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The design of optical networks for maximum throughput, under diverse traffic demands, is a long-
standing NP-hard problem. In this paper, by parameterising the relationship between the network topol-
ogy and traffic demand, a novel polynomial-time objective function, the demand weighted cost (DWC)
is introduced and evaluated for different scale networks and diverse traffic scenarios. It is shown that
the proposed DWC is highly correlated to network throughput, while speeding up the topology evalua-
tion process up by ∼5 – 6 orders of magnitude. The DWC was then applied as the optimisation target
with 3 different topology optimisation algorithms (DWC-selection, genetic algorithm and the our novel
hierarchical topology design), achieving 90% and 460% throughput increases, on average, for small-scale
(14-node) and large-scale (100-node) topology designs, respectively. The proposed methods have the po-
tential of maximising throughput in the design of future optical network topologies. © 2023 Optical Society of

America
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1. INTRODUCTION

Optical communication networks underpin the global commu-
nication infrastructure and support the exponential growth in
demand for data transmission, for all application scenarios, in-
cluding telecommunications, the Internet and datacentres [1].
Using wavelength division multiplexing (WDM), optical net-
works provide high-capacity, low-latency and cost-effective so-
lutions compared to traditional electronic packet switching net-
works at all time- and distance-scales. This is because they do
not require any optical–electronic–optical (O–E–O) conversion,
electrical processing and buffering between source and destina-
tion nodes.

However, designing an optical network fulfilling the applica-
tion requirements of throughput, latency, resilience is not trivial.
Both the features and constraints of the traffic and the network
need to be considered simultaneously to ensure the network re-
sources match the demanded traffic. One of the most important
constraints in optical networks is the physical topology, which
determines the available routes between nodes, and further im-
pacts the performance (including throughput, latency, resilience)
and the costs of building and managing the network.

Physical topology design has been a long-standing NP-hard
optimisation problem for the most commonly used network

performance objectives since optical networking emerged [2].
Previous work has mainly focused on minimising network cost
[3–5], wavelength requirements [6], blocking rate [7, 8], power
consumption and resilience [9] or a combination of these goals.
Since the computational complexity of topology design expo-
nentially increases with the number of nodes in the network,
heuristic algorithms are often used. These include greedy [10],
cut-saturation [4, 5] and branch exchange [11], as well as meta-
heuristics including genetic algorithms (GA) [3, 6, 12], particle
swarm optimization (PSO) [13] and simulated annealing [14] to
find near-optimal solutions in feasible time.

To fulfill the growing and changing bandwidth requirements
in optical networks, maximising network throughput - defined
as the total achievable bitrate of all lightpaths serving a given
traffic demand - is a key optimisation target in network design.
Thus, it is important to include this target in topology design
to support the bandwidth hungry applications, e.g. cloud ser-
vice, virtual reality (VR) [15]. In addition, most of the previous
topology design methods considered both the network costs
and performance by analysing small-scale networks (e.g. 6-node
[9], 10-node [7, 16], 14-node [8]). However, the size of both core
and access optical networks can reach more than 100-nodes (e.g.
UK core network [17], US coronet [18]) and thus, the design of
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large-scale (e.g. 100-node) optical networks, considering both
network cost and performance, needs to be explored.

The challenge of designing networks with maximum through-
put is two-fold, with both stages involving NP-hard computa-
tional problems: (i) the evaluation of network throughput for
a given topology and demand, where conventional methods
such as integer linear programming (ILP) are too computation-
ally complex and (ii) the search for a near-optimal topology, in
a huge solution space of possible topologies, given a number
of nodes, total edge length and demand, with large number of
candidate solutions. Both of these problems lead to infeasible
computation times, let alone when both need to be considered.

To tackle problem (i) previously surrogate models that looked
to learn the relationships between optimisation objective and
the graph were proposed, such as using a artificial neural net-
work (ANN) [19] or more recently a graph neural network
(GNN) [20]. Alternatively, we recently proposed a analyti-
cal computationally-efficient optimisation objective, termed de-
mand weighted cost (DWC), with the aim of maximising net-
work throughput [21]. The proposed DWC is a network metric,
to parameterise the relationship between network topology and
traffic demand with polynomial computational complexity. We
showed that the DWC is highly correlated to network through-
put and describes how well the network resources match the
demand distribution. However, the proposed DWC metric and
the topology design methods need to be further evaluated in
different node-scale network designs with generalised traffic
distributions.

