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Abstract 

Stroke is a major cause of death and disability. A better comprehension of stroke 

pathophysiology is fundamental to reduce its dramatic outcome. The use of high-

throughput unbiased omics approaches and the integration of these data might deepen the 

knowledge of stroke at the molecular level depicting the interaction between different 

molecular units. We aimed to identify protein and gene expression changes in the human 

brain after ischemia through an integrative approach to join the information of both omics 

analyses. The translational potential of our results was explored in a pilot study with blood 

samples from ischemic stroke patients. 

Proteomics and transcriptomics discovery studies were performed in human brain 

samples from six deceased stroke patients comparing the infarct core with the 

corresponding contralateral brain region, unveiling 128 proteins and 2716 genes 

significantly dysregulated after stroke. Integrative bioinformatics analyses joining both 

datasets exposed canonical pathways altered in the ischemic area, highlighting the most 

influential molecules. Among the molecules with the highest fold-change, 28 genes and 

9 proteins were selected to be validated in five independent human brain samples using 

orthogonal techniques. Our results were confirmed for NCDN, RAB3C, ST4A1, 

DNM1L, A1AG1, A1AT, JAM3, VTDB, ANXA1, ANXA2 and IL8. Finally, circulating 

levels of the validated proteins were explored in ischemic stroke patients. Fluctuations of 

A1AG1 and A1AT, both up-regulated in the ischemic brain, were detected in blood along 

the first week after onset. In summary, our results expand the knowledge of ischemic 

stroke pathology, revealing key molecules to be further explored as biomarkers and/or 

therapeutic targets. 

Keywords: Ischemic stroke, proteomics, transcriptomics, integrative analysis  
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CV: coefficient of variation 

FDR: false discovery rate 

GEO: Gene Expression Omnibus 

GIS: gene influential score 

GPF: gas phase fractionation 

GSS: gene set scores 

IC: infarct core 
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1. Introduction 

Stroke is one of the most frequent causes of morbidity and mortality worldwide [1]. The 

currently approved therapy consists of restoring cerebral blood flow via the intravenous 

administration of thrombolytics such as recombinant tissue plasminogen activator (rt-

PA), or through mechanical thrombectomy [2]. Beyond these therapeutic approaches at 

the vascular level, the use of neuroprotective drugs to prevent infarct growth is still far 

from being applied in daily clinics and needs further research [3, 4]. In addition to these 

therapeutic interventions, it is indispensable to have rapid diagnostic techniques to 

optimize stroke patients’ management. In this line, blood biomarkers are thought to be 

promising tools to complement the current clinical methods used to diagnose stroke, 

which are still based on patients’ medical history and neurological and neuroimaging 

explorations [5]. 

On this basis, a better understanding of stroke pathophysiology would help to improve 

preventive, diagnostic and therapeutic strategies. Thanks to the rapid development of 

omics techniques, various studies [6–9] have taken advantage of these high-throughput 

approaches to identify molecular pathways altered after ischemic stroke, improving 

enormously the knowledge on stroke pathophysiology [6, 10]. Several proteomics, 

transcriptomics, genomics and metabolomics studies have been published in the field of 

ischemic stroke. For example, the brain proteome after ischemic stroke has been 

described [7] and key molecules in stroke pathology such as matrix metalloproteinases 

(MMPS) [11] or glial fibrillary acidic protein (GFAP) [12], among others, have been 

identified thanks to these approaches. Probably in the near future, MMPS measurement 

will allow identifying ischemic stroke patients with a high risk of suffering hemorrhagic 

transformation [13], while GFAP could be used to discriminate between hemorrhagic and 

ischemic stroke patients [14, 15]. Besides, thanks to genomics studies, 42 loci associated 

with stroke at a genome-wide significant level have been identified to date [6] and 

together with different proposals of gene transcripts panels could help to diagnose 

ischemic stroke in a near future [16–18]. However, the vast majority of these studies focus 

on the analysis of a single omics dataset, missing and underestimating the crosstalk and 

interplay that occur between the different molecular components.  

For that reason, a comprehensive integrative analysis of multilevel omics data would 

enable to decipher the molecular changes triggered by stroke, ultimately leading to the 

identification of the key players of this complex disease and even exposing altered 
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pathways that are not revealed when examining a single data source [19, 20]. Little is 

known about omics integration approaches in the context of ischemic stroke. 

Heterogeneous data and numerous sources of information are difficult to integrate in a 

global analysis, making challenging to discern between biologically relevant and 

irrelevant molecules [21]. Nonetheless, recently, a study integrating for the first time 

proteomic and transcriptomic data obtained from mouse brains at 2 hours after cerebral 

ischemia was published by our group [22]. However, to date, any study of these 

characteristics has been performed in stroke patients.  

Thus, this study aimed to massively identify and verify changes that occur in the human 

brain after ischemic stroke at different molecular levels. Specifically, we were interested 

in exploring the main proteomics and transcriptomics alterations as well as joining all this 

information through an integrative analysis to interpret the results in their biological 

context. Finally, with a more translational aim in view, we also explored the blood 

circulating levels of some of the validated candidates in ischemic stroke patients at 

different time-points within the acute phase of the disease.  

 

2. Materials and methods 

All reagents were purchased from Sigma-Aldrich (USA) unless contrary stated.  

Experimental design 

The present study is divided into 3 main sections: a first Discovery Phase performed in 

human brain samples using mass spectrometry and RNA microarrays, with further 

integrative bioinformatics analyses; a second Replication Phase for selected candidates 

conducted in different/independent human brain samples employing Western Blot and 

qRT-PCR; and a third Qualification Phase developed in human blood samples using 

ELISA techniques. A flowchart summarizing all these steps can be seen in Figure 1. 

