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ABSTRACT

We introduce the Conditional Independence Regression CovariancE (CIRCE),
a measure of conditional independence for multivariate continuous-valued vari-
ables. CIRCE applies as a regularizer in settings where we wish to learn neural
featuresφ(X) of dataX to estimate a target Y , while being conditionally indepen-
dent of a distractorZ given Y . BothZ and Y are assumed to be continuous-valued
but relatively low dimensional, whereas X and its features may be complex and
high dimensional. Relevant settings include domain-invariant learning, fairness,
and causal learning. The procedure requires just a single ridge regression from Y
to kernelized features of Z, which can be done in advance. It is then only nec-
essary to enforce independence of φ(X) from residuals of this regression, which
is possible with attractive estimation properties and consistency guarantees. By
contrast, earlier measures of conditional feature dependence require multiple re-
gressions for each step of feature learning, resulting in more severe bias and vari-
ance, and greater computational cost. When sufficiently rich features are used,
we establish that CIRCE is zero if and only if φ(X) ⊥⊥ Z | Y . In experiments,
we show superior performance to previous methods on challenging benchmarks,
including learning conditionally invariant image features.

1 INTRODUCTION

We consider a learning setting where we have labels Y that we would like to predict from features
X , and we additionally observe some metadata Z that we would like our prediction to be ‘invariant’
to. In particular, our aim is to learn a representation function φ for the features such that φ(X) ⊥⊥
Z | Y . There are at least three motivating settings where this task arises.

1. Fairness. In this context, Z is some protected attribute (e.g., race or sex) and the condition
φ(X) ⊥⊥ Z | Y is the equalized odds condition (Mehrabi et al., 2021).

2. Domain invariant learning. In this case, Z is a label for the environment in which the data
was collected (e.g., if we collect data from multiple hospitals, Zi labels the hospital that
the ith datapoint is from). The condition φ(X) ⊥⊥ Z | Y is sometimes used as a target for
invariant learning (e.g., Long et al., 2018; Tachet des Combes et al., 2020; Goel et al., 2021;
Jiang & Veitch, 2022). Wang & Veitch (2022) argue that this condition is well-motivated
in cases where Y causes X .

3. Causal representation learning. Neural networks may learn undesirable “shortcuts” for their
tasks – e.g., classifying images based on the texture of the background. To mitigate this
issue, various schemes have been proposed to force the network to use causally relevant
factors in its decision (e.g., Veitch et al., 2021; Makar et al., 2022; Puli et al., 2022). The
structural causal assumptions used in such approaches imply conditional independence re-
lationships between the features we would like the network to use, and observed metadata

∗Equal contribution. †Code for image data experiments is available at github.com/namratadeka/circe

1

https://github.com/namratadeka/circe


Published as a conference paper at ICLR 2023

that we may wish to be invariant to. These approaches then try to learn causally structured
representations by enforcing this conditional independence in a learned representation.

In this paper, we will be largely agnostic to the motivating application, instead concerning ourselves
with how to learn a representation φ that satisfies the target condition. Our interest is in the (com-
mon) case where X is some high-dimensional structured data – e.g., text, images, or video – and
we would like to model the relationship between X and (the relatively low-dimensional) Y, Z us-
ing a neural network representation φ(X). There are a number of existing techniques for learning
conditionally invariant representations using neural networks (e.g., in all the motivating applications
mentioned above). Usually, however, they rely on the labels Y being categorical with a small num-
ber of categories. We develop a method for conditionally invariant representation learning that is
effective even when the labels Y and attributes Z are continuous or moderately high-dimensional.

To understand the challenge, it is helpful to contrast with the task of learning a representation φ
satisfying the marginal independence φ(X) ⊥⊥ Z. To accomplish this, we might define a neural
network to predict Y in the usual manner, interpret the penultimate layer as the representation φ,
and then add a regularization term that penalizes some measure of dependence between φ(X) and
Z. As φ changes at each step, we’d typically compute an estimate based on the samples in each
mini-batch (e.g., Beutel et al., 2019; Veitch et al., 2021). The challenge for extending this proce-
dure to conditional invariance is simply that it’s considerably harder to measure. More precisely, as
conditioning on Y “splits” the available data,1 we require large samples to assess conditional inde-
pendence. When regularizing neural network training, however, we only have the samples available
in each mini-batch: often not enough for a reliable estimate.

The main contribution of this paper is a technique that reduces the problem of learning a condition-
ally independent representation to the problem of learning a marginally independent representation,
following a characterization of conditional independence due to Daudin (1980). We first construct
a particular statistic ζ(Y,Z) such that enforcing the marginal independence φ(X) ⊥⊥ ζ(Y,Z) is
(approximately) equivalent to enforcing φ(X) ⊥⊥ Z | Y . The construction is straightforward: given
a fixed feature map ψ(Y, Z) on Y × Z (which may be a kernel or random Fourier feature map), we
define ζ(Y,Z) as the conditionally centered features, ζ(Y,Z) = ψ(Y,Z)−E[ψ(Y, Z) | Y ]. We ob-
tain a measure of conditional independence, the Conditional Independence Regression CovariancE
(CIRCE), as the Hilbert-Schmidt Norm of the kernel covariance between φ(X) and ζ(Y,Z). A key
point is that the conditional feature mean E[ψ(Y,Z) | Y ] can be estimated offline, in advance of
any neural network training, using standard methods (Song et al., 2009; Grunewalder et al., 2012;
Park & Muandet, 2020; Li et al., 2022). This makes CIRCE a suitable regularizer for any setting
where the conditional independence relation φ(X) ⊥⊥ Z | Y should be enforced when learning
φ(X). In particular, the learned relationship between Z and Y doesn’t depend on the mini-batch
size, sidestepping the tension between small mini-batches and the need for large samples to estimate
conditional dependence. Moreover, when sufficiently expressive features (those corresponding to
a characteristic kernel) are employed, then CIRCE is zero if and only if φ(X) ⊥⊥ Z | Y : this
result may be of broader interest, for instance in causal structure learning Zhang et al. (2011) and
hypothesis testing Fukumizu et al. (2008); Shah & Peters (2020); Huang et al. (2022).

Our paper proceeds as follows: in Section 2, we introduce the relevant characterization of con-
ditional independence from (Daudin, 1980), followed by our CIRCE criterion – we establish that
CIRCE is indeed a measure of conditional independence, and provide a consistent empirical esti-
mate with finite sample guarantees. Next, in Section 3, we review alternative measures of conditional
dependence. Finally, in Section 4, we demonstrate CIRCE in two practical settings: a series of coun-
terfactual invariance benchmarks due to Quinzan et al. (2022), and image data extraction tasks on
which a “cheat” variable is observed during training.

2 EFFICIENT CONDITIONAL INDEPENDENCE REGULARIZER

We begin by providing a general-purpose characterization of conditional independence. We then
introduce CIRCE, a conditional independence criterion based on this characterization, which is zero
if and only if conditional independence holds (under certain required conditions). We provide a finite
sample estimate with convergence guarantees, and strategies for efficient estimation from data.