In this paper, the concept of demand weighted cost is de-
scribed and the relationship between it and throughput in var-
ious node-scale networks is explored. The DWC is applied as
the optimisation objective in both small-scale (14 node) and
large-scale (100 node) optical network topology design prob-
lems. The DWC’s performance, as an optimisation objective,
is investigated by designing topologies in three ways: (i) by
selecting the topologies with the best objectives from a large
number of solutions, created via three generative graph models:
Barabasi-Albert (BA) [22], signal-to-noise ratio aware Barabasi-
Albert (SNR-BA) [23, 24] and Prufer sequence (PS) [6] (ii) a objec-
tive function within genetic algorithms (iii) a objective function
within a novel hierarchical topology design (HTD) method. The
topologies are designed by optimising the DWC values of the
graphs, however the maximum achievable throughput of the
networks is used to validate their real performance.

The rest of the paper is organised as follows. Section 2 de-
scribes the methods used in estimating the network throughput
for different node-scale networks, as well as introduces the pro-
posed DWC metric and its relationship to throughput. Section
3 introduces the physical topology design problem along with
the 3 types of proposed topology design algorithms. Section 4
presents both the large and small scale topology design results
and analysis with key conclusions described in Section 5.

2. THROUGHPUT ANALYSIS AND ESTIMATION

To reduce the NP-hard complexity of maximum achievable
throughput estimation [25] in the topology design process, we
explored the relationship between topology properties, traffic
demand and network throughput as shown in Fig. 1, where it
can be seen that traffic is an input to the topology, which has
structural (how the nodes are connected) and physical (how far
away nodes are from each other) properties, that then govern
the maximum achievable throughput. The aim is to find a low-

complexity topology design target that mimics the maximum
achievable throughput.

Fig. 1. Relationship between topology properties, traffic de-
mand and throughput

A normalised traffic demand matrix, in terms of connections
requested (TC) is used to describe the network traffic demand,
where TC

z represents the normalised demand value between
node pair z and ∑z TC

z = 1.
An ILP model is used to quantify the maximum achievable

throughput of small-scale networks, described in section 2A. For
large-scale networks (e.g. 60-100 nodes), a First-Fit k-Shortest-
Path (FF-kSP) heuristic [25] combined with a demand sequential
loading (DSL) scheme is used to estimate the maximum achiev-
able throughput, as described in section 2B. To calculate the final
maximum achievable throughput, a closed-form Gaussian-Noise
(GN) model was used, as described in 2C. Finally in section 2D
the demand weighted cost (DWC) is introduced by parameter-
ising the relationship between the traffic demand and network
topology. The relationship between DWC and throughput is
then explored in various node-scales and traffic distributions. In
addition, the computational efficiency of calculating the DWC is
compared with that of calculating throughput via routing and
wavelength assignment optimisation, i.e. ILP and heuristics.

A. ILP model for throughput estimation
The ILP model used to evaluate the maximum achievable net-
work throughput in small-scale networks is defined as follows.
In a network with the set of nodes N and the set of edges E,
with each edge carrying a set of W wavelengths, we assume a
set of Z node pairs that need to be connected via a routing and
wavelength assignment (RWA) solution using a set of K paths
(K shortest paths weighted by physical distances in km). The
size of K was kept at 20 (|K| = 20). The decision variable δw,k,z –
with w ∈W, k ∈ K, z ∈ Z – is able to fully define the RWA of a
network, following Eq. (1).

δw,k,z =


1 if (k, w) are path and wavelength

assigned for node pair z
0 otherwise

(1)

Another integer decision variable is the throughput indicator
M, which determines how many demand requests, i.e. the num-
ber of lightpaths between node pair z (dM · TC

z e), the network
can accommodate. The ILP objective function is to maximise M.

The first constraint in the ILP model, is that the number
of established lightpaths (represented by the decision variable
δw,k,z) needs to be equal to the connection demands, described
in Eq. (2).

∑
w∈W

∑
k∈K

δw,k,z = dM · TC
z e ∀z ∈ Z (2)
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Another constraint is that no two lightpaths can share a wave-
length on any given edge j. Therefore, the variable I(j ∈ k) is
defined to be 1 when edge j is in path k and 0 otherwise. Using
this the wavelength uniqueness can be constrained as in Eq. (3).

∑
z∈Z

∑
k∈K

δw,k,z I(j ∈ k) ≤ 1 ∀j ∈ E ∀w ∈W (3)

The time to solve the ILP scales exponentially with the size of
the network due to the NP-hard nature of the problem [25]. Thus,
we only used the ILP to calculate the throughput in the small-
scale networks; for larger networks (60-100 nodes) we applied
heuristic algorithms, as described in the following section.

