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Aims Deep neural networks (DNNs) perform excellently in interpreting electrocardiograms (ECGs), both for conventional 
ECG interpretation and for novel applications such as detection of reduced ejection fraction (EF). Despite these prom
ising developments, implementation is hampered by the lack of trustworthy techniques to explain the algorithms to clin
icians. Especially, currently employed heatmap-based methods have shown to be inaccurate.

Methods 
and results

We present a novel pipeline consisting of a variational auto-encoder (VAE) to learn the underlying factors of variation of 
the median beat ECG morphology (the FactorECG), which are subsequently used in common and interpretable predic
tion models. As the ECG factors can be made explainable by generating and visualizing ECGs on both the model and 
individual level, the pipeline provides improved explainability over heatmap-based methods. By training on a database 
with 1.1 million ECGs, the VAE can compress the ECG into 21 generative ECG factors, most of which are associated 
with physiologically valid underlying processes. Performance of the explainable pipeline was similar to ‘black box’ 
DNNs in conventional ECG interpretation [area under the receiver operating curve (AUROC) 0.94 vs. 0.96], detection 
of reduced EF (AUROC 0.90 vs. 0.91), and prediction of 1-year mortality (AUROC 0.76 vs. 0.75). Contrary to the ‘black 
box’ DNNs, our pipeline provided explainability on which morphological ECG changes were important for prediction. 
Results were confirmed in a population-based external validation dataset.

Conclusions Future studies on DNNs for ECGs should employ pipelines that are explainable to facilitate clinical implementation by 
gaining confidence in artificial intelligence and making it possible to identify biased models.
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Introduction
The use of deep neural networks (DNNs) has led to tremendous im
provements in automated interpretation of electrocardiograms 
(ECGs).1 Recent studies have shown that DNNs achieve similar per
formance as cardiologists in tasks such as arrhythmia recognition and 

triage of ECGs.2,3 Even more striking, DNNs have been shown to 
diagnose disorders that were not yet recognized on the ECG, such 
as reduced ejection fraction (EF) and 1-year mortality.4,5 Despite 
these promising developments, clinical implementation is severely 
hampered by the lack of trustworthy techniques to explain the deci
sions of the algorithm to clinicians.6,7 Due to the ‘black box’ nature of 
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most algorithms, and the limitations of current post hoc explainability 
methods, the association between input and output remains unex
plainable to humans.8 The lack of interpretability makes it difficult 
for clinicians to gain enough confidence to make clinical decisions 
based on these algorithms, and more importantly, impossible to iden
tify biased or inaccurate models. These issues have already been ac
knowledged by the new European Union’s General Data Protection 
Regulation, which requires a ‘right to explanation’ for AI algorithms.9

To improve explainability, several post hoc explainability methods 
have been proposed, usually by providing heatmaps on top of the 
ECG. However, a major limitation of these methods is that they 
only provide the temporal location of ECG features important in 
making the diagnosis, but do not indicate the actual feature (e.g. 
when the QRS-complex is highlighted the feature could be R-wave 
height, QRS shape, or something else completely).5,10,11 This makes 
that heatmaps are of limited explainable value for showing which 
morphological ECG changes were important for a specific predic
tion. Moreover, heatmap-based methods are only able to provide ex
plainability on the level of an individual ECG, but not for the whole 
model. This combination makes them susceptible to confirmation 

bias, as we assume that the feature we think is important is also 
the one that was used in the few examples that were observed.6

Finally, recent studies have shown that saliency-based methods can 
be very unreliable in providing consequent annotations and can 
also show reassuring saliency maps when a model is completely un
trained, stressing the need for better approaches to explain the out
put of DNNs.8,12,13 Therefore, instead of explaining the ‘black box’ 
after it was trained, the preferred way for algorithms to produce 
trustworthy explanations is to develop pipelines that are explainable 
by design.8

We hypothesized that an ECG can be explained by a few under
lying anatomical and (patho)physiological factors of variation. 
Variational auto-encoders (VAEs) are generative networks that use 
the power of DNNs to learn to compress any ECG into a selected 
number of explanatory and independent factors. Moreover, they 
can reconstruct the ECG from these factors.14,15 In this study, we 
aimed to use a VAE to identify the underlying factors of variation 
in the ECG morphology and use them to develop an explainable 
pipeline for the interpretation of ECGs. Firstly, we investigate the 
underlying generative process of the learned factors by relating 
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Table 1 Glossary of terms used throughout the manuscript

Term Definition

Decoder The decoder is a part of the VAE and can be used to construct a median beat ECG from any combination of values in 

the FactorECG.

Deep neural network (DNN) A deep neural network is an artificial intelligence algorithm that uses many layers with neurons to learn features from 
the input for prediction. In the case of ECG, a convolutional neural network is used, where the network learns 

features from the raw ECG signal itself.

Diagnostic ECG statement Diagnostic statement given to an ECG by the overreading physician, e.g. sinus tachycardia, left bundle branch block, 
or early repolarization.

ECG factor An ECG factor is one of the 21 values in the FactorECG and is a continuous value that can be used in any prediction 

model or for interpretability.
ECG feature An ECG feature is a distinct morphological change to the ECG, such as a Q-wave or absent P-wave.

ECG measurement ECG measurements are automated measurements of the intervals and axis of an ECG, such as PR interval and 

R-wave axis.
Encoder The encoder is a part of the VAE and can be used to convert any median beat ECG into its respective FactorECG.

Explainable pipeline The explainable pipeline is this work consists of three parts: firstly, the ECGs are encoded in its FactorECG using the 

pretrained VAE encoder, then the 21 significant ECG factors are entered into interpretable statistical models to 
perform the prediction or diagnosis task, and finally the pretrained VAE decoder is used to visualize the ECG 

factors that were deemed important for a specific task by the statistical model.

