UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

HiRISE - High-Resolution Imaging and Spectroscopy Explorer - Ultrahigh resolution, interferometric and external occulting coronagraphic science

Erdélyi, Robertus; Damé, Luc; Fludra, Andrzej; Mathioudakis, Mihalis; Amari, T; Belucz, B; Berrilli, F; ... Wimmer-Schweingruber, R; + view all (2022) HiRISE - High-Resolution Imaging and Spectroscopy Explorer - Ultrahigh resolution, interferometric and external occulting coronagraphic science. Experimental Astronomy 10.1007/s10686-022-09831-2. (In press). Green open access

[thumbnail of s10686-022-09831-2.pdf]
Preview
PDF
s10686-022-09831-2.pdf - Published Version

Download (1MB) | Preview

Abstract

Recent solar physics missions have shown the definite role of waves and magnetic fields deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically dominant changes occur. HiRISE (High Resolution Imaging and Spectroscopy Explorer), the ambitious new generation ultra-high resolution, interferometric, and coronagraphic, solar physics mission, proposed in response to the ESA Voyage 2050 Call, would address these issues and provide the best-ever and most complete solar observatory, capable of ultra-high spatial, spectral, and temporal resolution observations of the solar atmosphere, from the photosphere to the corona, and of new insights of the solar interior from the core to the photosphere. HiRISE, at the L1 Lagrangian point, would provide meter class FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, magnetic fields measurements, and ambitious and comprehensive coronagraphy by a remote external occulter (two satellites formation flying 375 m apart, with a coronagraph on a chaser satellite). This major and state-of-the-art payload would allow us to characterize temperatures, densities, and velocities in the solar upper chromosphere, transition zone, and inner corona with, in particular, 2D very high resolution multi-spectral imaging-spectroscopy, and, direct coronal magnetic field measurement, thus providing a unique set of tools to understand the structure and onset of coronal heating. HiRISE’s objectives are natural complements to the Parker Solar Probe and Solar Orbiter-type missions. We present the science case for HiRISE which will address: i) the fine structure of the chromosphere-corona interface by 2D spectroscopy in FUV at very high resolution; ii) coronal heating roots in the inner corona by ambitious externally-occulted coronagraphy; iii) resolved and global helioseismology thanks to continuity and stability of observing at the L1 Lagrange point; and iv) solar variability and space climate with, in addition, a global comprehensive view of UV variability.

Type: Article
Title: HiRISE - High-Resolution Imaging and Spectroscopy Explorer - Ultrahigh resolution, interferometric and external occulting coronagraphic science
Open access status: An open access version is available from UCL Discovery
DOI: 10.1007/s10686-022-09831-2
Publisher version: https://doi.org/10.1007/s10686-022-09831-2
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Keywords: Solar physics mission, Ultra-high resolution, Interferometry, Coronagraph, Solar atmosphere, Photosphere, Chromosphere, Corona
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics
URI: https://discovery.ucl.ac.uk/id/eprint/10166169
Downloads since deposit
12Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item