D images
belong to the training set and other 2,432 images belong to
the test set. Finally, we annotate these images manually with
LabelMe (an image annotation tool) [32].

Additionally, as shown in Table I, we include some RGB-
D images from the existing RGB-D recognition benchmark
datasets (SUN RGB-D [2] and ClearGrasp [6]) into TROSD.
There are images consisting of transparent or reflective objects
in the SUN RGB-D dataset, but it does not provide annotations
for these objects. In this case, we manually annotate the
masks of these objects in totally 1,128 RGB-D images and
resize these images to the size of 640⇥ 480. Afterwards, we
collect the real test data from the ClearGrasp dataset [6] with
annotated masks and generate 752 RGB-D images with data
augmentation. For all the depth images, we calibrate the depth
values to the same size and scale, projecting them to the range
of 0 to 255 with linear projection.

Some example images from our TROSD dataset are shown
in Figs. 6-8 in Section III-C.

B. Dataset analysis

This section presents a comprehensive analysis of the
TROSD dataset.

TABLE II
COMPARISON OF TROSD WITH EXISTING TRANSPARENT AND

REFLECTIVE OBJECT DATASETS. TROSD CONTAINS MORE DIVERSE
OBJECTS AND REAL RGB-D IMAGES.

Dataset Modalities Images Objects

GDD [5] RGB 3,900 transparent
GSD(2021) [33] RGB 4,102 transparent
Trans10k-v2 [8] RGB 10,428 transparent

ClearGrasp(real) [6] RGB-D 286 transparent
GSD(2022) [34] RGB-D 3,009 transparent

MSD [3] RGB 4,018 reflective
PMD [35] RGB 6,461 reflective

RGBD-Mirror [22] RGB-D 3,049 reflective
Mirror3D [36] RGB-D 5,894 reflective

TROSD RGB-D 11,060 both

We first provide a summary comparison of TROSD and
other benchmark datasets in Table II. The proposed TROSD
dataset offers three advantages: 1) it considers both transparent
objects and reflective objects at the same time; 2) it provides
two modalities of both RGB and depth images, and the depth
channel can bring more geometrical information that can
promote the development of segmentation networks; and 3)
it contains many more images, especially RGB-D images. In
short, the proposed TROSD dataset is more comprehensive
than existing transparent and reflective object datasets.

Normal Objects Transparent Objects Reflective Objects

RGB Depth RGB Depth RGB Depth

Send

Receive

Fig. 2. Depth calculation of different objects.

We then illustrate some insights of our dataset. Due to
special optical characteristics of transparent objects and reflec-
tive objects, researchers tend to seek more spatial information
from depth images [37], [38]. However, the depth calculation
of RGB-D camera is also, to some extent, affected by such
optical characteristics. As shown in Fig. 2, reflective objects
reflect IR lasers to surrounding objects and transparent objects
are penetrated by IR lasers. It means that these objects also
produce noise in the depth images and generate random arti-
facts. In this case, fusing RGB and depth channels can better
address the problem. Our TROSD can provide RGB and depth
images for transparent objects and reflective objects, enabling
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Fig. 3. Area distribution for transparent and reflective objects in the training and test sets.

researchers to acquire semantic and spatial information for the
segmentation of such objects.

Then we illustrate three summary statistics of our new
dataset:

Mask area distribution Fig. 3 shows the distribution of
area proportion (from 0 to 1) of masks for transparent and re-
flective objects in each image. The highly skewed distribution
indicates that, in most of the images, transparent objects and
reflective objects only occupy a small area. It means that our
dataset could comprehensively test the segmentation methods
on small transparent and reflective objects.

TABLE III
AN OVERVIEW OF THE NUMBER OF CLASSES OF OBJECTS IN ALL IMAGES

IN OUR DATASET.

