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smouldering multiple myeloma (PANGEA): a retrospective, 
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Summary
Background Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of 
undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or 
bone marrow plasma cell percentage. Current risk stratifications use laboratory measurements at diagnosis and do 
not incorporate time-varying biomarkers. Our goal was to develop a monoclonal gammopathy of undetermined 
significance and smouldering multiple myeloma stratification algorithm that utilised accessible, time-varying 
biomarkers to model risk of progression to multiple myeloma.

Methods In this retrospective, multicohort study, we included patients who were 18 years or older with monoclonal 
gammopathy of undetermined significance or smouldering multiple myeloma. We evaluated several modelling 
approaches for predicting disease progression to multiple myeloma using a training cohort (with patients at Dana-
Farber Cancer Institute, Boston, MA, USA; annotated from Nov, 13, 2019, to April, 13, 2022). We created the 
PANGEA models, which used data on biomarkers (monoclonal protein concentration, free light chain ratio, age, 
creatinine concentration, and bone marrow plasma cell percentage) and haemoglobin trajectories from medical 
records to predict progression from precursor disease to multiple myeloma. The models were validated in 
two independent validation cohorts from National and Kapodistrian University of Athens (Athens, Greece; from 
Jan 26, 2020, to Feb 7, 2022; validation cohort 1), University College London (London, UK; from June 9, 2020, to 
April 10, 2022; validation cohort 1), and Registry of Monoclonal Gammopathies (Czech Republic, Czech Republic; 
Jan 5, 2004, to March 10, 2022; validation cohort 2). We compared the PANGEA models (with bone marrow [BM] 
data and without bone marrow [no BM] data) to current criteria (International Myeloma Working Group [IMWG] 
monoclonal gammopathy of undetermined significance and 20/2/20 smouldering multiple myeloma risk criteria).

Findings We included 6441 patients, 4931 (77%) with monoclonal gammopathy of undetermined significance and 
1510 (23%) with smouldering multiple myeloma. 3430 (53%) of 6441 participants were female. The PANGEA model 
(BM) improved prediction of progression from smouldering multiple myeloma to multiple myeloma compared with 
the 20/2/20 model, with a C-statistic increase from 0·533 (0·480–0·709) to 0·756 (0·629–0·785) at patient visit 1 to 
the clinic, 0·613 (0·504–0·704) to 0·720 (0·592–0·775) at visit 2, and 0·637 (0·386–0·841) to 0·756 (0·547–0·830) at 
visit three in validation cohort 1. The PANGEA model (no BM) improved prediction of smouldering multiple myeloma 
progression to multiple myeloma compared with the 20/2/20 model with a C-statistic increase from 
0·534 (0·501–0·672) to 0·692 (0·614–0·736) at visit 1, 0·573 (0·518–0·647) to 0·693 (0·605–0·734) at visit 2, and 
0·560 (0·497–0·645) to 0·692 (0·570–0·708) at visit 3 in validation cohort 1. The PANGEA models improved 
prediction of monoclonal gammopathy of undetermined significance progression to multiple myeloma compared 
with the IMWG rolling model at visit 1 in validation cohort 2, with C-statistics increases from 0·640 (0·518–0·718) to 
0·729 (0·643–0·941) for the PANGEA model (BM) and 0·670 (0·523–0·729) to 0·879 (0·586–0·938) for the PANGEA 
model (no BM).

Interpretation Use of the PANGEA models in clinical practice will allow patients with precursor disease to receive 
more accurate measures of their risk of progression to multiple myeloma, thus prompting for more appropriate 
treatment strategies.
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Introduction
Multiple myeloma is often preceded by two precursor 
conditions, monoclonal gammopathy of undetermined 
significance and smouldering multiple myeloma, with 
current diagnostic criteria differentiating these from 
symptomatic multiple myeloma,1–4 as defined by SLiM-
CRAB guidelines: clonal bone marrow plasma cells 
greater than or equal to 60%; serum free light chain 
(FLC) ratio greater than or equal to 100, provided involved 
FLC level is 100 mg/L or higher; more than one focal 
lesion on MRI; hypercalcaemia; renal failure; anaemia; 
and bone lesions.5 Various criteria have been developed 
to stratify patients with precursor disease into risk groups 
based on predicted probability of progression to multiple 
myeloma and to identify which patients might benefit 
from early intervention. The Mayo criteria stratify 
patients with smouldering multiple myeloma into risk 
categories depending on no risk factors (low-risk), one 
risk factor (intermediate-risk), or two or more risk factors 
(high-risk), which include a free light chain (FLC) ratio of 
more than 20, a monoclonal protein concentration of 
more than 2·0 g/dL, and a bone marrow plasma cell 
percentage (BMPC%) of more than 20%.6 This 
20/2/20 stratification system was updated by the 
International Myeloma Working Group (IMWG) to 
include the fluorescence in-situ hybridisation (FISH) 
results of t(4;14), t(14;16), gain(1q), and del(13/13q).7 These 
models are applied at precursor diagnosis and rely on 
discrete cutoffs despite inherent variation in biomarkers 
throughout disease monitoring.8,9 Consequently, the 
models are rarely used to restratify patients according to 
evolving laboratory findings,8,9 despite improvements to 
the ability of the 20/2/20 model to prognosticate when 
applied at discrete timepoints after diagnosis.10