B. Heuristic for throughput estimation
As the ILP is not scalable for calculating throughput in large-
scale networks (e.g. 60-100 nodes), we used the FF-kSP algo-
rithm [25] combined with a demand sequential loading (DSL)
scheme to estimate the throughput in this work. More specifi-
cally, after obtaining the RWA solution of the current traffic by
FF-kSP, we continue to add the load (according to TC) to the
network until blocking occurs. The process of FF-kSP combined
with DSL is described in Algorithm 1.

Algorithm 1. Demand sequential loading algorithm

Input: Network topology G, normalised traffic matrix TC,
wavelength number W

Output: The final RWA solution RWA f .
1: M0 = 0
2: step = 100
3: t = 0
4: for i ≤ n do
5: while RWA blocking free do
6: Mt = Mt−1 + step
7: Tr = dMt · TCe
8: RWAt = FR(G, Tr, RWAt−1)
9: t = t + 1

10: Mt = Mt − step
11: step = dstep/2e
12: t = t + 1
13: RWA f = RWAt

Here the same objective throughput indicator (M) is max-
imised as in the ILP; it is initialised as 0 and increased by step in
each iteration. The total traffic matrix (Tr), in terms of lightpaths,
is calculated according to the normalised traffic matrix (TC) and
the current M. The routing function (FR) takes the inputs of
the topology (G), total traffic matrix (Tr) and the previous RWA
to calculate a new RWA using FF-kSP, which chooses the path
that can be allocated on the lowest indexed wavelength. The
previous RWA is used to reduce the amount of computation
the routing function has to perform at each iteration, however
already allocated paths cannot be changed down the line. Once
blocking occurs, the step is halved and the network is loaded
again until the next blocking occurs. The process iterates n times,
after which the final RWA is obtained. In this work, we set n = 6,
as more would have negligible impact to the result.

C. Physical Layer Impairements (PLI) Model
After obtaining the RWA solution from the ILP or FF-kSP com-
bined with DSL, we calculated the signal-to-noise ratio (SNR)
for each wavelength and edge. This was estimated using a

closed form Gaussian noise (GN) physical layer impairments
(PLI) model [26]. Using the RWA solution, we take the inverse
of the SNR (NSR) and sum the individual NSR values along
the lightpath to calculate the total SNR value for this lightpath.
Following this, the Shannon equation [27] is applied to calculate
the network throughput.

For the physical layer, we assumed a full C-band (1530-
1570 nm) transmission with 156 wavelengths (32 GHz Nyquist-
spaced) on all fibre links. Furthermore, we assumed multiples
of 80km standard single mode fibre spans, with fibre atten-
uation coefficient 0.2dB/km, chromatic dispersion coefficient
18ps/(nm · km) and nonlinear coefficient 1.2(W · km)−1. Erbium
doped fibre amplifiers (EDFA) are assumed to be deployed
between the spans, all having a noise figure of 4dB. Colour-
less, directionless and contentionless, reconfigurable optical add-
drop multiplexers (CDC-ROADM) are deployed at all switching
nodes.

D. Demand weighted cost
To reduce the computational complexity in estimating network
throughput, the goal of creating a new network metric was to
parametrise the relationship between topology and demand, and
find an approximate-linear relationship to network throughput.
By weighting the communication costs of the node pairs with
the traffic demand between them, we proposed a new parameter,
termed demand weighted cost (DWC), first introduced in [21].

As the throughput depends on both structural and physical
properties of the network, we included both in the definition of
communication cost (Cz) between a certain node pair z. To see
how the structural and physical properties affect the throughput
we used two different definitions of Cz. The first, in Eq. (4) is
the sum of the the shortest path length and the minimum hop
number between a given node pair z. The second uses the net-
work physical connectivity (α = 2E

N(N−1) ) [28] to weight the two
terms, as in Eq. (5), where α is the network physical connectivity,
Lz is the shortest path physical length and Hz is the number of
hops in the shortest path. Calculating the Pearson’s correlation
coefficient (ρ) between the total communication cost (∑z Cz) and
throughput quantifies how well each definition correlates with
the actual maximum achievable throughput. Here an ILP was
used to calculate the maximum achievable throughput, intro-
duced in section 2A, for the small scale graphs (N = 14) and
FF-kSP with DSL, as introduced in section 2B, was used for
larger scales (N = 100).

Cz = Lz + Hz (4)

Cz = α · Lz + (1− α) · Hz (5)

We calculated the Pearson correlation coefficient (ρ) of both
definitions in 4,000 14-node and 100-node topologies, 2,000 at
each node-scale. The ρ values of the two definitions are -0.914/-
0.917 (14-node) and -0.832/-0.856 (100-node), respectively. Thus,
the second communication cost definition has higher correla-
tion to throughput and we use it in the following paper. After
defining the communication cost, the traffic demand is used to
weight this cost and the DWC is defined as in Eq. (6).