1If Y is categorical, naively we would measure a marginal independence for each level of Y .
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2.1 CONDITIONAL INDEPENDENCE

We begin with a natural definition of conditional independence for real random variables:
Definition 2.1 (Daudin, 1980). X and Z are Y -conditionally independent, X ⊥⊥ Z | Y , if for all
test functions g ∈ L2

XY and h ∈ L2
ZY , i.e. for all square-integrable functions of (X,Y ) and (Z, Y )

respectively, we have almost surely in Y that
EXZ [g(X,Y )h(Z, Y ) |Y ] = EX [g(X,Y ) |Y ] EZ [h(Z, Y ) |Y ] . (1)

The following classic result provides an equivalent formulation:
Proposition 2.2 (Daudin, 1980). X and Z are Y -conditionally independent if and only if it
holds for all test functions g ∈ E1 =

{
g ∈ L2

XY | EX [g(X,Y ) |Y ] = 0
}

and h ∈ E2 ={
h ∈ L2

ZY | EZ [h(Z, Y ) |Y ] = 0
}

that

E[g(X,Y )h(Z, Y )] = 0. (2)

Daudin (1980) notes that this condition can be further simplified (see Corollary A.3 for a proof):
Proposition 2.3 (Equation 3.9 of Daudin 1980). X and Z are Y -conditionally independent if and
only if it holds for all g ∈ L2

X and h ∈ E2 =
{
h ∈ L2

ZY | EZ [h(Z, Y ) |Y ] = 0
}

that

E[g(X)h(Z, Y )] = 0. (3)

An equivalent way of writing this last condition (see Lemma B.1 for a formal proof) is:

for all g ∈ L2
X and h ∈ L2

ZY , E
[
g(X)

(
h(Z, Y )− EZ′ [h(Z ′, Y ) |Y ]

)]
= 0. (4)

The reduction to g not depending on Y is crucial for our method: when we are learning the represen-
tationφ(X), then evaluating the conditional expectations EX [g(φ(X), Y ) |Y ] from Proposition 2.2
on every minibatch in gradient descent requires impractically many samples, but EZ [h(Z, Y ) |Y ]
does not depend on X and so can be pre-computed before training the network.

2.2 CONDITIONAL INDEPENDENCE REGRESSION COVARIANCE (CIRCE)

The characterization (4) of conditional independence is still impractical, as it requires checking all
pairs of square-integrable functions g and h. We will now transform this condition into an easy-to-
estimate measure that characterizes conditional independence, using kernel methods.

A kernel k(x, x′) is a symmetric positive-definite function k :X ×X →R. A kernel can be repre-
sented as an inner product k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H for a feature vector ϕ(x) ∈ H, where H is
a reproducing kernel Hilbert space (RKHS). These are spaces H of functions f :X →R, with the
key reproducing property ⟨ϕ(x), f⟩H = f(x) for any f ∈H. For M points we denote KX · a row
vector of ϕ(xi), such that KXx is an M × 1 matrix with k(xi, x) entries and KXX is an M ×M
matrix with k(xi, xj) entries. For two separable Hilbert spaces G,F , a Hilbert-Schmidt operator
A : G → F is a linear operator with a finite Hilbert-Schmidt norm

∥A∥2HS(G,F) =
∑

j∈J
∥Agj∥2F , (5)

where {gj}j∈J is an orthonormal basis of G (for finite-dimensional Euclidean spaces, obtained from
a linear kernel, A is just a matrix and ∥A∥HS its Frobenius norm). The Hilbert space HS(G,F)
includes in particular the rank-one operators ψ ⊗ ϕ for ψ ∈ F , ϕ ∈ G, representing outer products,

[ψ ⊗ ϕ]g = ψ ⟨ϕ, g⟩G , ⟨A, ψ ⊗ ϕ⟩HS(G,F) = ⟨ψ, Aϕ⟩F . (6)

See Gretton (2022, Lecture 5) for further details.

We next introduce a kernelized operator which (for RKHS functions g and h) reproduces the condi-
tion in (4), which we call the Conditional Independence Regression CovariancE (CIRCE).
Definition 2.4 (CIRCE operator). Let G be an RKHS with feature map ϕ : X → G, and F an
RKHS with feature map ψ : (Z × Y) → F , with both kernels bounded: supx∥ϕ(x)∥ < ∞,
supz,y∥ψ(z, y)∥ < ∞. Let X , Y , and Z be random variables taking values in X , Y , and Z respec-
tively. The CIRCE operator is

CcXZ|Y = E
[
ϕ(X)⊗

(
ψ(Z, Y )− EZ′ [ψ(Z ′, Y ) |Y ]

)]
∈ HS(G,F). (7)
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For any two functions g ∈ G and h ∈ F , Definition 2.4 gives rise to the same expression as in (4),〈
CcXZ|Y , g ⊗ h

〉
HS

= E [g(X) (h(Z, Y )− EZ′ [h(Z ′, Y ) |Y ])] . (8)

The assumption that the kernels are bounded in Definition 2.4 guarantees Bochner integrability
(Steinwart & Christmann, 2008, Def. A.5.20), which allows us to exchange expectations with inner
products as above: the argument is identical to that of Gretton (2022, Lecture 5) for the case of the
unconditional feature covariance. For unbounded kernels, Bochner integrability can still hold under
appropriate conditions on the distributions over which we take expectations, e.g. a linear kernel
works if the mean exists, and energy distance kernels may have well-defined feature (conditional)
covariances when relevant moments exist (Sejdinovic et al., 2013).

Our goal now is to define a kernel statistic which is zero iff the CIRCE operator CcXZ|Y is zero.
One option would be to seek the functions, subject to a bound such as ∥g∥G ≤ 1 and ∥f∥F ≤ 1,
that maximize (8); this would correspond to computing the largest singular value of CcXZ|Y . For
unconditional covariances, the equivalent statistic corresponds to the Constrained Covariance, whose
computation requires solving an eigenvalue problem (e.g. Gretton et al., 2005a, Lemma 3). We
instead follow the same procedure as for unconditional kernel dependence measures, and replace
the spectral norm with the Hilbert-Schmidt norm (Gretton et al., 2005b): both are zero when CcXZ|Y
is zero, but as we will see in Section 2.3 below, the Hilbert-Schmidt norm has a simple closed-form
empirical expression, requiring no optimization.

Next, we show that for rich enough RKHSes G,F (including, for instance, those with a Gaussian
kernel), the Hilbert-Schmidt norm of CcXZ|Y characterizes conditional independence.

Theorem 2.5. For G and F with L2-universal kernels (see, e.g., Sriperumbudur et al., 2011),

∥CcXZ|Y ∥HS = 0 if and only if X ⊥⊥ Z | Y. (9)

The “if” direction is immediate from the definition of CcXZ|Y . The “only if” direction uses the fact
that the RKHS is dense in L2, and therefore if (8) is zero for all RKHS elements, it must be zero
for all L2 functions. See Appendix B for the proof. Therefore, minimizing an empirical estimate of
∥CcXZ|Y ∥HS will approximately enforce the conditional independence we need.

Definition 2.6. For convenience, we define CIRCE(X,Z, Y ) = ∥CcXZ|Y ∥
2
HS.

In the next two sections, we construct a differentiable estimator of this quantity from samples.

2.3 EMPIRICAL CIRCE ESTIMATE AND ITS USE AS A CONDITIONAL INDEPENDENCE
REGULARIZER

To estimate CIRCE, we first need to estimate the conditional expectation µZY |Y (y) =

EZ [ψ(Z, y) |Y = y ]. We define2 ψ(Z, Y ) = ψ(Z) ⊗ ψ(Y ), which for radial basis kernels (e.g.
Gaussian, Laplace) is L2-universal for (Z, Y ).3 Therefore, µZY |Y (y) = EZ [ψ(Z) |Y = y ] ⊗
ψ(y) = µZ|Y (y)⊗ ψ(y). The CIRCE operator can be written as

CcXZ|Y = E
[
ϕ(X)⊗ ψ(Y )⊗

(
ψ(Z)− µZ|Y (Y )

)]
(10)

We need two datasets to compute the estimator: a holdout set of size M used to estimate conditional
expectations, and the main set of size B (e.g., a mini-batch). The holdout dataset is used to esti-
mate conditional expectation µZY |Y with kernel ridge regression. This requires choosing the ridge
parameter λ and the kernel parameters for Y . We obtain both of these using leave-one-out cross-
validation; we derive a closed form expression for the error by generalizing the result of Bachmann
et al. (2022) to RKHS-valued “labels” for regression (see Theorem C.1).

