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Abstract—With the increasing demand of high data rate and
massive access in both ultra-dense and industrial Internet-of-
things networks, spectral efficiency (SE) and energy efficiency
(EE) are regarded as two important and inter-related perfor-
mance metrics for future networks. In this paper, we investigate
a novel integration of rate-splitting multiple access (RSMA) and
reconfigurable intelligent surface (RIS) into cellular systems to
achieve a desirable tradeoff between SE and EE. Different from
the commonly used passive RIS, we adopt reflection elements with
active load to improve a newly defined metric, called resource
efficiency (RE), which is capable of striking a balance between
SE and EE. This paper focuses on the RE optimization by jointly
designing the base station (BS) transmit precoding and RIS beam-
forming (BF) while guaranteeing the transmit and forward power
budgets of the BS and RIS, respectively. To efficiently tackle the
challenges for solving the RE maximization problem due to its
fractional objective function, coupled optimization variables, and
discrete coefficient constraint, the formulated nonconvex problem
is solved by proposing a two-stage optimization framework. For
the outer stage problem, a quadratic transformation is used
to recast the fractional objective into a linear form, and a
closed-form solution is obtained by using auxiliary variables. For
the inner stage problem, the system sum rate is approximated
into a linear function. Then, an alternating optimization (AO)
algorithm is proposed to optimize the BS precoding and RIS BF
iteratively, by utilizing the penalty dual decomposition (PDD)
method. Simulation results demonstrate the superiority of the
proposed design compared to other benchmarks.
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I. INTRODUCTION

Rate-splitting multiple access (RSMA) technique has been
considered as a powerful multiple access strategy and inter-
ference management technique for the sixth generation (6G)
wireless networks [1]. Particularly, the RSMA technique was
firstly introduced in [2], which creatively separates the user
messages into common and private parts, and encodes the
former into common stream while encoding the latter into
separate streams. Then, in [3] and [4], the authors utilized
the RSMA in multiuser multiple-input single-output (MISO)
networks and massive multiple-input multiple-output (MIMO)
channels, respectively. The results of the above works con-
firmed that RSMA is a promising technique to reduce the
inter-user interference and enhance the transmission robustness
especially when channel state information (CSI) can not be
fully attained at the transmitter in practice.

With these advantages, RSMA was systematically presented
in [5], which is a more general case of the space-division
multiple access (SDMA) or non-orthogonal multiple access
(NOMA) scheme [6]. To be specific, RSMA utilizes linearly
precoded rate-splitting (RS) at the transmitter and successive
interference cancellation (SIC) at the receiver, which decodes
part of the interference and treats the others as noise [7].
Existing works have revealed that RSMA outperforms the
orthogonal multiple access (OMA), linear SDMA, and power-
domain NOMA, in the aspects of the spectral efficiency (SE)
[8]-[11], max-min fairness [12], [13], and energy efficiency
(EE) [14], [15].

Meanwhile, following the breakthroughs on the fabrication
of programmable metamaterials, reconfigurable intelligent sur-
face (RIS) has emerged as an effective technique to enhance
the SE, EE and network coverage, etc, [16]. RIS is a planar
array with a large number of low-cost reflective elements,
which reflect the incident signal to a desired direction via
controlling the phase shifters [17]. Considering that RIS only
reflects the received signal without decoding and regenerating
signals process, the power consumption and hardware cost
of RIS are much lower than those of the conventional radio
frequency relay [18]. In addition, RIS can be easily deployed
on the facades of buildings, ceilings of factories and indoor
spaces [19]. Due to the above advantages, RIS has attracted a
great deal of research attention.

For example, L. Wei et al. in [20] proposed a factor
decomposition-aided channel estimation technique for RIS-
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assisted wireless networks. Then, the authors further devel-
oped a message passing algorithm to achieve joint channel
estimation and signal recovery for RIS-aided networks in
[21]. The authors in [22] studied the sum rate and fair-
ness optimization in RIS-aided systems. Besides, [23] studied
the fairness design in RIS-assisted multi-group multi-cast
transmission, where a majorization-maximization (MM)-based
method was developed. Then, the work [24] proposed a two-
timescale beamforming (BF) scheme for an RIS-enhanced
wireless network, where the passive BF was designed with the
statistical CSI assumption, while the active BF was designed
using the instantaneous CSI. Recently, [25] studied the sum
rate maximization design for multiuser MISO networks using
deep reinforcement learning, and the work has been extended
in [26] when considering multiple cascaded RISs. Moreover,
[27] investigated the new fully-connected and group-connected
RIS architectures based on reconfigurable impedance networks
that can alter both the magnitudes and phases of the incident
signals. At present, RIS-aided transmission design has been
widely studied in various aspect, such as RSMA networks
[28], NOMA networks [29], symbiotic radio networks [30],
the full-duplex communication scenario [31], the physical-
layer security scenario [32], the millimeter-wave networks
[33], hybrid terrestrial-aerial networks [34], and unmanned
aerial vehicle networks [35], etc.

Typically, for passive or nearly-passive RIS, the reflected
signals have to go through a cascaded channel composed of
the transmitter-RIS and RIS-receiver links, leading to serious
degradation of the system performance caused by the double
fading attenuation. To overcome this shortcoming, the authors
in [36] proposed an active RIS architecture in which active
load impedance is used by each reflection element. By con-
verting direct current bias power into radio frequency power,
the active element can directly amplify the incident signal [37].
Then, in [38], the authors considered the effect of active RIS
in improving the achievable secrecy rate of cognitive satellite-
terrestrial network. In [39], the authors studied the active RIS-
enabled energy-constrained wireless network and showed the
superiorities of the active RIS in supporting multiple energy-
limited devices. In [40], the authors demonstrated that active
RIS achieves better EE performance than passive RIS. Re-
cently, the work in [41] suggested that active RIS outperforms
passive RIS in terms of the weighted sum secrecy rate. The
authors in [42] compared whether active RIS is superior to
passive RIS or not under the same power budget, and revealed
that active RIS is superior if the RIS power budget exceeds
certain value.

Among the above works, the SE is a commonly used
performance metric and usually formulated as the objective
of optimization problems [24], [31]. On the other hand, the
EE, which is defined as the ratio of the signal data rate
to the total power consumption, is one of the key perfor-
mance metrics in green communication oriented networks
[18], [43]. Specifically, [44] investigated the EE optimization
in satellite-terrestrial networks with RSMA, where a penalty-
based method was proposed. In [45], the authors investigated
the EE maximization in RIS-assisted downlink transmission,
where a multi-objective optimization (MOO) framework was

proposed. Then, [46] studied the EE optimization in RIS-
assisted uplink network. It is noted that the above works
mainly focused on the SE or EE optimization. However,
SE would still increase while EE remains stable with the
increasing power in a high power region. Therefore, the SE
and EE are not linearly correlated and can not simultaneously
increase or decrease with the changing transmit power [47].
Thus, a fundamental tradeoff between the above two metrics
needs to be investigated for meeting various communication
requirements in future networks.

To be specific, [48] studied the SE-EE tradeoff optimization
in a downlink RSMA network. Recently, [49] studied the
MOO for the SE-EE tradeoff in the RIS-assisted cognitive
radio network. The authors in [50] proposed a new metric
called resource efficiency (RE) in RIS-enabled networks to
obtain the tradeoff between EE and SE, where an MM-based
approach was developed. In addition, [51] investigated the
fully-connected RIS-aided RSMA scheme, where the authors
proposed a weighted minimum mean square error (WMMSE)-
based method to optimize the transmit beamformer and the
scattering matrix of the RIS. Then, the authors of [52]
proposed the group-connected RIS-based RSMA design to
achieve the tradeoff between the beam controlling accuracy
and hardware complexity of fully connected RIS. However,
the RE optimization in RIS-assisted RSMA networks has not
been studied, and it is worth investigating whether active RIS
outperforms passive RIS in terms of the RE.