DWC = ∑
z∈Z

TC
z · (α · Lz + (1− α) · Hz) (6)

To explore the relationship between the proposed DWC met-
ric and the network throughput under different topology and
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demand scenarios, 3,600 14-node 21-edge topologies were gener-
ated via the Erdos Renyi (ER) [29], BA [22] and SNR-BA [23, 24]
graph generative models, 1,200 topologies of each kind. The ER
model decides whether an edge exists between a certain node
pair by independent Bernoulli distributions, while the other two
models consider the node degrees and signal-to-noise ratios to
determine the probability of adding an edge. Due to the fact that
the ER model does not always generate connected-graphs, we
used the other two models in our design method described in
section 3A.

We first investigated the impact of demand distribution. As
an example, a distance-based skew is introduced in the traffic
matrix, using Eq. (7). This is only intended to make a comparison
to uniform traffic, other methods of introducing traffic skew can
also be considered [30].

TC
ij =

1(
D(i,j)

∑k∈N D(i,k)

)γ (7)

Here D(i, j) is the distance between node i and j and the
traffic skew factor (γ) weighs how heavily the demand is skewed.
When γ increases, the traffic becomes more localised, node pairs
with shorter distances have heavier loads.

The throughput for the 3,600 generated 14-node topologies
were calculated and are plotted against their inverse DWC value
in Fig. 2. It can be seen that in these small-scale networks, the
relationship is approximately linear, so an increase in 1/DWC
indicates that networks have a higher throughput. The Pear-
son correlation coefficient (ρ) between 1/DWC and throughput
reaches 0.91.

Fig. 2. Throughput vs DWC in 14-node topologies

To verify this relationship in different node-scale networks,
10,000 topologies were generated via the SNR-BA generative
graph model [24], with 60-100 nodes, 2,000 for each node scale.
In these networks, the Pearson correlation coefficient (ρ) between
1/DWC and throughput remains above 0.969 as shown in Tab.
1, which further verifies that the relationship between DWC and
throughput also holds in large-scale networks.

These results show that DWC is a robust topology design
metric, especially as it is computationally simple. The only sig-
nificant time contribution is the calculation of the shortest paths

Table 1. Pearson correlation coefficient in different node scales

N 60 70 80 90 100

ρ 0.969 0.970 0.972 0.974 0.972

for all node pairs, in our case using the Floyd–Warshall algo-
rithm [31]. Thus, the computational complexity of evaluating a
topology using the DWC metric instead of calculating through-
put using the ILP model, introduced in Section 2A, reduces from
O(2D·E·W) [32] to O(N3), where D is the total demand number
and D ∝ N2. The computation time of DWC and throughput
was compared using a server with 2 x Intel(R) Xeon(R) CPU E5-
2660 v3 @ 2.60GHz and 256Gb RAM. The average computation
time of DWC and throughput (calculated by ILP) in 14-node
networks was 0.0023s and 5107.04s, respectively, which shows
the potential of reducing computing time by some 6 orders of
magnitude.

In larger scale networks with 60-100 nodes, since the ILP does
not scale, the throughput was calculated using the FF-kSP heuris-
tic combined with the DSL algorithm. Even using the heuris-
tic algorithm, the complexity is still O(RKN3(E + Nlog(N))),
where R is the number of rounds of adding network demand,
K is the number of paths considered, and Yen’s algorithm [33]
was used to calculate the k-shortest paths. The actual average
computing time for DWC and throughput (for this heuristic)
in different node-scale networks is plotted in Fig. 3. The gap
between calculating DWC and throughput remains around 5
orders of magnitude.

Fig. 3. Computing time for large scale networks

Based on the above analysis, DWC can be used as a compu-
tationally efficient objective that approximates the throughput
performance of a network in physical topology design. The next
section describes how the DWC metric can be incorporated in
network topology design.

3. DWC IN TOPOLOGY DESIGN

We formulate the physical topology design problem by starting
with a set of nodes (N), their positions (ni = (xi, yi)), the total
edge length limit (Lmax) and the normalised traffic demand ma-
trix (TC), where the goal is to design a bi-connected topology
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(fulfilling the resilience requirement) and maximise the network
throughput.