Factor traversal The factor traversal is a method to visualize what ECG morphology a single ECG factor represents. This is done by 
keeping all ECG factor values at 0, while varying the factor of interest between −5 and 5 and construction and 

plotting ECGs using the decoder.

FactorECG The latent space of the VAE proposed here is called the FactorECG and consists of 21 continuous normally 
distributed factors.

One-year all-cause mortality model This model is trained to predict which individuals die from any cause within 1 year.

Reduced left ventricular ejection 
fraction model

The ejection fraction is the fraction of blood ejected from the left ventricle (chamber) of the heart with each 
contraction. An ejection fraction below 40% is a sign of heart failure with reduced ejection fraction. This model is 

trained to detect which patients have an ejection fraction below 40% as measured by echocardiography.

Variational auto-encoder (VAE) The variational auto-encoder consists of three parts, an encoder DNN to compress the raw ECG data into a 
reduced set of continuous values, the latent space, and a decoder to reconstruct that same ECG from these values. 

It is trained in an unsupervised manner by learning to reconstruct many ECGs from the latent space.
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them to known ECG parameters and the most common convention
al diagnostic ECG statements. Secondly, we train and internally and 
externally validate the explainable pipeline for use in the novel 
ECG use cases, detection of reduced EF and prediction of 1-year 
mortality, and perform a comparison with current state-of-the-art 
‘black box’ DNNs and conventional ECG algorithms.

Methods
Study participants
The dataset consisted of all patients between 18 and 85 years of age with 
at least one ECG acquired in the University Medical Center Utrecht 
(UMCU) between July 1991 and August 2020. All data were de-identified 
in accordance with the EU General Data Protection Regulation and writ
ten informed consent was not required by the UMCU ethical committee.

Data acquisition for training and validation of 
the variational auto-encoder
All resting 12-lead ECGs were exported from the MUSE ECG system 
(MUSE version 8; GE Healthcare, Chicago, IL, USA) in raw voltage format 
and converted to median beats as described by van de Leur et al.10 All 
ECGs that were deemed technically inadequate by either the MUSE 
12SL algorithm or interpreting physician were excluded from the analyses. 
No labels were used in the training of the unsupervised auto-encoder.

Data acquisition for training and validation of 
the ‘black box’ deep neural networks and 
explainable pipelines
For training of the algorithms to detect conventional diagnostic ECG 
statements, we included a subset of ECGs that were obtained at all non- 
cardiology departments, as these ECGs were systematically annotated by 
a physician as part of the regular clinical workflow. We selected the 35 
most common diagnostic statements for training [i.e. sinus tachycardia 
or left bundle branch block (LBBB), a complete overview can be found 
in the Supplementary material online, Methods] and used 20% of the pa
tients for hyperparameter optimization. For validation of the ECG inter
pretation models, an independent dataset comprising 1000 randomly 
selected ECGs of unique patients was annotated by a panel of five prac
tising electrophysiologists or cardiologists for all diagnostic statements as 
described by van de Leur et al.3 A reduced set of the 35 diagnostic state
ments was tested, as some abnormalities did not occur in the test data
set. Moreover, the myocardial ischaemia labels in different locations were 
combined. A glossary of technical terms used troughout the manuscript 
can be found in Table 1.

To train and validate the algorithms to detect reduced EF (below 40%) 
and predict 1-year mortality, we selected patients using the same ap
proaches as Attia et al.4 and Raghunath et al.,5 respectively. For the re
duced EF model, patients with an ECG–echocardiogram pair (acquired 
within 14 days) were retrieved, the EF was dichotomized at 40% and pa
tients were split in a 75:25 ratio on the patient level. For the test set only 
the first ECG–echocardiogram pair per patient was used, to avoid the 
overrepresentation of sicker patients with multiple pairs. For the 
1-year mortality model, all patients with at least 1 year of follow-up avail
able for evaluation of all-cause mortality were selected and split in a 60:40 
ratio on the patient level. For the test set, we randomly selected one 
ECG if the patient had multiple ECGs. Importantly, both train-test splits 
were made on the patient level, ensuring no overlap in patients between 
the sets. Detailed information on the data acquisition for all three tasks 
can be found in the Supplementary material online, Methods.

For external validation of the VAE and the performance of the models 
for detection of reduced EF, we included individuals who underwent 
both cardiac magnetic resonance (CMR) imaging and 12-lead ECG at 
the same time at the first imaging visit of the population-based UK 
Biobank cohort (analysis performed under application number 74 395). 
All 10 s 12-lead resting ECGs were acquired using a GE CardioSoft de
vice at 500 Hz and converted to median beats by the GE algorithm. 
Only individuals where the left ventricular EF was determined on the 
CMR using a manual analysis protocol by Petersen et al.16,17 were in
cluded (UK Biobank return number 2541). Details on the UK Biobank 
cohort, the CMR protocol, and the manual CMR analysis protocol 
have been described before.17–19

Training and architecture of the variational 
auto-encoder
The VAE consists of three parts: the encoder, the latent space (with mul
tiple continuous ECG factors, combined referred to as the FactorECG), 
and the decoder.14 The original 12-lead median beat ECG is entered into 
the encoder that compresses the ECG to its FactorECG with 32 continu
ous factors. From those same factors, the ECG is reconstructed by the 
decoder, and the difference between the input and reconstructed 
ECG was used to train the model. The decoder and encoder are a stand
ard convolutional neural network and the inverse of that neural network, 
respectively. A specific type of VAE was used, called the β-VAE, where an 
additional hyperparameter β is included in the loss term to learn disen
tangled factors, i.e. generative factors of variation that are independent 
of each other.15 The two most important hyperparameters in the 
β-VAE were the number of ECG factors and the β-value. For both, values 
of 8, 16, 32, 64, and 128 were evaluated. Considering that increasing the 
β-term results in higher reconstruction errors, we chose a β that resulted 
in a good trade-off between reconstruction error and adequate disen
tanglement in significant factors, which was assessed using the factor tra
versals. Moreover, increasing the number of ECG factors above 32 did 
not yield an increase in significantly contributing factors (i.e. factors 
that encode variation), therefore this value was selected. A schematic 
overview of the technique can be found in Figure 1, while an animation 
of the approach is included as Supplementary material online. Detailed 
information on the training and architecture of the VAE can be found 
in Supplementary material online, Methods.