2We abuse notation in using ψ to denote feature maps of (Y,Z), Y, and Z; in other words, we use the
argument of the feature map to specify the feature space, to simplify notation.

3Fukumizu et al. (2008, Section 2.2) show this kernel is characteristic, and Sriperumbudur et al. (2011,
Figure 1 (3)) that being characteristic implies L2 universality in this case.
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The following theorem defines an empirical estimator of the Hilbert-Schmidt norm of the empirical
CIRCE operator, and establishes the consistency of this statistic as the number of training samples
B,M increases. The proof and a formal description of the conditions may be found in Appendix C.2
Theorem 2.7. The following estimator of CIRCE for B points and M holdout points (for the con-
ditional expectation):

ĈIRCE =
1

B(B − 1)
Tr

(
KXX

(
KY Y ⊙ K̂c

ZZ

))
. (11)

converges as Op(1/
√
B + 1/M (β−1)/(2(β+p))), when the regression in Equation (30) is well-

specified. KXX and KY Y are kernel matrices of X and Y ; elements of Kc
ZZ are defined as

Kc
zz′ =

〈
ψ(z)− µZ|Y (y), ψ(z

′)− µZ|Y (y
′)
〉
; β ∈ (1, 2] characterizes how well-specified the

solution is and p ∈ (0, 1] describes the eigenvalue decay rate of the covariance operator over Y .

The notation Op(A) roughly states that with any constant probability, the estimator is O(A).

Remark. For the smoothly well-specified case we have β = 2, and for a Gaussian kernel p is arbi-
trarily close to zero, giving a rate Op(1/

√
B + 1/M1/4). The 1/M1/4 rate comes from conditional

expectation estimation, where it is minimax-optimal for the well-specified case (Li et al., 2022).
Using kernels whose eigenvalues decay slower than the Gaussian’s would slow the convergence rate
(see Li et al., 2022, Theorem 2).

The algorithm is summarized in Algorithm 2. We can further improve the computational complexity
for large training sets with random Fourier features (Rahimi & Recht, 2007); see Appendix D.

Algorithm 1 Estimation of CIRCE

Holdout data {(zi, yi)}Mi=1, mini-batch {(xi, zi, yi)}Bi=1
Holdout data
Leave-one-out (Theorem C.1) for λ (ridge parameter) and σy (parameters of Y kernel):

λ, σy = argmin
∑M
i=1

∥ψ(zi)−KyiY
(KY Y +λI)−1KZ ·∥2

Hz

(1−(KY Y (KY Y +λ I)−1)
ii
)
2

W1 = (KY Y + λI)
−1
, W2 =W1KZZW1

Mini-batch
Compute kernel matrices Kxx,Kyy,KyY ,KyZ (x, y, z: mini-batch, Y, Z: holdout)

K̂c = Kyy ⊙
(
Kzz −KyYW1KZz − (KyYW1KZz)

⊤
+KyYW2KY y

)
CIRCE = 1

B(B−1)Tr
(
KxxK̂

c
)

We can use of our empirical CIRCE as a regularizer for conditionally independent regularization
learning, where the goal is to learn representations that are conditionally independent of a known
distractor Z. We switch from X to an encoder φθ(X). If the task is to predict Y using some loss
L(φθ(X), Y ), the CIRCE regularized loss with the regularization weight γ > 0 is as follows:

min
θ
L(φθ(X), Y ) + γ CIRCE(φθ(X), Z, Y ) . (12)

3 RELATED WORK

We review prior work on kernel-based measures of conditional independence to determine or en-
force X ⊥⊥ Z|Y, including those measures we compare against in our experiments in Section 4.
We begin with procedures based on kernel conditional feature covariances. The conditional ker-
nel cross-covariance was first introduced as a measure of conditional dependence by Sun et al.
(2007). Following this work, a kernel-based conditional independence test (KCI) was proposed by
Zhang et al. (2011). The latter test relies on satisfying Proposition 2.2 leading to a statistic4 that
requires regression of φ(X) on Y in every minibatch (as well as of Z on Y , as in our setting). More

4The conditional-independence test statistic used by KCI is 1
B

Tr
(
K̃Ẍ|Y K̃Z|Y

)
, where Ẍ = (X,Y ) and

K̃ is a centered kernel matrix. Unlike CIRCE, K̃Ẍ|Y requires regressing Ẍ on Y using kernel ridge regression.
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recently, Quinzan et al. (2022) introduced a variant of the Hilbert-Schmidt Conditional Indepen-
dence Criterion (HSCIC; Park & Muandet, 2020) as a regularizer to learn a generalized notion of
counterfactually-invariant representations (Veitch et al., 2021). Estimating HSCIC(X,Z|Y ) from
finite samples requires estimating the conditional mean-embeddings µX,Z|Y , µX|Y and µZ|Y via
regressions (Grunewalder et al., 2012). HSCIC requires three times as many regressions as CIRCE,
of which two must be done online in minibatches to account for the conditional cross-covariance
terms involving X . We will compare against HSCIC in experiements, being representative of this
class of methods, and having been employed successfully in a setting similar to ours.

Alternative measures of conditional independence make use of additional normalization over the
measures described above. The Hilbert-Schmidt norm of the normalized cross-covariance was in-
troduced as a test statistic for conditional independence by Fukumizu et al. (2008), and was used for
structure identification in directed graphical models. Huang et al. (2022) proposed using the ratio
of the maximum mean discrepancy (MMD) between PX|ZY and PX|Y , and the MMD between the
Dirac measure at X and PX|Y , as a measure of the conditional dependence between X and Z given
Y . The additional normalization terms in these statistics can result in favourable asymptotic proper-
ties when used in statistical testing. This comes at the cost of increased computational complexity,
and reduced numerical stability when used as regularizers on minibatches.

Another approach, due to Shah & Peters (2020), is the Generalized Covariance Measure (GCM).
This is a normalized version of the covariance between residuals from kernel-ridge regressions of
X on Y and Z on Y (in the multivariate case, a maximum over covariances between univariate
regressions is taken). As with the approaches discussed above, the GCM also involves multiple
regressions – one of which (regressing X on Y ) cannot be done offline. Since the regressions are
univariate, and since GCM simply regresses Z andX on Y (instead of ψ(Z, Y ) and ϕ(X) on Y ), we
anticipate that GCM might provide better regularization than HSCIC on minibatches. This comes
at a cost, however, since by using regression residuals rather than conditionally centered features,
there will be instances of conditional dependence that will not be detectable. We will investigate this
further in our experiments.

4 EXPERIMENTS

We conduct experiments addressing two settings: (1) synthetic data of moderate dimension, to study
effectiveness of CIRCE at enforcing conditional independence under established settings (as envis-
aged for instance in econometrics or epidemiology); and (2) high dimensional image data, with the
goal of learning image representations that are robust to domain shifts. We compare performance
over all experiments with HSCIC (Quinzan et al., 2022) and GCM (Shah & Peters, 2020).

4.1 SYNTHETIC DATA

Z A B

Y

Figure 1: Causal structure for
synthetic datasets.

We first evaluate performance on the synthetic datasets proposed by
Quinzan et al. (2022): these use the structural causal model (SCM)
shown in Figure 1, and comprise 2 univariate and 2 multivariate
cases (see Appendix E for details). Given samples of A, Y and Z,
the goal is to learn a predictor B̂ = φ(A, Y, Z) that is counterfac-
tually invariate to Z. Achieving this requires enforcing conditional
independence φ(A, Y, Z) ⊥⊥ Z|Y . For all experiments on synthetic
data, we used a fully connected network with 9 hidden layers. The
inputs of the network wereA, Y and Z. The task is to predictB and
the network is learned with the MSE loss. For each test case, we generated 10k examples, where
8k were used for training and 2k for evaluation. Data were normalized with zero mean and unit
standard deviation. The rest of experimental details is provided in Appendix E.

