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Abstract

Bayesian quadrature (BQ) is a model-based numerical integration method that is
able to increase sample efficiency by encoding and leveraging known structure of
the integration task at hand. In this paper, we explore priors that encode invariance
of the integrand under a set of bijective transformations in the input domain, in
particular some unitary transformations, such as rotations, axis-flips, or point
symmetries. We show initial results on superior performance in comparison to
standard Bayesian quadrature on several synthetic and one real world application.

1 Introduction

The numerical solution of an intractable integral explicitly or implicitly influences a model’s fidelity,
and the decision that is based upon it. Examples are computing the expected outcome of a physical
experiment, and propagating the result in a pipeline; or estimating the expected output of a computer
simulation, and then acting upon the solution; but also, and somewhat more implicit, computing the
evidence of a probabilistic model, and relying on its predictive power. In all those cases, integral
solvers affect the outcome.

When solving an integral, we are often restricted in the number of integrand evaluations (sample
size N ) which is framed as an expensive integration problem, e.g., when evaluating the integrand
equals a monetary or time investment. In those cases, sample efficiency is key, and Monte Carlo
(MC) integration may yield estimators that are high in variance [21]. Bayesian quadrature (BQ) [12,
5, 15] is a model-based numerical integration method that is extremely suited for small samples
sizes and has been shown to outperform MC methods on several, especially low-dimensional tasks
[21]. BQ places a surrogate model on the integrand f , usually a Gaussian process (GP) [22], and
then, since that is tractable, integrates the model in place of the real integrand. Besides an improved
estimator, BQ generally yields a univariate distribution over the integral value that quantifies its
epistemic uncertainty (for more details on the connection to probabilistic numerics, please refer to
[9, 2]). The general reason for increased sample efficiency is that, due to the model-based approach,
known information about the integrand can be encoded into the prior.

In this paper, we explore a set of priors for Bayesian quadrature that encode invariance of the integrand
f under input transformations, that is f(x) = f(T (x)) where T is a bijective map from and to the
input domain of f . In initial experiments, we explore a subset of those transformations (axis flips),
which increases the sample efficiency in comparison to BQ with a non-invariant prior.

Related Work: The authors of [8] encode non-negativity of f , generally true when integrating
probability densities, by modelling the square-root of the true integrand; [3] by modeling the logarithm.
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Other works tailor the algorithm towards a specific application [17, 16, 13, 24, 7]. The authors of
[11] exploit structure of the Gaussian process regression equations and are able to reduce algorithmic
complexity (generally given by O(N3) for GP inference) by evaluating f in specified locations.
Active and adaptive BQ [7, 8, 3, 10] propose a sequential acquisition strategy for (xi, yi) to obtain
most informative integrand evaluations. Even without an active acquisition strategy, BQ may improve
apon a model-free approach as the BQ estimator explicitly dependents on the surrogate model [21].

2 Background

Setting We consider the problem of numerically approximating an intractable integral Z =∫
Ω
f(x)π(x)dx, f : X→ R, where the integration domain Ω ⊆ X ⊆ Rd may be either a Cartesian

product of finite bounds [l1, u1]× ...× [ld, ud], or the entire Rd. The integration measure π(x) is the
Lebesgue measure π(x) ≡ 1, or the normal density N (x;µ,Σ) respectively.

Bayesian quadrature Bayesian quadrature (BQ) [5, 15] models the integrand f with a Gaussian
process f(x) ∼ GP(m(x), k(x,x′)) [22] with mean function m and kernel function k that can be
conditioned on integrand evaluations or ’data’ D = {(xi, yi) | i = 1..N} [9, 4, 2]. Observations are
exact, yi = f(xi), but if needed, Gaussian noise can be added. The stacked observations are denoted
as Y ∈ RN , and the corresponding stacked locations as X ∈ RN×d. In a slight abuse of notation, we
will refer to both the Gaussian process and the actual blackbox function as f .