Part Objects included Number
Train Test

1 Only transparent 3,481 2,307
2 Only reflective 2,040 1,136
3 Both 1,606 196
4 None 294 0

Total 7,421 3,639

Semantic classes distribution Table III shows the number
of images with different types of objects in our dataset: with
only reflective objects, with only transparent objects, with both
transparent and reflective objects, and with background only.
We can see that our dataset contains over 1,800 images with
both transparent objects and reflective objects simultaneously.
In addition, we include images with neither transparent nor
reflective objects to introduce more diversity to our dataset.

Object location distribution Fig. 4 is the rendered heatmap
of object location, which suggests that the transparent and
reflective objects are largely located in the middle area of the
images.

C. Example images from TROSD
In this section we show some examples from our TROSD.

Each example is presented with RGB image, depth image and
mask ground truth. RGB images are shown directly in the size
of 640 ⇥ 480. Depth images are rendered in the scale shown
in Fig. 5, with colors in the left of the bar standing for smaller

Fig. 4. Location heatmap of transparent and reflective objects.

depth and colors in the right for larger depth. The depth images
are also visualized in the size of 640⇥ 480. The ground-truth
masks are piled upon RGB images; in the ground-truth masks,
the red pixels denote transparent objects, and the green pixels
denote reflective objects.

0.4m 3.5m

Fig. 5. Scale of the depth image.

We show these examples in three figures, which include im-
ages with only transparent objects, with only reflective objects
and with both transparent and reflective objects, respectively.

Fig. 6 shows four examples containing only transparent
objects. The transparent objects we take into consideration
include drinking glasses, glass tables, windows, etc. Some
images also contain multiple transparent objects.

Fig. 7 shows four examples containing only reflective ob-
jects. The reflective objects we place in the scene include
mirrors and mobile screens.
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Fig. 6. Examples of images with only transparent objects.

Fig. 7. Examples of images with only reflective objects.

Fig. 8 shows two examples containing both transparent
and reflective objects. In these examples, we put together
a drinking glass and a mirror. To make the scenes more
complicated, we place these objects close enough to block
each other’s view.

IV. TROSNET: A HIGH-STANDARD BASELINE FOR
TRANSPARENT AND REFLECTIVE OBJECT SEGMENTATION

We now presents TROSNet, a new high-standard baseline
for transparent and reflective object segmentation. TROSNet
exploits multi-modal features of both the textures from RGB

Fig. 8. Examples of images with both transparent and reflective objects.

images and the 3D geometric discontinuities from depth
images.

A. Overview

TROSNet consists of four parts (Fig. 9): Encoder, Feature
Fusion, Boundary Refinement and Decoder.

Encoder In the encoder, we feed the input RGB (I) and
depth (D) images into a two-stream backbone (e.g., the en-
coder part of a ResNet [39] consisting of Conv1, Layer1,
Layer2, Layer3 and Layer4 in Fig. 9), to extract useful RGB
features (Frgb 2 RC⇥H⇥W) and depth features (Fd 2 RC⇥H⇥W)
for semantic segmentation. Here C, H and W denote the
channel number, spatial height and width, respectively. We also
design a Cascaded Multi-modal Fusion (CMF) unit (Fig. 10)
to preserve and enhance discontinuity details at the outlines
of transparent and reflective objects.

Feature fusion This module aims to enhance RGB and
depth information from the encoder by fusing the enhanced
RGB feature of Frgb with the enhanced depth feature of Fd.

Boundary refinement Considering that some researches
on segmentation focus on boundary learning to acquire the
exact shape of the target [33], [40], [41], we apply residual
learning [39] (BR block in Fig. 12) to refine the boundary
information in the feature maps. Considering the various
types of transparent and reflective objects, we implement
the Adaptive Layer-Instance Normalization (AdaLIN) [42], an
outstanding feature-extraction network robust to the shape and
texture of the image.

Decoder The encoded features from the encoder are com-
puted with output stride16. In the decoder (Fig. 9), we insert
several 3 × 3 convolution layers to refine the features followed
by another simple bilinear upsampling by a factor of two.
After four times of upsampling, we attain the final predicted
semantic map.