Motivated by the above facts, we focus on the RE opti-
mization in the RIS-assisted RSMA network in this paper.
To the best of the authors’ knowledge, it is the first work
to investigate the active RIS-enabled transmission design in
RSMA system from the perspective of SE and EE tradeoff.
Our main contributions are summarized as follows:
• We investigate a novel integration of RSMA and RIS into

cellular systems in this paper, where the RIS with active
reflection elements is deployed to mitigate the double
fading effect and one-layer RSMA is adopted at the
base station (BS) to suppress the inter-user interference.
To achieve the SE-EE tradeoff, we optimize the RE
metric by jointly designing the transmit precoding and
reflecting BF, while guaranteeing transmit and forward
power constraints of the BS and RIS, as well as the
common message rate constraint.

• To efficiently tackle the non-convex problems due to its
fractional objective, coupled optimization variables, and
discrete coefficient constraint, we propose a two-stage
approach for the one-layer RSMA transceiver structure.
For the outer stage optimization, a quadratic transfor-
mation is used to recast the fractional objective into a
linear form and obtain a closed-form solution. While
for the inner stage problem, we tackle the non-concave
common and private signal rate by the first-order Taylor
expansion method, which approximates the logarithmic
objective into a quadratic function. Then, an alternating
optimization (AO) algorithm is developed to obtain the
BS precoding and reflective BF iteratively, by resorting
to the penalty dual decomposition (PDD) method.

• The proposed algorithm can be extended to the two-layer
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RSMA scenario, which is rarely investigated in open
literature, and can also handle the common message rate
constraint and effectively solve quadratically constrained
quadratic program (QCQP) problems with fast conver-
gence. Besides, the proposed algorithm is also applicable
to passive-RIS design, by setting the zero noise power at
the RIS and normalizing the amplitude of each reflection
element. Thus, the proposed scheme is actually an unified
optimization framework, which is suitable for various
RIS-assisted RSMA networks.

• Simulation results verified the effectiveness of the pro-
posed scheme and provide some insightful analysis: 1)
RE is an effective metric to tradeoff the SE and EE per-
formance by adjusting the weight; 2) RSMA outperforms
other multiple access techniques such as SDMA; 3) active
RIS obtain better RE performance than passive RIS, and
the discrete coefficient is a better choice compared the
continuous coefficient in terms of RE due to the lower
power consumption of former.

The rest of this paper is organized as follows. Section II
presents the system model and problem. Section III investi-
gates the joint BF and reflecting coefficient design. Section
IV extends the proposed design. Section V illustrates the
simulations and section VI is the conclusion.

Notations: Throughout the paper, the upper case boldface
letters and lower case boldface letters are used to represent
matrices and vectors, respectively. Tr (Σ), ΣH , ΣT , and
Σ∗ denote the trace, the Hermitian transpose, the transpose,
and the conjugate of matrix Σ, respectively. The diagonal
matrix with diagonal elements σ1, . . . , σN is denoted by
Diag (σ1, . . . , σN ). diag (Σ) denotes the main diagonal el-
ement of matrix Σ. <{·}, |·|, and ∠ (·) denote the real part,
the modulus, and the angle of a complex number, respectively.
x ∼ CN (σ,Σ) denotes a circularly symmetric complex
Gaussian (CSCG) random vector with mean σ and covariance
matrix Σ. In addition, ‖·‖ and ‖·‖F represent the Euclidean
norm and the Frobenius norm, respectively. Besides, ◦ denotes
the element-wise product.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We present the system model of the RSMA network and
formulate the optimization problem.

A. Active RIS Model

The reflecting coefficient matrix of the active RIS is given
by Φ = Diag (φ1, . . . , φNr ) ∈ CNr×Nr , where the reflect-
ing coefficient of the n-th element is denoted by φn =
αne

jθn , n = 1, . . . , Nr, with αn and θn being the amplitude
and the phase within the intervals αn ∈ [0, αn,max], and
θn ∈ [0, 2π), respectively. Here, αn,max denotes the prede-
termined maximum amplitude of the active load for the n-
th element. Different from the commonly used passive RIS,
αn,max is not less than 1 for active RIS. Besides, active RIS
only utilizes power amplifiers and phase-shift circuits that
control and reflect the signals. No dedicated digital-to-analog
converters (DACs), analog-to-digital converters (ADCs) and
mixers are required. In contrast, relays are usually equipped

with these mentioned electronic components for transmission,
and low-noise amplifiers for reception, which leads to higher
hardware cost and power consumption than active RIS.

Due to the practical hardware conditions, αn and θn can
only take discrete values. Let Qα and Qθ denote the quanti-
zation bits for αn and θn, respectively. Then we have

φn ∈ Xd
∆
=
{
φn
∣∣φn = αne

jθn , αn ∈ Sα, θn ∈ Sθ
}
, (1)

where Sα
∆
=

[
0,

αn,max

2Qα−2
, . . . ,

(2Qα−3)αn,max

2Qα−2
, αn,max

]
de-

notes the amplitude set, i.e., uniformly values 2Qα points in

[0, αn,max], and Sθ
∆
=

{
0, 2π

2Qθ
, . . . ,

2π(2Qθ−1)
2Qθ

}
denotes the

phase set, i.e., θn are equally valued in [0, 2π).

B. Signal Model

RIS Controller

BS
User 1

User L

…
…

Active element
Patch

Incident signal

Reflected signal
Phase- 
shift 

circuit

Amplifier circuit 
Power 
supply

Fig. 1: System model.

As depicted in Fig. 1, we consider a multiuser MISO
network which consists of a BS and L users, denoted as
L ∆

= {1, . . . , L}. The BS and RIS are equipped with Ns
antennas and Nr elements, respectively, while the users are
single antenna node. The channel from BS to RIS, from RIS
to the l-th user and from BS to the l-th user are denoted by
F ∈ CNr×Ns , hHl ∈ C1×Nr , and gHl ∈ C1×Ns , respectively.
The instantaneous CSI for these links are available at the
BS and RIS. For more details about the channel estimation
technique for RIS-assisted networks, readers can refer to [20],
[21]. In addition, there exists a RIS controller to adjust the
amplitudes and phases of the reflection elements [17].

Inspired by [7], one-layer RSMA is an alternative and
effective multiple access technique to manage the inter-user
interference among these users with relatively low imple-
mentation complexity. Hence, we adopt the one-layer RSMA
at the BS, where the transceiver architecture is shown in
Fig. 2. Particularly, the BS adopts the message combiner
and linear precoding to split the message Ml into two sec-
tions, namely, a common part Mc,l and a private part Mp,l.
Mc,1, . . . ,Mc,L are combined into a common message Mc and
encoded into a common signal sc using a codebook shared
by all users. On the contrary, Mp,1, . . . ,Mp,L are separately
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Fig. 2: Transceiver architecture of one-layer RSMA.

encoded into the private signals s1, . . . , sL, which are only
decoded by the specified user. Therefore, the whole signal
s = [sc, s1, . . . , sL]

T ∈ C(L+1)×1 is generated for RSMA
transmission. Then, s is linearly precoded via a precoding
matrix W = [wc,w1, . . . ,wL]

T ∈ CNs×(L+1) with wc and
wl ∈ CNs×1,∀l ∈ L being the corresponding precoding
vector for sc and sl, respectively. Thus, the transmitted signal
is given as

x = wcsc +

L∑
l=1

wlsl. (2)

Then, the received signal at the l-th user, l ∈ L is given by
yl =

(
gHl + hHl ΦF

)
x + hHl Φnr + nl, (3)

where nr ∼ CN
(
0, σ2

rI
)

and nl ∼ CN
(
0, σ2

l

)
denote the

effective noise including the self-interference and the additive
white Gaussian noise (AWGN) at the RIS and the AWGN at
the l-th user, respectively.