This problem can be expressed as an integer non-linear pro-
gramming (INLP) problem by setting decision variables as to
whether an edge between a given node pair exists. This can be
expressed by the binary variable aij, which is 1 when edge ij
exists and 0 when not. Ensuring the connectivity of the graph
introduces the nonlinear constraint of that det(L) = 0, where L
is the laplacian matrix of the graph defined in Eq. (8) [34].

L =


∑i a1i − a11 −a12 . . . −a1n

−a21 ∑i a2i − a22 . . . −a2n
...

...
. . .

...

−an1 −an2 . . . ∑i ani − ann

 (8)

Since there is no universal solution for such INLP problem,
in this work we applied the heuristic/meta-heuristic search
algorithms to find a near-optimal solution instead. Following the
analysis in the previous section, the topology design objective
of minimising DWC is used instead of maximising throughput.
The proposed topology design algorithms are described below.

A. DWC-selection methods
The first, and most intuitive, topology design method is to gener-
ate a large number of topologies using graph generative models
(i.e. BA, SNR-BA and PS), then select one or multiple of them,
according to an objective, which in this case is to minimise DWC,
with the goal of maximising throughput. This is referred to as
the DWC-selection method. The sections 3A.1, 3A.2 and 3A.3
introduce the graph generative models that are used.

A.1. Barabasi-Albert (BA) [22]

The BA model starts with two nodes connected by an edge, after
which nodes are sequentially added and a set number of m edges
are connected to every newly added node. The edges are chosen
given probability p(i, j) corresponding to Eq. (9), where i is the
newly added node and j is an existing node in the graph, di
donates the degree of node i.

p(i, j) =
dj

∑
k∈N

dk
(9)

The probability p(i, j) is determined only by the sum of all
the degrees in the graph currently and the degree of the node
j. The model creates large connected hubs within the network,
appropriate for modeling different types of real networks, in-
cluding social and communication networks. However, it does
not consider the physical properties of the network, which is
key in optical networks.

A.2. Signal-to-Noise Ratio Aware Barabasi-Albert (SNR-BA) [23, 24]

The SNR-BA model is extended from the BA model, and takes
into account the physical properties of real networks, and the
associated linear and nonlinear optical fibre distortions. The
signal-to-noise ratio (SNR) of the lightpaths are used to weight
the probability of the edge existence as shown in Eq. (10), where
a parameter θ is used to determine how heavily to weight the
physical properties within the graph generation.

PSNR-BA(i, j) =

 SNR(i, j)

∑
k∈N

SNR(i, k)


θ

·
dj

∑
k∈N

dk
, (10)

This model generates graphs which are structurally most
similar to real optical core networks compared to ER and BA
models.

A.3. Prufer Sequence (PS) [6]

The Prufer sequence was originally used for generating tree
topologies. It creates an N-node tree topology with an (N − 2)-
integer sequence, whose values are selected from [1, N]. By
connecting the leaf nodes of the generated tree, a bi-connected
topology is generated. The detailed topology generation process
is described in Algorithm 2.

Algorithm 2. Prufer Sequence bi-connected topology genera-
tion

1. Randomly generate a (N − 2)-integer Prufer sequence, P =
{s1, s2, · · · , sN−2|si ∈ [1, N]}.

2. Add all leaf nodes Q = {qi|qi ∈ [1, N] and qi /∈ P} into the
eligible list.

3. Scan along P, for each si ∈ P, find the lowest indexed node
j in the eligible list, add an edge (si, j) to the topology. If
si /∈ {si+1 · · · sN−2}, add si into the eligible list.

4. After step 3, only two nodes are eligible, add an edge be-
tween them.

5. Add edges between adjacent leaf-nodes (add edges
{eqi ,qi+1 |qi ∈ Q}).

6. Check the total edge length L, if L ≤ Lmax then the genera-
tion process ends; otherwise restart from step 1.

A 6-node bi-connected topology generated via the PS method
is shown in Fig. 4. In this example, we set the P = {2, 2, 2, 1}.
After the tree topology is generated according to the PS method,
additional edges (red edges in Fig. 4) are added to connect the
leaf nodes to achieve a bi-connected topology.

Fig. 4. A 6-node Prufer sequence based topology

The PS model provides a computationally efficient way of
finding N-node bi-connected topologies, especially when the
network is large (e.g. N > 50) and sparse (e.g. α < 0.2), com-
pared to other graph generative models such as ER, BA and
SNR-BA, which do not always generate bi-connected topologies.

B. Genetic algorithm with DWC
The second topology design method, explored in this work,
uses the DWC as the objective function within a genetic algo-
rithm (GA) framework [35]. The GA was selected over other



Research Article Journal of Optical Communications and Networking 6

meta-heuristics and evolutionary strategies because of its fast
convergence time to near-optimal solutions and capability to
handle discrete problems [36, 37]. Fast convergence was neces-
sary to be able to create and simulate large number of topologies
with high fitness values.