B. Cascaded multi-modal fusion unit in the encoder

As shown in Fig. 10, the input of the CMF unit contains
raw RGB-D features and low-level complementary features
(A) (i.e., the complementary information between Frgb and Fd
at a lower level).

We design the novel CMF unit, aiming at extracting more
useful and detailed features from the input. In addition, unlike
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Fig. 9. The overall network structure of TROSNet. Firstly, given an input RGB-D image, we use a two-stream encoder to extract features from RGB and
depth images, respectively. Then, we use a Feature Fusion module to fuse RGB and depth features. Next, a Boundary Refinement module is used to refine
the boundary details of the features. Finally, a decoder predicts the semantic label maps.
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features

Fig. 10. Cascaded Multi-modal Fusion Unit.

treating the depth input simply as an additional fourth channel,
we highlight its significance through our network.

In this case, we design the CMF unit based on the following
two principles: 1) to preserve low-level features as much
as possible; and 2) to enhance RGB-D and complementary
features effectively.

To preserve low-level features, the proposed CMF unit
implements a skip-connection path between the two adjacent
blocks of the encoder. In this way, it provides useful low-
level details to the high-level RGB-D features and is helpful
to identify content discontinuity at the boundaries of these
objects. In detail, to preserve low-level features between the
two adjacent blocks of the encoder, the CMF unit enhances
the low-level complementary features (A) as

A = (1� ⇢)�(A) + ⇢'(�Frgb + (1� �)Fd), (1)

where ⇢ and � are parameters learned by the network, and �(·)

and '(·) are two transformation functions which can adap-
tively transform raw feature maps to different embeddings.
As given in Eq.(1), to calculate the enhanced complementary
features (A), the CMF unit takes advantage of both current
RGB-D features (Frgb and Fd) and complementary features
(A). The learnable parameters ⇢ and � can combine current
RGB-D features and complementary features selectively to
generate the enhanced complementary features (A). Then, the
enhanced complementary features are fed into the next stage
of the encoder via a skip-connection path to preserve low-level
features.

To obtain the enhanced RGB-D discontinuity features (Frgb
and Fd) (part two and part three in Fig. 10) with the en-
hanced complementary features (A) (part one in Fig. 10),
the CMF unit enhances Frgb and Fd and takes advantages of
both the precedent complementary features and the current
RGB-D features. This process of complementary information
enhancement for Frgb and Fd can be expressed as

Frgb = sigmoid( (A))(Frgb + Fd) + Frgb, (2)
Fd = sigmoid(⌘(A))(Frgb + Fd) + Fd, (3)

where sigmoid(·) is the activation function, and  (·) and ⌘(·)
are two transform functions. In this way, the RGB and depth
features can accumulate useful information from complemen-
tary modality. In addition, this process is also guided by the
precedent complementary features (A), which means that the
enhanced RGB and depth features also benefit from precedent
low-level RGB and depth features.

C. Feature fusion
Considering that channel-wise attention can enhance modal

information and channel information in multi-modal prob-
lems [43], [44], we design our module with an effective
multi-modal fusion strategy based on channel-wise attention
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Input
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𝒔𝒊𝒈𝒎𝒐𝒊𝒅(∙)Conv1x1

Fig. 11. Channel-wise Attention Block.

AdaLIN ReLU

Input

BR block

Output

AdaLINConv1x1 Conv1x1

Fig. 12. Boundary Refinement Block.

mechanism to fully utilize semantic information of the RGB
and depth images, as shown in Fig. 9. In this Feature Fusion
stage, RGB and depth features are firstly enhanced via the
Channel-wise Attention block (CA block in Fig. 11) [45]
respectively. The CA block aggregates contrasted features via
max-pooling and adopts convolution operations to generate the
attention weights. Then, the features are adaptively enhanced
based on the attention weights. Finally, we also merge the final
complementary features with the fused features via element-
wise addition to preserve low-level features (Fig. 9).