Training and explainability of the pipeline
To obtain an explainable pipeline for prediction or diagnosis, we com
bined the following steps: (i) the median beat 12-lead ECGs were en
coded in their FactorECG using the pretrained VAE encoder, (ii) the 
21 significant ECG factors were entered into common interpretable stat
istical models to perform the prediction or diagnosis task, and (iii) the 
pretrained VAE decoder is used to visualize the ECG factors that were 
deemed important for a specific task by the statistical model.

The explainable pipeline is compared with current state-of-the-art 
‘black box’ DNNs in three tasks: conventional ECG interpretation, de
tection of reduced EF, and prediction of 1-year mortality. For the con
ventional ECG interpretation task, we trained binary logistic regression 
models for each of the 35 diagnostic ECG statements on the 
FactorECGs, as it provided maximum interpretability. For the detection 
of reduced EF and prediction of 1-year mortality, as the aim was max
imum performance, we trained two extreme gradients boosting decision 
tree (XGBoost) models.20 For this model, interpretability was obtained 
using Shapley Additive exPlanations, which can provide feature import
ance measures for every ECG factor on a model- and individual patient 
level.21 For comparison, a baseline state-of-the-art ‘black box’ DNN 
with a similar architecture as the encoder of the VAE and the median 
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Figure 1 Illustration of the full pipeline: a variational auto-encoder, the FactorECG, and reconstructions. The variational auto-encoder consists of 
three parts: the encoder, the FactorECG space, and the decoder. An input 12-lead median beat electrocardiogram is entered into the decoder that 
compresses the electrocardiogram to its FactorECG with 32 continuous factors. From those same factors, the electrocardiogram is reconstructed 
and the difference between the input and reconstructed electrocardiogram is used to train the model. The electrocardiogram factors are subse
quently used in two ways: for development of interpretable classifiers for electrocardiogram diagnostic statements, reduced ejection fraction and 
1-year mortality, and for visualization purposes. Electrocardiogram factors can provide both individual patient- and model-level visualizations. 
Individual visualizations are depicted here, where three median beat electrocardiograms and their reconstructions are represented in the 
FactorECG. Notably, as dimension 10 encodes ventricular frequency, we see high values for the sinus tachycardia electrocardiogram. Moreover, 
as dimension 26 inversely encodes left bundle branch conduction delay, we see low values for the left bundle branch block electrocardiogram. 
The normal electrocardiogram has value around zero for all factors, as the variational auto-encoder is forced to learn factors with zero mean. 
ECG, electrocardiogram; LVEF, left ventricular ejection fraction; LBBB, left bundle branch block.
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beat ECG as input was trained for all three tasks.10,22 Additional informa
tion on the baseline model and training procedures for the three tasks 
are available in the Supplementary material online, Methods.

The pipeline can provide explanations on both the model- and individ
ual patient level. On the model-level, ECG factors are visualized by factor 
traversals using the pretrained VAE decoder: varying the values of an in
dividual factor while decoding and plotting the median ECG beat. Every 
visualization starts with zeros for all factors, which represents the mean 
ECG in the training dataset. Then, for every individual factor, values be
tween −5 and 5 are assigned, while keeping the others at zero, and 
through decoding a new generated ECG is obtained. These reconstruc
tions are subsequently visualized in the same graph. This allows for de
tailed visualizations of morphological changes. On the individual patient 
level, explainability is obtained by combining the distinct FactorECG va
lues of that ECG with knowledge on the predictors that were important 
for a specific task. For example, if the FactorECG of an ECG contains a 
high value for a specific factor and this factor was associated with the out
come by the interpretable statistical model, this would explain why this 
specific ECG has a higher risk of the outcome. Other explainability is pro
vided by associating the ECG factors with known ECG parameters (i.e. 
PR interval or QRS duration) and known ECG diagnoses (i.e. LBBB or si
nus tachycardia).

Statistical analysis
All data are presented as mean ± SD or median with interquartile 
range, where appropriate. All individual ECG factors were related 
to the conventional ECG measurements computed by the MUSE al
gorithm (i.e. ventricular rate, PR, QRS, and Bazett corrected QT dur
ation, and R- and T-axis) using hexagon plots and Pearson correlation 
coefficients. Discriminatory performance of the models is assessed in 
the test sets using the c-statistic or area under the receiver operating 
curve (AUROC) and the area under the precision-recall curve 
(AUPRC). As all models are weighted for class imbalance, a probabil
ity cut-off of 50% was used. Overall, 95% confidence intervals are 
obtained using 2000 bootstrap samples. The Transparent Reporting of 
a Multivariable Prediction Model for Individual Prognosis or Diagnosis 
Statement for the reporting of prediction models was followed.23

Results

Development of the variational 
auto-encoder and explainability of the 
FactorECG
The dataset for training of the VAE consisted of 1 144 331 12-lead 
median beat ECGs of 251 473 unique patients. The VAE was able 
to reconstruct the median beat ECGs excellently with a mean 
Pearson correlation coefficient of 0.90 (P < 0.001) between the ori
ginal and reconstructed ECG. Reconstructions were most accurate 
for sinus rhythm, sinus bradycardia, early repolarization, and pericar
ditis ECGs (mean r = 0.91–0.92), and least accurate for the rarer 
ECGs with ST elevation suspected of myocardial infarction and ven
tricular tachycardia (mean r = 0.62–0.70). An overview of mean cor
relation coefficients per diagnostic ECG statements can be found in 
Supplementary material online, Table S1.