Current risk stratification criteria are also limited by 
variation in the availability and measurement of bone 
marrow biomarkers. Smouldering multiple myeloma 
progression risk is often estimated using BMPC%, and 
the arbitrary cutoff of 10% BMPC is used to dichotomise 
monoclonal gammopathy of undetermined significance 
and smouldering multiple myeloma. However, the use of 
discrete BMPC% categories is limited by heterogeneity of 
the involved marrow, an absence of early-stage biopsies, 
and heterogeneous interpretations by pathologists.11,12 
Previous studies have shown that some rates of change of 
biomarkers more accurately predict progression than a 
discrete value at a single timepoint. For example, evolving 
M-protein (monoclonal protein) and haemoglobin con
centrations were independent predictors of progression 
within 2 years for patients with smouldering multiple 
myeloma.13 Also, Markov models of longitudinal data 
enhance predictions of myeloproliferative disease 
progression.14 These studies suggest a need for the 
development and validation of prediction models that 
incorporate time-varying biomarkers to update risk 
throughout precursor evolution and to prognosticate time 
to progression, particularly for haematological diseases 
that rely heavily on longitudinal serum measurements.

To address this need, we developed the Precursor 
Asymptomatic Neoplasms by Group Effort Analysis 
(PANGEA) model, which uses time-varying clinical 
biomarkers to model how precursor progression risk to 
multiple myeloma evolves for a single patient over time, 
both with and without bone marrow biopsies. We 
assembled a cohort of patients with monoclonal gammo
pathy of undetermined significance and patients with 
smouldering multiple myeloma with serial laboratory 
measurements and we developed multivariate Cox models 

Research in context

Evidence before this study
Prediction models are used to predict future outcomes through 
the analysis of large datasets. We searched for evidence of 
time-varying prediction models in precursor disease through 
PubMed, Google Scholar, and MEDLINE from database 
inception to April 31, 2022, in the English language. Terms 
included in this search were “monoclonal gammopathy of 
undetermined significance”, “MGUS”, “smoldering multiple 
myeloma”, “SMM”, “multiple myeloma”, “progression”, 
“prediction”, and “modeling”. Results included primarily 
analyses of current standard risk criteria for precursor disease 
progression. There were no prediction models that used 
multivariable, time-varying biomarkers to predict the risk of 
precursor disease progression to multiple myeloma.

Added value of this study
The PANGEA project is, to our knowledge, the largest 
international project of time-varying biomarker data on 
patients with precursors to multiple myeloma. Our findings 

show that the PANGEA models are more accurate than current 
precursor progression risk criteria including the International 
Myeloma Working Group (IMWG) risk stratification for 
monoclonal gammopathy of undetermined significance and 
the 20/2/20 risk stratification for smouldering multiple 
myeloma. These accuracy improvements were also 
demonstrated in large, independent validation cohorts.

Implications of all the available evidence
The improved accuracy of the PANGEA models over current risk 
criteria suggests that models that incorporate dynamic 
measurements of myeloma-specific parameters can improve 
clinician’s ability to make therapeutic decisions for individual 
patients. The PANGEA models can be directly accessed in clinic 
and are appropriate replacements of the IMWG risk 
stratification criteria for patients with monoclonal 
gammopathy of undetermined significance and 20/2/20 risk 
criteria for patients with smouldering multiple myeloma.
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with time-varying patient profiles to predict precursor 
progression to multiple myeloma. Our hypothesis is that 
disease progression from monoclonal gammopathy of 
undetermined significance or smouldering multiple 
myeloma to overt multiple myeloma can be anticipated by 
trends in clinical values that are associated with clonal 
proliferation and that modelling these changes can 
improve predictions of progression risk. We strove to 
develop models with commonly available biomarkers to 
allow for broad clinical application, and we validated these 
models in two independent cohorts. This validation 
illustrates that both PANGEA models (with [BM] and 
without bone marrow biopsy [no BM]) outperform the 
prediction accuracy of previous models in multiple 
cohorts. Finally, we provide an online calculator imple
menting the PANGEA model that allows clinicians and 
patients to assess individual risk of progression and 
consider early therapeutic interceptions.

Methods
Study design
In this retrospective, multicohort study, we included an 
international cohort of patients with precursor disease to 
multiple myeloma with serial clinical and biological 
variables. Patients were identified retrospectively at 
oncology centres (Dana-Farber Cancer Institute [DFCI; 
Boston, MA, USA], National and Kapodistrian University 
of Athens [Athens, Greece], University College London 
[UCL; London, UK]), and the cancer group Registry of 
Monoclonal Gammopathies (RMG; Czech Republic).