The l-th user first decodes sc into M̂c by treating sl,∀l ∈ L
as noise. Therefore, the signal-to-interference-plus-noise ratio
(SINR) to decode sc at the l-th user is

Γc,l =

∣∣h̄Hl wc

∣∣2
L∑
i=1

∣∣h̄Hl wi

∣∣2 +
∥∥hHl Φ

∥∥2
σ2
r + σ2

l

, (4)

where h̄l =
(
gHl + hHl ΦF

)H
is the equivalent channel from

BS to the l-th user.
After decoding and subtracting sc from yl, the l-th user

decodes sl by regarding other private signals sj , j 6= l,∀j ∈ L
as the interference. Thus, the SINR to decode sl at the l-th
user is expressed as

Γp,l =

∣∣h̄Hl wl

∣∣2
L∑

i=1,i6=l

∣∣h̄Hl wi

∣∣2 +
∥∥hHl Φ

∥∥2
σ2
r + σ2

l

. (5)

C. System SE and EE

The corresponding achievable rates of sc and sl at the l-th
user are Rc,l = log2 (1 + Γc,l) and Rp,l = log2 (1 + Γp,l),
respectively. To guarantee that all users can successfully
decode sc, Rc must satisfy Rc = min {Rc,1, . . . , Rc,L}.

According to [7], the overall achievable rate of the network
is the sum of Rc and Rp,l, and is given by

ηSE (W,Φ) = Rc +

L∑
l=1

Rp,l (bits/s/Hz). (6)

Besides, the total power consumption is given by
Ptot (W,Φ) = εs ‖W‖2F +εr

(
‖ΦFW‖2F + σ2

r ‖Φ‖
2
F

)
+Pc,

(7)
where εs and εr are the inverses of the power amplification
coefficients at the BS and RIS, respectively, and Pc denotes
the total static power consumption which is independent of
{W,Φ} and given by

Pc = NsPa + Ps +Nr (Pr + PDC) , (8)
where Pa denotes the power dissipation per antenna at the
BS, Ps is the static circuit power consumption at the BS,
Pr incorporates the power consumption of the circuit at each
reflection element [50]. According to [18], Pr are 1.5, 4.5,
6.0, and 7.8 mW for 3-, 4-, 5-, and 6-bit quantization of
each element, respectively. Besides, PDC is the direct current
biasing power consumption of a single reflection element [36].

Therefore, the EE is given by

ηEE (W,Φ) = B
ηSE (W,Φ)

Ptot (W,Φ)
(bits/Joule) , (9)

where B is the system bandwidth.

D. Problem Formulation

Rather than considering SE or EE as the objective, we aim
to obtain the SE-EE tradeoff by using a weighted sum repre-
sentation, i.e., maximizing (1− δ) ηEE + δηSE , 0 ≤ δ ≤ 1.
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Nevertheless, it is improper to directly combine ηEE and ηSE
because they have different units. Instead, we study a system
indicator called RE, which is given in [47], [50]:

ηRE (W,Φ)
∆
=
ηEE (W,Φ)

B
+
βηSE (W,Φ)

Psum
(bits/J/Hz) ,

(10)
where β > 0 is the weight used to denote the priorities of EE
and SE. The denominator Psum in the second term is fixed
and given by

Psum = εsPs,max + εrPr,max + Pc. (11)
Psum denotes the whole power budget of the considered

network. By multiplying ηEE and ηSE with 1/B and 1/Psum,
the units of the two terms in (10) are both normalized
into bits/Joule/Hz. Moreover, letting β B

Ptot

∆
= δ/(1− δ) and

substituting it into (10), the maximization of ηRE is equivalent
to that of (1− δ) ηEE + δηSE , 0 ≤ δ ≤ 1.

Mathematically, the RE optimization is formulated as:
max
W,Φ

ηRE (W,Φ) (12a)

s.t. ‖W‖2F ≤ Ps,max, (12b)

‖ΦFW‖2F + σ2
r ‖Φ‖

2
F ≤ Pr,max, (12c)

|[Φ]n| ≤ αn,max, φn ∈ Xd,∀n, (12d)
Rc ≥ Rc,min, (12e)

where Ps,max and Pr,max are the transmit and forward power
budgets at the BS and RIS, respectively. Besides, [Φ]n denotes
the n-th element of Φ. It is known that [Φ]n = φn. In addition,
Rc,min is the pre-determined minimum common message rate.
In fact, different SE-EE tradeoff designs can be realized by
changing β. For example, ηRE relaxes to ηSE when β →∞
and relaxes to ηEE when β = 0 with bandwidth normalization.

Unfortunately, problem (12) is challenging to solve where
the major difficulties can be summarized as follows: 1) It
is complicated to tackle the coupled variables W and Φ
jointly, especially for the case of large Ns or Nr; 2) ηRE is a
transformation from ηEE , which means that the optimization
of the former is much more complex than the latter; 3) The
optimization of Φ with a discrete coefficient constraint is a
mixed integer program, and is also non-convex.

In the next section, we aim to develop an efficient approach
to handle (12).

III. JOINT BS PRECODING AND RIS BF DESIGN

We first linearize the RE objective by the quadratic trans-
formation method proposed in [54]. Next, an AO algorithm is
proposed to do the optimization iteratively.

A. Quadratic Transformation to Fractional Programming

To be specifical, by introducing a slack variable κ ∈ R, we
equivalently recast (12) into a non-fractional formulation as:

max
W,Φ,κ

f (W,Φ, κ) = 2κ
√
ηSE (W,Φ)

− κ2Ptot (W,Φ) +
βηSE (W,Φ)

Psum

(13a)

s.t. (12b)− (12e), (13b)

To solve (13), we optimize the prime variables {W,Φ} and
the slack variable κ in an iterative manner. According to [54],
given {W,Φ}, the optimal κ can be directly obtained as

κ =

√
ηSE (W,Φ)

Ptot (W,Φ)
. (14)

In the following part, we deal with the optimization of
{W,Φ} with a given κ.

B. SE Approximation

In the previous subsection, we have transformed the frac-
tional programming to a relatively simple formulation. How-
ever, given κ, (13) is still unsolvable since ηSE is non-
concave with respect to (w.r.t.) W and Φ. Besides, the discrete
coefficient constraint is also non-convex. To overcome this, in
the following, we design a lower bound of ηSE . Specifically,
at the t-th iteration, around the given point

{
W(t),Φ(t)

}
, the

following lemma is useful to approximate Rc,l and Rp,l.
Lemma 1 [56]: For any δ and γ, we have

log2

(
1 +
|δ|2

γ

)
≥ log2

(
1 +

∣∣δ̄∣∣2
γ̄

)
−
∣∣δ̄∣∣2
γ̄ ln 2

+
2<{δ̄∗δ}
γ̄ ln 2

−

∣∣δ̄∣∣2 (γ + |δ|2
)

γ̄
(
γ̄ +

∣∣δ̄∣∣2) ln 2
,

(15)

where
{
δ̄, γ̄
}

are fixed points.
Based on Lemma 1, Rc,l can be lower bounded as

Rc,l ≥ log2

1 +

∣∣∣a(t)
l

∣∣∣2
b
(t)
l

−
∣∣∣a(t)
l

∣∣∣2
b
(t)
l ln 2

+
2<
{(
a

(t)
l

)∗
al

}
b
(t)
l ln 2

−

∣∣∣a(t)
l

∣∣∣2 (bl + |al|2
)

b
(t)
l

(
b
(t)
l +

∣∣∣a(t)
l

∣∣∣2) ln 2

,

(16)

where a(t)
l =

(
gHl + hHl Φ(t)F

)
w

(t)
c , al=

(
gHl + hHl ΦF

)
wc,

b
(t)
l =

∑L
i=1

∣∣∣(gHl +hHl Φ(t)F
)
w

(t)
i

∣∣∣2+∥∥hHl Φ(t)
∥∥2
σ2
r+σ

2
l , and

bl=
∑L
i=1

∣∣(gHl +hHl ΦF
)
wi

∣∣2+∥∥hHl Φ
∥∥2
σ2
r+σ

2
l , respectively.