By analyzing the factor traversals (see Supplementary material 
online, Figure S2), only 21 of the 32 factors were found to be neces
sary to reconstruct the ECG, and the other 11 were not used by the 
model to encode significant data. Model-level explainability, using 

factor traversals, is shown for a subset of the 21 factors in Figure 2. 
An online tool to visualize the generated ECGs interactively is avail
able via https://decoder.ecgx.ai. To further investigate and gain inter
pretability in the ECG factors, Pearson correlation coefficients were 
computed between conventional ECG measurements and ECG 
factors values (Figure 3). Ventricular rate is mostly correlated to 
factor 10 (r = 0.96, P < 0.001), while QRS duration is mostly 
correlated to factor 25 (r = −0.47, P < 0.001). PR and QT 
interval are mostly correlated to factors 8 (r = 0.62, P < 0.001) and 
30 (r = −0.52, P < 0.001), respectively. The 21 significant ECG factors 
were independent of each other, with Pearson correlation coeffi
cients ranging between −0.06 and 0.09 (see Supplementary 
material online, Figure S3).

Performance and explainability for 
conventional electrocardiogram 
interpretation
The dataset for training the algorithms to perform conventional ECG 
interpretation consisted of 369 216 ECGs of 152 831 patients, while 
for validation the expert-annotated dataset was used, containing 965 
ECGs (of 965 patients) of adequate quality. Three hundred and forty- 
three (36%) of the ECGs had more than one diagnostic statement 
and sinus rhythm was the most prevalent (72%), while third-degree 
AV block was the least prevalent (0.1%, Table 2). The mean AUROC 
of the explainable pipeline was 0.94 (95% CI 0.92–0.96), 
compared with 0.73 (95% CI 0.65–0.81) for the rule-based MUSE al
gorithm and 0.96 (95% 0.94–0.98) for the ‘black box’ DNN. The ex
plainable pipeline performed similarly for most diagnostic statements 
but was outperformed for the diagnosis of left ventricular hyper
trophy and low QRS voltage by the ‘black box’ DNN (Table 2). 
The conventional MUSE algorithm, that is currently used in clinical 
practise, performed worst for all diagnostic statements (Table 2). 
To understand which ECG factors were important for the pipeline 
to detect each ECG statement, we used the logistic regression’s 
coefficients as feature importance scores (Figure 4). The negative 
(blue) and positive (red) scores from Figure 4 can be related to the 
generated ECGs in the factor traversals after negative (blue) and 
positive (red) perturbations in Figure 2 and Supplementary material 
online, Figure S2.

Performance and explainability for 
detection of reduced ejection fraction
For the algorithms to detect reduced EF, 39 603matched ECG–echo
cardiogram pairs of 22 676 patients were available, of which 25% 
(5669 unique patients, first pair per patient used) were used for val
idation. Seven hundred and thirteen patients (13%) in the validation 
set had an EF below 40%. The explainable pipeline achieved 
an AUROC and AUPRC of 0.89 (95% CI 0.89–0.91) and 0.66 
(95% CI 0.63–0.70), in comparison to 0.91 (95% CI 0.89–0.92) 
and 0.70 (95% CI 0.68–0.74) for the ‘black box’ DNN, 
respectively. The most important model-level ECG factors for de
tecting reduced EF were high values in factors 5, 10, and 8 and low 
values in factors 25, 26, 1, and 30 (Figure 5). These correspond to 
negative T waves, higher ventricular rate, ST elevation, increased 
P-wave area and PR-interval, right bundle branch block (RBBB), 
and LBBB, respectively. Figure 6 shows a model- and individual 
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Figure 2 Factor traversals of a subset of the electrocardiogram factors for Leads I, II, V1, V3, V6. Factor traversals of a subset of the 21 electro
cardiogram factors that hold significant information for correctly reconstructing electrocardiograms. Each row corresponds to the factor traversal 
for one electrocardiogram factor and the columns to a subset of the 12 leads. The factor traversal for one row is obtained by starting with a ‘mean’ 
FactorECG where all factors are zero and adding offsets for that factor in a range of −5 to 5. The generated electrocardiograms are then plotted 
where red represents high values for that factor and blue low values.
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A

B

Figure 3 Relationship of the electrocardiogram factors with conventional electrocardiogram measurements. (A) Hexagon plots where datapoints 
of electrocardiogram factor–electrocardiogram measurements pairs over all samples in the variational auto-encoder variational auto-encoder da
taset are binned into hexagon grids to relate values of Factors 8, 25, 30, and 10 to the PR interval, QRS duration, QT interval, and ventricular rate, 
respectively. (B) Pearson correlation coefficients between electrocardiogram measures of ventricular rate, PR interval, QRS duration, QT interval, 
Bazett corrected QT interval, R-axis, and T-axis, and electrocardiogram factor values over all samples in the variational auto-encoder dataset.
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patient-level explanation for the detection of reduced EF using the 
novel pipeline, in comparison to the post hoc explainability methods 
used up until now.