With a distribution over f , we can obtain not only an estimator for Z, but a full posterior distribution
which can subsequently be used in decision making or uncertainty analysis [9]. Due to the closeness
property of Gaussians under affine transformations, the integral Z ∼ N (µZ , σ

2
Z) is 1D-normally

distributed with scalar mean µZ and variance σ2
Z (please refer to Appendix A for full formulas). In

essence, BQ requires the computation of the kernel mean qKX :=
∫

Ω
k(x, X)π(x)dx evaluated

at X , the prior variance qKq :=
∫∫

Ω×Ω
k(x,x′)π(x)π(x′)dxdx′, and the integral over the prior

mean
∫

Ω
m(x)π(x)dx. These can be computed analytically for certain kernels, such as the well-

known RBF-kernel k(x,x′) = θ2 exp(−‖x−x′‖2/(2λ2)), and a zero mean function which we will use
throughout the paper.

Invariant Gaussian processes A function f : X→ R is invariant under a bijective transformation
T : X→ X if f(T (x)) = f(x) holds for all x in X. Consider now a function which is invariant under
J transformations Ti, i = 1, ..., J . The set of those transformations is called Gf := {T |f(x) =
f(T (x)) for all x ∈ X} and forms a group. The set A(x) := {T (x)| for all T ∈ Gf} is defined
as the set of invariant locations induced by x. Thus we can introduce a function g : X → R such
that f(x) =

∑
x̃∈A(x) g(x̃) [23]. We can see that any point x̃ ∈ A(x) induces the identical set

A(x̃) = A(x), thus f(x̃) = f(x) for all x̃ ∈ A(x) (note that Gf includes the identity transform,
the trivial invariance for all functions). We are free to model g as a Gaussian process, such that
g ∼ GP(mg, kg) with mean function mg and kernel function kg . Thus, f is also a Gaussian process
f ∼ GP(mf , kf ), as f is a linear combination of Gaussian distributed values. The mean function
mf and kernel function kf can be easily derived [23]:

mf (x) =
∑

x̃∈A(x)

mg(x̃), kf (x,x′) =
∑

x̃∈A(x)
x̃′∈A(x′)

kg(x̃, x̃
′).

(1)

GP regression on f is straightforward, as Eq. 1 simply defines another positive definite kernel.

3 BQ priors for invariant integrands

We would now like to use the invariant Gaussian process as prior model for BQ. It is less straight-
forward, however, to analytically extract the push-forward measure on the integral value Z. This
is because x over which the integral is performed, is now transformed (possibly nonlinearly) by T .
More precisely, the integrals for i, j = 1, . . . , J required are

qKX
ij :=

∫
Ω

k(Ti(x), Tj(X))π(x)dx, and qKqij :=

∫∫
Ω×Ω

kg(Ti(x), Tj(x
′))π(x)π(x′)dxdx′.
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Even if the original kernel integrals (without the transformations Ti) are known analytically, these
ones might be arbitrarily complicated or even intractable. However, the distribution over the integral
value Z ∼ N (µZ , σ

2
Z) remains Gaussian, as we are still integrating the Gaussian process on f (we

are not warping the distribution; we are merely distorting the input space). Please refer to Appendix C
for full expressions of the posterior integral mean and variance.

Figure 1: Invariant GP. Details in text.

An illustration of a simple invariance in 1D is shown in
Figure 1. The true integrand in black is axis-symmetric
which can be represented by the transformation T1(x) =
−x. The set Gf thus contains the identity transform T0

as well as T1. In the figure, the three observed points are
marked as red dots. The invariant locations implied by T1

are marked as red vertical bars. Even though these points
are not observed, the model’s uncertainty shrinks at and
around the implied locations. We want to highlight that
using a standard GP with additional ‘fake’ observations
at the invariant locations would cubicly increase the algorithmic cost of the method according to
O(J3N3). The invariant GP has complexity O(N3). Furthermore, samples from the invariant GP
obey the invariant property as well, but samples from a standard GP with ‘fake’ observations do
not. In the next section, we consider a subset of orthogonal transformations which allow for analytic
computation of the required kernel integrals.

3.1 Orthogonal transformations

Consider that Gf contains orthogonal transformations only, that is Ti(x) = Qix, i = 1, . . . J with
Qi a square matrix, and Qᵀ

iQi = I . Orthogonal transforms, among others, include rotations, point-
and axis-projections. For the RBF-kernel introduced in Section 1, we can write the kernel mean for
the ith and jth transform as:

qKij(x) = qK(Qᵀ
iQjx) (2)

where qK is the kernel mean of the RBF-kernel without the transforms, evaluated at sij = Qᵀ
iQjx.