Similarly, Rp,l can be lower bounded as

Rp,l = log2

(
1 +

∣∣(gHl + hHl ΦF
)
wl

∣∣2
bl −

∣∣(gHl + hHl ΦF
)
wl

∣∣2
)

≥ log2

1 +

∣∣∣c(t)l ∣∣∣2
b
(t)
l − |ctl |

2

− |ctl |
2(

b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

+
2<
{(
c
(t)
l

)∗
cl

}
(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

−

∣∣∣c(t)l ∣∣∣2bl
b
(t)
l

(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

,

(17)

where c
(t)
l =

(
gHl + hHl Φ(t)F

)
w

(t)
l , and cl =(

gHt + hHl ΦF
)
wl, respectively.

Based on the above reformulation, an approximated version
of ηSE (W,Φ), which is denoted as η̃SE (W,Φ), is achieved
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by solving the following problem

max
W,Φ

Rc+

L∑
l=1


2<
{(
c
(t)
l

)∗ (
gHl +hHl ΦF

)
wl

}
(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

+

log2

1+

∣∣∣c(t)l ∣∣∣2
b
(t)
l −

∣∣∣c(t)l ∣∣∣2
−

∣∣∣c(t)l ∣∣∣2(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

(
1+

σ2
l

b
(t)
l

)

−

∣∣∣c(t)l ∣∣∣2( L∑
i=1

∣∣(gHl + hHl ΦF
)
wi

∣∣2+
∥∥hHl Φ

∥∥2
σ2
r

)
b
(t)
l

(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2


(18a)

s.t. Rc≤
2<
{(
a

(t)
l

)∗ (
gHl +hHl ΦF

)
wc

}
b
(t)
l ln 2

+

log2

1+

∣∣∣a(t)
l

∣∣∣2
b
(t)
l

−
∣∣∣a(t)
l

∣∣∣2
b
(t)
l ln 2

1+
σ2
l

b
(t)
l +

∣∣∣a(t)
l

∣∣∣2


−

∣∣∣a(t)
l

∣∣∣2 (∥∥(gHl + hHl ΦF
)
W
∥∥2

+
∥∥hHl Φ

∥∥2
σ2
r

)
b
(t)
l

(
b
(t)
l +

∣∣∣a(t)
l

∣∣∣2) ln 2

,∀l,

(18b)
(12b)− (12e). (18c)

In fact, an effective way to handle the SE optimization of
the RSMA network is by solving (18). Next, we will tackle the
RE optimization with the assistance of η̃SE (W,Φ). However,
(18) is not jointly convex w.r.t. W and Φ. Fortunately, (18)
can be decoupled into two subproblems. Then, the solution to
(18) can be obtained in an alternating method. Next, we will
focus on the formulation and solution of the subproblems.

C. Precoding Optimization
Here, we optimize W with fixed Φ. According to (18) and

after some mathematical operations, the subproblem w.r.t. W
is given as

max
W

2κ

√√√√Rc +

L∑
l=1

{
2<
{
pHl wl

}
−wH

l Pwl + pl
}

− κ2Ptot (W,Φ)

+

β

(
Rc +

L∑
l=1

{
2<
{
pHl wl

}
−wH

l Pwl + pl
})

Psum

(19a)

s.t. Rc ≤ −Tr
(
QlWWH

)
+ 2<

{
qHl wc

}
+ ql,∀l, (19b)

(12b), (12c), (12e), (19c)
where {P,pl, pl,Q,ql, ql} are respectively, given by (20) in
the next page.

Note that with fixed Φ, Ptot (W,Φ) is convex w.r.t. W,

and Rc+
L∑
l=1

{
2<
{
pHl wl

}
−wH

l Pwl+pl
}

is a concave function

w.r.t. W, so that the square-root is also concave. Thus, with
fixed κ and Φ, (19) is convex w.r.t. W, which can be solved
by the optimization toolbox CVX [55].

D. Reflecting Coefficient Optimization

Now, we handle the optimization of Φ. By expending the
relevant terms in (18) w.r.t. Φ and omitting the irrelevant
terms, we have the following problem w.r.t. Φ

max
Φ

Rc + 2<{Tr (TΦ)}+ u

− Tr

(
UΦ

(
F

L∑
i=1

wiw
H
i FH + σ2

rI

)
ΦH

)
(21a)

s.t. Rc ≤ 2<{Tr (DlΦ)}+ dl

− Tr
(
VlΦ

(
FWWHFH + σ2

rI
)
ΦH

)
,∀l,

(21b)

Tr
(
Φ
(
FWWHFH + σ2

rI
)
ΦH

)
≤ Pr,max, (21c)

(12d), (12e), (21d)
where {T, u,U,Dl, dl,Vl} are respectively, given by (22) in
the next page.

Next, we utilize the following lemma to handle (21).

Lemma 2 [50]: Let U1 ∈ Cm×m, U2 ∈ Cm×m. Assuming
that Σ = Diag (σ1, . . . , σm) ∈ Cm×m, σ = diag (Σ), and
u2 = diag (U2), then we have

Tr
(
ΣHU1ΣU2

)
= σH

(
U1 ◦UT

2

)
σ,

Tr (ΣU2) = σTu2.
(23)

Then, by defining φ = [φ1, . . . , φNr ]
T , we turn (21) into

the following problem

max
φ

2κ

√
Rc + u+ 2<

{
φTdiag (T)

}
− φHŪφ

− κ2Ptot (W,Φ)

+
β

Psum

(
Rc + u+ 2<

{
φTdiag (T)

}
− φHŪφ

) (24a)

s.t. Rc ≤ dl + 2<
{
φTdiag (Dl)

}
− φHV̄lφ,∀l, (24b)

φH
(
I ◦
(
FWWHFH + σ2

rI
)T)

φ ≤ Pr,max, (24c)

|φn| ≤ αn,max, φn ∈ Xd,∀n, (24d)
(12e), (24e)

where Ū = U ◦
(

F
L∑
i=1

wiw
H
i FH + σ2

rI

)T
and V̄l = Vl ◦(

FWWHFH + σ2
rI
)T

, respectively.

In fact, when the RIS has continuous coefficients, i.e.,
the constraint φn ∈ Xd is absent, (24) is simplified to
a convex problem and can be efficiently solved. However,
when considering discrete coefficients, (24) can not be solved
directly. Next, we propose a PDD-based algorithm to address
this challenge. Specifically, we introduce the slack variable
ω = [ω1, . . . , ωNr ]

T ∈ CNr×1 as a copy of the prime variable
φ. Then, we reformulate (24) as

max
φ,ω

2κ

√
Rc + u+ 2<

{
φTdiag (T)

}
− φHŪφ

− κ2Ptot (W,Φ)

+
β

Psum

(
Rc + u+ 2<

{
φTdiag (T)

}
− φHŪφ

) (25a)

s.t. |φn| ≤ αn,max, (24b), (24c), (24e), (25b)
φ = ω, ωn ∈ Xd,∀n. (25c)

By penalizing the equality constraint φ = ω, the following
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P =