Performance and explainability for 
prognosis of 1-year mortality
For the models to predict 1-year mortality, follow-up was available 
for 909 958 ECGs of 177 448 patients, of which 40% (70 979unique 
patients, ECG sampled randomly per patient) was used for validation. 
Five thousand three hundred and thirty-four patients (7.5%) in the 
validation set deceased within 1 year. The explainable pipeline 
achieved an AUROC and AUPRC of 0.76 (95% CI 0.76–0.77) and 
0.21 (95% CI 0.20–0.22) compared with 0.75 (95% CI 0.74–0.76) 
and 0.21 (95% CI 0.20–0.22) for the ‘black box’ DNN, respectively. 
In contrast, an XGBoost model that included only age and sex had an 
AUROC of 0.65 (95% CI 0.64–0.66) and an AUPRC of 0.12 (95% CI 
0.12–0.13). The most important global ECG factors for the predic
tion of 1-year mortality were high values for factors 10, 5, 12, and 
11, and low values for factors 1, 30, 9, and 27 (Figure 5). These cor
respond to an increased risk of 1-year mortality with higher ventricu
lar rate, inferolateral negative T-waves, ST-elevation, prolonged QT 
interval, and anterior negative T-waves. Table 3 shows a summary of 

the ECG morphology of all ECG factors, in combination with the 
most important associations for each factor.

External validation of the FactorECG 
pipeline for detection of reduced ejection 
fraction
Manually analysed CMR imaging and 12-lead ECG recordings were 
available for 4855 individuals, of which 28 had a reduced EF 
(0.62%). The VAE, which was trained in the UMC Utrecht dataset, 
could accurately reconstruct the median beat ECGs from the UK 
Biobank (mean Pearson correlation coefficient between the original 
and reconstructed ECG: 0.88, P < 0.001). The FactorECG pipeline 
achieved an AUROC of 0.89 (95% CI 0.84–0.95) and an AUPRC 
of 0.06 (95% CI 0.03–0.15) for the detection of reduced EF in the ex
ternal validation dataset. In comparison, the ‘black box’ DNN 
achieved an AUROC of 0.86 (95% CI 0.76–0.94) and an AUPRC 
of 0.12 (95% CI 0.06–0.27).

Discussion
In this study, we demonstrate a novel pipeline that provides im
proved explainable interpretation of ECGs, which consists of three 
major components: (i) a generative deep learning model that learned 
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Table 2 Diagnostic performance values for the conventional electrocardiogram interpretation task in the 
expert-annotated test set

Diagnostic statement Prevalence MUSE 12 SL Explainable pipeline Black box DNN

n (%) AUROC (95% CI) AUPRC AUROC (95% CI) AUPRC AUROC (95% CI) AUPRC

Sinus rhythm 697 (72) 0.90 (0.88–0.92) 0.96 0.94 (0.92–0.96) 0.96 0.96 (0.95–0.97) 0.98
Sinus bradycardia 30 (3.1) 0.70 (0.61–0.78) 0.09 0.95 (0.92–0.98) 0.39 0.94 (0.87–0.97) 0.37

Sinus tachycardia 91 (9.4) 0.95 (0.92–0.97) 0.75 0.99 (0.98–0.99) 0.81 0.99 (0.99–1.00) 0.94

Atrial fibrillation 90 (9.3) 0.88 (0.84–0.93) 0.73 0.99 (0.98–0.99) 0.78 0.98 (0.97–0.99) 0.86
Atrial flutter 2 (0.2) 0.74 (0.49–1) 0.04 0.98 (0.96–0.99) 0.04 1.00 (0.99–1.00) 0.67

Supraventricular tachycardia 18 (1.9) 0.58 (0.5–0.67) 0.15 0.97 (0.95–0.98) 0.33 0.98 (0.96–0.99) 0.34

Junctional bradycardia 4 (0.4) 0.75 (0.5–1) 0.13 0.99 (0.96–1.00) 0.46 1.00 (0.99–1.00) 0.56
Ventricular tachycardia 2 (0.2) 0.50 (0.5–0.5) 0 0.99 (0.98–1.00) 0.21 1.00 (0.99–1.00) 0.23

Pacemaker rhythm 27 (2.8) 0.92 (0.85–0.98) 0.74 0.97 (0.94–0.98) 0.46 0.97 (0.93–0.99) 0.68

First-degree AV block 57 (5.9) 0.86 (0.8–0.92) 0.66 0.98 (0.97–0.99) 0.68 0.96 (0.94–0.98) 0.71
Third-degree AV block 1 (0.1) 0.5 (0.5–0.5) 0 1.00 (1.00–1.00) 0.31 1.00 (0.99–1.00) 0.14

RBBB 59 (6.1) 0.95 (0.91–0.98) 0.66 0.98 (0.97–0.99) 0.69 0.99 (0.98–1.00) 0.83

LBBB 22 (2.3) 0.88 (0.79–0.97) 0.64 1.00 (0.99–1.00) 0.82 1.00 (1.00–1.00) 0.95
LAFB 71 (2.4) 0.64 (0.59–0.69) 0.29 0.84 (0.79–0.88) 0.28 0.97 (0.96–0.98) 0.62

NICD 14 (1.5) 0.63 (0.53–0.76) 0.09 0.94 (0.92–0.96) 0.12 0.88 (0.73–0.97) 0.3

Myocardial infarction 66 (6.8) 0.6 (0.55–0.65) 0.19 0.77 (0.72–0.82) 0.16 0.77 (0.71–0.82) 0.19
Left ventricular hypertrophy 44 (4.6) 0.79 (0.71–0.86) 0.32 0.82 (0.77–0.87) 0.15 0.97 (0.95–0.98) 0.63