This study was approved by the DFCI Institutional 
Review Board (21–127) and done in accordance with the 
Declaration of Helsinki. Consent was waived due to the 
non-invasive nature of this research.

Participants
The PANGEA project included patients with smouldering 
multiple myeloma and monoclonal gammopathy of 
undetermined significance within three independent 
cohorts: the training cohort, which included patients at 
DFCI (annotated from Nov 13, 2019, to April 13, 2022); the 
validation cohort 1, which included patients at University 
of Athens (annotated from Jan 26, 2020, to Feb 7, 2022) 
and patients at UCL (annotated from May 9, 2020, to 
April 10, 2022); and validation cohort 2, which included 
patients at RMG (annotated from May 1, 2004, to 
March 10, 2022. For more information on the cohorts see 
appendix (p 1).

Patients from all four sites were eligible for inclusion if 
aged 18 years or older, diagnosed with non-IgM 
monoclonal gammopathy of undetermined significance 
or smouldering multiple myeloma by the IMWG criteria. 
Patients diagnosed with overt multiple myeloma at 
diagnosis were excluded from analysis, and patients 
treated with therapy during their precursor disease 
course were censored at treatment start dates. Patients 
were included in analysis until the date of progression 

per SLiM-CRAB criteria, death, or initiation of treatment. 
In all three cohorts, patients were selected for analysis 
from tissue-banking and retrospective monitoring trials 
for precursor disease states.

Procedures
The time of diagnosis and the first visit (visit 1) coincided 
in all cohorts (ie, the average time between date of 
original diagnosis and visit 1 was 0 months for  training 
cohort, validation cohort 1, and validation cohort 2).

We retrieved patient information for total protein, IgA 
via nephelometry, IgM, IgG, κ-free light chain (FLC) 
and λ-FLC via Optilite (Binding Site, Birmingham, UK), 
FLC ratio (involved and uninvolved), calcium, creatinine, 
albumin, haemoglobin, lactate dehydrogenase, β2-
microglobulin, M-protein, and bodyweight from medical 
records. Serial values were annotated on average 
at 5 (IQR 3–8) month time intervals from the date of 
monoclonal gammopathy of undetermined significance 
or smouldering multiple myeloma diagnosis, censoring 
at the date of progression to active multiple myeloma, last 
follow-up, initiation of precursor treatment, or death. We 
also retrieved data on gender, race, ethnicity, age at 
diagnosis, height, progression, survival status, immuno
fixation isotype, and bisphosphonate use. For all bone 
marrow biopsies, plasma cell percentages were collected 
from core biopsy samples and FISH results from bone 
marrow aspirates (appendix p 4).

We built the PANGEA model, a multivariate Cox 
regression with time-varying biomarkers, by selecting 
clinically significant predictors of progression (age, FLC 
ratio, M spike in g/dL, creatinine in mg/dL, and BMPC%) 
identified using the training cohort. FLC ratio and 
creatinine concentration were log-transformed to reduce 
outlier effect. We also evaluated whether biomarker 
trends correlated with the progression risk and selected 
decreasing haemoglobin concentration as a categorical 
trend variable (appendix p 3). We compared the predictive 
accuracy of this model with those created through 
backward selection and Bayes information criterion and 
selected the most accurate model containing the least 
redundancy.

We developed two versions of the PANGEA model (BM 
and no BM). Our final Cox model (named the PANGEA 
model [BM]) included age, FLC ratio, M spike concen
tration in g/dL, creatinine concentration in mg/dL, 
BMPC%, and the haemoglobin trajectory variable 
(appendix p 14). We then eliminated all biomarkers that 
require a bone marrow biopsy and repeated the modelling 
process (the PANGEA model [no BM]) with four 
continuous predictors (age, FLC ratio, M spike con
centration in g/dL, and creatinine concentration in 
mg/dL, and haemoglobin trajectory; appendix p 14). The 
models assume that the hazard of progression to multiple 
myeloma is a linear function that only depends on a 
patient’s clinical profile and is conditional on expected 
time to death.

See Online for appendix
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We developed a web application that allows input of 
patient variables of the PANGEA model (BM and no BM) 
using the Shiny R package (1.7.1). The resulting PANGEA 
app outputs a patient’s risk of progression using these 
biomarkers (monoclonal protein, involved over 
uninvolved FLC ratio, creatinine, haemoglobin trajectory, 
and age; appendix p 5). Alternatively, if bone marrow 
data is not available, users can enter all other variables, 
and patient progression risk will be evaluated using the 
PANGEA (no BM) model. If longitudinal measurements 
are available, users can enter variables at multiple time 
points.

The main outcome measure, time to progression, was 
defined as the time from precursor disease diagnosis per 
IMWG criteria4 to multiple myeloma diagnosis per SLiM-
CRAB5 criteria.