Individuals and sample collection 

Ethics statement 

The whole study was approved by the Ethics Committee of Vall d’Hebron Hospital 

(PR[HG]85/04, PR[HG]89/03 and PR[IR]87/10). Written informed consent was acquired 

from all participants or relatives in agreement with the Declaration of Helsinki.  
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Brain samples 

Eleven ischemic stroke patients who died during hospitalization in the Vall d’Hebron 

Hospital (Barcelona, Spain) were included in our brain tissue collection between March 

2004 and July 2011. Tissue collection was done under the supervision of an experienced 

neuropathologist. Brain pieces from the infarct core (IC) and the corresponding 

contralateral (CL) areas were gathered within the first hours after death, snap-frozen in 

liquid nitrogen and stored at -80ºC. Table 1 summarizes the demographic and clinical 

information of these patients. 

Blood samples 

Patients with symptoms of acute ischemic stroke admitted to the emergency department 

of the Vall d'Hebron Hospital within the first 4.5 hours after symptoms onset were 

prospectively recruited from September 2006 to January 2009. All patients underwent a 

standardized protocol of brain imaging and neurological assessment. Evaluation of 

neurological severity using the National Institutes of Health stroke scale (NIHSS) [23], 

of functional state with the modified Rankin Scale (mRS) [24] and etiological 

classification following the TOAST definitions [25] were carried out. All patients 

received the standard thrombolytic treatment (intravenous 0.9 mg/Kg recombinant tissue-

plasminogen activator, rt-PA; Actilyse, Boehringer Ingelheim International GmbH, 

Germany). From this cohort, anonymized samples from 11 stroke patients (5 males and 6 

females, age and sex matched) were randomly selected (see Supplementary Table 1 for 

demographic and clinical details).  

Peripheral blood samples were drawn on admission (before any treatment was 

administered), 24 hours and 1 week later. EDTA plasma was separated by centrifugation 

at 1,500 g for 15 min at 4ºC and stored at -80ºC. Additionally, plasma samples from 5 

subjects free from brain lesions from the ISSYS cohort [26] were included as control 

reference (40% males, 67.4 ± 1.1 years old). 

Proteomics analysis  

Sample preparation 

Alkaline cold lysis buffer containing 50 mM Tris-HCl, 150 mM NaCl, 5 mM CaCl2, 

0.05% Brij-35 and 0.02% NaN3 was used to prepare 0.1% Rapigest (Waters, USA) 

solution. Protease inhibitors (1% phenylmethylsulfonyl fluoride – PSMF – and 0.5% 

aprotinin) were added. Frozen brain samples from IC and CL areas were immersed in this 
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solution and homogenized with a dounce tissue grinder with glass pestles. Homogenates 

were centrifuged for 12 min at 15,300 g at 4ºC and supernatants were stored at -80ºC.  

The protein content of brain homogenates was determined by the bicinchoninic acid 

(BCA) assay (ThermoFisher Scientific, USA). For each sample, 25 µg total protein was 

brought to 30 µL 0.1% Rapigest in 0.1 M triethylammonium bicarbonate (TEAB) before 

a standard reduction, alkylation, trypsin digestion and sample processing was carried out 

[27].  

LC-MS/MS analysis 

Brain digests were analyzed by liquid chromatography (NanoAcquity LC system; 

Waters) coupled to electrospray ionization – tandem mass spectrometry (LC-ESI-

MS/MS) on a linear trap quadrupole (LTQ) Orbitrap Velos Pro (ThermoFisher) following 

a gas phase fractionation (GPF)-4 approach. Details about the procedure can be found 

elsewhere[27].  

 

Protein identification and quantitative analysis 

Mass spectrometry data were analyzed with Progenesis LC-MS® software v4.0 

(Nonlinear dynamics, UK) using default settings and automatic processing of the runs. 

Each GPF range was analyzed independently, as previously described [27], before 

combining them into one single experiment. For those proteins identified with a minimum 

of 2 unique peptides, protein abundance was quantified in a label-free manner based on 

the sum of all peak areas for each peptide ion and normalized to all proteins.  

Further normalization was done by adding a value of 1 to every data point (to avoid 0 

values in the analysis for missing proteins in some brain samples and/or areas). Analysis 

of data heterogeneity showed a skewed distribution, with the top 3 highly abundant 

proteins interfering in the distribution of the data; these 3 proteins corresponded to 

hemoglobin α and β and albumin and were excluded from further analysis. Finally, data 

were log-transformed and used for a statistical paired analysis to compare IC and CL 

areas based on a linear model (limma package; R software, Austria). Furthermore, the 

Benjamini-Hochberg procedure to calculate the false discovery rate (FDR; multtest R 

package) was applied to obtain q-values. We considered differentially abundant proteins 

those with a q-value <0.1. Logarithmic base 2 fold-change (logFC) was computed to show 

the average protein changes in the IC with respect to the CL areas; a minus sign (-) 

indicates lower protein abundance in the IC area, and vice versa.  
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Transcriptomics analysis 

Sample preparation 

Total RNA was isolated from frozen brain samples using the Fatty Tissue RNA 

Purification kit (Norgen Biotek Corp., Canada), following the manufacturer’s 

instructions. DNase treatment was performed in solution with the DNA-free DNA 

removal kit (Ambion, ThermoFisher). All RNAs were kept at -80ºC. 

The integrity of the isolated RNA was determined using the Bioanalyzer 2100 platform 

(Agilent, UK), with an average integrity number of 6.4 ± 1.5.  

Microarrays analysis 

For each sample, 150 ng total RNA was amplified and transformed to biotinylated sense-

strand DNA with the GeneChip® WT PLUS Reagent Kit (Affymetrix, ThermoFisher). 