Two types of individuals that describe a topology were imple-
mented in the explored GA method. The first one uses a N2−N

2
dimensional vector (termed as topology vector in the following
paper) consisting of the upper triangular elements of the graph
adjacency matrix to describe a topology, while the second one
uses a Prufer sequence (PS). The GA method involves a fixed-
size population of individuals, where at each iteration a specific
portion of the current population is chosen to be parents, where
then crossover and mutation are sampled as discrete actions,
as shown in Fig. 5. The topology vector based GA is able to
search all kinds of topology structures, but it also cannot guar-
antee bi-connected graphs after crossover and mutation opera-
tions, which reduces the search efficiency. The Prufer sequence
based GA, on the contrary, only generates graphs with specific
structure (leaf-node-connected ’tree’ topology), but the individ-
uals will keep the bi-connected characteristic after crossover
or mutation, enhancing the searching efficiency compared to
the previous method, however reduces the variety of structures
searched. Thus, the topology vector based GA and PS based
GA are suitable for small and large scale network design, re-
spectively. The detailed process of GA is shown in Fig. 5 and
described in Algorithm 3.

Fig. 5. Example of GA process in a single iteration

C. Hierarchical topology design
To design large-scale optical networks (N ≥ 60), we propose a
new hierarchical topology design (HTD) method with the objec-
tive function of DWC. In this proposed method, the nodes are
divided into different sub-networks according to their locations.
Inter- and intra-sub-networks are designed independently to
reduce the computational complexity. The detailed steps of HTD
are described in Algorithm 4.

Figure 6 shows an example of using the HTD method to
design a 14-node bi-connected network. As described in the
Algorithm 4, the centres of the sub-networks are shown as red
dots in the figure. All nodes are divided into 4 sub-networks
according to their locations. The inter-sub-network edge num-
bers and the total edge length limits of the sub-networks are

Algorithm 3. Genetic algorithm with DWC

1. Initialise the first generation individuals (topology vector
or Prufer sequence) .

2. Do while generation number not reached:

2.1 Select a portion of individuals with smaller DWC val-
ues as parents.

2.2 Uniformly crossover between parents to generate indi-
viduals for next generation

2.3 Uniformly mutate the individuals for next generation

3. Select the topology with minimum DWC in the last genera-
tion.

determined by Eq. (13) and Eq. (15), respectively. Then the cor-
responding gate nodes connecting different sub-networks are
determined by Eq. (14) and shown as blue dots. Finally, the inter-
and intra-sub-network topologies are designed as Fig. 6 shows.

Fig. 6. A hierarchical topology design example

Using a the DWC-select, GA and HTD topology design meth-
ods, the performance of DWC as a topology optimisation objec-
tive is evaluated, to see whether it can maximise throughput.
The next section describes the results obtained over a variety of
topology sizes and traffic conditions.

4. TOPOLOGY DESIGN RESULTS AND DISCUSSION

A. Small scale topology design (N = 14)
In this subsection, we describe the analysis to evaluate the per-
formance of the proposed DWC-selection and topology vector
based GA methods in small-scale topology design. We first gen-
erated 6 different traffic matrices, with the demand skew factors
γ ∈ {0.2 · y|0 ≤ y ≤ 5, y ∈ Z}. Then, we selected 200 topologies
with minimum DWC, per traffic matrix, from the 10,000 topolo-
gies generated by each graph generative model, respectively. In
addition, 200 graphs were also generated via the topology vector
based GA, per traffic matrix. Lastly, 400 additional random BA
and SNR-BA topologies were generated, used as baselines, 200
for each method. The node number and total edge length limit
of the topologies to be designed were set to 14 and 42,000km
respectively, according to the node locations, set to be the same
as NSFNET (21 edges and 2000km per edge on average). The
iteration number, population size, parent portion, crossover and
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Algorithm 4. Hierarchical topology design

1. Divide the nodes into different sub-networks:

1.1 Design the number of the sub-networks |Nsub|
(|Nsub| ≤

√
N).

1.2 Design the normalised centre coordinate of the sub-
networks {cj : (xc

j , yc
j )|j ∈ |Nsub|}. In this work we

set:

xc
j = cos j · 2π

|Nsub|
(11)

yc
j = sin j · 2π

|Nsub|
(12)

1.3 Divide the nodes into sub-networks (Nsubi
) according

to their distances to the sub-network centres, select the
nearest one (if k = arg minj(D(ni, cj)), then i ∈ subk ).