D. Implementation details

In our TROSNet, the two-stream encoder is based on the
ResNet-50 [39] pre-trained on the ImageNet dataset [54]. As
for the CMF unit in Fig. 10, �(·), '(·),  (·) and ⌘(·) are four
1⇥ 1 convolution layers, which can adaptively transform the
raw features to different embeddings. Parameters ⇢ and � are
initialized to 0.5. After the Feature Fusion, we cascade four
Boundary Refinement blocks (Fig. 12) to refine the boundary
details of the feature maps. Eventually, we exploit a multi-level
output based decoder to facilitate the learning process.

To achieve better performance, following Yang et al. [3],
we utilize a multi-scale loss for optimizing our network. The

overall loss function is

Loss =
TX

t=0

⌘tLt, (4)

where Lt is the Cross Entropy loss between the t-th level
predicted segmentation map and the ground truth that is
downsampled by a factor of 2t; and ⌘t is the balancing weight
of Lt. In our network, there are four loss terms in Eq.(4) (T =
3) and all ⌘t are empirically set to 1.

For training, we use Stochastic Gradient Descent (SGD)
optimizer. Momentum and weight decay are set to 0.9 and
0.0001, respectively. The batch size is 16. As for learning rate,
we refer to a mix of trigonometric function and exponential
function which could accelerate our training. The training
would reach the convergence of loss function between 100
to 200 epochs and, to play safe, we set the epoch number as
300.

For data augmentation, input and target images are horizon-
tally flipped with probability 0.5, scaled with s 2 [1, 1.5], and
rotated by r 2 [�5, 5] degrees on training. Finally, we crop
the input image to the size of 640⇥ 480.

V. EXPERIMENTAL RESULTS

A. Evaluation metrics
Three common metrics for semantic segmentation are

adopted here for performance evaluation: mean pixel accuracy
of different categories (mAcc), Intersection-over-Union of
different categories (IoU), and mean IoU (mIoU).

B. Results on the TROSD dataset
We first compare our TROSNet with state-of-the-art meth-

ods on the TROSD dataset. All the competitors are listed in
Table IV with their best results, by using their public source
codes and under the same data augmentation strategy.

As shown in Table IV, our TROSNet outperforms the state-
of-the-art methods, achieving the best performance in terms of
mIoU (72.01%) and mAcc (81.21%). Especially, as for mean

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON TROSD. R: REFLECTIVE OBJECTS. T: TRANSPARENT OBJECTS. B: BACKGROUND. THE BEST
RESULTS ARE IN bold. * FOR EBLNET, WE IMPLEMENT RESNET-50 AND RESNEXT-101 AS BACKBONE FOR TRANSPARENT OBJECTS AND REFLECTIVE

OBJECTS SEPARATELY.

Method Input Backbone IoU (%) mIoU (%) mAcc (%)R T B

RefineNet [13] RGB ResNet-101 21.32 37.32 92.37 50.34 63.59
ANNNet [16] RGB ResNet-101 22.31 41.30 93.43 52.35 62.49

Trans4Trans [46] RGB PVT [47] 27.69 39.22 94.16 53.69 61.82
PSPNet [12] RGB ResNet-101 26.35 44.38 94.19 54.97 64.14
OCNet [15] RGB ResNet-101 31.76 46.52 95.05 57.78 64.46
TransLab [8] RGB ResNet-50 42.57 50.72 96.01 63.11 68.72
DANet [48] RGB ResNet-101 42.76 54.39 95.88 64.34 70.95

SSMA [49] RGB-D ResNet-50 24.70 29.04 89.98 47.91 67.72
FRNet [50] RGB-D ResNet-34 28.37 36.59 92.18 52.38 63.94

EMSANet [51] RGB-D ResNet-101 27.53 44.10 96.14 55.92 71.63
FuseNet [52] RGB-D VGG-16 37.30 43.29 94.97 58.52 66.13
RedNet [53] RGB-D ResNet-50 48.27 47.57 95.76 63.87 69.23
EBLNet [40] RGB-D ResNet⇤ 51.75 50.12 94.57 65.49 67.39

TROSNet RGB-D ResNet-50 62.27 57.23 96.52 72.01 81.21
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RGB Image OCNet DANet TROSNet GTDepth TransLab FuseNet RedNet

Fig. 13. Visualization of results on TROSD: OCNet [15], DANet [48] and TransLab [8] are RGB based methods; FuseNet [52], RedNet [53] and the proposed
TROSNet are RGB-D based methods.

accuracy, TROSNet (81.21%) is about 10.26% higher than the
second best method (DANet 70.95%).