L∑
l=1

∣∣∣c(t)l ∣∣∣2(gHl + hHl Φ(t)F
)H (

gHl + hHl Φ(t)F
)

b
(t)
l

(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

,pHl =

(
c
(t)
l

)∗ (
gHl + hHl Φ(t)F

)(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

,

pl = log2

1 +

∣∣∣c(t)l ∣∣∣2
b
(t)
l −

∣∣∣c(t)l ∣∣∣2
−

∣∣∣c(t)l ∣∣∣2(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

−

∣∣∣c(t)l ∣∣∣2 (∥∥hHl Φ(t)
∥∥2
σ2
r + σ2

l

)
b
(t)
l

(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

,

Ql =

∣∣∣a(t)
l

∣∣∣2(gHl + hHl Φ(t)F
)H (

gHl + hHl Φ(t)F
)

btl

(
b
(t)
l +

∣∣∣a(t)
l

∣∣∣2) ln 2

,qHl =

(
a

(t)
l

)∗ (
gHl + hHl Φ(t)F

)
b
(t)
l ln 2

,

ql = log2

1 +

∣∣∣a(t)
l

∣∣∣2
b
(t)
l

−
∣∣∣a(t)
l

∣∣∣2
b
(t)
l ln 2

−

∣∣∣a(t)
l

∣∣∣2 (∥∥hHl Φ(t)
∥∥2
σ2
r + σ2

l

)
b
(t)
l

(
b
(t)
l +

∣∣∣a(t)
l

∣∣∣2) ln 2

.

(20)

T =

L∑
l=1

(
c
(t)
l

)∗
(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

Fw
(t)
l hHl −

L∑
l=1

∣∣∣c(t)l ∣∣∣2(F
L∑
i=1

w
(t)
i

(
w

(t)
i

)H
glh

H
l

)
b
(t)
l

(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

,U =

L∑
l=1

∣∣∣c(t)l ∣∣∣2hlhHl
b
(t)
l

(
b
(t)
l − |ctl |

2
)

ln 2
,

u=

L∑
l=1

log2

1 +

∣∣∣c(t)l ∣∣∣2
b
(t)
l −

∣∣∣c(t)l ∣∣∣2
−

∣∣∣c(t)l ∣∣∣2(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

−

∣∣∣c(t)l ∣∣∣2(σ2
l +

L∑
i=1

∣∣∣gHl w
(t)
i

∣∣∣2)
b
(t)
l

(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

+
2<
{(
c
(t)
l

)∗
gHl w

(t)
l

}
(
b
(t)
l −

∣∣∣c(t)l ∣∣∣2) ln 2

,

Dl =

(
a

(t)
l

)∗
b
(t)
l ln 2

Fw(t)
c hHl −

∣∣∣a(t)
l

∣∣∣2 (FW(t)
(
W(t)

)H
glh

H
l

)
b
(t)
l

(
b
(t)
l +

∣∣∣a(t)
l

∣∣∣2) ln 2

,Vl =

∣∣∣a(t)
l

∣∣∣2hlhHl
b
(t)
l

(
b
(t)
l +

∣∣∣a(t)
l

∣∣∣2) ln 2

,

dl = log2

1 +

∣∣∣a(t)
l

∣∣∣2
b
(t)
l

−
∣∣∣a(t)
l

∣∣∣2
b
(t)
l ln 2

−

∣∣∣a(t)
l

∣∣∣2 (σ2
l +

∥∥gHl W(t)
∥∥2
)

b
(t)
l

(
b
(t)
l +

∣∣∣a(t)
l

∣∣∣2) ln 2

+
2<
{(
a

(t)
l

)∗
gHl w

(t)
c

}
b
(t)
l ln 2

.

(22)

augmented Lagrange (AL) of (25) can be obtained

min
φ,ω,ϕ,λ

−2κ

√
Rc+u+2<

{
φTdiag (T)

}
−φHŪφ

+ κ2Ptot (W,Φ) +
1

2ϕ
‖φ− ω + ϕλ‖2

− β

Psum

(
Rc + u+ 2<

{
φTdiag (T)

}
− φHŪφ

) (26a)

s.t. (25b), ωn ∈ Xd,∀n, (26b)
where ϕ ≥ 0 is the penalty factor and λ ∈ CM×1 is a dual
variable associated with φ = ω, respectively. Actually, when
ϕ ≤ 1

2λmax(Ū)
, (26) is guaranteed to converge [32].

The PDD procedure is composed of two stages. In the
outer stage, we optimize ϕ and λ, while in the inner stage,
we decouple (26) into two problems and obtain φ and ω
alternately. First, we optimize φ, given ω. The problem is

given as

min
φ
−2κ

√
Rc + u+ 2<

{
φTdiag (T)

}
− φHŪφ

+ κ2Ptot (W,Φ) +
1

2ϕ
‖φ− ω + ϕλ‖2

− β

Psum

(
Rc + u+ 2<

{
φTdiag (T)

}
− φHŪφ

) (27a)

s.t. (25b), (27b)
which can be solved by CVX. Then, given φ, we optimize ω.
The problem is written as

min
ω
‖φ− ω + ϕλ‖2 (28a)

s.t. ωn ∈ Xd,∀n. (28b)

Since ωn are decoupled from each other in
(28), the optimal solution is ω?n = ᾱne

j∠θ̄n ,
where θ̄n = arg min

θn∈Sθ
|θn − ∠ (φn + ϕλn)| and

ᾱn = arg min
∠αn∈Sα

∣∣∣αnej∠θ̄n − φn − ϕλn∣∣∣, respectively.

The inner stage alternatively updates φ and ω until the
stopping criterion is met. Then, for the outer stage iteration,
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λ and ϕ are iterated by

λ← λ+
1

ϕ
(φ− ω) , and ϕ← ρϕ, (29)

where ρ < 1 is a factor which scale ϕ at each iteration.
The PDD process is given in Algorithm 1, where ε1 denotes

the stopping threshold. According to [53], Algorithm 1 is
guaranteed to converge whether in the continuous or discrete
coefficients case. Readers can refer to [53] for more details.
Algorithm 1 The PDD Algorithm.

1: Initialize φ(0), ω(0), λ(0), ϕ(0), and set k = 1;
2: repeat
3: Set φ(k−1,`) = φ(k−1), ω(k−1,`) = ω(k−1), and ` = 0;
4: repeat
5: Obtain φ(k−1,`+1) via solving problem (27);
6: Obtain ω(k−1,`+1) via solving problem (28);
7: `← `+ 1;
8: until Convergence.
9: φ(k) ← φ(k−1,`), ω(k) ← ω(k−1,`);

10: λ(k) ← λ(k−1) + 1
ϕ(k)

(
φ(k) − ω(k)

)
, ϕ(k) ←

ρϕ(k−1);
11: k ← k + 1;
12: until

∥∥∥φ(`) − ω(`)
∥∥∥ ≤ ε1 or the maximum number of

iteration is met.
13: Output φ?.

E. Overall Algorithm and Analysis

Combining the proposed steps above, we obtain the in-
tegrated RE maximization approach in Algorithm 2, where
ε2 denotes the stopping threshold and the initial point{
W(0),Φ(0)

}
is set as the optimal solution of (32). In

addition, we have the following Theorem.
Theorem 1: Algorithm 2 generates a convergent sequence

of the objective values of (12).
Proof: Please refer to Appendix A.

Algorithm 2 Quadratic transformation algorithm for solving
problem (12).

1: Solve (32) and obtain W(0), Φ(0), initialize κ(0) and set
k = 1;

2: repeat
3: Set W(k−1,t) = W(k−1), Φ(k−1,t) = Φ(k−1), and
t = 0;

4: repeat
5: Obtain W(k−1,t+1) via solving problem (19);
6: Obtain Φ(k−1,t+1) via solving problem (24);
7: t← t+ 1;
8: until Convergence
9: W(k) ←W(k−1,t), Φ(k) ← Φ(k−1,t);

10: Update κ by (14);
11: k ← k + 1;
12: until κ(k) − κ(k−1) ≤ ε2 or the maximum number of

iteration is reached.
13: Output W?, Φ?, and κ?.