Low QRS voltage 40 (4.2) 0.76 (0.68–0.83) 0.36 0.8 (0.74–0.86) 0.18 0.96 (0.94–0.98) 0.63

Prolonged QT interval 22 (2.3) 0.69 (0.6–0.8) 0.14 0.95 (0.91–0.97) 0.43 0.93 (0.89–0.95) 0.2
Early repolarization 23 (2.4) 0.52 (0.5–0.57) 0.04 0.96 (0.93–0.98) 0.45 0.98 (0.97–0.99) 0.61

Acute pericarditis 7 (0.7) 0.57 (0.5–0.71) 0.15 0.99 (0.99–1.00) 0.49 0.99 (0.96–1.00) 0.61

The AUROC and AUPRC scores per diagnostic statement in the ECG interpretation task for the rule-based MUSE algorithm, explainable pipeline, and ‘black box’ DNN are shown. A 
reduced set of the 35 diagnostic statements was tested, as some abnormalities did not occur in the test dataset. Moreover, the myocardial ischaemia labels in different locations were 
combined. AUROC, area under the receiver operating curve; AUPRC, area under the precision-recall curve; AV, atrioventricular; CI, confidence interval; DNN, deep neural network; 
LAFB, left anterior fascicular block; LBBB, left bundle branch block; NICD, non-specific intraventricular conduction delay; RBBB, right bundle branch block.
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to summarize the underlying factors of variation of an ECG in 21 fac
tors (the FactorECG), (ii) a visualization technique to provide insight 
into ECG morphology that these factors encode, and (iii) a common 
interpretable statistical method to perform diagnosis or prediction 
using the ECG factors (Figure 1). We investigated the FactorECG 
using visualizations and associations with conventional ECG mea
surements and diagnostic ECG statements to show that many of 
the factors represent valid and relevant generative factors of 
ECG morphology (Table 3). Moreover, when applying the novel ex
plainable technique for conventional ECG interpretation and re
cently emerged use cases for the ECG, not only did it perform 
similarly to the ‘black box’ algorithms for these use cases, but it 
could also explain which morphological ECG changes were import
ant for prediction or diagnosis. Finally, we showed that FactorECG 
itself, and the pipeline for detection of reduced EF, generalize 

excellently to a completely different population-based cohort. 
This indicates that inherently explainable deep learning methods 
should be used to gain confidence in AI for clinical decision making, 
and more importantly, make it possible to identify biased or in
accurate models.

A longstanding assumption was that the high-dimensional and 
non-linear ‘black box’ nature of the currently applied DNNs was in
evitable to gain the impressive performances shown by these algo
rithms.5,13,22 The major finding of the current study is that a 
VAE-based approach performs on par with the ‘black box’ algo
rithms in both conventional and novel tasks (Table 2), while also giv
ing insight in the ECG morphology that explains the prediction. A 
main advantage of the current approach over previous attempts to 
open the ‘black box’ of DNNs using post hoc explainability methods 
(i.e. heatmaps) is that we can reliably and quantitively specify the 

Figure 4 Importance score for each of the 32 factors in predicting 35 diagnostic electrocardiogram statements. Importance scores of each of the 
32 factors in the logistic regression for all 35 diagnostic electrocardiogram statements are shown to relate which dimensions are important for 
diagnosis. High importance values indicate that a high value for the dimension is diagnostic for that abnormality, and vice versa. The negative 
(red) and positive (blue) scores can be related to the reconstructions after negative (red) and positive (blue) perturbations in Figure 2. Notably, 
Factor 10 encodes ventricular frequency (as observed in Figures 2 and 3) and therefore has a high value in sinus tachycardia (red) and a low value 
in sinus bradycardia (blue). NICD, non-specific intraventricular conduction delay.
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morphology of the ECG change, instead of only pointing at the loca
tion on the ECG’s time axis (Figure 6).3,5,10,24

Other studies investigated the use of (variational) auto-encoders 
on 12-lead ECGs in smaller datasets and showed that VAEs can be 
useful for compression of ECGs, data augmentation, clustering, and 
feature generation.25–28 Interestingly, Kuznetsov et al.28 also deter
mined that ∼20–25 factors are needed to encode a single or median 
beat ECG. Our work makes the latent space of a VAE (i.e. the 
FactorECG) clinically useful and explainable to physicians, by (i) link
ing the ECG factors with known ECG measurements and diagnostic 
statements (Figures 3 and 4 and Tables 2 and 3), (ii) providing exten
sive visualizations offline (Figure 2) and using an online tool (https:// 
decoder.ecgx.ai), and (iii) showing that the ECG factors have ad
equate predictive power in various downstream tasks. Figure 6 shows 
an example of how a FactorECG-based pipeline can be used in clinical 
practise. At model-level, the overall most important morphological 
ECG changes (i.e. ECG factors) for a specific task are shown and 
can be used to detect possible biases. At patient level, the user is pro
vided with an individual explanation of which morphological ECG 
changes in this patient are causing the higher risk of reduced EF, 
for example. The online tool provides a possibility to upload ECGs 
to show the predictions and explanations, or to extract the 
FactorECGs to train new models using the code provided (https:// 
encoder.ecgx.ai and https://github.com/rutgervandeleur/ecgxai).