1.4 Set a targeted edge number for inter-sub-network con-
nections as Einter = Lmax/Lre f − N, where Lmax and
Lre f are the total fibre length limit and reference length
of an edge, respectively.

2. Design the topology for inter-sub-network:

2.1 Calculate the edge numbers between the sub-networks
(Einter

ij for sub-network i and j) according to the total
traffic between them by Eq. (13).

Einter
ij = ∑

p∈subi ,q∈subj

TC
pq · Einter ∀i, j ∈ |Nsub| (13)

2.2 Decide the gate nodes (the nodes that connect to other
sub-networks) for every sub-network by the traffic
size. gij

k donates the kth gate node in sub-network i
which connects to sub-network j. It is determined by
Eq. (14).

gij
k = arg max

g∈subi

∑
q∈subj

TC
gq ∀i, j ∈ |Nsub| (14)

2.3 Decide the edges between the gate nodes by their dis-
tances, select the edges with the minimum distances.

3. Design the topologies for intra-sub-networks:

3.1 The total edge length of a intra-sub-network (Nsubi
) is

shown in Eq. (15), where Linter is the total length of
inter-sub-network edges.

Lintra
maxi

=
Nsubi

N
∗ (Lmax − Linter) (15)

3.2 Design sub-network topologies in parallel using the
topology vector based GA algorithm described in Sec-
tion 3 B.

mutation rate of the GA method were set to 100, 100, 30%, 80%
and 10%, respectively, with values determined by grid-search.

For each of the topology design methods, the throughput
for the 200 generated topologies per traffic skew was evaluated
using the ILP and closed-form GN model and are plotted in Fig.
7. It can be seen that the average throughput of the BA and SNR-
BA DWC-selection topologies outperformed the corresponding
baseline topologies by 33% and 16% on average, respectively.
The GA topologies achieved the highest throughput under all
traffic matrices, with 90% and 57% throughput enhancement on
average compared to the random BA and SNR-BA topologies.
Compared to the DWC-selection methods, although the GA
topologies have similar DWC values, they result in significantly
higher throughput, especially for high skew traffic. The GA
method is able to explore more diverse topology structures, not
limited by the BA or SNR-BA methods, which make selections
based on rigid probability constraints.

Fig. 7. Throughput of the designed 14-node topologies. The
baseline topologies are denoted by the keyword ’random’ and
the DWC-selection topologies by ’DWC’. Each point repre-
sents the average throughput of 200 generated topologies.

To explore the characteristics of the designed topologies, we
calculated the average throughput (T), throughput per km fibre
(T/L), edge number (|E|), length per edge (Le), the total fibre
length (L) and plotted these in Fig. 8. Compared to the baseline
random BA and SNR-BA topologies, the GA and DWC-select
topologies achieved 138% (GA compared to random BA) and
33% (BA-DWC compared to random BA) higher fibre deploy-
ment efficiency, represented by the throughput per km fibre
(T/L), while still using roughly the same (maximum 5.5% dif-
ference) total fibre length (L). The DWC-select and GA methods
tend to choose shorter edges, increasing the number of edges,
compared to the baseline method. By setting the DWC as the
optimisation target, the GA and the DWC-selection methods
are able to make smarter choices where the edges are actually
needed, according to the traffic matrix, achieving improved net-
work structure and physical properties compared to the baseline
methods.

B. Large scale topology design (N = 100)
The large solution space of candidate topologies for 100-node
networks meant that common graph generative models (ER, BA
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Fig. 8. Characteristics of the designed 14-node topologies:
throughput (T), throughput per km fibre (T/L), edge number
(|E|), length per edge (Le) and the total fibre length (L). The
average over all traffic skews (γ) is taken.

and SNR-BA etc.) and the topology vector based GA could not
find a bi-connected topology fulfilling the total edge length limit
in a reasonable time. Thus, we implemented PS-based DWC-
selection, PS-based GA and the HTD method described in the
previous section for the 100-node network design.

The node positions were chosen uniformly randomly over
an area of the size of the north-American continent. The min-
imum distance between two nodes is set to 100 km to mimic
the node distances in core networks. The total edge length
limit (Lmax) is set to 280,000 km (set as the same of a refer-
ence topology with 140 edges, 2000km per edge on average)
accordingly. For each traffic matrix, where the traffic skew factor
γ ∈ {0.2 · y|0 ≤ y ≤ 5, y ∈ Z}, we designed 600 topologies, 200
for each method (DWC-select, GA and HTD). 200 additional ran-
dom PS topologies per-demand-matrix were used as baselines.