Statistical analysis
We used bootstrapping and calibration analyses 
(appendix pp 16, 21) and Schoenfeld tests, residual plots, 
and splines of predictors (appendix pp 11, 19–20) to assess 
the PANGEA models. R (version 4.2.0) was used for all 
statistical analyses. The average number of timepoints for 
validation cohort 1 was six and for validation cohort 2 was 
one; thus, we used validation cohort 1 to validate how the 
PANGEA model performed for patients with follow-up 
and validation cohort 2 to validate how the PANGEA 
model performed at diagnosis (visit 1). When comparing 
the PANGEA model with the current risk stratification 
criteria, application of the IMWG4 or 20/2/206 criteria as 
binary cutoffs at diagnosis will be referred to as the 
baseline model and restratification by these criteria as 
discrete variables over time will be referred to as the rolling 
model. Subcohorts of patients with smouldering multiple 
myeloma from validation cohort 1 and validation cohort 2 
were used for comparative analyses against the baseline 
and rolling 20/2/20 models. A subcohort of patients with 
monoclonal gammopathy of undetermined significance 
from validation cohort 2 was used for comparative analyses 
against the baseline and rolling IMWG models.

The C-statistic is a standard metric used to compare 
prediction models. A C-statistic of 0⋅5 indicates that 
the model performs no better than random chance and 
a C-statistic of 1 indicates perfect prediction. For 
the PANGEA models, we computed C-statistics for 
visits 1, 2, and 3 for validation cohort 1 and at visit 1 for 
validation cohort 2. For the baseline models, we fit a Cox 
model in the training cohort to estimate the hazard ratios 
(HRs) for risk groups and computed the Cox linear 
combination of predictor and C-statistics in the validation 
cohorts. For the rolling models, we fit a time-varying Cox 
model in the training cohort to estimate HRs and 
computed the C-statistics at visits 1, 2, and 3 in validation 
cohort 1. The C-statistic estimates for validation cohort 1 
and validation cohort 2 are representative of model 
accuracy in two cohorts independent from the training 
cohort used for developing the PANGEA models.

To visualise the time to progression for the validation 
cohorts, we divided patients into quartiles (low, 
intermediate-low, intermediate-high, and high risk) based 
on their predicted risk from the PANGEA models. This 
discretisation is only used when needed for graphical 
summaries and for comparisons with models that define 
risk groups. We visualised these groups using Kaplan-
Meier curves for time to progression or death (with 
patients censored at treatment). In these analyses, we 
included patients who qualified for the PANGEA models 
by having all necessary biomarker values available at the 
visit of interest.

Total (n=6441) Training cohort 
(n=1217)

Validation 
cohort 1 (n=642) 

Validation 
cohort 2 
(n=4582)

Age at initial diagnosis, 
years 

64·22 
(19·52– 94·00)

62·00 
(22·00–94·00)

64·00 
(28·50–89·09)

65·21 
(19·52–93·77)

Missing 42 (1%) 0 0 42 (1%)

Clinical laboratory visits 7 (1–40) 7 (1–40) 6 (1–40) 1 (1–1)

Interval between visits, 
months

5 (0–140) 6 (0–140) 5 (0–103) 5 (0–112)

Sex

Female 3430 (53%) 642 (53%) 374 (58%) 2414 (53%)

Male 3009 (47%) 575 (47%) 266 (41%) 2168 (47%)

Missing 2 (0%) 0 2 (0%) 0

Race

White 1575 (24%) 992 (82%) 583 (91%) 0

Black or African 
American

156 (2%) 137 (11%) 19 (3%) 0

Asian 45 (1%) 28 (2%) 17 (3%) 0

Multiple 7 (0%) 6 (0%) 1 (0%) 0

Declined 9 (0%) 8 (1%) 1 (0%) 0

Other 37 (1%) 26 (2%) 11 (2%) 0

Missing 4612 (72%) 20 (2%) 10 (2%) 4582 (100%)

Ethnicity

Declined 8 (0%) 8 (1%) 0 0

Not Hispanic or Latino 1053 (16%) 1052 (86%) 1 (0%) 0

Hispanic or Latino 54 (1%) 54 (4%) 0 0

Missing 5326 (83%) 103 (8%) 641 (100%) 4582 (100%)

Original diagnosis

Monoclonal 
gammopathy of 
undetermined 
significance

4931 (77%) 715 (59%) 143 (22%) 4073 (89%)

Smouldering multiple 
myeloma

1510 (23%) 502 (41%) 499 (78%) 509 (11%)

Progression to smouldering multiple myeloma

Not progressed to   
smoldering multiple 
myeloma

4520 (70%) 437 (36%) 138 (21%) 3945 (86%)

Progressed to 
smouldering multiple 
myeloma

411 (6%) 278 (23%) 5 (1%) 128 (3%)

Smouldering multiple 
myeloma as original 
diagnosis

1510 (23%) 502 (41%) 499 (78%) 509 (11%)