Actually, by setting β = 0, Algorithm 2 can be directly
simplified to the EE maximization design with normalized
bandwidth. On the other hand, by setting εs = 0 and εr = 0,

Algorithm 2 can tackle the SE optimization problem which is
relaxed from RE optimization problem.

Next, we calculate the computational complexity of Algo-
rithm 2. Since the complexities of (28) and (29) can be omitted
when compared with those of (19) and (27), the complexity of
Algorithm 2 is mainly determined by (19) and (27). According
to [57], the complexity for solving a QCQP problem is
given by O

(√
m
(
mn2 + n3

)
ln
(

2m
ε

))
, where m denotes the

number of variables and n denoted the number of constraints,
and ε is the solution accuracy. Specifically, (19) has (3L+ 2)
quadratic constraints and the dimension of the variable is
Ns, while (27) has (Nr + L+ 1) constraints and the dimen-
sion of the variable is Nr. Thus, the complexities of (19)
and (27) are given by O

(√
Ns
(
9NsL

2 + 27L3
)

ln
(

2Ns
ε

))
and O

(√
Nr

(
Nr(Nr + L)

2
+ (Nr + L)

3
)

ln
(

2Nr
ε

))
, re-

spectively. Therefore, the overall computational complexity of
Algorithm 2 is given by

C = O
(
Tκ max

{√
Ns
(
9L2 (Ns + 3L)

)
ln

(
2Ns
ε

)
,√

Nr

(
(2Nr + L) (Nr + L)

2
)

ln

(
2Nr
ε

)}) (30)

where Tκ denotes the search times for the updating of κ in
the outer layer.

Thus, Algorithm 2 has polynomial time complexity, which
is suitable for implementation.

F. Feasibility of (12)
Note that problem (12) with the common message rate

constraint (12e) might be infeasible. It is necessary to study the
feasibility of solving (12). Therefore, we solve the following
problem to check the feasibility of (12):

max
W,Φ

min
l
Rc,l (31a)

s.t. (12b)− (12d). (31b)
If the obtained optimal value of (31) is larger than or equal

to Rc,min, then (12) is feasible to solve. Otherwise, (12) is
infeasible. In fact, the previously proposed AO algorithm can
be utilized to solve (31). Proceedings in a similar way as we
obtained the lower bound of Rc,l, an approximated version of
(31) is obtained as follows

max
W,Φ,τ

τ (32a)

s.t. τ ≤
2<
{(
a

(t)
l

)∗ (
gHl + hHl ΦF

)
wc

}
b
(t)
l ln 2

−

∣∣∣a(t)
l

∣∣∣2
b
(t)
l ln 2

1 +
σ2
l

b
(t)
l +

∣∣∣a(t)
l

∣∣∣2
+ log2

1 +

∣∣∣a(t)
l

∣∣∣2
b
(t)
l


−

∣∣∣a(t)
l

∣∣∣2 (∥∥(gHl + hHl ΦF
)
W
∥∥2

+
∥∥hHl Φ

∥∥2
σ2
r

)
b
(t)
l

(
b
(t)
l +

∣∣∣a(t)
l

∣∣∣2) ln 2

,∀l,

(32b)
(12b)− (12d). (32c)

Then, an AO procedure is used to solve (32), which is
similar to that in Algorithm 2. Thus, the feasibility of (12)
can be checked.
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Fig. 3: Transceiver architecture of two-layer RSMA.

IV. EXTENSION TO TWO-LAYER RSMA

Here, we extend the proposed design to the two-layer
RSMA scenario, which is commonly used in the multi-group
multi-cast communication scenario.

In a two-layer RSMA network, the L users are separated
into I individual groups denoted as I = {1, . . . , I} and
group-i contains Li users with

⋃
i∈I Li = L. User-l splits

its message Ml into three sections, namely, an inter-group
component M c

l , an inner-group component M i
l , and a pri-

vate component Mp
l . Then, {M c

l |l ∈ L} are wrapped into
a common message Mc, which is encoded into a common
signal sc using a codebook shared by all users and is de-
coded by all users. Then,

{
M i
l |l ∈ Li

}
are merged into a

common message Mc,i. Mc,i is encoded into an inner-group
common signal sc,i using a codebook shared by the users in
group-i and is decoded by these users. Finally, {Mp

l |l ∈ L}
are independently encoded into L signals sp,1, . . . , sp,L,
which are decoded by the specified users. The overall en-
coded streams s = [sc, sc,1, . . . , sc,I , sp,1, . . . , sp,L]

T ∈
C(L+I+1)×1 are linearly precoded with the precoding matrix
W = [wc,wc,1, . . . ,wc,I ,wp,1, . . . ,wp,L]

T ∈ CNs×(L+I+1).
Hence, the signal sent from the BS is given as

x = wcsc +
∑
i∈I

wc,isc,i +
∑
l∈L

wp,lsp,l. (33)

Then, the received signal at user-l, l ∈ L, is given as
yl =

(
gHl + hHl ΦF

)
x + hHl Φnr + nl. (34)

User-l (l ∈ Li) employs two layers of SIC to sequentially
decode sc, sc,i, and sp,l with sc being decoded first, sc,i
second, and followed by sp,l. Then, the signal rates for
decoding sc, sc,i, and sp,l at the l-th user are, respectively,

given as

Rcl =log2

1+

∣∣h̄Hl wc

∣∣2∑
i∈I

∣∣h̄Hl wc,i

∣∣2+
∑
j∈L

∣∣h̄Hl wp,j

∣∣2+σ̃2
l

 ,

Rc,il =log2

1+

∣∣h̄Hl wc,i

∣∣2∑
i′∈I,i′ 6=i

∣∣h̄Hl wc,i′
∣∣2+

∑
j∈L

∣∣h̄Hl wp,j

∣∣2+σ̃2
l

 ,

Rp,l=log2

1+

∣∣h̄Hl wp,l

∣∣2∑
i′∈I,i′ 6=i

∣∣h̄Hl wc,i′
∣∣2+

∑
j∈L,j 6=l

∣∣h̄Hl wp,j

∣∣2+σ̃2
l

 ,

(35)
where σ̃2

l =
∥∥hHl Φ

∥∥2
σ2
r + σ2

l .
Then, the message rates of sc and sc,i are given by

Rc = min {Rcl |l ∈ L} ,

Rc,i = min
{
Rc,il |l ∈ Li

}
,∀i ∈ I.

(36)

Thus, the total achievable rate of the two-layer RSMA network

is Rc +
I∑
i=1

Rc,i+
L∑
l=1

Rp,l [7].

A two-layer RSMA transceiver architecture with 4 users
is plot in Fig. 3, where user-1/2 is in group-1, user-3/4 is
in group-2, respectively. sc is an inter-group common signal,
while sc,1/2 is the inner-group common signals for the users
in group-1/2 only [7].