In the DWC-select and GA methods, we selected the best
200 topologies with minimum DWC from 10,000 topologies,
generated by each method, respectively. The parameters of the
GA method were set to be the same as in small-scale network
design, avoiding long computation times. In the HTD method,
the number of sub-networks (|Nsub|) and the reference edge
length (Lre f ) were set to 4 and 2,000 km, respectively, according
to the generated node positions.

The average throughput values, under the 6 different traffic
matrices (γ ∈ {0.2 · y|0 ≤ y ≤ 5, y ∈ Z}), evaluated via the
FF-kSP and DSL method, are plotted in Fig. 9. It can be seen that
PS-based topology generation methods are not sensitive to traf-
fic skews and HTD topologies achieved the highest throughput
under all traffic skews. Compared to the average throughput of
random PS topologies, the DWC-select, GA and HTD topologies
outperform them by 20%, 51% and 460%, respectively. They still
however deploy approximately the same amount of fibre, with
the maximum difference of 0.7% as shown in Fig. 10. Unlike
the PS-based methods, that only generate “tree-based” topolo-
gies; the HTD method searches through a much larger solution
space of feasible topologies, which is able to find the topologies
with significantly smaller DWC as shown in Fig. 11. More-
over, the topology vector based GA, that is used within HTD for
the sub-network design, achieves more significant throughput
enhancement in high skew traffic conditions. Thus, the HTD

method is able to achieve much higher throughputs compared
with the PS-based methods as shown in Fig. 9.

Fig. 9. Throughput of the designed 100-node networks

Fig. 10. Total fibre length of the designed 100-node networks

To investigate the characteristics of the designed topologies,
we also calculated the average throughput (T), throughput per
km fibre (T/L), edge number (|E|), length per edge (Le) and the
total fibre length (L) of these topologies and plotted them in Fig.
12. Compared to random PS topologies, the DWC-select, GA
and HTD topologies achieved 20%, 52% and 459% higher aver-
age throughput per km fibre (T/L) respectively, which indicates
the high efficiency of fibre deployment of the proposed meth-
ods. The average edge length (Le) of DWC-select, GA and HTD
topologies are 4.3%, 10.4% and 58% shorter, leading to the edge
number (|E|) increment of 4.6%, 10.8% and 139%, respectively.
The increased number of edges leads to the advantage of topol-
ogy structure (improving physical connectivity) further leading
to performance advantages. Compared to the PS-based topolo-
gies, the HTD method is able to explore more diverse topology
structures: by splitting the large-scale design problem into multi-
ple smaller scale problems and then using topology vector based
GA (rather than Prufer-sequence based GA) to design them. This
leads to significantly better topology optimisation for a given
traffic matrix. Finally, it is worth acknowledging that the prufer
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Fig. 11. DWC of the designed 100-node networks

sequence GA, generally is not able to generate topologies that hit
the fibre limit. This is due to the lack of variety that the prufer
sequence initialisation causes, as it only produces tree-based
topologies.

Fig. 12. Characteristics of the designed 100-node topologies:
throughput (T), throughput per km fibre (T/L), edge number
(|E|), length per edge (Le) and the total fibre length (L). The
average over all traffic skews (γ) is taken.

5. CONCLUSIONS

This paper delves into the long-standing NP-hard problem of
physical topology design for optical networks, with the target
of maximising network throughput. This problem contains 2
NP-hard sub-problems: (i) evaluation of the throughput for a
given topology and demand (ii) finding a near-optimal topology
in a huge solution space.

In this paper, by parameterising the relationship between net-
work topology and traffic demand, a novel polynomial complex-
ity objective function for optical network topology design, the de-
mand weighted cost (DWC) metric, is introduced. It was shown
that there is an approximately inverse proportional relationship
between DWC and throughput under different node-scale (14

– 100 nodes) networks and traffic scenarios, with the Pearson
correlation coefficient above 0.91. The proposed DWC metric
was used as a computationally effective objective (5 ∼ 6 orders
of magnitude speed-up) to evaluate topologies in the network
design process. By implementing DWC within 3 polynomial-
time topology optimisation methods, DWC-select, GA and HTD,
90% and 460% throughput enhancement were demonstrated for
both small-scale (14-node) and large-scale (100-node) topology
designs, respectively. Both the methods and the results reported
in the paper can be used to develop traffic-tailored network
topologies and/or adapt them to deliver bandwidth when and
where it is needed, which is the key to intelligent optical network
designs.

Further work is ongoing to expand the current topology de-
sign methods with combined optimisation targets such as av-
erage end-to-end latency, network resilience and more diverse
traffic modelling.
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