The appropriate GeneChip Hybridization, Wash, and Stain Kit (Affymetrix) were 

employed before hybridization onto GeneChip Human Transcriptome Array 2.0 

cartridges (Affymetrix) following the manufacturer’s instructions.  

Microarrays were scanned in a GeneChip scanner 3000 7G (Applied Biosystems, 

ThermoFisher) and these images were processed with the GeneChip Command Console 

software (Affymetrix) to obtain .CEL files containing gene expression intensities. Data 

quality was assessed with the arrayQualityMetrics R package [28] before further analyses 

were conducted without the exclusion of any sample.  

Differential gene expression analysis 

Raw gene expression intensities were processed using the Robust Multi-array Average 

algorithm [29], which accounts for background correction, normalization and 

summarization of probe set values for each gene. Besides, non-specific filtering was 

conducted to remove genes with low intensity and/or low variability among samples. 

Only genes coding for proteins were considered for further analysis in this study. A linear 

model analysis (limma R package) was used for a statistical paired analysis to compare 

IC and CL brain areas, together with further FDR multiple testing adjustment (multtest R 

package) to give q-values. We considered differentially expressed genes those with q-

values <0.1. LogFC was computed to show the average gene alterations in the IC in 

relation to the CL areas; a minus sign (-) applies for genes underexpressed in the IC area, 

and vice versa.  
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Integrative bioinformatics analyses 

Integrative bioinformatics analysis was developed using proteomics and transcriptomics 

data obtained from the discovery phase comparing paired infarcted and contralateral brain 

areas from same patients. Filtered lists of the most relevant proteins and genes from both 

omics datasets (q-value <0.1 and |logFC|>1.5) were combined using appropriate 

multivariate methods for dimensionality reduction to find common expression trends. RV 

coefficients were obtained as a measure of global similarity between protein and gene 

datasets.  Co-inertia analysis [30] (made4 R package, default parameters) yielded patterns 

to explain the maximum covariance between global protein and gene datasets, whereas 

regularized canonical correlations [31] (mixOmics R package, using seq(0.1, 

2,length=50) and seq(0.000001,0.002,length=20) for tuning parameters λ1 and λ2 

respectively) inferred relevance networks based on the relationship between particular 

proteins and genes. In this case, the cut-off to highlight the most relevant correlations was 

set at R ≥0.9. 

Additionally, further multidimensional exploration of both omics datasets was completed 

with biological annotations by unsupervised multiple omics gene set analysis [32] 

(moGSA R package using inertia with statis parameters for the mogsa function). Proteins 

and genes were weighted against gene sets from the Canonical Pathways sub-collection 

of the Molecular Signature database (MSigDB [33], file msigdb.v5.2.symbols.gmt, 

currently available at https://www.gsea-msigdb.org/gsea/downloads_archive.jsp, from 

Broad Institute Inc., USA) to compute gene set scores (GSS), which were further 

decomposed to evaluate the contribution of proteins and genes to the overrepresentation 

of a particular gene set under brain ischemia. Gene sets were considered significantly 

relevant in the disease context when most GSS showed a p-value <0.1. Moreover, the 

gene influential score (GIS) was calculated to elucidate which molecules were most 

relevant for a given GSS. A maximum GIS equal to |1| indicates that the molecule 

contributes a high proportion to the overall GSS; only those molecules with GIS 

>|0.5|were considered as relevant. 

Replication phase 

From the lists of meaningful proteins and genes dysregulated after ischemic stroke in the 

human brain, top molecules (considering its |logFC|) both up- and down-regulated were 

selected for further independent replication in independent samples using orthogonal 

methodologies (Table 1). In addition to statistical significance (q-values<0.1 and top 

https://www.gsea-msigdb.org/gsea/downloads_archive.jsp
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|logFC|), selection criteria were complemented by a comprehensive review of related 

bibliography on candidates’ previous knowledge.  

Western Blot 

Frozen brain samples were homogenized by means of a dounce tissue grinder using cold 

lysis buffer containing 50 mM Tris-HCl, 150 mM NaCl, 5 mM CaCl2, 0.05% Brij-35, 

0.02% NaN3, 1% Triton X-100, 1% PSMF and 0.5% aprotinin. After centrifugation (12 

min at 15,300 g at 4ºC), supernatants were collected and stored at -80ºC. Before use, the 

protein content was determined by BCA assay. 

Following standard procedures, 12 μg of brain homogenates mixed with 2X Laemmli 

buffer (Bio-Rad, USA) were resolved by 10-14% sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) under reducing conditions. Afterward, separated 

proteins were transferred onto nitrocellulose membranes (GE Healthcare, UK) using a 

mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad) for 1h at 100V. Membranes 

were stained with Ponceau S solution for the detection of total protein content in each 

sample and were scanned in a Perfection V39 scanner (Epson, Japan). Non-specific 

binding was blocked for 1h with 10% non-fat milk before membranes were incubated 

overnight at 4ºC with optimized anti-human antibodies against protein candidates 

(Supplementary Table 2). Appropriate secondary antibodies conjugated to horseradish 

peroxidase (GE Healthcare) were incubated at room temperature for 1h. The substrate 

reaction was developed with peroxide and luminol solutions (ThermoFisher) and 

visualized with an Odyssey Fc imaging system (LI-COR Biosciences, USA).  

Protein bands and total protein lane images were quantified using Image-J free software. 

Positive band signal was corrected by total loading signal to calculate the candidate 

protein level in each sample [34].   

qRT-PCR 

Total RNA was isolated from frozen brain samples using the Fatty Tissue RNA 

Purification kit (Norgen), including in-column DNase treatment with the RNase-Free 

DNase I kit (Norgen). Before freezing samples at -80ºC, successful RNA extraction was 

checked by NanoDrop® ND-1000 spectrophotometer (Nucliber, Spain).  