The RE optimization in two-layer RSMA is more compli-
cated to handle than the counterpart in the one-layer RSMA.
Fortunately, the proposed method can be used here with modi-
fications. Firstly, we use the quadratic transformation to recast
the fractional programming into a linear programming. Then,
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max
W,Φ

L∑
l=1


2<
{(
x

(t)
l

)∗ (
gHl +hHl ΦF

)
wp,l

}
y

(t)
l ln 2

+log2

1+

∣∣∣x(t)
l

∣∣∣2
y

(t)
l

−
∣∣∣x(t)
l

∣∣∣2
y

(t)
l ln 2

1+
σ2
l

y
(t)
l +
∣∣∣x(t)
l

∣∣∣2


−

∣∣∣x(t)
l

∣∣∣2
 ∑

i′∈I,
i′ 6=i

∣∣(gHl +hHl ΦF
)
wc,i

∣∣2+∑
j∈L

∣∣(gHl +hHl ΦF
)
wp,j

∣∣2+∥∥hHl Φ
∥∥2
σ2
r+σ

2
l


∣∣∣x(t)
l

∣∣∣2(∣∣∣x(t)
l

∣∣∣2+ y
(t)
l

)
ln 2


+Rc+

I∑
i=1

Rc,i

(37a)

s.t.Rc,i≤
2<
{(
c
(t)
i,l

)∗ (
gHl +hHl ΦF

)
wc,i

}
d

(t)
i,l ln 2

+log2

1+

∣∣∣c(t)i,l ∣∣∣2
d

(t)
i,l

−
∣∣∣c(t)i,l ∣∣∣2
d

(t)
i,l ln 2

1+
σ2
l

d
(t)
i,l +

∣∣∣c(t)i,l ∣∣∣2


−

∣∣∣c(t)i,l ∣∣∣2
(∑
i∈I

∣∣(gHl +hHl ΦF
)
wc,i

∣∣2+
∑
j∈L

∣∣(gHl +hHl ΦF
)
wp,j

∣∣2+∥∥hHl Φ
∥∥2
σ2
r+σ

2
l

)

d
(t)
i,l

(
d

(t)
i,l +

∣∣∣c(t)i,l ∣∣∣2) ln 2

,∀i∈ I,∀l∈ Li,

(37b)

Rc ≤
2<
{(
a

(t)
l

)∗ (
gHl + hHl ΦF

)
wc

}
b
(t)
l ln 2

−

∣∣∣a(t)
l

∣∣∣2
b
(t)
l ln 2

1 +
σ2
l

b
(t)
l +

∣∣∣a(t)
l

∣∣∣2


+log2

1+

∣∣∣a(t)
l

∣∣∣2
b
(t)
l

−
∣∣∣a(t)
l

∣∣∣2 (∥∥(gHl +hHl ΦF
)
W
∥∥2

+
∥∥hHl Φ

∥∥2
σ2
r+σ

2
l

)
b
(t)
l

(
b
(t)
l +
∣∣∣a(t)
l

∣∣∣2) ln 2

,∀l ∈ L.

(37c)

(12b)− (12e). (37d)

a
(t)
l =

(
gHl + hHl Φ(t)F

)
w(t)
c , c

(t)
i,l =

(
gHl + hHl Φ(t)F

)
w

(t)
c,i , x

(t)
l =

(
gHl + hHl Φ(t)F

)
w

(t)
p,l ,

b
(t)
l =

∑
i∈I

∣∣∣(gHl + hHl Φ(t)F
)

w
(t)
c,i

∣∣∣2+
∑
j∈L

∣∣∣(gHl + hHl Φ(t)F
)

w
(t)
p,j

∣∣∣2+∥∥∥hHl Φ(t)
∥∥∥2

σ2
r+σ2

l ,

d
(t)
i,l =

∑
i′∈I,
i′ 6=i

∣∣∣(gHl +hHl Φ(t)F
)

w
(t)
c,i′

∣∣∣2+
∑
j∈L

∣∣∣(gHl +hHl Φ(t)F
)

w
(t)
p,j

∣∣∣2+
∥∥∥hHl Φ(t)

∥∥∥2

σ2
r+σ

2
l ,

y
(t)
l =

∑
i′∈I,
i′ 6=i

∣∣∣(gHl +hHl Φ(t)F
)

w
(t)
c,i′

∣∣∣2+
∑
j∈L,
j 6=l

∣∣∣(gHl +hHl Φ(t)F
)

w
(t)
p,j

∣∣∣2+
∥∥∥hHl Φ(t)

∥∥∥2

σ2
r+σ

2
l .

(38)

in the outer stage optimization, we update κ by using (14).
While in the inner stage optimization, by utilizing Lemma
1 and introducing several slack variables, η̃SE (W,Φ) can
be obtained by solving problem (37), with the relevant con-
stants given in (38). Then, we further decouple (37) into two
subproblems and obtain W and Φ using the corresponding
methods. The whole procedure is similar to Algorithm 2. We
omit the details due to space limitation.

V. SIMULATION RESULTS

Here, we provide representative simulation results to verify
the proposed design. As plot in Fig. 4, we assume one BS,
one RIS, and 4 users, i.e., L = 4, without loss of generality.
The BS and RIS are deployed at (10 m, 0 m, 10 m) and
(0 m, 50 m, 10 m), while all users are randomly located in

a circle with radius 5 m and centered at (10 m, 50 m, 1.5 m),
respectively.

The following settings are adopted unless specified other-
wise: Ns = 8, Nr = 40, and the maximum amplitude of
the active RIS is αn,max = 10,∀n, [36]. The common rate
constraint is 2 bits/s/Hz [8]. Besides, the bandwidth is set
as B = 10 MHz [47]. As for the power consumption model,
we set Pa = 30 dBm, Ps = 40 dBm, εs = 1/0.9 for the
BS [47], and Pr = −10 dBm, PDC = −5 dBm, εr = 1/0.8
for the active RIS [36], respectively. Besides, the noise power
is σ2

l = −80 dBm,∀l, and σ2
r = −80 dBm [40]. The path

loss is PL = PL0 − 10νlog10

(
d
d0

)
, where d indicates the

link distance, and ν means the path loss exponent. Here, we
set PL0 = −30 dB and d0 = 1 m. The exponents of the
BS-users links and the RIS-related links are set as 4 and 2.2
[32]. Besides, F =

√
r
r+1FLoS +

√
1
r+1FNLoS, with r being
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the Rician factor. Here, FLoS denotes the line-of-sight (LoS)
component and is given by FLoS = ara

H
t . When a uniform

planar array is utilized, at is given as

at =
1√
MN

[1, . . . , ej2πς(m sin(δtq) sin(ψt
q)+n cos(ψt

q)),

. . . , ej2πς((M−1) sin(δtq) sin(ψt
q)+(N−1) cos(ψt

q))
]T
,

(39)

where m and n are the element indices in horizontal and
vertical directions, ς is the normalized distance between ad-
jacent elements, and δr

q and δt
q represent the azimuth and

elevation angles, respectively. ar can be obtained similarly.
FNLoS denotes the non-LoS component and is modeled as
the Rayleigh variable. Besides, the solution accuracy is set as
ε1 = ε2 = 10−3 and the scaling factor is set as ρ = 0.85 [24].

Here, we compare the proposed design with several bench-
marks: 1) the active RIS with continuous coefficient; 2)
conventional single-connected passive RIS; 3) the active RIS-
assisted SDMA scheme; 4) the fully-connected RIS [51]; 5)
the group-connected RIS [52]. These schemes are labelled as
“Proposed scheme, 3 bit”, “Proposed scheme, 4 bit”, “Con-
tinuous scheme”, “Passive RIS”, “SDMA scheme”, “Fully-
connected RIS”, and “Group-connected RIS”, respectively,
where 3 bit means Qα/θ = 3 and 4 bit means Qα/θ = 4,
respectively.

A. Convergence Behaviour

Firstly, the convergence of Algorithm 1 for different values
of Ns, Nr, and Qα/θ is examined in Fig. 5. From this figure,
it can be seen that the RE always increases with the number
of iterations, and gradually converges within 20 iterations for
various parameters, which demonstrates the efficiency of the
PDD method.

Then, we study the convergence of Algorithm 2 for different
values of Ns, Nr, and Qα/θ. From Fig. 6, it can be seen that
no matter what values of these parameters are selected, the
RE increases with the number of iterations, and gradually
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Fig. 5: Convergence of Algorithm 1.

converges almost within 20 iterations, which verifies the
convergence behaviour of Algorithm 2.
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Fig. 6: Convergence of Algorithm 2.