(Table 1 continues on next page)

For the PANGEA app see 
www.pangeamodels.org

http://www.pangeamodels.org
http://www.pangeamodels.org
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We explored whether FISH biomarkers could provide 
additional prediction improvements to the PANGEA 
model (BM). Due to the frequent absence or failure of 
FISH testing and the rarity of some cytogenetic alterations, 
our training cohort was of small size. Therefore, we 
selected patients with one or more successful FISH panels 
and corresponding laboratory datasets, resulting in a 
subcohort of patients (appendix pp 8–9). We built the 
PANGEA model (FISH) by selecting significant predictors.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
The training cohort comprised 1217 patients (715 with 
monoclonal gammopathy of undetermined significance 
and 502 with smouldering multiple myeloma, with 
172 progressing to multiple myeloma); validation cohort 1 
comprised 533 patients (143 with monoclonal gammo
pathy of undetermined significance and 390 with 
smouldering multiple myeloma, with 112 progressing to 
multiple myeloma) at University of Athens and 
109 patients with smouldering multiple myeloma (with 
31 progressing to multiple myeloma) at UCL; and 
validation cohort 2 comprised 4582 (4073 monoclonal 
gammopathy of undetermined significance and 
509 smouldering multiple myeloma, with 745 progressing 
to multiple myeloma) at RMG (table 1, figure 1). The 
distribution of biomarkers within the training cohort is 
summarised across 20/2/20 risk groups (appendix p 7). 
The median number of timepoints (clinic visits) was 
seven (range one to 40) for the training cohort, six (range 
one to 40) for the validation cohort 1, and one (range one 
to one) for validation cohort 2. The median follow-up time 
was 4⋅2 (IQR 0·0–30·5) years for the training cohort, 
2⋅9 (IQR 0·0–21·4) years for the validation cohort 1, and 
3⋅6 (IQR 0·0–73·9) years for validation cohort 2. 
Validation cohort 1 had a similar progression proportion 
(2·23% [95% CI 1·19–3·79]), defined as the proportion 
of patients who progressed to multiple myeloma 
within three clinical visits, to the training cohort 
(2·18% [1·35–3·10]), whereas validation cohort 2 had a 
lower proportion of those who had disease progression 
(0·11% [0·03–0·28]).

Variations in accuracy between the three modelling 
processes (significant predictor selection, backward 
selection, and Bayes information criterion), as measured 
by C-statistics, were less than 2%. All variables selected 
for these models were identical except for the PANGEA 
model (no BM) produced by Bayes information criterion, 
which incorporated albumin and isotype. We selected the 
significant predictor model due to its accuracy and 
succinctness.

FLC ratio, M-spike concentration, age, creatinine 
concentration, BMPC%, and haemoglobin trajectory 

were used in the PANGEA model (BM; figure 2; 
appendix p 14). Decreases in haemoglobin levels 
were significantly associated with increased risk. 
Although there was an expected average difference in 
baseline haemoglobin concentrations between male 
(mean 14·4 [SD 14·5 to 14·6] g/dL) and female 
(12·9 [12·8 to 13·0] g/dL; p<0·0001 for patients who did 
not progress to multiple myeloma) patients, there was no 
significant difference in the rate of change in 
haemoglobin concentration between male (point 
estimate –0·24 [SD –0·22 to –0·26] g/dL per year) and 
female patients (–0·24 [–0·22 to –0·26] g/dL per year; 
p=0·83 for the training cohort. Similar results were 
observed in validation cohort 1 and validation cohort 2 
(appendix p 15). 

The PANGEA model (no BM) included haemoglobin 
trajectory, FLC ratio, M spike concentration, age, and 
creatinine concentration as significant progression 
predictors (appendix p 14). Total protein, κ-FLC or λ-FLC, 
calcium (corrected for albumin) concentration, LDH, and 
β2-microglobulin concentrations, and bisphosphonate 
use, family history of haematological malignancy, time 
with disease, race, ethnicity, and sex were not significant 
indicators of disease progression.

The PANGEA model improved prediction of 
smouldering multiple myeloma progression to multiple 
myeloma compared with both 20/2/20 models (baseline 
and rolling) in validation cohort 1 and validation 
cohort 2, as indicated by a C-statistic increase of more 
than 10% (table 2). The PANGEA (BM) model had an 
increase in C-statistic from the baseline model of 
42% (from 0·533 [95% CIs 0·480–0·709] to 

Total (n=6441) Training cohort 
(n=1217)

Validation 
cohort 1 (n=642)

Validation 
cohort 2 
(n=4582)

(Continued from previous page)

Progression to multiple myeloma

Not progressed to 
multiple myeloma

5381 (84%) 1045 (86%) 499 (78%) 3837 (84%)

Progressed to multiple 
myeloma

1060 (16%) 172 (14%) 143 (22%) 745 (16%)

Immunofixation

IgG 4908 (76%) 882 (72%) 462 (72%) 3564 (78%)