We hypothesized that an ECG can be explained by a few underlying 
explanatory factors of variation and showed that it is possible to encode 
the median beat ECG morphology in 21 continuous factors, from which 
the ECG can be reconstructed with high precision (Pearson correlation 
between original and reconstructed ECG 0.90 in internal validation and 
0.88 in external validation). An online tool for clinicians to interactively 
visualize the factors can be found via https://decoder.ecgx.ai. When relat
ing the ECG factor traversals (Figure 2 and Supplementary material online, 

Figure S2) to diagnostic ECG statements and conventional ECG measure
ments (Figures 3and 4), we were able to relate many of them to the under
lying anatomical and (patho)physiological factors (Table 3). For example, 
Factor 10 has a clear linear relationship with ventricular frequency and 
therefore shows high values for sinus tachycardia and low values for si
nus bradycardia. Moreover, the factor traversals (Figure 2) show the 
changes in the ECG associated to the ventricular frequency, such as 
the length of the QT interval and appearance of the T-wave of the pre
vious beat. Factors 6, 23, and 27 account for the P-wave size and are re
lated to diagnoses that involve the P-wave, such as junctional bradycardia 
and atrial fibrillation, while PR interval (or location of the P-wave) is en
coded in factor 8. Factors 25, 26, and 30 encode ventricular conduction 
delays, such as right and LBBB, while ventricular repolarization is mainly 
encoded in Factors 1, 5, 9, 13, and 30. ST elevation is most prominent in 
Factors 1 and 5, which are subsequently important for predicting diag
noses such as acute pericarditis and early repolarization. Next to these 
more common ECG variations, rare abnormalities are also represented, 
as for example Wolff-Parkinson-White pattern (with pre-excitation and 
short PR interval) is encoded using a combination of Factors 8 and 12. An 
overview of the ECG morphology and most important associations for 
each ECG factor can be found in Table 3.

For the reduced EF task, we found that the performance of the ex
plainable pipeline is equivalent to both the black box DNN in our da
taset and in the original publication by Attia et al.4 This finding was 
externally validated in the UK Biobank, a population-based cohort 
that is very different from the academic hospital-derived training 
population, and shown to be robust with a similar AUROC as in 
the internal validation dataset. Most important ECG indicators for 
reduced EF were consistent with previous findings that indicated 
similar features to be predictive of heart failure: inferolateral negative 
T-waves, increased ventricular rate, P-wave area, prolonged PR inter
val, RBBB, LBBB, but also inferolateral ST elevation.29 The 

A B

Figure 5 Explanations for the 1-year mortality and reduced ejection fraction models using Shapley Additive exPlanations values. (A) The most 
important model-level electrocardiogram factors for detecting reduced ejection fraction computed using Shapley Additive exPlanations values. 
Importance is ordered from top-to-bottom and colouring corresponds to the reconstructed electrocardiograms in Figure 2. (B) The most important 
global electrocardiogram factors for predicting 1-year mortality. Importance is ordered from top-to-bottom and colouring corresponds to the re
constructed electrocardiograms in Figure 2.
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importance of this latter feature illustrates that the DNN also picks 
up reduced EF due to acute ischaemia. This could hamper the gener
alizability of such models for screening purposes in the general popu
lation as these patients are only present in large hospitals and is one 

of the reasons why explainable models are imperative.8,30 Although 
the model for 1-year mortality performs worse than in the original 
paper by Raghunath et al.,5 it does perform similarly to the ‘black 
box’ DNN on our dataset. The difference in performance is likely 

Figure 6 Comparison of architecture and model- and individual patient-level explainability using the novel inherently explainable approach as 
compared with post hoc heatmap-based explainability for detection of reduced ejection fraction. The conventional ‘black box’ deep neural network 
contains only a single encoder to interpret the electrocardiogram. Afterwards, Guided Grad-CAM is applied to show what segments of the elec
trocardiogram were important for prediction on the patient level. Model-level explainability is not possible. The novel explainable pipeline adds a 
generative part to the architecture, which allows for precise visualizations of the morphological electrocardiogram features. By combining factor 
Shapley Additive exPlanations importance scores and factor traversals, we obtain model-level explainability. Individual patient-level explainability 
is achieved using individual Shapley Additive exPlanations importance score.

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjdh/article/3/3/390/6649795 by guest on 09 M

arch 2023



402                                                                                                                                                                              R.R. van de Leur et al.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Summarizing description of electrocardiogram morphology and associations of the 21 significant 
electrocardiogram factors

Factor High values Low values

ECG morphology Associations ECG morphology Associations

1 Inferolateral horizonal ST 
depression

Left ventricular hypertrophy Inferolateral horizontal ST 
elevation

Pericarditis, reduced EF, and 1-year 
mortality

5 Inferolateral T-wave 

inversion

T-wave axis, LBBB, inferior and lateral 

ischaemia, low QRS voltage, reduced 
EF, and 1-year mortality

Inferolateral concave ST 

elevation

T-wave axis, pericarditis, early 

repolarization

6 Increased P-wave 

amplitude

Reduced P-wave amplitude Atrial fibrillation, atrial flutter

8 Shorter PR-interval and 

P-wave duration

First-degree AV block and reduced EF Longer PR-interval and P-wave 

duration

WPW pattern

9 Anterior concave 
ST-elevation

LBBB and reduced EF Anterior T-wave inversion RBBB, RVH, posterior ischaemia, T-wave 
inversion, and 1-year mortality