Qualitative comparison of these methods are visualized in
Fig. 13 on four typical examples. First, it is clear from the 1st
row of Fig. 13) that only our TROSNet can correctly segment
an image containing both transparent and reflective objects.
Second, we also show an image including objects that are not
transparent or reflective in the scene (the red bounding box
in the 2nd row). Although DANet [48] shows a promising
segmentation result on transparent objects, it suffers from
segmenting an object neither transparent nor reflective to be
a reflective one. Third, we also consider object occlusion (the
3rd row). Although a transparent glass is partly inside a plastic
box, our TROSNet can segment its visible part effectively.
Fourth, as for some smaller transparent or reflective objects
(the 4th row), FuseNet and TransLab do not perform well.
Compared with other methods, TROSNet still performs well,
which can be ascribed to the Feature Fusion module and the
BR block.

C. Results on the ClearGrasp dataset

TABLE V
COMPARISON OF TROSNET WITH THE CLEARGRASP METHOD ON THE
CLEARGRASP TEST SET WITH FINE-TUNING. KNOWN: KNOWN OBJECTS

FROM CLEARGRASP. NOVEL: NOVEL OBJECTS FROM CLEARGRASP.

Method Input Training Set IoU (%)
Known Novel

ClearGrasp [6] RGB ClearGrasp 63 58
EBLNet RGB-D TROSD 65.01 64.94

TROSNet RGB-D TROSD 71.63 71.19

To validate the generalizability of our baseline method
TROSNet for transparent objects only, we train it on the
images in the TROSD dataset with only transparent objects and
test it on the ClearGrasp test set directly. As shown in Table V,
our TROSNet can still achieve a good performance (higher

than 71.63% in IoU). What is more, for the novel objects in the
ClearGrasp test set, TROSNet (71.19%) performs much better
than the ClearGrasp method (58%) in IoU. For qualitative
comparison, some typical results are visualized in Fig. 14.

TROSNet GTRGB image Depth

Fig. 14. Visualization of results on the ClearGrasp novel test dataset.

D. Results on a reflective object dataset

To further evaluate the generalizability of TROSNet for
reflective objects only, we compare it with MirrorNet [3] and
PMD [35], which are RGB based methods and outstanding
mirror segmentation networks on the MSD dataset [3].

Firstly, we pick out the images that contain reflective objects
(e.g., mirror and metal) from the TROSD dataset. These
images form a new training set (3,646 RGB-D images) and a

Page 27 of 32 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

TROSNet TROSNet-RGBRGB image Depth TROSNet-DGray image

Fig. 15. Visualized results of TROSNet with different inputs.

TABLE VI
COMPARISON OF TROSNET WITH MIRRORNET ON THE REFLECTIVE

SUBSET OF TROSD. R: REFLECTIVE OBJECTS. B: BACKGROUND.

Method Input IoU (%) mIoU (%) mAcc (%)R B

MirrorNet [3] RGB 48.28 95.68 71.98 77.55
PMD [35] RGB 57.18 96.02 76.61 82.37

TROSNet-RGB RGB 61.92 96.56 79.24 87.55

new test set (1,332 RGB-D images). This new dataset is similar
to the MSD dataset [3]. Afterwards, MirrorNet (an RGB based
method) and TROSNet (an RGB-D based method) are trained
and tested on the new set. As shown in Table VI, compared
with the RGB based methods, our TROSNet achieves much
better performance (+13.64% and +4.74% in IoU for reflective
objects). This clearly indicates the advantage of our TROSNet-
RGB method.