We report in-domain MSE loss, and measure the level of counterfactual invariance of the predictor
using the VCF (Quinzan et al., 2022, eq. 4; lower is better). Given X = (A, Y, Z),

VCF := Ex∼X

[
Vz′∼Z

[
EB̂∗

z′ |X

[
B̂|X = x

]]]
. (13)

PB̂∗
z′ |X

is the counterfactual distribution of B̂ given X = x and an intervention of setting z to z′.
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Univariate Cases Table 1 summarizes the in-domain MSE loss and VCF comparing CIRCE to
baselines. Without regularization, MSE loss is low in-domain but the representation is not invariant
to changes of Z. With regularization, all three methods successfully achieve counterfactual invari-
ance in these simple settings, and exhibit similar in-domain performance.

Case No Reg GCM HSCIC CIRCE

MSE VCF MSE VCF MSE VCF MSE VCF

1 2.03e-4 0.180 0.198 2.59e-06 0.197 2.08e-11 0.197 8.77e-08
2 0.027 0.258 1.169 9.07e-07 1.168 3.08e-11 1.168 7.37e-11

Table 1: MSE loss and VCF for univariate synthetic datasets. Comparison of representation without
conditional independence regularization against regularization with GCM, HSCIC and CIRCE.

Multivariate Cases We present results on 2 multivariate cases: case 1 has high dimensional Z
and case 2 has high dimensional Y . For each multivariate case, we vary the number of dimensions
d = {2, 5, 10, 20}. To visualize the trade-offs between in-domain performance and invariant rep-
resentation, we plot the Pareto front of MSE loss and VCF. With high dimensional Z (Figure 2A),
CIRCE and HSCIC have a similar trade-off profile, however it is notable that GCM needs to sac-
rifice more in-domain performance to achieve the same level of invariance. This may be because
the GCM statistic is a maximum over normalized covariances of univariate residuals, which can be
less effective in a multivariate setting. For high dimensional Y (Figure 2B), the regression from Y
to ψ(Z) is much harder. We observe that HSCIC becomes less efficient with increasing d until at
d = 20 it fails completely, while GCM still sacrifices more in-domain performance than CIRCE.

Figure 2: Pareto front of MSE and VCF for multivariate synthetic dataset. A: case 1; B: case 2.

4.2 IMAGE DATA

X

Y Z

Figure 3: Causal structure for
dSprites and Yale-B. Dashed
line denotes a non-causal as-
sociation between nodes.

We next evaluate our method on two high-dimensional image
datasets: d-Sprites (Matthey et al. (2017)) which contains images
of 2D shapes generated from six independent latent factors; and the
Extended Yale-B Face dataset 5(Georghiades et al. (2001)) of faces
of 28 individuals under varying camera poses and illumination. We
use both datasets with the causal graph in Figure 3 where the image
X is directly caused by the target variable Y and a distractor Z.
There also exists a strong non-causal association between Y and Z
in the training set (denoted by the dashed edge).

The basic setting is as follows: for the in-domain (train) samples,
the observed Y and Z are correlated through the true Y as

Y ∼ PY , ξz ∼ N (0, σz) , Z = β(Y ) + ξz , (14)

Y ′ = Y + ξy , ξy ∼ N (0, σy) , Z ′ = fz(Y,Z, ξz) , X = fx(Y
′, Z ′) . (15)

5Google and DeepMind do not have access or handle the Yale-B Face dataset.
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Y and Z are observed; fz is the structural equation for Z ′ (in the simplest case Z ′ = Z); fx is the
generative process of X . Y ′ and Z ′ represent noise added during generation and are unobserved.

A regular predictor would take advantage of the association β between Z and Y during training,
since this is a less noisy source of information on Y . For unseen out-of-distribution (OOD) regime,
where Y and Z are uncorrelated, such solution would be incorrect.

Therefore, our task is to learn a predictor Ŷ =φ(X) that is conditionally independent ofZ: φ(X) ⊥⊥
Z|Y , so that during the OOD/testing phase when the association between Y and Z ceases to exist,
the model performance is not harmed as it would be if φ(X) relied on the “shortcut” Z to predict Y .
For all image experiments we use the AdamW (Loshchilov & Hutter (2019)) optimizer and anneal
the learning rate with a cosine scheduler (details in Appendix F). We select the hyper-parameters of
the optimizer and scheduler via a grid search to minimize the in-domain validation set loss.

4.2.1 DSPRITES

Of the six independent generative factors in d-Sprites, we choose the y-coordinate of the object
as our target Y and the x-coordinate of the object in the image as our distractor variable Z. Our
neural network consists of three convolutional layers interleaved with max pooling and leaky ReLU
activations, followed by three fully-connected layers with 128, 64, 1 unit(s) respectively.

Linear dependence We sample images from the dataset as per the linear relation Z ′ = Z = Y +ξz .
We then translate all sampled images (both in-domain and OOD) vertically by ξy , resulting in an
observed object coordinate of (Z, Y + ξy). In this case, linear residual methods, such as GCM,
are able to sufficiently handle the dependence as the residual Z − E [Z |Y ] = ξz is correlated
with Z – which is the observed x-coordinate. As a result, penalizing the cross-covariance between
φ(X)−E [φ(X) |Y ] andZ−E [Z |Y ] will also penalize the network’s dependence on the observed
x-coordinate to predict Y .
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Figure 4: dSprites (linear). Blue: in-domain test loss; orange: out-of-domain loss (OOD); red: loss
for OOD-trained encoder. Solid lines: median over 10 seeds; shaded areas: min/max values.

In Figure 4 we plot the in-domain and OOD losses over a range of regularization strengths and
demonstrate that indeed GCM is able to perform quite well with a linear function relating Z to
Y . CIRCE is comparable to GCM with strong regularization and outperforms HSCIC. To get the
optimal OOD baseline we train our network on an OOD training set where Y andZ are uncorrelated.

Non-linear dependence To demonstrate the limitation of GCM, which simply regresses Z on Y
instead of ψ(Z, Y ) on Y , we next address a more complex nonlinear dependence β(Y ) = 0 and
Z ′ = Y + αZ2. The observed coordinate of the object in the image is (Y + αξ2z , Y + ξy) . For a
small α, the unregularized network will again exploit the shortcut, i.e. the observed x-coordinate, in
order to predict Y . The linear residual, if we don’t use features of Z, is Z − E [Z |Y ] = ξz , which
is uncorrelated with Y + αξ2z , because E [ξ3z ] = 0 due to the symmetric and zero-mean distribution
of ξz . As a result, penalizing cross-covariance with the linear residual (as done by GCM) will not
penalize solutions that use the observed x-coordinate to predict Y . Whereas CIRCE which uses a
feature map ψ(Z) can capture higher order features. Results are shown in Figure 5: we see again that
CIRCE performs best, followed by HSCIC, with GCM doing poorly. Curiously, GCM performance
does still improve slightly on OOD data as regularization increases - we conjecture that the encoder
φ(X) may extract non-linear features of the coordinates. However, GCM is numerical unstable for
large regularization weights, which might arise from combining a ratio normalization and a max
operation in the statistic.
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Figure 5: dSprites (non-linear). Blue: in-domain test loss; orange: out-of-domain loss (OOD); red:
loss for OOD-trained encoder. Solid lines: median over 10 seeds; shaded areas: min/max values.