IgA 1127 (17%) 232 (19%) 149 (23%) 746 (16%)

Light chain only 179 (3%) 75 (6%) 14 (2%) 90 (2%)

Biclonal 34 (1%) 21 (2%) 9 (1%) 4 (0%)

Missing 193 (3%) 7 (1%) 8 (1%) 178 (4%)

Died

No 5080 (79%) 1133 (93%) 569 (89%) 3405 (74%)

Yes 1334 (21%) 84 (7%) 73 (11%) 1177 (26%)

Censored for treatment

Yes 229 (4%) 222 (18%) 6 (1%) 1 (0%)

No 1370 (21%) 995 (82%) 636 (99%) 4581 (0%)

Data are in n (%) or median (range).

Table 1: Patient demographics of training and validation cohorts of the PANGEA project
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0·756 [0·629–0·785]) and an increase of 18% from the 
rolling model (from 0·613 [0·504–0·704] to 
0·720 [0·592–0·775] at visit two and from 
0·637 [0·386–0·841] to 0·756 [0·547–0·830] at visit three) 
in validation cohort 1 (table 2). Similarly, the PANGEA 
(no BM) model showed a 30% increase (from 
0·534 [0·501–0·672] to 0·692 [0·614–0·736]) in C-statistic 
compared with the baseline model and an average 
increase of 22% (from 0·573 [0·518–0·647] to 
0·693 [0·605–0·734] at visit two and from 0·560 
[0·497–0·645] to 0·692 [0·570–0·708] at visit three) 
compared with the rolling model in validation cohort 1 
(table 2). For validation cohort 2, there was a 
22% (from 0·502 [0·482–0·604]  to 0·610 [0·525–0·931]) 
increase in the PANGEA model (BM) and 45% (from 
0·492 [0·460–0·561] to 0·714 [0·589–0·933]) increase in 
the PANGEA model (no BM) in C-statistic compared 
with the baseline model (table 2).

The PANGEA models outperformed the rolling IMWG 
model for patients with monoclonal gammopathy of 
undetermined significance with improvements of 24% 
(from 0·640 [0·518–0·718] to 0·729 [0·643–0·941]), 
C-statistics from the PANGEA model (BM), and 31% 
(from 0·670 [0·523–0·729] to 0·879 [0·586–0·938]) from 
the PANGEA model (no BM) in validation cohort 2 
(appendix p 10). 

The PANGEA models improved output probabilities of 
progression for individual patients with smouldering 
multiple myeloma in validation cohort 1 and validation 
cohort 2 and patients with monoclonal gammopathy of 
undetermined significance in validation cohort 2 
(figure 3; appendix p 17) when they were artificially 
stratified into high, high-intermediate, low-intermediate, 
and low progression risk groups. We compared the 
predicted risk groups in validation cohort 1, and 
58% of patients with smouldering multiple myeloma 

who eventually had progression to multiple myeloma 
were reclassified from a 20/2/20 intermediate-risk or 
low-risk category into a PANGEA (BM) high-risk category 
(figure 3B). Furthermore, patients who did not have 
progression to multiple myeloma were often classified 
with lower risks than those who do progress 
(figure 3A, 3C). Similarly, 43% of patients with mono
clonal gammopathy of undetermined significance who 
eventually had progression to multiple myeloma were 
reclassified from a IMWG lower risk category into a 
PANGEA model (BM) high-risk category (appendix p 17).

Currently, bone marrow biopsies are the primary source 
of genomic information available from the clinic. Because 
genomic aberrations have a crucial role in precursor 
progression,15,16 we expanded the PANGEA model (BM) to 
include FISH covariates. The resulting PANGEA model 
(FISH) used the significant predictors of age, FLC ratio, 
M spike concentration, creatinine concentration, BMPC%, 
del(17/17p), gain(1q), del(13/13q), and haemoglobin 
trajectory (appendix p 18). We also identified MYC 
rearrangement (8q24) as a significant covariate in a 
subcohort of 957 patients from the training cohort and 
validation cohort 1 who were tested for this translocation 
(appendix pp 8–9). The significance of FISH biomarkers 
suggests potential for further improvements to the 
PANGEA model when additional datasets for validation 
become available.