E. Ablation studies
1) Different input modalities: We first conduct ablation

studies on the effectiveness of different input modalities to
verify the necessity of exploiting both RGB information and
depth information. TROSNet-RGB is trained and tested with
RGB images as the RGB channel and their corresponding gray
images as the depth channel. As for TRSONet-D, we set the
input for the RGB channel as all-zero tensor. All experiments
in Table VII adopt ResNet-50 [39] as encoder with the same
training scheme on TROSD.

As shown in Table VII, TROSNet-RGB (i.e., TROSNet with
only RGB images as input) can achieve 75.93% in mAcc,

TABLE VII
EFFECTIVENESS OF DIFFERENT INPUT MODALITIES. TROSNET-RGB: WE
ONLY FEED RGB IMAGES INTO TROSNET. TROSNET-D: WE ONLY FEED

DEPTH IMAGES INTO TROSNET. R: REFLECTIVE OBJECTS. T:
TRANSPARENT OBJECTS. B: BACKGROUND.

Method RGB Depth IoU (%) mIoU (%) mAcc (%)R T B

TROSNet-RGB X 48.75 48.56 95.49 64.26 75.93
TROSNet-D X 50.15 28.03 94.04 57.41 67.82

TROSNet X X 62.27 57.23 96.52 72.01 81.21

which is higher than that of all other SOTA methods in
Table IV (except for our TROSNet).

We can also find that the performance of TROSNet-D
(only utilizing depth images as input) on the reflective object
segmentation is better than all RGB based SOTA methods,
indicating that the depth distortion cues are very helpful for
reflective object segmentation.

With both modalities used, TROSNet achieves the best
performance of 72.01% in mIoU and 81.21% in mAcc, demon-
strating the effectiveness of exploiting both RGB information
and depth information for transparent and reflective object
segmentation.

Some visualized results are shown in Fig. 15, and the
promising performance of TROSNet in the fourth column
supports the necessity of utilizing both RGB and depth images.
In principle, in RGB-D segmentation, RGB provides semantic
information and depth provides spatial information. Absence
of either single mode decreases the segmentation performance
because of the lack of supplementary information from another
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mode. Besides, it might be too difficult to rely on only a noisy
mode, such as the depth mode, to locate the accurate position
of objects, as shown by the ill performance in Fig. 15.

TABLE VIII
ABLATION STUDIES OF ALL BLOCKS IN TROSNET TESTED ON TROSD.

R: REFLECTIVE OBJECTS. T: TRANSPARENT OBJECTS. B: BACKGROUND.

Backbone CMF CA BR IoU (%) mIoU(%) mAcc(%)R T B

X 40.40 51.11 96.51 62.68 69.18
X X 43.70 53.59 96.75 64.68 71.48
X X X 54.04 54.50 97.02 68.52 77.30
X X X X 62.27 57.23 96.52 72.01 81.21

Without BR block With BR blockRGB image Depth

Fig. 16. Effect of the BR block on TROSNet.

2) Component analysis: Then we implement ablation stud-
ies on the effects of three blocks (CMF, CA and BR) of
TROSNet. We run the models with and without these blocks
on TROSD to test how they affect the performance of our
TROSNet. We compare the IoU for transparent and reflective
objects and the background, as well as the accuracy, for
different models. As the results in Table VIII show, the model
with all three blocks has the best performance overall, which
verifies the necessity of all the three blocks implemented
in TROSNet. We also visualize the result w/o BR block in
Fig. 16, showing that BR block brings a more refined bound
for the output segmentation masks.

TABLE IX
ABLATION STUDIES OF FEATURE FUSION MODULE TESTED ON TROSD.

R: REFLECTIVE OBJECTS. T: TRANSPARENT OBJECTS. B: BACKGROUND.