4.2.2 EXTENDED YALE-B

Finally, we evaluate CIRCE as a regressor for supervised tasks on the natural image dataset of
Extended Yale-B Faces. The task here is to estimate the camera pose Y from image X while being
conditionally independent of the illumination Z which is represented as the azimuth angle of the
light source with respect to the subject. Since, these are natural images, we use the ResNet-18 (He
et al., 2016) model pre-trained on ImageNet (Deng et al., 2009) to extract image features, followed
by three fully-connected layers containing 128, 64 and 1 unit(s) respectively. Here we sample the
training data according to the non-linear relation Z ′ = Z = 0.5(Y + εY 2), where ε is either +1
or −1 with equal probability. In this case E [Z |Y ] = 0.5Y + 0.5Y 2 E [ε |Y ] = 0.5Y, and thus
the linear residuals depend on Y . (In experiments, Y and ε are re-scaled to be in the same range.
We avoid it here for simplicity.) Note that GCM can in principle find the correct solution using a
linear decoder. Results are shown in Figure 6. CIRCE shows a small advantage over HSCIC in
OOD performance for the best regularizer choice. GCM suffers from numerical instability in this
example, which leads to poor performance.
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Figure 6: Yale-B. Blue: in-domain test loss; orange: out-of-domain loss (OOD); red: loss for OOD-
trained encoder. Solid lines: median over 10 seeds; shaded areas: min/max values.

5 DISCUSSION

We have introduced CIRCE: a kernel-based measure of conditional independence, which can be
used as a regularizer to enforce conditional independence between a network’s predictions and a
pre-specified variable with respect to which invariance is desired. The technique can be used in
many applications, including fairness, domain invariant learning, and causal representation learning.
Following an initial regression step (which can be done offline), CIRCE enforces conditional inde-
pendence via a marginal independence requirement during representation learning, which makes it
well suited to minibatch training. By contrast, alternative conditional independence regularizers re-
quire an additional regression step on each minibatch, resulting in a higher variance criterion which
can be less effective in complex learning tasks.

As future work, it will be of interest to determine whether or not CIRCE is statistically significant
on a given dataset, so as to employ it as a statistic for a test of conditional dependence.
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APPENDICES

A CONDITIONAL INDEPENDENCE DEFINITIONS

We first repeat the proof of the main theorem in Daudin 1980, as the missing proofs we need for the
alternative definitions of independence rely on the main one.
Theorem A.1 (Theorem 1 of Daudin 1980). Define E1 = {g : g ∈ L2

XY ,E [g |Y ] = 0}, E2 =
{h : h ∈ L2

Y Z ,E [h |Y ] = 0}. Then, the following two conditions are equivalent:
E [g1h1] = 0 ∀g1 ∈ E1,∀h1 ∈ E2 ,

E [gh |Y ] = E [g |Y ]E [h |Y ] ∀g ∈ L2
XY ,∀h ∈ L2

Y Z .

Proof. Necessary condition: E [gh |Y ] = E [g |Y ]E [h |Y ] =⇒ E[g1h1] = 0

Because E1 ⊆ L2
XY and E2 ⊆ L2

Y Z , for g1 ∈ E1 and h1 ∈ E2 we have

E [g1h1 |Y ] = E [g1 |Y ]E [h1 |Y ] = 0

=⇒ E[g1h1] = EY [E [g1h1 |Y ]] = 0 .

Sufficient condition: E[g1h1] = 0 =⇒ E [gh |Y ] = E [g |Y ]E [h |Y ]

Let g′ = g−E [g |Y ] where g ∈ L2
XY and h′ = h−E [h |Y ] where h ∈ L2

XY . Then, g′ ∈ E1 and
h′ ∈ E2

E[g′h′] = E [(g − E [g |Y ])(h− E [h |Y ])]

= E [gh− hE [g |Y ]− g E [h |Y ] + E [g |Y ]E [h |Y ]]

= EY [E [(gh− hE [g |Y ]− g E [h |Y ] + E [g |Y ]E [h |Y ]) |Y ]]

= EY [E [gh |Y ]− E [g |Y ]E [h |Y ]] = 0 . (16)

Let B be a Borel set of the image space of Y , g∗ = gIB where IB is an indicator function of
B. We have

∫
g∗2dP =

∫
g2IBdP =

∫
B
g2dP ≤

∫
g2dP < ∞, therefore g∗ ∈ L2

XY . Using
Equation (16),

EY [E [g∗h |Y ]− E [g∗ |Y ]E [h |Y ]]

=EY [E [ghIB |Y ]− E [gIB |Y ]E [h |Y ]]

=

∫
B

E [gh |Y ] dP −
∫
B

E [g |Y ]E [h |Y ] dP = 0

So E [gh |Y ] = E [g |Y ]E [h |Y ] almost surely.

Corollary A.2 (Equation 3.8 of Daudin 1980). The following two conditions are equivalent:
E [gh1] = 0 ∀g ∈ L2

XY ,∀h1 ∈ E2 ,

E [gh |Y ] = E [g |Y ]E [h |Y ] ∀g ∈ L2
XY ,∀h ∈ L2

Y Z .

Proof. Necessary condition is identical to the previous proof.

Sufficient condition: E[gh1] = 0 =⇒ E [gh |Y ] = E [g |Y ]E [h |Y ]

Let h′ = h− E [h |Y ] where h ∈ L2
Y Z , then h′ ∈ E2

E[gh′] = E[g(h− E [h |Y ])]

= E[gh− g E [h |Y ]]

= EY [E [(gh− g E [h |Y ]) |Y ]]

= EY [E [gh |Y ]− E [g E [h |Y ] |Y ]]

= EY [E [gh |Y ]− E [g |Y ]E [h |Y ]] = 0 .

Using the same argument as for Theorem A.1, E [gh |Y ] = E [g |Y ]E [h |Y ] almost surely.
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Corollary A.3 (Equation 3.9 of Daudin 1980). The following two conditions are equivalent:

E [g′h1] = 0 ∀g′ ∈ L2
X ,∀h1 ∈ E2 ,

E [gh |Y ] = E [g |Y ]E [h |Y ] ∀g ∈ L2
XY ,∀h ∈ L2

Y Z .

Proof. Necessary condition: As E2 ⊆ L2
Y Z and L2

X ⊆ L2
XY ,

E [g′h1 |Y ] = E [g′ |Y ]E [h1 |Y ] = 0 .

Sufficient condition: E[g′h1] = 0 =⇒ E [gh |Y ] = E [g |Y ]E [h |Y ]

Take a simple function ga =
∑n
i=1 aiIAi

for an integrable Borel setAi inXY . As integrable simple
functions are dense in L2

XY , we only need to prove the condition for all ga.

In our case, the indicator function decomposes as IAi
= IAX

i
IAY

i
, and therefore for gi = aiIAX

i

ga =

n∑
i

giIAY
i
.

Therefore,

E[gah1] = E

[
n∑
i=1

IAY
i
E [gih1 |Y ]

]
= E

[
n∑
i=1

IAY
i
· 0

]
= 0 .

As simple functions are dense in L2
XY , we immediately have E[gh1] = 0 ∀g ∈ L2

XY , h1 ∈ E2.
Applying Corollary A.2 concludes the proof.

B CIRCE DEFINITION

First, we need a more convenient function class:
Lemma B.1. The function class E2 =

{
h ∈ L2

ZY , E [h |Y ] = 0
}

coincides with the function class
E′

2 =
{
h′ = h− E [h |Y ] , h ∈ L2

ZY

}
.

Proof. E2 ⊆ E′
2: any h ∈ E2 is in L2

ZY and has the form h = h−E [h |Y ] by construction because
the last term is zero.

E′
2 ⊆ E2: first, any h′ ∈ E′

2 satisfies E [h′ |Y ] = 0 by construction. Second,∫
(h′)2 dµ(Z, Y ) =

∫
(h− E [h |Y ])2 dµ(Z, Y ) (17)

=

∫ (
h2 − 2h E [h |Y ] + (E [h |Y ])

2
)
dµ(Z, Y ) (18)

=

∫ (
h2 − (E [h |Y ])

2
)
dµ(Z, Y ) < +∞ , (19)

as h ∈ L2
ZY and the second term is non-positive.