Discussion
The study of precursor disease created stratification 
systems, which identify patients at the highest risk of 
progression to multiple myeloma. However, current 
monoclonal gammopathy of undetermined significance 
and smouldering multiple myeloma progression 
prediction algorithms stratify patients into risk groups 
using baseline measurements rather than time-varying 

Figure 1: Patient flow in the training and validation cohorts of the PANGEA project

1217 in training cohort (Dana-Farber Cancer Institute) 5224 in validation cohort

642 in validation cohort 1 (University of Athens and  
University College London)

4582 in validation cohort 2 (Registry of Monoclonal 
Gammopathies)

715 originally diagnosed 
with monoclonal 
gammopathy of 
undetermined 
significance

502 originally diagnosed 
with smouldering 
multiple myeloma

143 originally diagnosed 
with monoclonal 
gammopathy of 
undetermined 
significance

499 originally diagnosed 
with smouldering 
multiple myeloma

4073 originally diagnosed 
with monoclonal 
gammopathy of 
undetermined 
significance

509 originally diagnosed 
with smouldering 
multiple myeloma

277 included without a 
bone marrow biopsy

940 included with a bone 
marrow biopsy

46 included without a bone 
marrow biopsy

596 included with a bone 
marrow biopsy

3409 included without a 
bone marrow biopsy

1173 included with a bone 
marrow biopsy
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Figure 2: Time to progression 
predictions from precursor 
disease
In validation cohort 1 
using (A) PANGEA (no BM) 
model (visit 1, n=70; 
visit 2, n=97; visit 3, n=89) 
and (B) PANGEA (BM) model 
(visit 1, n=61; visit 2, n=77; 
visit 3, n=72). In validation 
cohort 2 using (C) PANGEA 
(BM) model (n=173) and 
(D) PANGEA (no BM) model 
(n=636) at visit 1. PANGEA 
(BM)=PANGEA model with 
bone marrow biopsy. PANGEA 
(no BM)=PANGEA model 
without bone marrow biopsy 
RMG=Registry of Monoclonal 
Gammopathies.
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biomarkers. Leading models, such as the 20/2/20 model6 
and the PETHEMA criteria,17 do not align on which 
patients classify as at high risk.18 Discordant definitions 
of disease risk and an inability to update this risk over 
time have led to differences in clinical trial inclusion and 
treatment strategies for patients with precursor multiple 
myeloma. Large, new datasets of patients offer 
opportunities to evaluate progression risk with statistical 
models and to translate time-varying biomarkers into 
predictions that support clinical decisions.

We assembled a cohort of patients with precursor 
multiple myeloma with extensive longitudinal data to 
develop the PANGEA models, multivariate Cox 
regressions that use widely available, time-varying 
biomarkers with and without bone marrow data, to 
improve predictions of individual patients’ progression 
risk. The PANGEA models incorporate clinical variables 
beyond typical measures of tumour burden, including 
creatinine concentration, age, and haemoglobin concen
tration, in addition to those in the 20/2/20 criteria (M spike 
concentration, FLC ratio, and BMPC%). The parameters 
of the PANGEA models are concordant with recent 
research that found that decreasing haemoglobin is an 
independent predictor of smouldering multiple myeloma 
progression to multiple myeloma19 and decreased renal 
function at precursor diagnosis is associated with worse 
outcomes.20 Research has also shown that incidences of 
monoclonal gammopathy of undetermined significance, 
smouldering multiple myeloma, and multiple myeloma 
increase with age;2 the PANGEA models capture this 
distinction by incorporating an age variable. Additionally, 
dynamic assessment of risk was suggested by Blade and 
collegues21 as early as 1989 and, more recently, shown by 
the Mayo group with improvements to the 20/2/20 
model’s ability to prognosticate when reapplied after 
diagnosis.10 However, most of these studies have been 
small relative to the PANGEA project, have failed to 
include time-varying biomarkers, and have not been 
validated in external cohorts.6,7

A crucial difference between PANGEA and the 20/2/20 
risk criteria is that the PANGEA models provide patient-

Figure 3: Risk stratification of the PANGEA models compared with the rolling 20/2/20 model in the validation 
cohorts at visit 1
(A) All patients using the PANGEA model (BM). (B) All patients who had progression to multiple myeloma using 
the PANGEA model (BM). (C) All patients using the PANGEA (no BM) model. (D) Patients who had progression to 
multiple myeloma using the PANGEA (no BM) model. PANGEA (BM)=PANGEA model with bone marrow biopsy. 
PANGEA (no BM)=PANGEA model without bone marrow biopsy. Rolling model=20/2/20 criteria with 
restratification by these criteria as discrete variables over time.
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Validation cohort 1, 
visit 1

0·534 
(0·501–0·672)

0·533 
(0·480–0·709)

0·625  
(0·526–0·649)

0·669 
(0·537–0·696)

0·692  
(0·614–0·736)

0·756 
(0·629–0·785)

Validation cohort 1, 
visit 2

·· ·· 0·573  
(0·518–0·647)

0·613  
(0·504–0·704)

0·693  
(0·605–0·734)

0·720 
(0·592–0·775)

Validation cohort 1, 
visit 3

·· ·· 0·560  
(0·497–0·645)

0·637 
(0·386–0·841)

0·692  
(0·570–0·708)

0·756 
(0·547–0·830)

Validation cohort 2 
visit 1

0·492 
(0·460–0·561) 

0·502 
(0·482–0·604)

0·492  
(0·472–0·536)

0·502  
(0·472–0·568)

0·714  
(0·589–0·933)

0·610 
(0·525–0·931)

Data shown are C-statistic (95% CI), as tested in patients with smouldering multiple myeloma from validation cohort 1 and validation cohort 2. Bootstrapping is shown on 
appendix (p 16).