Network Structure mIoU(%) mAcc(%)

CEN(with DeepLab v3+) 67.78 73.51
Encoder+CEN+BR+Decoder 69.89 75.62
Encoder+FF+BR+Decoder 72.01 81.21

3) Additional experiments on feature fusion module: Con-
sidering the significance of feature fusion module when facing
multi-modal problems [55], we also implement an ablation
study on the feature fusion block, which blends the input
RGB and depth features and imports the fused features to
the next block. We compare our network with CEN, a SOTA
feature fusion method [56] which also succeeds in image
segmentation. We also adopt this method as a substitute for
the feature fusion block in TROSNet, making a comparison
of it with our TROSNet on TROSD. The detailed results are
recorded in Table IX.

4) Ablation studies on boundary refinement: We also visu-
alize an exemplar result of TROSNet with and without the BR
block in Fig. 16. We can see that, besides producing a higher
IoU (the network without the BR block fails to recognize the
handle as a part of the glass), the BR block helps acquire a
smoother boundary in the segmentation result.

TABLE X
ROBUSTNESS STUDIES TROSNET AND EBLNET TESTED ON NOISY

TROSD.

Network RGB Depth IoU (%) mIoU(%) mAcc(%)w/o noise w/o noise R T B

EBLNet # ! 31.76 40.51 92.18 54.82 56.70
EBLNet ! # 46.16 43.58 93.77 61.17 62.39
EBLNet # # 51.75 50.12 94.57 65.49 67.39

TROSNet # ! 28.33 47.98 95.66 57.82 65.53
TROSNet ! # 50.62 46.37 96.47 64.65 72.29
TROSNet # # 62.27 57.23 96.52 72.01 81.21

F. Robustness studies
In collecting real-world RGB-D images, RGB images and

depth images are often contaminated by noises, making the
downstream operations hard. In this case, we implement a
robustness study of our TROSNet and another SOTA segmen-
tation method EBLNet.

We leave the training set unchanged and add Gaussian noise
to the test set. The noise is added to RGB images and depth
images separately. We test all models under three situations,
namely RGB-D without noise, RGB images with noise and
depth images with noise.

The results are shown in Table X and Fig. 17. Compared
with the SOTA segmentation method EBLNet, our TROSNet
possesses a relatively better performance under noisy condi-
tions.

G. Limitations
We also look into some hard scenes for our TROSNet,

whose IoU falls below mIoU for entire test set. Some examples
are shown in Fig. 18. We notice that most hard scenes come
across the situation of occlusion between objects (rows 1 and
2) or appearance of large objects (area ratio of over 30%; rows
3 and 4). Both situations result in serious distortion of depth
estimation. Occlusion between objects would trigger distortion
due to parallax of RGB-D camera; the masked area of a larger
object would contain more noise from depth images, making
our model tend to segment the object into separate sub-pixels.
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RGB

RGB with noise

Depth

Original With noise Depth with noiseNo noise

EBLNet

TROSNet

INPUT OUTPUT

RGB with noiseOriginal With noise Depth with noiseNo noise

EBLNet

TROSNet

RGB

Depth

Fig. 17. Results on robustness studies.

RGB Depth Result

Fig. 18. Results on hard scenes.

VI. CONCLUSION

In this paper, we introduce TROSD, a new large-scale RGB-
D dataset containing 11,060 real-world RGB-D images with
detailed annotations for the segmentation of transparent and

reflective objects. Along with the dataset, we also propose a
high-standard baseline network (TROSNet) with a cascaded
multi-modal fusion unit introduced. Extensive experimental
results clearly show that TROSNet has the good general-
izability to serve as a high-standard baseline method for
benchmarking transparent and reflective object segmentation
algorithms, and TROSD has the diversity and capacity to
serve as a comprehensive test-bed dataset for evaluating and
developing new deep networks in this challenging area of
transparent and reflective object segmentation in practice. As
for future works, to deal with the illness of hard scenes and
the existence of noisy depth input, further researches could
possibly aim at a feasible solution to alleviate such issues.
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