The equality is easily shown by re-arranging terms and using the orthogonal property of the Qi. Eq. 2
might in itself be valuable as it allows for the computation of the mean estimator of the integral value
µXZ . Unfortunately though, it is less straightforward to compute the double integrals qKqij required
for the integral variance σ2,X

Z , and this may only be analytically possible for a subset of orthogonal
transforms. One of those subsets are axis- and point symmetries, discussed in the next section.

3.2 Axis-flips and point-symmetries

For orthogonal transformations described in Section 3.1, and with a change of variables Qᵀ
i ◦Qj :

Ω→ X, Qᵀ
iQjx 7→ sij , the variances qKqij can be written as

qKqij = |det−1(Qᵀ
iQj)|

∫
Qᵀ
i ◦Qj(Ω)

qK(sij)π(sij)dsij . (3)

Even if the original integral
∫

Ω
qK(x)π(x)dx is analytic as is the case for the RBF-kernel, the

linear transform Qᵀ
iQj generally distorts the integration domain as well as π(x), yielding a possibly

intractable integral. One way to circumvent this is to impose that the transform Qᵀ
iQj needs to be

diagonal for all i, j = 1, ...J . There might be other scenarios where the integral remains analytic,
here we only study this obvious case. This characteristic is fulfilled by Qi that encode axis- and
point-symmetries, i.e, when the function f is invariant under flipping the sign of one or more axis.
Hence, the transformations are of the form Ti(x) = Qix with Qkli = cki δkl and cki ∈ {−1, 1}. One
or multiple of sign-flips can be present separately in the set Gf . An illustration of several sets A(x)
for different Gf , as well as the derivation of the necessary integrals are provided in Appendix B.

We will call a method encoding invariaces ‘invariant-BQ’ in contrast to ‘standard-BQ’. We highlight
that the integration problem itself needs not be invariant (only f does), as π(x) or Ω need not be
invariant. Further, the implied invariant observations influence the posterior consistently across
symmetric planes or points as can be seen from Figure 1.
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4 Experiments

We provide initial experiments that indicate increased sample efficiency of invariant-BQ in comparison
to standard-BQ, on a set of synthetic examples, and a Fourier optics problem.

4.1 Synthetic examples

Figure 2: Average performance of standard-BQ
and invariant-BQ on 4 synthetic examples.

We consider a collection of four simple func-
tions implemented as quadrature test function in
the Emukit Python library [18], all of which
exhibit point- and/or axis symmetries (Ap-
pendix B.1 for definitions and illustrations). We
apply invariant-BQ and integrate with respect
to the Lebesgue measure π(x) ≡ 1 on a finite
domain Ω = [−3, 3]d for each function, and
compare the performance to standard-BQ.

Figure 2 shows the relative mean absolute er-
ror between the mean estimator µZ and the true
value of the integral, across 10 runs with differ-
ent random seeds (Appendix D for experimental
details). Not only does invariant-BQ (orange
for point-, green for additional axis-symmetry)
outperform the standard model (blue) on average at each step, it is also more stable as the estimate
varies less between runs. Performance for a single run showing µZ and σZ is plotted in Figure 8 in
Appendix D. Figures 6 and 7 show the same experiment with optimal kernel hyperparameters λ and
θ; the performance gain is even more apparent there. As a second experiment, we intgerate the same
functions w.r.t. an isotropic Gaussian measure with density π(x) = N (x; b, l2I), mean b = 1 and
variance l2 = 1. As π(x) is not invariant, neither is the product f(x)π(x). The results are similar to
the ones dicussed, and shown in Figure 9 in Appendix D.

4.2 Point spread function

Figure 3: Average performance (t) vs a single run
(b) on two PSFs; circular (l), ATLAST (r).

We apply invariant-BQ to approximate the in-
tegral of two point spread functions (PSFs). In
Fourier optics, the point spread function is used
to model the distribution of light in the image
of a point formed by an optical system [1, 14].
See Appendix E for a description of the AT-
LAST and circular pupil used here. We use the
poppy Python library [19] to generate pupil func-
tions and their respective PSFs. The integral of
the PSF is interpreted as the total power of the
light source in the image, and used to normalise
the PSF so it may be interpreted as a probabil-
ity distribution. We compute the PSF for both
the circular and the ATLAST pupil, both point-
symmetric. The results are shown in Figure 3. Invariant-BQ consistently outperforms standard-BQ
here.