Proof of Theorem 2.5. For the “if” direction, we simply “pull out” the Y expectation in the defini-
tion of the CIRCE operator and apply conditional independence:

CcXZ|Y = EY
[
EX [ϕ(X) | Y ]⊗

(
EZ [ψ(Z, Y ) | Y ]− EZ′ [ψ(Z ′, Y ) | Y ]

)︸ ︷︷ ︸
0

]
= 0.

For the other direction, first, ∥CcXQ∥HS = 0 implies that for any g ∈ G and h ∈ F ,

E [g (h− E [h |Y ])] = 0 (20)
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by Cauchy-Schwarz.

Now, we use that an L2-universal kernel is dense in L2 by definition (see Sriperumbudur et al.
(2011)). Therefore, for any g ∈ L2

X and h ∈ L2
ZY , for any ϵ > 0 we can find gϵ ∈ G and hϵ ∈ F

such that
∥g − gϵ∥2 ≤ ϵ, ∥h− hϵ∥2 ≤ ϵ . (21)

For the L2 function, we can now write the conditional independence condition as

E [g (h− E [h |Y ])] = E [(g ± gϵ) (h± hϵ − E [h± hϵ |Y ])] (22)
= 0 + E [(g − gϵ) (h− hϵ − E [h− hϵ |Y ])] (23)
+ E [gϵ (h− hϵ − E [h− hϵ |Y ])]− E [(g − gϵ) (hϵ − E [hϵ |Y ])] .

(24)

The first term is zero because ∥CcXQ∥HS = 0. For the rest, we need to apply Cauchy-Schwarz:

E [(g − gϵ) (h− hϵ)] ≤ ∥g − gϵ∥2 ∥h− hϵ∥2 ≤ ϵ2 (25)

E [(g − gϵ) (E [h− hϵ |Y ])] ≤ ∥g − gϵ∥2 ∥h− hϵ∥2 ≤ ϵ2 , (26)

where in the last inequality we used that E
[
(E [X |H ])

2
]
≤ E

[
X2

]
for conditional expectations.

Similarly, also using the reverse triangle inequality,

E [gϵ (h− hϵ)] ≤ ϵ ∥gϵ∥2 ≤ ϵ (∥g∥2 + ϵ) . (27)

Repeating this calculation for the rest of the terms, we can finally apply the triangle inequality to
show that

|E [g (h− E [h |Y ])]| ≤ 2 ϵ2 + 2 ϵ (∥g∥2 + ϵ) + 2 ϵ (∥h∥2 + ϵ) (28)
= 2 ϵ (3 ϵ+ ∥g∥2 + ∥h∥2) . (29)

As ∥g∥2 and ∥h∥2 are fixed and finite, we can make the bound arbitrary small, and hence
E [g (h− E [h |Y ])] = 0.

C PROOFS FOR ESTIMATORS

C.1 ESTIMATING THE CONDITIONAL MEAN EMBEDDING

We will construct an estimate of the term EZ [ψ(Z, Y ) |Y ] that appears inside CIRCE, as a func-
tion of Y . We summarize the established results on conditional feature mean estimation: see
(Grunewalder et al., 2012; Park & Muandet, 2020; Mollenhauer & Koltai, 2020; Klebanov et al.,
2020; Li et al., 2022) for further details. To learn E [ψ(Q) |Y ] for some feature map ψ(q) ∈ HQ

and random variable Q (both to be specified shortly), we can minimize the following loss:

µ̂Q|Y,λ(y) = argmin
F∈GQY

N∑
i=1

∥ψ(qi)− F (yi)∥2HQ
+ λ∥F∥2GQY

, (30)

where GQY is the space of functions from Y to HQ. The above solution is said to be well-specified
when there exists a Hilbert-Schmidt operator A∗ ∈ HS(HY ,HQ) such that F ∗(y) = A∗ψ(y) for
all y ∈ Y , where HY is the RKHS on Y with feature map ψ(y) (Li et al., 2022).

We now consider the case relevant to our setting, where Q := (Z, Y ). We define6 ψ(Z, Y ) =
ψ(Z) ⊗ ψ(Y ), which for radial basis kernels (e.g. Gaussian, Laplace) is L2-universal for (Z, Y ).7
We then write EZ [ψ(Z, y) |Y = y ] = EZ [ψ(Z) |Y = y ] ⊗ ψ(y). The conditional feature mean
E [ψ(Z) |Y ] can be found with kernel ridge regression (Grunewalder et al., 2012; Li et al., 2022):

µZ|Y (y) ≡ E [ψ(Z) |Y ] (y) ≈ KyY (KY Y + λI)
−1
KZ · (31)

6We abuse notation in using ψ to denote feature maps of (Y,Z), Y, and Z; in other words, we use the
argument of the feature map to specify the feature space, to simplify notation.

7Fukumizu et al. (2008, Section 2.2) show this kernel is characteristic, and Sriperumbudur et al. (2011,
Figure 1 (3)) that being characteristic implies L2 universality in this case.
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where KZ · indicates a “matrix” with rows ψ(zi), (KY Y )i,j = k(yi, yj), and (KyY )i = k(y, yi).
Note that we have used the argument of k to identify which feature space it pertains to – i.e., the
kernel on Z need not be the same as that on Y .

We can find good choices for the Y kernel and the ridge parameter λ by minimizing the leave-one-
out cross-validation error. In kernel ridge regression, this is almost computationally free, based on
the following version of a classic result for scalar-valued ridge regression. The proof generalizes the
proof of Theorem 3.2 of Bachmann et al. (2022) to RKHS-valued outputs.
Theorem C.1 (Leave-one-out for kernel mean embeddings). Denote the predictor trained on
the full dataset as FS , and the one trained without the i-th point as F−i. For λ > 0 and
A ≡ KY Y (KY Y + λ I)

−1, the leave-one-out (LOO) error for Equation (30) is

1

N

N∑
i=1

∥ψ(zi)− F−i(yi)∥2HZ
=

1

N

N∑
i=1

∥ψ(zi)− FS(yi)∥2HZ

(1−Aii)2
. (32)

Proof. Denote the full dataset S = {(yi, zi)}Mi=1; the dataset missing the i-th point is denoted S−i.
Prediction on the full dataset takes the form F (Y ) = AKZ ·.
Consider the prediction obtained without theM -th point (w.l.o.g.) but evaluated on yM : F−M (yM ).
Define a new dataset Z = S−M ∪ {(yM , F−M (yM ))} and compute the loss for it:

LZ(F−M ) =

M−1∑
i=1

∥ψ(zi)− F−M (yi)∥2HZ
+ ∥F−M (yM )− F−M (yM )∥2HZ

+ λ∥F−M∥2GZY
(33)

= LS−M
(F−M ) ≤ LS−M

(F ) ≤ LS−M
(F ) + ∥F−M (yM )− F (yM )∥2HZ

≤ LZ(F ) , (34)

where the first inequality is due to F−M minimizing LS−M
. Therefore, F−M also minimizes LZ .