Reverse transcription for cDNA synthesis was performed using the High-Capacity cDNA 

Reverse Transcription kit (Applied), following the manufacturer’s instructions. A 

standard real-time quantitative PCR amplification was carried out in 384-well plates, with 

samples run in triplicates and using an unrelated brain sample as endogenous calibrator 
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control in all the plates. We selected TaqManTM Gene Expression Assays (Applied) for 

each candidate gene (Supplementary Table 3) and for PPIA (Hs99999904_m1), which 

was used as a housekeeping gene to normalize the results. Plates were analyzed using the 

7900HT Fast Real-Time PCR system (Applied) and SDS 2.4 and RQ Manager softwares 

(Applied). Relative quantification (RQ) values were calculated by using the Livak 

equation: RQ = 2-ΔΔCt, using both calibrator and housekeeping controls.  

Statistical analyses 

Protein and gene quantifications from the replication phase were analyzed using SPSS® 

20.0 (IBM Corp., USA). Considering a paired samples design, differences between IC 

and CL brain areas were assessed by Wilcoxon signed-rank test. In all cases, p-values 

<0.05 were considered significant. LogFC were calculated as detailed above.   

Qualification study 

For those proteins validated in the replication phase, a pilot exploration in blood samples 

was conducted.  

ELISAs 

Commercial immunoassays were used following manufacturer’s instructions to quantify 

plasma levels of A1AG1 (1:100 dilution; MBS763331, MyBioSource), A1AT (1:20 

dilution; ELH-SerpinA1, RayBiotech), DNM1L (undiluted; MBS9358522, 

MyBioSource), JAM3 (undiluted; ELH-JAMC, RayBiotech, USA), NCDN (1:2 dilution; 

abx392242, Abbexa), RAB3C (undiluted; MBS9317641, MyBioSource), ST4A1 

(undiluted; MBS9339095, MyBioSource) and VTDB (1:50 dilution; MBS763939, 

MyBioSource, USA). Optical density was measured using a SynergyTM Mx microplate 

reader (BioTek Instruments Inc, USA). 

Duplicates were assayed for each sample and the mean value was used for further 

analyses, excluding those samples with an intra-assay coefficient of variation (CV) higher 

than 20%. In the case of protein values under the detectable range of the assay, the limit 

of the detection value of the assay was consigned. Besides, protein values over the 

detectable range were given the highest readable value in each particular assay. 

Statistical analyses 

Analyses were performed with SPSS 20.0. Longitudinal analysis of protein circulating 

levels over time after stroke was conducted with the Friedman test. Differences between 

time-points were assessed with the Wilcoxon signed-rank test corrected by Bonferroni. 
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Reference protein values in the control population were calculated with Tukey’s hinges. 

P-values <0.05 were considered significant at 95% confidence.  

 

3. Results 

A chart of the study workflow is shown in Figure 1. 

Protein and gene dysregulation in the brain after stroke 

The unbiased molecular analysis of human brain samples from six deceased stroke 

patients through mass spectrometry and microarrays techniques allowed the identification 

and quantification of 1902 proteins and 6822 genes (Supplementary Data 1). After 

cleaning the datasets and focusing attention on proteins identified with at least two unique 

peptides and protein-coding genes, we determined the differential proteome and 

transcriptome between paired IC and CL brain areas from the same patients. Statistical 

analyses revealed 128 proteins and 2716 genes significantly dysregulated under ischemia 

(i.e. FDR q-values <0.1), with 38 common molecules among these lists (details about q-

values and logFC are given in Supplementary Table 4).   

Integrative multidimensional molecular landscape of stroke  

To obtain more meaningful molecular information, further filtering in both datasets was 

accomplished by applying a cut-off of |logFC|>1.5. Thus, 95 proteins and 244 genes were 

deemed fit for integrative purposes. Data blending of these significantly dysregulated 

proteins and genes showed a global similarity on the profiles of both datasets of 60% (RV 

coefficient = 0.608). Based on co-inertia analysis, the projection of both molecular 

datasets identified a greater correlation between protein and gene expression levels in the 

CL than in the IC area. The IC region, instead, showed a higher molecular divergence 

together with the expected spread of individual variation (Figure 2A). Additionally, a 

projection-based approach allowed us to identify trends of co-expression of proteins and 

genes and to highlight the key molecular players in human brain ischemia. Different 

members of several molecular families involved in canonical processes typically 

associated with stroke appeared among the highest-correlated molecules (R ≥0.9); e.g. 

annexins, GABA receptors and neurofilaments (Figure 2B).  

Besides, the multiple omics data-based gene set analysis showed that genes contributed 

almost double than proteins in the molecular variance between IC and CL areas (Figure 

2C). Seven gene sets were found significantly overrepresented under ischemia (Figure 



 
 

15 
 

2D). Among these canonical pathways, protein changes were highly relevant for the up-

regulation of platelets activity (GSS = 0.004) and extracellular matrix composition 

(known as matrisome; GSS = 0.003). Also, dysregulated genes outweighed the down-

regulation of chemical synaptic transmission (GSS = -0.017) and other related neuronal 

system processes (GSS = -0.021). Genes and proteins performed oppositely in regards to 

their contribution to the up-regulation of hemostasis (GSS = 0.003) and signaling through 

G proteins (GSS = 0.001) but similarly in the down-regulation of the neurotransmitter 

release (GSS = -0.006). The driver molecules in each significant gene set together with 

their GIS values are depicted in the corresponding panel of Figure 2E.  