5 Discussion & Conclusion

We proposed ‘invariant-BQ’, that leverages a GP prior encoding invariance of the integrand under a
fixed set of input transformations. The integration measure and domain need not be invariant. We
presented initial promising experiments that show improved sample efficiency over standard-BQ for
a subset of transformations that allow for analytic GP inference. In future work it would be desirable
to test invariant-BQ on a more complete set of experimental settings and baselines, and to study the
effect on decision making and predictive model fidelity.
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—Supplementary Material—
Invariant Priors for Bayesian Quadrature

A: Formulas for Bayesian quadrature

Recall that we consider the problem of numerically approximating the integral Z =
∫

Ω
f(x)π(x) dx,

f : X → R, with integration domain Ω ⊆ X ⊆ Rd either a Cartesian product of finite bounds
[l1, u1] × ... × [ld, ud], or the entire Rd. The integration measure π(x) is the Lebesgue measure
π(x) ≡ 1, or the normal density N (x;µ,Σ) respectively.

Recall that the integrand f is modelled with a Gaussian process f(x) ∼ GP(m(x), k(x,x′)) with
mean function m and kernel function k that can be conditioned on integrand evaluations or ’data’
D = {(xi, yi) | i = 1..N}. The stacked observations are denoted as Y ∈ RN , and the corresponding
stacked locations as X ∈ RN×d. Then, the integral Z ∼ N (µZ , σ

2
Z) is 1D-normally distributed with

scalar mean µZ and variance σ2
Z :

µZ =

∫
Ω

m(x)π(x) dx+ qKXG−1∆

σ2
Z = qKq − qKXG−1

[
qKX

]ᵀ
,

(4)

where G ∈ RN×N is the kernel Gram matrix Gnm = k(xn,xm), and ∆ = Y −m(X) ∈ RN is the
residual. Eq. 4 requires the computation of the kernel mean qKX :=

∫
Ω
k(x, X)π(x)dx ∈ R1×N

evaluated at X , the scalar prior variance qKq :=
∫∫

Ω×Ω
k(x,x′)π(x)π(x′)dxdx′, as well as the

integral over the prior mean
∫

Ω
m(x)π(x)dx. The kernel integrals cannot always be computed

analytically. They can for certain kernels, such as the well-known squared exponential/ RBF-kernel
k(x,x′) = θ2 exp(−‖x−x′‖2/(2λ2)), which is parametrized by its scalar variance θ2 and lengthscale
λ. The integral over the prior mean function can be solved e.g., for a constant mean m(x) = M .
These are the prior kernel we are considering in the paper.

B: Illustration of invariances in 2D

Consider axis- and point-symmetries as in Section 3.2. The integration domain is transformed
according to Qᵀ

i ◦Qj(Ω), which equals to flipping the integration bounds of dimension q according
to (Qᵀ

iQj)qq = cqi c
q
j ∈ {−1, 1}; the flip happens when the value is −1. The determinant of Qᵀ

iQj is
either 1 or −1, and thus its absolute value is 1. Figure 1 illustrates the 1D case, where Gf consist
only of Q0(x) = x and Q1(x) = −x, thus Q0Q1 = Q1Q0 = −1, and Q0Q0 = Q1Q1 = 1. In fact,
for the special case of axis flips considered in this section, it is true that Qᵀ

iQj = Qᵀ
jQj for all i, j.

We provide an illustation of several sets A(x) for different Gf for dimension d = 2 in Figure 4.

Figure 4: Set A(x) for point symmetry w.r.t. origin (left), y-axis flip (middle), and their combination
(right). The point x = [0.3, 1]ᵀ (orange) is same for all sets; the induced points are shown in blue.
The size of set Gf is J = 2, 2, and 4 respectively.
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C: Formulas for invariant BQ

Consider an invariant GP as introduced in Section 2. The distribution over the integral value
Z ∼ N (µZ , σ

2
Z) remains Gaussian for invariant BQ. The posterior formulas for the mean and

variance of the integral value are

µZ =

J∑
i=1

∫
Ω

mX
g (Ti(x))π(x)dx

σ2
Z =

J∑
i,j=1

∫∫
Ω×Ω

kXg (Ti(x), Tj(x
′))π(x)π(x′)dxdx′,

(5)

where the superscript X indicates that the Gaussian process g is conditioned on the N integrand
observations Y at locations X . We expand the expressions above:

µZ =

J∑
i=1

∫
Ω

mg(Ti(x))π(x)dx+

J∑
i,j=1

qKX
ijG

−1∆

σ2
Z =

J∑
i,j=1

qKqij −
J∑

i,j=1

qKX
ijG

−1
J∑

k,l=1

qKXᵀ
kl ,

(6)

with Gnm =
∑J
i,j=1 k(Ti(xn), Tj(xm)) the kernel Gram matrix, and qKX

ij :=∫
Ω
k(Ti(x), Tj(X))π(x)dx, the kernel mean corresponding to invariances Ti and Tj evaluated

at X , and qKqij :=
∫∫

Ω×Ω
kg(Ti(x), Tj(x

′))π(x)π(x′)dxdx′ the prior variance corresponding
to invariances Ti and Tj . Note that qKX

ij is a row vector of size N , where N is the number of
observations, qKqij is a scalar. Even if the (double) integrals of qK(x) and k(x,x′) are known
analytically, the integrals qKX

i and qKqij might be arbitrarily complicated or even intractable.

C: The synthetic functions considered for invariant-BQ

All functions are taken from the BQ test function folder of the Emukit library [18]. They are:

hennig1D(x) = e−x
2−sin2(3x)

hennig2D(x) = e− sin(3‖x‖2)−xTSx, S =

[
1 0.5

0.5 1

]
circular_gaussian(x) =

1

2πσ2
‖x‖2e−

(‖x‖−µ)2

2σ2

µ ∈ R, σ > 0

sombrero2D(x) =
sin(π‖x‖c)
π‖x‖c

, c ∈ R+.

Figure 5: Three out of the four test functions, used in Figures 2 and 8. Plot boundaries coincide with
integration domain. All are point-symmetric w.r.t. the origin, 2 and 3 are also axis-symmetric.
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D: Additional results of synthetic experiments in Section 4.1

Experimental details of synthetic experiments: Observation locations are selected sequentially and
actively by maximizing the integral variance reduction acquisition function [7]. Figure 2 in the main
paper shows the relative mean absolute error between the mean estimator µZ and the true value of
the integral, across 10 runs with different random seeds. The runs differ in the initial design which
consist of 5 randomly chosen location in Ω and are shared by all algorithms. Invariant-BQ uses point
symmetry (orange) as well as all symmetries (green) as in Figure 4, most left and most right plot,
respectively.

Figures 6 and 7 contain additional results for the synthetic examples as described in Section 4.1.
In contrast to Figures 2 and 8 where the kernel hyperparameters λ and θ where set by maximizing
the marginal log-likelihood of the model, here the hyperparameters are set to optimal values (found
by over-sampling). This means that in cases where hyper-paramters are known, the performance
improvements of invariant-BQ over standard-BQ are even more apparent.

In addition to visualising performance on synthetic examples averaged over multiple runs in Figure 2,
we plot a single run below. Here, the solid lines show the error between µZ and the true integral
value, and the shaded areas show the standard deviation σZ of the posterior.

E: Additional results of point spread function in Section 4.2

Figure 10: Pupil function (left) and PSF (right) for
a perfect circular lens (top) and ATLAST (bottom).
The PSF is computed for the wavelength 2× 10−5

The point spread function (PSF) is defined as
the absolute square of the Fourier transform of
the pupil function, which is a complex function
used to define the physical size and shape of the
lens.

The PSF for a perfect circular lens focused onto
the point source is known as the Airy pattern.
For a complex segmented pupil, the PSF be-
comes more peculiar in its geometry, increas-
ingly so depending on the number of composing
segments and obscurations. This can be seen
in Figure 10, where we plot the pupil function
and PSF for the ATLAST pupil [20, 6], a pupil
composed of three rings of two-metre segments
with an added central obscuration and a spider
pattern.
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Figure 6: Plots as in Figure 2 but for optimal hyper-parameters λ and θ.

Figure 7: Plots as in Figure 8 but for optimal hyper-parameters λ and θ.

Figure 8: Performance for a single run taken from the runs of Figure 2. Details in text.

Figure 9: Same as Figure 2, but for Gaussian measure π(x).
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