As A in the prediction expression FS(Y ) = AKZ · depends only on Y , and not on Z, F−M has to
have the same form as the full prediction:

F−M (Y ) = AKZ̃ ·, Kz̃i, · =
{
ψ(zi), i < M ,

F−M (yM ), i =M .
(35)

This allows us to solve for F−M (yM ):

F−M (yM ) = KyMY (KY Y + λ I)
−1
KZ̃ · =

M∑
i=1

AMiψ(zi) (36)

=

M−1∑
i=1

AMiψ(zi) +AMMψ(zi)±AMMψ(zM ) (37)

=

M∑
i=1

AMiψ(zi)−AMMψ(zM ) +AMMψ(zi) (38)

= FS(yM )−AMMψ(zM ) +AMMψ(zi) (39)
= FS(yM )−AMMψ(zM ) +AMMF−M (yM ) . (40)

As AMM is a scalar, we can solve for F−M (yM ):

F−M (yM ) =
FS(yM )−AMMψ(zM )

1−AMM
(41)

Therefore,

ψ(zM )− F−M (yM ) =
(1−AMM )ψ(zM )− FS(yM ) +AMMψ(zM )

1−AMM
(42)

=
ψ(zM )− FS(yM )

1−AMM
. (43)

Taking the norm and summing this result over all points (not just M ) gives the LOO error.
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C.2 CIRCE ESTIMATORS

Lemma C.2. For B points and Kc
zz′ = ⟨ψ(z)− E [Z |Y ] (y), ψ(z′)− E [Z |Y ] (y′)⟩, the CIRCE

estimator
̂∥CcXZ|Y ∥2HS

=
1

B(B − 1)
Tr (KXX(KY Y ⊙Kc

ZZ)) (44)

hasO(1/B) bias andOp(1/
√
B) deviation from the mean for any fixed probability of the deviation.

Proof. The bias is straightforward:

1

B(B − 1)
E [Tr (KXX(KY Y ⊙Kc

ZZ))]

=
1

B(B − 1)
E

∑
i,j ̸=i

Kxixj
KyiyjK

c
zizj

+
1

B(B − 1)
E

[∑
i

Kxixi
KyiyiK

c
zizi

]

=
1

B(B − 1)

∑
i,j ̸=i

Exx′yy′zz′ [Kxx′Kyy′K
c
zz′ ] +O

(
1

B

)

=∥CcXQ∥2HS +O

(
1

B

)
.

For the variance, first note that our estimator has bounded differences. DenoteKTT = KY Y ⊙Kc
ZZ

and t = (y, z), if we switch one datapoint (xi, ti) to (x′i, t
′
i) and denote the vectors with switch

coordinates as Xi, T i

|Tr (KXXKTT )− Tr (KXiXiKT iT i)|

=

∣∣∣∣∣∣KxixiKtiti −Kx′
ix

′
i
Kt′it

′
i
+ 2

∑
j ̸=i

(
KxjxiKtjti −Kxjx′

i
Ktjt′i

)∣∣∣∣∣∣
≤ (2 + 4(B − 1))Kx maxKt max ≤ (4B − 2)Kx maxKy maxK

c
z max .

Therefore, for any index i

1

B(B − 1)
|Tr (KXX (KY Y ⊙Kc

ZZ))− Tr (KXiXi (KY iY i ⊙Kc
ZiZi))|

≤ 4B − 2

B(B − 1)
Kx maxKy maxK

c
z max.

We can now use McDiarmid’s inequality (McDiarmid, 1989) with

c = ci =
4B − 2

B(B − 1)
Kx maxKy maxK

c
z max ,

meaning that for any ϵ > 0

P

(∣∣∣∣Tr (KXXKTT )

B(B − 1)
− E

Tr (KXXKTT )

B(B − 1)

∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− 2ϵ2

Bc2

)
= 2 exp

(
− 2ϵ2B(B − 1)2

(4B − 2)2K2
x maxK

2
y maxK

2c
z max

)
.

Therefore, for any fixed probability the deviation ϵ from the mean decays as O(1/
√
B).

Definition C.3. A (β, p)-kernel for a given data distribution satisfies the following conditions (see
Fischer & Steinwart (2020); Li et al. (2022) for precise definition using interpolation spaces):

(EVD) Eigenvalues µi of the covariance operator CY Y decay as µi ≤ c · i−1/p.

(EMB) For α ∈ (p, 1], the inclusion map [Hα
Y ↪→ L∞(π)] is continuous and bounded by A.
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(SRC) F ∈ [G]β for β ∈ [1, 2] (note that β < 1 would include the misspecified setting).

Lemma C.4. Consider the well-specified case of conditional expectation estimation (see Li et al.,
2022). For bounded kernels over X,Z, Y and a (β, p)-kernel over Y , F (y) = E [ψ(Z) |Y ] (y),
bounded ∥F∥ ≤ CF , and M points used to estimate F , define the conditional expectation estimate
as

F̂ (y) = KyY (KY Y + λMI)
−1
KZ · , (45)

where λM = Θ(1/Mβ+p).

Then, the estimator Tr
(
KXXK̂

c
ZZ

)
/(B(B − 1)) of the “true” CIRCE estimator (i.e., with the

actual conditional expectation) deviates from the true value as Op(1/M (β−1)/(2(β+p))).

Proof. First, decompose the difference:

Tr (KXXK
c
ZZ)− Tr

(
KXXK̂

c
ZZ

)
= Tr (KXX (Kc

ZZ −Kc
ZZ)) (46)

= Tr
(
KXX

[(
Kc
ZZ − K̂c

ZZ

)
⊙KY Y

])
= Tr

(
[KXX ⊙KY Y ]

(
Kc
ZZ − K̂c

ZZ

))
, (47)

where in the last line we used that all matrices are symmetric.

Let’s concentrate on the difference:(
Kc
ZZ − K̂c

ZZ

)
ij
=

〈
F̂ (yi)− F (yi), ψ(zj)

〉
+

〈
F̂ (yj)− F (yj), ψ(zi)

〉
(48)

+ ⟨F (yi), F (yj)⟩ −
〈
F̂ (yi), F̂ (yj)± F (yj)

〉
(49)

=
〈
F̂ (yi)− F (yi), ψ(zj)

〉
+
〈
F̂ (yj)− F (yj), ψ(zi)

〉
(50)

+
〈
F (yi)− F̂ (yi), F (yj)

〉
−

〈
F̂ (yi), F̂ (yj)− F (yj)

〉
(51)

=
〈
F (yi)− F̂ (yi), F (yj)− ψ(zj)

〉
+

〈
F (yj)− F̂ (yj), F̂ (yi)− ψ(zj)

〉
. (52)

As we’re working in the well-specified case, by definition the operator F ∈ G, where G is a vector-
valued RKHS (Li et al., 2022, Definition 1). This implies that for the function [Kxh](·) = K(·, x)h
(where h ∈ Hy),

⟨F (x), h⟩ = ⟨F, Kxh⟩G . (53)

We can now re-write the difference as(
Kc
ZZ − K̂c

ZZ

)
ij
=

〈
F − F̂ , Kyi (F (yj)− ψ(zj)) +Kyj

(
F̂ (yi)− ψ(zj)

)〉
G
. (54)

We can use the triangle inequality and then Cauchy-Schwarz to obtain∣∣∣∣(Kc
ZZ − K̂c

ZZ

)
ij

∣∣∣∣ ≤ ∥F − F̂∥G
(
∥Kyi (F (yj)− ψ(zj))∥G +

∥∥∥Kyj

(
F̂ (yi)− ψ(zj)

)∥∥∥
G

)
(55)

= ∥F − F̂∥G
(
k(yi, yi)∥F (yj)− ψ(zj)∥HZ

+ k(yj , yj)∥F̂ (yi)− ψ(zj)∥HZ

)
(56)

≤ C1 ∥F − F̂∥G
(
C2 + C3 ∥F − F̂∥G

)
, (57)

for some positive constants C1,2,3 (since the kernels over both z and y are bounded, F is bounded
too and hence ∥F̂∥ ≤ ∥F̂ − F∥+ ∥F∥.

As all kernels are bounded,∣∣∣Tr([KXX ⊙KY Y ]
(
Kc
ZZ − K̂c

ZZ

))∣∣∣
B(B − 1)

≤ C1C4 ∥F − F̂∥G
(
C2 + C3 ∥F − F̂∥G

)
(58)

for positive constants C1 to C4.
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Now we can use Theorem 2 of Li et al. (2022) with γ = 1 and λ = Θ(1/Mβ+p), which shows that

P
(
∥F − F̂∥G ≤ τ

√
KM− β−1

2(β+p)

)
≥ 1− 4e−τ , (59)

for some positive constant K, which gives us the Op(1/M
β−1

2(β+p) ) deviation.