Replication study 

From the lists of meaningful proteins and genes dysregulated after ischemic stroke in the 

human brain, 28 genes and 9 proteins (Table 2) were selected as candidates among the 

differential molecules with the highest logFC when IC and CL were compared. In 

addition to statistical values (q-values<0.1 and top |logFC|), selection criteria were 

complemented by a bibliographic review on candidates’ previous knowledge. A further 

independent replication was conducted following the same design of paired brain areas 

in a new set of 5 brain stroke samples by means of Western Blot and qRT-PCR. From all 

the molecules selected, five molecules (NCDN, RAB3C, ST4A1, DNM1L and MYPR) 

were common in both datasets and were therefore selected to be replicated at both protein 

and gene levels. Three out of these five candidates (NCDN, RAB3C and ST4A1) were 

confirmed to display a globally reduced expression in the IC of a new series of samples. 

The results of DNM1L were only replicated regarding protein changes showing decreased 

expression in the IC, while MYPR was not validated at all (Table 2, Figure 3A). 

Moreover, four candidates were selected to be replicated exclusively at the protein level 

(A1AG1, A1AT, JAM3 and VTDB) (Table 2, Figure 3B). Successfully, all four were 

validated, showing increased expression in the IC. Finally, 23 candidates were selected 

to be replicated only at the gene level. Of these, three (ANXA1, ANXA2 and IL8) were 

validated displaying increased levels in the IC. We also observed a trend in up-regulation 

for SRGN (Table 2, Figure 3C).  

Qualification study 

With a translational aim in view, further exploration of the protein verified candidates in 

blood samples from 11 independent acute ischemic stroke patients treated with rt-PA 

(median age 71 (63.5-79) years, 45.5% males) was conducted in a pilot experiment using 
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ELISA techniques to determine whether they were detectable in the blood (see 

Supplementary Table 1 for demographic and clinical data). Protein levels were assessed 

in blood at hospital admission, 24 hours and 1 week after the event. Here, longitudinal 

analyses at these three time points exposed different profiles of protein fluctuations. 

Baseline reference values were depicted by using blood samples from 5 control subjects 

without brain damage. Globally, significant changes over time were detected for A1AG1 

and A1AT blood levels (Friedman test: p=0.018 and p=0.050 respectively) whereas a 

slight trend appeared for DNM1L (Friedman test: p=0.072). VTDB, RAB3C, ST4A1, 

JAM3 and NCDN were also present in the blood without a significant variation in their 

levels in the acute phase of ischemic stroke (Friedman test: p=0.264, p=0.122, p=0.202, 

p=0.121 and p=0.159, respectively) (Figure 4). 

Deeper analysis showed that A1AG1 displayed higher circulating levels on admission 

with a quick and sustained remission from 24h whereas A1AT reverted to normal levels 

one week after the ischemic event. Moreover, a modest reduction of RAB3C, JAM3 and 

ST4A1 in plasma levels at 24h was revealed (Figure 4). 

 

4. Discussion 

The study presented here identifies key molecular pathways altered in the human brain 

after stroke through an integrative analysis of the main transcriptomics and proteomics 

changes triggered by cerebral ischemia. To do so, we have combined for the first time in 

human brain samples information of both omics datasets and created a complex network 

of inter-connecting genes and proteins that may play an important role in stroke 

pathophysiology. The integrative analysis of our proteomics and transcriptomics data 

revealed a 60% of resemblance between datasets, disclosing important crosstalk between 

the different molecular features in response to the ischemic event. The other 40% 

molecular divergence suggested that proteins and genes may also bring distinct and 

complementary information about the underlying stroke mechanisms. In this regard, 

several biological reasons could be considered. Among others, differential post-

transcriptional mechanisms, the tight regulation of translation, the existence of regulatory 

proteins and differences in the turnover of proteins and mRNAs could be factors highly 

influencing the observed divergence [35, 36]. Besides, many RNAs are actively 

transcribed but not translated, a fact that can partially explain, why there are more 
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dysregulated genes than proteins (40% vs 7%) [37], reinforcing the importance of 

performing studies integrating omics data such as the one presented here.  

Interestingly, the co-inertia analysis revealed that gene and protein expression were less 

synchronized in the IC than in the CL, which might be related to the well-known burst of 

molecular changes arising after stroke and mainly triggered in the hypoperfused area [38].  

Moreover, the variation in the IC area appeared to be individual-dependent and might be 

highly influenced by inter-patient variability and/or differences in the elapsed time from 

stroke onset to death. Beyond this observed variance, there are common changes that 

clearly define the IC region. Theoretically, a high statistical correlation between the 

abundance level of molecules might be interpreted as a functional relationship [39]. In 

fact, some molecules from several families previously described to play an important role 

in stroke showed the highest correlation coefficients in our correlation-based analysis, 

such as the GABA receptors, which are well known to be involved in neuronal excitability 

and contribute to the consequent neuronal death [40].  

The analysis of main molecular functions and biological processes altered due to stroke 

exposed a variety of canonical pathways that have been previously described, reinforcing 

the robustness of our results. In general, proteins and genes performed similarly, being 

both datasets dysregulated in the same direction in the vast majority of pathways. For 

example, the down-regulation in the ischemic region of the neurotransmitter release, the 

neuronal system activity and the transmission across chemical synapses were depicted. 