Table 2: Performance of the PANGEA models compared with the baseline and rolling 20/2/20 models in patients with smouldering multiple myeloma
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specific probabilities of progression. PANGEA allows for 
improved prognostication, as validation analyses showed 
a relative precision improvement over current risk 
criteria. When models are applied to the same cohort, 
C-statistics allowed for direct comparison of predictive 
accuracy. Analysis of the PANGEA model compared with 
the baseline and rolling 20/2/20 models for patients with 
smouldering multiple myeloma and the rolling IMWG 
for patients with monoclonal gammopathy of undeter
mined significance all showed changes in C-statistic of 
greater than 10%. This increase in C-statistic was 
validated by early identification of patients who later 
progressed to overt multiple myeloma, with 58% of 
progressors identified as high risk by the PANGEA 
model and not by the rolling 20/2/20 model (figure 3). 
Our comparisons to alternative stratification models 
highlight that the PANGEA models are clinically 
appropriate, improve prediction accuracy, and capture 
changes in disease risk after diagnosis.

A crucial goal of this project was to identify the role of 
bone marrow biopsies in risk prediction. Despite the 
reliance of current stratification models on BMPC%, many 
patients with precursors to multiple myeloma do not 
regularly undergo bone marrow biopsies or forgo them 
altogether. These patients cannot be adequately assessed 
by risk criteria that rely on BMPC%. The PANGEA model 
(no BM) shows that progression risk can be accurately 
estimated with trends in serum biomarkers. Specifically, 
both PANGEA models (BM and no BM) outperform the 
baseline and dynamic models for the IMWG monoclonal 
gammopathy of undetermined significance and 
20/2/20 smouldering multiple myeloma criteria 
(appendix p 10, table 2). These data suggest that variables 
derived from bone marrow biopsies are not required to 
accurately determine progression risk. When bone marrow 
biopsy data are no longer required and with considerable 
biological overlap between monoclonal gammopathy of 
undetermined significance and smouldering multiple 
myeloma,15,16,22,23 predictions models that consider these 
precursor conditions together are advantageous. With this 
approach, we foresee a transition from coarse, discrete 
risk groups (monoclonal gammopathy of undetermined 
significance vs smouldering multiple myeloma risk 
groups) to a granular spectrum of the precursor population 
at the individual level. Regardless of a patient’s bone 
marrow status, the PANGEA model can be used via the 
online PANGEA app to easily calculate progression risk of 
all precursor patients.

Genomic and epigenetic factors that lead to multiple 
myeloma progression are also a crucial part of a patient’s 
progression risk.15,16,24 Studies have shown that mono
clonal gammopathy of undetermined significance and 
smouldering multiple myeloma clones already harbour 
chromosomal alterations and that progression to multiple 
myeloma is due to the expansion of clones that are 
present in early disease stages.24–26 We built the PANGEA 
model (FISH), which incorporated sequential cytogenetic 

data in personalised risk prediction. The PANGEA model 
(FISH) is novel in that it examines changes in cytogenetic 
alterations when providing probabilities of disease 
progression. The PANGEA model (FISH) model shows 
the predictive value of FISH variables and suggests that 
previously imperceptible clonal tumour evolution might 
be approximated by clinical cytogenetic results; however, 
future studies are required to evaluate this model in 
independent datasets.

Together, PANGEA is a three-tiered model (BM, no BM, 
and FISH), which can take advantage of complex clinical 
tests or be readily available for patients with few data. 
FISH and bone marrow biopsies were included in our 
analysis because we acknowledge that both physicians 
and patients will continue to request them; however, 
patients without bone marrow biopsies and FISH results 
can receive accurate risk predictions with the PANGEA 
model (no BM) as it also outperforms existing models.

The PANGEA models are inherently limited by the 
selected variables and modelling process, our prioriti
sation for model simplicity and interpretability, and our 
assumptions on proportional hazards and non-informative 
censoring. Larger datasets, advanced machine-learning, 
and extended validation cohorts have the potential to 
improve accuracy in the future. We plan to evaluate 
circulating tumour cells, cell-free DNA, immune variables, 
and other biomarkers to refine risk stratification. We also 
aim to use prospective cohorts for further validation and 
we look forward to ethically including more patients with 
precursors to multiple myeloma who identify as African 
American—a population with increased prevalence of 
precursor conditions. The hope is that the PANGEA 
models dramatically improve how clinicians can inform 
patients of their personalised risk of developing myeloma 
and aid decision making for early therapeutic interception, 
particularly when recommending follow-up testing to 
monitor time-varying biomarkers. The PANGEA model is 
freely accessible, using continuous variables available in 
all clinical settings, enabling its use at both the individual 
patient level and in clinical trials for the rapid development 
of therapeutic interventions.
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