Now we can combine the two lemmas to prove Theorem 2.7:

Proof of Theorem 2.7. Combining Lemma C.2 and Lemma C.4 and using a union bound, we obtain
the Op(1/

√
B + 1/M

β
2(β+p) ) rate.

Corollary C.5. For B points and M holdout points, the CIRCE estimator

ĈIRCE =
1

B(B − 1)
Tr

(
K̃XX

(
K̃Y Y ⊙ ˆ̃Kc

ZZ

))
, Ã = A− diag(A) , (60)

converges as Op(1/
√
B + 1/M

β−1
2(β+p) ).

Proof. This follows from the previous two proofs.

Corollary C.6. For B points and M holdout points, the CIRCE estimator

ĈIRCE =
1

B(B − 1)
Tr

(
HKXXH

(
KY Y ⊙ K̂c

ZZ

))
, H = I − 1

B
1B1

⊤
B (61)

has bias of O(1/B) and converges as Op(1/
√
B + 1/M

β−1
2(β+p) ).

Proof. This follows from the previous two proofs and the fact thatKc is a centered matrix, meaning
that in expectation HKcH = Kc.

This estimator can be less biased in practice, as K̂c
ZZ is typically biased due to conditional expecta-

tion estimation, and HK̂cH re-centers it.

D RANDOM FOURIER FEATURES

Random Fourier features (RFF) Rahimi & Recht (2007) allow to approximate a kernel k(x1, x2) ≈
1
D

∑D
i=1 ri(x1)

⊤ri(x2), and therefore K = RR⊤.

The algorithm to estimate CIRCE with RFF is provided in Algorithm 2. We sample D0 points
every L iterations, but in every batch only use D of them to reduce computational costs. It
takes O(D0M

2 + D2
0M) to compute W r

1 and W r
2 every L iterations. At each iteration, it takes

O(BD2 + B2D) to compute CIRCE. Therefore, average (per iteration) cost of RFF estimation
becomes O(D0

L M
2 +

D2
0

L M +BD2 +B2D).

E SYNTHETIC DATA AND ADDITIONAL RESULTS

We used Adam (Kingma & Ba, 2015) for optimization with batch size 256, and trained the network
for 100 epochs. For experiments on univariate datasets, the learning rate was 1e-4 and weight
decay was 0.3; for experiments on multivariate datasets, the learning rate was 3e-4 and weight
decay was 0.1. We implemented CIRCE with random Fourier features (Rahimi & Recht, 2007) (see
Appendix D) of dimension 512 for Gaussian kernels. We swept over the hyperparameters, including
RBF scale, regularization weight for ridge regression, and regularization weight for the conditional
independence regularization strength.

All synthetic datasets are using the same causal structure as shown in Figure 1. Hyperparameters
sweep is listed in Table 2 and it is the same for all test cases.
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Algorithm 2 Estimation of CIRCE with random Fourier features

Holdout data {(zi, yi)}Mi=1, mini-batch {(xi, zi, yi)}Bi=1
Holdout data
Leave-one-out (Theorem C.1) for λ (ridge parameter) and σy (parameters of Y kernel):

λ, σy = argmin
∑M
i=1

∥ψ(zi)−KyiY
(KY Y +λI)−1KZ ·∥2

Hz

(1−(KY Y (KY Y +λ I)−1)
ii
)
2

W1 = (KY Y + λI)
−1
, W2 =W1KZZW1

Every L mini-batches
Sample D0 RFF R(·)
W r

1 = R(Y )⊤W1R(Z), W
r
2 = R(Z)⊤W2R(Z)

Mini-batch
Use D random RFF out of D0

Compute R(y), R(z) (mini-batch)
K̂c = Kyy ⊙

(
Kzz −R(y)W r

1R(z)
⊤ −

(
R(y)W r

1R(z)
⊤)⊤ +R(y)W r

2R(y)
⊤
)

CIRCE = 1
B(B−1)Tr

(
HKxxHK̂

c
)
, H = I − 1

B 1B1
⊤
B

Parameter Values

CIRCE and HSCIC GCM

conditional independence γ log space between [1, 104]; log space between [10−2, 10−0.5]
ridge regression λ { 0.001, 0.01, 0.1, 1 }
RBF scale { 0.001, 0.01, 0.1, 1 }

Table 2: Hyperparameters for CIRCE, HSCIC and GCM on synthetic datasets.

E.1 UNIVARIATE CASES

Structural causal model for univariate case 1:

Y, ϵZ ∼ N (0, 1)

ϵA, ϵB ∼ N (0, 0.1)

Z = Y 2 + ϵZ

A = 0.5ZϵA + 2Y

B = 0.5 exp (−AY ) sin(2AY ) + 5Z + 0.2ϵB

Structural causal model for univariate case 2:

Y, ϵZ ∼ N (0, 1)

ϵA, ϵB ∼ N (0, 0.1)

Z = Y 2 + ϵZ

A = exp(−0.5Z2) sin 2Z + 2Y + 0.2ϵA

B = sin(2AY ) exp(−0.5AY ) + 5Z + 0.2ϵB
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E.2 MULTIVARIATE CASES

Structural causal model for multivariate case 1:

Y, ϵZi
∼ N (0, 1)

ϵA, ϵB ∼ N (0, 0.1)

Zi = Y 2 + ϵZi

A = exp(−0.5Z1) +
∑
i

Zi sin(Y ) + 0.1ϵA

B = exp(−0.5Z2)(
∑
i

Zi) +AY + 0.1ϵB

Structural causal model for multivariate case 2:

Yi, ϵZ ∼ N (0, 1)

ϵA, ϵB ∼ N (0, 0.1)

Z = Y TY + ϵZ

A = exp(−0.5Z) + sin
∑
i

YiZ + 0.1ϵA

B = exp(−0.5Z)Z +
∑
i

Yi + Z +AY1 + 0.1ϵB

F IMAGE DATA DETAILS
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Figure 7: dSprites with nonlinear dependence. CIRCE used holdout data in training. Blue: in-
domain test loss; orange: out-of-domain loss (OOD); red: loss for OOD-trained encoder. Solid
lines: median over 10 seeds; shaded areas: min/max values.

For both dSpritres and Yale-B, we choose the following training hyperparameters over the validation
set and without regularization: weight decay (1e-4, 1e-2), learning rate (1e-4, 1e-3, 1e-2) and length
of training (200 or 500 epochs). These parameters are used for all runs (including the regularized
ones). For dSprites the batch size was 1024. For Yale-B the batch size was 256. The results for both
standard (Corollary C.5) and centered (Corollary C.6) CIRCE estimators were similar for dSprites
(the reported one is standard), but the centered version was more stable for Yale-B (the reported
one is centered). This is likely due to the bias arising from conditional expectation estimation. For
dSprites, the training set contained 589824 points, and the holdout set size was 5898 points. For
Yale-B, the training set contained 11405 points, and the holdout set size was 1267 points.

All kernels were Gaussian: k(x, x′) = exp(−∥x − x′∥2/(2σ2)). For Y , σ2 from
[1.0, 0.1, 0.01, 0.001] and ridge regression parameter λ from [0.01, 0.1, 1.0, 10.0, 100.0]. The other
two kernels had σ2 = 0.01 for linear and y-cone dependencies; for the nonlinear case, the kernel
over Z had σ2 = 1 due to a different scaling of the distractor in that case.

We additionally tested a setting in which the M holdout points used for conditional expectation
estimation are not removed from the training data for CIRCE. As shown in Figure 7 for dSprites
with non-linear dependence, this has little effect on the performance.
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