It can be further seen from Figs. 5 and 6 that in the same
channel realizations, using more bits to quantize αn and θn is
not beneficial to improve the RE, since a larger Qα/θ will
indeed improve the SE, but the power consumption at the
RIS will also increase, and thus the RE may be reduced.
This observation will be further confirmed by the following
simulation results.

B. Performance Evaluation

Now, we evaluate the performances of difference schemes.
Here, we set the sum of Ps,max and Pr,max, which is denoted
by Psum, as a constant equals 10dBW for active RIS, unless
specified otherwise. In addition, since the passive RIS has
no transmit power consumption and no direct current biasing
power consumption, we add the term NrPDC +Pr,max/εr to
the transmit power budget at the BS when using the passive
RIS for fair comparison. Thus, we can ensure that Psum is the
same value regardless of the active RIS or passive RIS.

The SE performance achieved by Algorithm 2 is shown in
Fig. 7, where we set δ = 1. As expected, from Fig. 7, it can be
seen that the SE performance always increases with Ps,max,
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Fig. 7: SE versus Ps,max.

and the active RIS with continuous coefficients attains the best
performance. However, using the discrete coefficients with 3
or 4 bit resolutions performs very closely to the continuous
coefficient case. In addition, it is seen that the active RIS
significantly outperforms the other RIS-aided schemes due to
its great capability of signal amplification. This observation
indicates that active RIS design is effective to reduce the neg-
ative impact of the double fading, thus obtaining a higher SE.
Besides, the RSMA scheme outperforms the SDMA scheme,
since the RSMA technique splits the transmitted message in
both the power domain and the spatial domain, and adjusts the
split coefficient and power allocation to efficiently suppress the
multiuser interference, and thus achieves better performance
than the SDMA scheme.
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Next, we show the corresponding EE performance achieved
by Algorithm 2 in Fig. 8, by setting β = 0 and keeping
the other parameters the same as those in Fig. 7. From Fig.
8, it can be seen that EE increases with Ps,max only when
Ps,max is smaller than a threshold and then tends to be stable
when Ps,max exceeds the threshold. Besides, it is worth noting
that EE does not increase with Qα/θ. Although employing
the RIS with more quantization bits could achieve higher SE
performance, as shown in Fig. 7, it also leads to a higher

power consumption thus degrading the EE. Hence, using a
RIS with discrete coefficients is more energy efficient than
the counterpart with continuous coefficients.
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Fig. 9: Weight versus the corresponding EE and SE.

Moreover, Fig. 9 demonstrates the impact of the weight
β on the corresponding system EE and SE, with Ps,max =
Pr,max = 0 dBW. It can be seen that increasing β improves
system SE but reduces system EE. This is because that a larger
β puts a higher priority on SE and thus allocates more power to
maximize SE. On the other hand, when reducing β, we obtain
an improved EE but a reduced SE. Fig. 9 shows the ability
of the proposed approach to balance the tradeoff between EE
and SE by setting a proper β.
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Fig. 10: RE versus Nr .

Besides, we show the RE performances of these schemes
versus Nr in Fig. 10, where we set β/Psum = 1 and Ps,max =
Pr,max = 0 dBW. From this figure, it can be seen that the RE
first increases with Nr then decreases, which is quite different
from the results in most related works where larger Nr leads
to higher SE performance. This is because a larger Nr may
lead to more power consumption at the RIS. Thus there exists
a tradeoff in the RE performance w.r.t. Nr.

Next, Fig. 11 plots the obtained RE versus BS-RIS dis-
tances, where we assume that the RIS moves along the y-axis
from the BS to the users area. In this figure, it is seen that
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Fig. 11: RE versus the BS-RIS horizontal distance.

the active RIS scheme always outperforms the passive RIS
scheme in the considered region. Moveover, for active RIS, the
RE increases when RIS moves from the BS to the user area,
while for passive RIS, the RE first decreases to a low point and
then increases. Then, weather for active RIS or passive RIS,
when RIS moves away from the user area, the RE decreases.
Thus, deploying the active RIS near the users is beneficial to
improve the RE.
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Fig. 12: RE versus Ps,max.

Finally, we compare the RE performance of two-layer
RSMA with the one-layer RSMA and SDMA schemes, where
the 4 users are divided into 2 groups. The results are shown in
Fig. 12, with β/Psum = 1 and the other parameters are same
as those in Figs. 7 and 8. From this figure, it can be seen
that the two-layer RSMA outperforms the other benchmarks
in terms of the RE.

VI. CONCLUSION

In this paper, we proposed a novel infrastructure of active
RIS-assisted downlink RSMA network. By adopting the RE
as the performance metric to achieve a tradeoff between the
SE and EE performances, we formulated the RE optimization
problem. By applying a two-stage optimization scheme and

proposing an AO algorithm, the non-convex RE maximiza-
tion problem was decomposed into a two-stage optimization
problem, and solved to obtain the BS precoding and reflective
BF alternatively by using the PDD method. Simulation results
demonstrated that through reconfiguring the wireless commu-
nication environment, the active RIS can achieve adjustable
tradeoff between the SE and EE, and the proposed active RIS-
assisted RSMA scheme outperforms the benchmark schemes.

APPENDIX A
PROOF OF THEOREM 1

Firstly, for the convergence of the quadratic transformation,
[54, Theorem 3] has proved that if problem (13) is nondecreas-
ing and concave, then the original problem (12) is guaranteed
to converge. Thus, we mainly focus on the convergence of
(13). Specifically, we denote the corresponding objective value
of ηSE (W,Φ) in (13) and the objective of (18) as µ (W,Φ)
and µ(t) (W,Φ), respectively, where t denotes the number of
iterations. Then, for any W and Φ, we have

µ (W,Φ) ≥ µ(t) (W,Φ) ,

µ
(
W(t),Φ(t)

)
= µ(t)

(
W(t),Φ(t)

)
,

(40)

when {W,Φ} ←
{
W(t),Φ(t)

}
. Based on this observation

and the convexity of (19) and (24), we have
µ
(
W(t+1),Φ(t+1)

)
≥ µ(t)

(
W(t+1),Φ(t+1)

)
> µ(t)

(
W(t),Φ(t)

)
= µ

(
W(t),Φ(t)

)
,

(41)

where the second inequality holds true since both{
W(t+1),Φ(t+1)

}
and

{
W(t),Φ(t)

}
are the optimal

solutions and feasible points of (13). (41) suggests that{
W(t+1),Φ(t+1)

}
is better to (13) than

{
W(t),Φ(t)

}
.

Moreover, the sequence
{
W(t),Φ(t)

}
is bounded by the

constraints (12b)-(12d). Then, according to [56, Proposition
2], there exists a convergent subsequence

{
W(tγ),Φ(tγ)

}
with a limit point {W?,Φ?}, i.e.,

lim
γ→+∞

[
µ
(
W(tγ),Φ(tγ)

)
− µ (W?,Φ?)

]
= 0. (42)

For any t, there exists a γ such that tγ ≤ t ≤ tγ+1, then
we have
0 = lim

γ→+∞

[
µ
(
W(tγ),Φ(tγ)

)
− µ (W?,Φ?)

]
≤ lim
t→+∞

[
µ
(
W(t),Φ(t)

)
− µ (W?,Φ?)

]
≤ lim
γ→+∞

[
µ
(
W(tγ+1),Φ(tγ+1)

)
− µ (W?,Φ?)

]
= 0,

(43)
which means that lim

t→+∞
µ
(
W(t),Φ(t)

)
= µ (W?,Φ?). Thus,

the convergence of ηSE (W,Φ) has been proved. Besides,
since Ptot (W,Φ) is bounded due to (12b)-(12d), (13) is
guaranteed to converge, which completes the proof.
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