10 Shorter QT-interval and 

TP-interval

Increased ventricular frequency, sinus 

tachycardia, atrial fibrillation, atrial 
flutter, SVT, low QRS voltage, 

reduced EF, and 1-year mortality

Longer QT-interval and 

TP-interval

Deceased ventricular frequency, sinus 

rhythm, and sinus bradycardia

11 Subtle QRS- and T-wave 
changes

One-year mortality Subtle QRS- and T-wave 
changes

12 Earlier onset of 

depolarization

Reduced PR-interval, WPW pattern, 

LAFB, and 1-year mortality

Later onset of depolarization Increased PR-interval and first-degree AV 

block
13 Anterior horizontal 

ST-elevation

Anterior and septal ischaemia Anterior horizontal 

ST-depression

Reduced EF

15 P/T overlap Sinus tachycardia Reduced P-wave amplitude Third-degree AV-block and junctional 
bradycardia

16 Subtle T-wave changes LAFB Subtle T-wave changes Posterior and lateral ischaemia

17 Lateral horizontal 
ST-elevation

Lateral ischaemia and right ventricular 
hypertrophy

Lateral horizontal 
ST-depression

Inferior ischaemia

19 Slower R-wave progression Faster R-wave progression

22 Baseline shift Baseline shift
23 Reduced P-wave amplitude Atrial fibrillation, junctional  

bradycardia, third-degree AV block

Increased P-wave amplitude

25 Shorter QRS duration Longer QRS duration with 

slurred S-wave

RBBB, LBBB, ventricular tachycardia, 

NICD, WPW pattern, and reduced EF

26 — Deep and broad S-wave in V1 
with monophasic broad 

lateral R-waves and negative 

T-waves

LBBB and reduced EF

27 P- and R-axis deviation to 

the left with increasing P- 

and R-wave amplitudes

P- and R-axis deviation to the 

right with decreasing P- and 

R-wave amplitudes

Low QRS voltage, left axis deviation, 

third-degree AV-block, atrial fibrillation, 

atrial flutter, SVT, junctional 
bradycardia, reduced EF, and 1-year 

mortality

30 Shorter QT-interval Longer QT-interval Prolonged QT interval, reduced EF, and 
1-year mortality

31 R-axis deviation to the right Right axis deviation R-axis deviation to the left Left axis deviation, LAFB, and LVH

32 Decreased precordial 
QRS-amplitude

Increased precordial 
QRS-amplitude

LVH

The influence of an ECG factor on median beat ECG morphology is determined using visual inspection of the factor traversals (Figure 2). A summary of the most important 
associations of every ECG factor with conventional ECG measurements, ECG diagnostic statements, reduced EF, and 1-year mortality is obtained by combining results from 
Figures 3, 4, and 5. EF, ejection fraction; LAFB, left anterior fascicular block; LBBB, left bundle branch block; LVH, left ventricular hypertrophy; NICD, non-specific intraventricular 
conduction delay; RBBB, right bundle branch block; RVH, right ventricular hypertrophy; SVT, supraventricular tachycardia, WPW: Wolff-Parkinson-White.
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caused by differences in the population, as the predictive value of just 
age and sex is also lower than in the original paper. We observed that 
the predictors for 1-year mortality are increasing age, higher ven
tricular frequency, negative T-waves, and ST-depression and eleva
tion, and prolonged QT interval, which are all known risk factors 
for mortality.31,32

There are several limitations to acknowledge. Firstly, the algorithm is 
trained on a very large dataset with over 1 million ECGs, but we could 
not account for the imbalance in ECG abnormalities due to the unsuper
vised nature of training. Therefore, less common ECG abnormalities 
might not be accurately encoded, as also demonstrated by the lower 
performance on for example ischaemia classes and lower correlation 
coefficients of the reconstructed ECGs (see Supplementary material 
online, Table S1). Future studies could experiment with balancing the da
taset based on labelled abnormalities and the effect it may have on en
coding rare ECG abnormalities. Secondly, the reduced performance of 
the explainable pipeline in diagnosing low QRS voltage and left ventricu
lar hypertrophy is most likely due to the inability of the VAE to always 
reconstruct the amplitude of the R-wave correctly (see Supplementary 
material online, Table S1). Further research in the field of generative 
models for ECGs is needed to address this limitation and to improve 
the reconstruction quality. Finally, only one DNN architecture was in
vestigated for comparison to a ‘black box’ DNN, which was similar to 
the encoder of the VAE for accurate comparison. As the performance 
of the current architecture is on par with other state-of-the-art models 
for similar tasks in this and other research of our group, we do not ex
pect much gain from other DNN architectures.4,10,22,33,34

Future studies should focus on evaluating the use of inherently ex
plainable pipelines on other ECG tasks, as the dimensionality reduction 
of our algorithm to 21 factors broadens the usability of DNNs greatly to 
much smaller labelled datasets than before. Another important per
spective is using the approach on full 10-s rhythm ECGs, to take add
itional ECG information into account. Rhythm disorders that are not 
visible in the median ECG beat, such as second-degree AV block and 
premature ventricular and atrial complexes, could add interesting infor
mation to the model. Finally, explainability of the current approach is 
hampered by the fact that some of the factors in the current 
FactorECG are still ambiguous and represent multiple ECG changes 
at the same time. Further developments in the field of DNN-based fea
ture generation are needed to better disentangle the ECG factors.

In conclusion, we leveraged a large dataset of over 1 million ECGs 
to train a generative DNN that learned 21 valid underlying anatom
ical and (patho)physiological explanatory factors of variation in 
median beat 12-lead ECG data. We showed that our pipeline is 
not only able to interpret ECGs with highly accurate performance 
on par with ‘black box’ DNNs but also provide improved explainabil
ity on which ECG morphologies were important. These findings 
demonstrate that inherently explainable pipelines should be the fu
ture of ECG interpretation, as they allow reliable clinical interpret
ation of these models without performance reduction, while also 
broadening their applicability to many other (rare) diseases.

Code availability
The decoder for the FactorECG is publicly available at https:// 
decoder.ecgx.ai. Researchers can request the ECG factors for their 

own ECGs using a tool at https://encoder.ecgx.ai. The code for train
ing and evaluating the β-VAE and the black box DNN is available at 
https://github.com/rutgervandeleur/ecgxai.
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