Due to the high energy demand of the synapse, the lack of glucose and oxygen derived 

from the blockage of cerebral blood flow might impair synapses function and viability, 

ultimately altering the release of neurotransmitters and even leading to neuronal death 

[41]. Moreover, genes and proteins related to the matrisome were also found to be up-

regulated. Several changes occur in the extracellular matrix composition of the brain after 

stroke. While some proteins of the blood-brain-barrier (BBB) are degraded, new 

extracellular matrix proteins are deposited into the brain parenchyma. However, the 

biological significance of their regulation may be different depending on the time point 

after the event and thus contribute to the BBB disruption, the inflammatory response or 

the remodeling and repairing processes in the parenchyma [42–44]. For example, the 

overexpression of TGF-β after stroke contributes to remodeling processes [44], and it is 

one of the most influential molecules of the matrisome pathway in our study, together 

with other interesting candidates (Figure 2E). All in all, our canonical pathway analysis 
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brought to light several pathways altered after the ischemic event that might be key 

players of stroke pathophysiology and need to be taken into consideration to be further 

explored.  

Beyond the integrative data analysis, from the 9 proteins and 28 genes selected for 

replication 6 genes and 8 proteins were verified. Some of the validated molecules resulted 

to be among the most influential of the overrepresented canonical pathways in the 

ischemic brain, such as JAM3 and SRGN which participate in hemostasis processes, or 

annexins (ANXA1 and ANXA2) that play a role in the matrisome regulation. 

Furthermore, it is worth noting that the genes and proteins found to be altered after 

ischemic stroke in this study are interesting molecules to be further studied as potential 

therapeutic targets for stroke management. As an example, several studies show that the 

modulation of DNM1L as well as ANXA2, two of the molecules validated in the present 

study, protects the brain after cerebral ischemia. In brief, DNM1L is a GTPase enzyme 

implicated in mitochondrial division and distribution, vesicle endocytosis and 

mitochondria-related necrosis and apoptosis [45], and its dysregulation can cause energy 

production disruption leading to cell death  [46]. In agreement with our results, previous 

studies showed a reduction of DNM1L in the brain 24 hours after cerebral ischemia in 

rats [46]. Interestingly, it has been also shown that the inhibition of DNM1L provides 

neuroprotection both in in vitro and in vivo stroke models, by reducing the infarct volume 

[47, 48]. Regarding Annexin 2, it was found up-regulated in the infarcted brain region of 

our cohort of stroke patients. Briefly, ANXA2 is a calcium regulated phospholipid 

binding protein involved in cell cycle regulation, cell division, proliferation, cell survival 

and neo-angiogenesis [49, 50] that can increase the catalytic efficiency of rt-PA about 60-

fold [51, 52]. Various studies pointed out that the administration of ANXA2 in 

combination with rt-PA after experimental ischemic stroke, reduced hemorrhagic 

transformation risk and the infarct volume as well as  improved the functional recovery 

after stroke [52–55]. Considering the encouraging results available regarding DNM1L 

and ANXA2 as potential therapeutic targets, further exploration and/or modulation of 

these and other dysregulated molecules presented in this study could shed light on the 

search for an appropriate treatment for ischemic stroke. It is worth mentioning stroke is 

an extremely complex process, so it seems plausible that targeting a simple pathway may 

not be sufficient to attenuate brain damage [56]. To that end, the simultaneous modulation 

of the most influential molecules and/or canonical pathways presented here through the 
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combination of neuroprotective agents might be an interesting approach to achieve 

optimal therapies in forthcoming studies.  

With the idea of a future translation into the clinics of our findings, we explored whether 

the successfully replicated proteins that were deregulated in the brain were also detectable 

in the peripheral circulation. If so, these molecules could be promising candidates to be 

further studied as potential blood biomarkers for stroke diagnosis and/or prognosis in the 

future. To the best of our knowledge, it is the first time that ST4A1, RAB3C and NCDN, 

proteins almost exclusively expressed in the brain, are detected in the blood. Interestingly, 

A1AT and A1AG1 circulating levels showed a substantial increase within the first 24 

hours from stroke onset, and returned to normal 1 week after the ischemic event. In fact, 

plasma concentrations of these acute-phase response proteins were already known to raise 

several folds in response to acute inflammatory processes, including cerebral ischemia 

[57]. A1AG1 is thought to suppress the immune response and to have pro-angiogenic 

properties [58], while A1AT inhibits neutrophil elastases, and regulates inflammation and 

proteostasis [59]. In the present study, we found significant overexpression of both 

A1AG1 and A1AT in the IC in comparison with the CL area, complementing what we 

previously found in an independent brain samples set [7]. Two main factors could be 

influencing this observed increase in the infarcted region. On the one hand, as shown in 

the temporal circulating profile, after stroke there is a massive inflammatory response that 

consequently increases the expression of acute-phase response proteins in the blood, 

which can reach the brain parenchyma due to the stroke-induced BBB disruption [38]. 

On the other hand, resident brain cells could also be overexpressing these proteins in 

response to stroke. In fact, brain endothelial cells are known to express A1AG1 [58],so 

the observed A1AG1 increased levels of could be reflecting the urge to reestablish the 

normal blood flow through the formation of new vessels to ensure oxygen availability in 

the damaged brain tissue. All the same, the fact that all the selected candidates have been 

detectable in circulation reinforces the idea that they, and others identified here, can be 

further explored to determine their plausible role as stroke biomarkers.  

Altogether, we have integrated for the first time data from proteomics and transcriptomics 

techniques through an innovative biostatistical approach to identify new key players in 

human stroke pathophysiology. On this basis, the dysregulated molecules presented in 

this study might be interesting candidates to become blood biomarkers and to help in the 

diagnosis of stroke or to predict patients’ outcome. Moreover, these molecules and the 
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canonical pathways in which they have a role might also be further explored in the future 

as potential therapeutic targets to mitigate or even reverse stroke pathology.  

The present study has some limitations that need to be considered and should be addressed 

in future studies. To begin with, brain samples used in our study were from deceased 

patients, and the time elapsed from death to sample collection was on average 8h (Table 

1). Over this period of time, some molecules could be degraded or even modified. 

Moreover, the affected brain region and the time from stroke onset to death were different 

among patients, variables that can be influencing protein and gene expression. However, 

with this limitation in mind, we made use of the contralateral hemisphere as the respective 

individual control and thus maintain the inherent individual variability of this disease. 

Besides, the number of patients used in the discovery, replication and qualification phases 

was relatively small, so although our results are consistent with previous studies, further 

research in larger cohorts has to be conducted. Moreover, new studies exploring blood 

circulating levels of the candidates should include stroke mimics subjects to determine 

the plausible role of these proteins as biomarkers for stroke diagnosis. Nonetheless, 

several strengths have to be also highlighted. Foremost, the study presented here provides 

novel information about changes in protein and gene expression that occur in the brain 

after ischemic stroke.  

During the following years, it is highly likely that integrative approaches like the one 

presented here will emerge and grow, shedding light on the understanding of complex 

diseases such as stroke. In this regard, the integration of other omics techniques such as 

genomics or metabolomics could complement and enrich even more the present study, 

providing additional information that could aid in depicting the complex stroke 

phenotype. Integration of omics data could also become a crucial tool in the development 

of personalized therapies through the alignment of clinical phenotypes with multilevel 

molecular networks, easing the identification of biological signatures of clinical 

manifestations [6]. These methods will ultimately enable the triage of targets in the design 

of diagnostic, prognostic and therapeutic approaches. Besides, future research could focus 

on creating in silico models of stroke through the integration of these multi-omics data, 

facilitating drug repositioning strategies or the identification of key molecules and 

processes of stroke pathophysiology. Finally, there is also the need to further comprehend 

tissue-specific crosstalk integrating brain stroke models with other tissues and with gut 

microbiota, to simulate stroke in a global biological context.  
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In conclusion, we have integrated and validated changes due to ischemia at protein and 

gene level in human brain samples. Some of the proposed candidates show potential as 

stroke biomarkers, while some flagship molecules might be promising therapeutic 

candidates to be further explored in the future.  
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6. Tables  

Table 1. Demographic and clinical information of ischemic stroke patients. Samples 

from the infarcted and corresponding contralateral brain areas were included in the 

discovery (proteomics & transcriptomics) or the replication (Western Blot & qRT-PCR) 

phase, as indicated.  

Patient Sex  Age T-O-D (h) PMI (h) rt-PA Discovery Replication 

N3 M  59 70 6 No  X 

N12 F  77 72 4 Yes  X 

N16 F  79 88 5 No X  

N22 M  67 62 7 Yes X  

N24 F  83 100 14.5 Yes  X 

N29 F  92 67 25 No  X 

N32 M  73 360 6 No X  

N33 M  80 100 4.5 No X  

N35 M  84 40 7.75 No X  

N36 F  73 44 4 Yes X  

N38 M  75 19 5 Yes  X 

M: male; F: female; T-O-D: time from onset of symptoms to death; PMI: post-mortem 

interval; rt-PA: recombinant tissue plasminogen activator treatment. 
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Table 2. Selection of dysregulated proteins and genes after ischemic stroke for replication. Summary of results in both discovery (microarray 

& LC-MS) and replication phases (qRT-PCR & Western Blot). Verified candidates are shaded. Data in light grey indicates that the candidate did 

not achieve our significance criteria (q-value <0.1) or was not identified (n/a) in the discovery phase but so did its molecular counterpart.  

GENES PROTEINS

Symbol Main function Entrez ID logFC q-value logFC p-value UNIPROT ID logFC q-value logFC p-value

A1AG1 Transport protein in the blood stream. 5004 n/a n/a n/a n/a P02763 2.584 0.049 1.850 0.043

A1AT Inhibitor of serine proteases. 5265 0.541 0.103 n/a n/a P01009 2.334 0.048 4.015 0.043

ANXA1 Regulates inflammatory process and actin cytoskeleton. 301 2.259 0.043 1.825 0.043 P04083 2.525 0.116 n/a n/a

ANXA2 Binds Ca2+. 302 2.304 0.043 2.414 0.043 P07355 2.547 0.158 n/a n/a

ATRNL1 Melanocortin signaling pathway (energy homeostasis). 26033 -2.713 0.043 -0.678 0.686 Q5VV63 n/a n/a n/a n/a

C5AR1 Receptor of C5a chemotactic peptide. 728 2.336 0.045 2.676 0.225 P21730 n/a n/a n/a n/a

CCL2 Chemokine that attracts monocytes and basophils. 6347 2.329 0.043 0.290 0.686 P13500 n/a n/a n/a n/a

CXCR4 Receptor of SDF-1 chemokine. Mediates neuron survival. Remodeling endothelium.  7852 1.674 0.043 4.339 0.138 P61073 n/a n/a n/a n/a

DNM1L Mitochondrial and peroxisomal division (membrane fission). 10059 -0.772 0.059 -0.307 0.345 O00429 -2.846 0.028 -1.203 0.043

GABBR2 Receptor of GABA (inhibitor neurotransmitter), mediates G-prot coupling.  9568 -2.299 0.043 -0.502 0.345 O75899 n/a n/a n/a n/a

GABRA1 Receptor of GABA (inhibitor neurotransmitter). 2554 -2.662 0.043 -0.558 0.893 P14867 n/a n/a n/a n/a

GABRG2 Receptor of GABA (inhibitor neurotransmitter). 2566 -2.798 0.043 0.226 0.500 P18507 n/a n/a n/a n/a

GPR183 Receptor from lymphocytes to attract other leucocytes. Receptor of oxysterols. 1880 2.035 0.047 0.580 0.345 P32249 n/a n/a n/a n/a

HCN1 Ion channel.  348980 -2.702 0.043 -0.364 0.500 O60741 n/a n/a n/a n/a

HTR2A Receptor for serotonin.  3356 -2.266 0.043 -0.594 0.225 P28223 n/a n/a n/a n/a

IL8 Chemokine that attracts neutrophils, basophils and T-cells. 3576 2.048 0.043 4.685 0.043 P10145 n/a n/a n/a n/a

INA Neuronal intermediate filament (morphogenesis). 9118 -3.169 0.043 -0.395 0.500 Q16352 0.908 0.239 n/a n/a

JAM3 Cell-cell adhesion. Regulation of PMNs transepithelial migration. 83700 0.182 0.511 n/a n/a Q9BX67 3.006 0.067 1.701 0.043

MYPR Myelin protein. 5354 -0.653 0.073 1.484 0.686 P60201 2.598 0.028 -0.948 0.043

NAMPT Involved in NAD biosynthesis. Soluble form working as cytokine. Modulation of circadian clock. 10135 1.635 0.043 2.265 0.138 P43490 0.322 0.482 n/a n/a

NAPB Vesicular transport from endoplasmic reticulum to Golgi apparatus. 63908 -2.661 0.043 -0.548 0.686 Q9H115 0.568 0.568 n/a n/a

NCDN CNS signal transduction. Negative regulator of CaMK2 phosphorylation. Neurite outgrowth. 23154 -1.397 0.043 -1.940 0.043 Q9UBB6 -2.559 0.054 -1.664 0.043

NEFL Neurofilament light (neuronal caliber). 4747 -3.233 0.043 -0.546 0.345 P07196 0.532 0.530 n/a n/a

NEFM Neurofilament medium (neuronal caliber). 4741 -2.786 0.043 -0.975 0.225 P07197 2.053 0.102 n/a n/a

PLIN2 Maybe, development and maintenance of adipose tissue. 123 1.978 0.043 3.791 0.225 Q99541 n/a n/a n/a n/a

RAB3C Protein transport. Vesicular traffic.  115827 -1.284 0.044 -1.312 0.043 Q96E17 -3.106 0.028 -2.229 0.043

SCN1A Na+ channel. Regulates the release of neurotransmitters. 6323 -2.715 0.043 -0.993 0.225 P35498 n/a n/a n/a n/a

SCN2A Na+ channel. 6326 -2.850 0.043 -0.185 0.500 Q99250 n/a n/a n/a n/a

SRGN Mediates storage in secretory vesicles in T-cells and neutrophils. Mediates processing of MMP2. 5552 1.880 0.043 3.445 0.080 P10124 n/a n/a n/a n/a

ST4A1 Sulfotransferase. Metabolism of neurotransmitters. 25830 -1.529 0.043 -1.398 0.043 Q9BR01 -3.240 0.028 -1.503 0.043

THBS1 Glycoprotein for cell-cell and cell-matrix interaction. Anti-angiogenic. 7057 1.506 0.047 1.762 0.225 P07996 n/a n/a n/a n/a

VTDB Vitamin D transport and storage. Scavenging extracellular G-actin. 2638 n/a n/a n/a n/a P02774 3.389 0.048 2.403 0.043

Microarray qRT-PCR LC-MS WB
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7. Figure legends 

Figure 1. Workflow chart. Schematic description summarizing the different phases of our 

study. LC-MS/MS: liquid chromatography coupled to tandem mass spectrometry; LogFC: 

logarithmic fold-change; WB: Western Blot; qRT-PCR: quantitative reverse transcription 

polymerase chain reaction; ELISA: enzyme-linked immunosorbent assay.  

 

Figure 2. Integrative multiomics outline. A. Co-inertia analysis visualization plot of 

proteomics and transcriptomics patterns across IC (red) and CL (blue) samples; the length of 

the line joining the tip of the arrow (protein data) and the circle (gene data) is proportional to 

the divergence between both molecular datasets. B. Relevance network plot of differentially 

expressed proteins (rectangles) and genes (circles) that correlate with an R coefficient ≥0.9. 

Red and green edges indicate positive and negative correlations, respectively. C. Contribution 

of proteins and genes to the variance of each principal component (PC) obtained to discriminate 

between IC and CL areas. D. Canonical pathways overrepresented in the IC of ischemic stroke 

brains. Decomposed gene set scores (GSS) are weighted for proteins (light grey) and genes 

(dark grey). Means and 95% of confidence intervals are depicted in bar graphs. E. Most 

influential molecules in each overrepresented canonical pathway from D. Gene influential 

scores (GIS) are represented for dysregulated proteins (light grey) and genes (dark grey). IC: 

infarct core brain area; CL: contralateral brain area. 

 

Figure 3. Replicated proteins and genes dysregulated after ischemic stroke. A. Candidates 

replicated at both molecular levels. B. Candidates replicated at the protein level. C. Candidates 

replicated at the gene level. Protein and gene levels represent corrected values. Circles represent 

outliers while stars stand for extreme values. Statistical analysis results are reported in Table 2. 

In the case of proteins, representative Western Blots are also depicted. IC: infarct core brain 

area; CL: contralateral brain area. 

Figure 4. Qualification study of protein candidates in blood samples. Longitudinal analysis 

of molecular plasma levels across 3 different time-points: admission (Adm.), 24h and one week 

(5-7 d) after stroke (n=11). Circles represent outliers; continuous dashed lines represent quartile 

values in the control population (n=5) only as a reference. *: p <0.05; #: 0.1< p >0.05 (Wilcoxon 

test corrected by Bonferroni). 

 


