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Abstract: Microglia are heterogenous cells characterized by distinct populations each contributing to
specific biological processes in the nervous system, including neuroprotection. To elucidate the impact
of sex-specific microglia heterogenicity to the susceptibility of neuronal stress, we video-recorded
with time-lapse microscopy the changes in shape and motility occurring in primary cells derived from
mice of both sexes in response to pro-inflammatory or neurotoxic stimulations. With this morpho-
functional analysis, we documented distinct microglia subpopulations eliciting sex-specific responses
to stimulation: male microglia tended to have a more pro-inflammatory phenotype, while female
microglia showed increased sensitivity to conduritol-B-epoxide (CBE), a small molecule inhibitor of
glucocerebrosidase, the enzyme encoded by the GBA1 gene, mutations of which are the major risk
factor for Parkinson’s Disease (PD). Interestingly, glucocerebrosidase inhibition particularly impaired
the ability of female microglia to enhance the Nrf2-dependent detoxification pathway in neurons,
attenuating the sex differences observed in this neuroprotective function. This finding is consistent
with the clinical impact of GBA1 mutations, in which the 1.5–2-fold reduced risk of developing
idiopathic PD observed in female individuals is lost in the GBA1 carrier population, thus suggesting
a sex-specific role for microglia in the etiopathogenesis of PD-GBA1.

Keywords: microglia; shape descriptors; glucocerebrosidase (GCase); Parkinson’s Disease (PD);
sex-difference

1. Introduction

Microglia are resident myeloid cells playing an essential role in the development and
homeostasis of the brain, starting from embryonic development and throughout adult life.
The physiological function of microglia includes the well-known innate immune response
to pathogenic insults [1], the sculpting of neuronal termination by pruning synapses [2], the
engulfment of cellular bodies and debris [3], and the synthesis of communication molecules,
growth factors, and neurotransmitter precursors [4], which finally result in a strong in-
fluence on synaptic transmission [5]. The fine tuning of these basic biological processes
ensures homeostasis and maintains brain tropism, while the presence of dysregulated
microglia function is considered a hallmark of neurodegeneration [6]. The full involvement
of microglia in the neurodegenerative processes is still the subject of investigation [7],
but chronic inflammatory activation may result in neuronal damage [6], and abnormal
activation of microglia could contribute to the spread of alpha-synuclein and beta-amyloid
plaques in the brain of PD and Alzheimer’s disease (AD) patients [8,9]. Microglia can exert
different functions in the brain by virtue of their marked plasticity, which allows these
cells to acquire a wide range of morphological phenotypes, each characterized by different

Cells 2023, 12, 343. https://doi.org/10.3390/cells12030343 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12030343
https://doi.org/10.3390/cells12030343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-0247-3819
https://orcid.org/0000-0002-7445-916X
https://orcid.org/0000-0002-3255-9648
https://orcid.org/0000-0001-5700-5273
https://doi.org/10.3390/cells12030343
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12030343?type=check_update&version=2


Cells 2023, 12, 343 2 of 20

functional properties; these phenotypes can be triggered by specific stimuli, such as pro-
and anti-inflammatory cytokines [10,11], but are also influenced by the surrounding mi-
croenvironment, where the activity of microglia is directed by endocrine [12] and paracrine
signals [13]. For these multi-functional abilities, in the different brain areas, heterogenous
microglial subpopulations co-exist at the same time [14,15]. Interestingly, a further level of
microglia heterogenicity is due to genetic determinants, including sex-dependent factors
which influence both microglia distribution in the central nervous system (CNS) [16,17] and
some cell-specific morpho-functional properties [18], which microglia retain even when
transplanted into the brain of the opposite sex [19]. The differential response to stimula-
tion [18,20] of female versus male microglia has been hypothesized to contribute to the
sex-dependent bias observed in the prevalence of certain neurological diseases [12,19,21],
in particular AD and PD for which sex is considered an unmodifiable risk factor [22,23].
Female sex is a risk factor for AD [23] and multiple sclerosis [24], while male sex is a
risk factor for motor neuron disorders [25] and PD [22]. In this context, another clinically
relevant (genetic) risk factor for PD is the presence of specific mutations in the GBA1
gene, which have been detected in up to 5–25% of patients [26,27]. This gene encodes
for a lysosomal hydrolase, namely, the glucocerebrosidase (GCase): biallelic mutations
in GBA1 cause Gaucher Disease (GD) [28], while heterozygotic carriers do not develop
GD but retain the increased risk to develop PD [29]. Although most studies previously
focused on the functional effects of GBA1 mutations in neurons, our recent investigations
revealed that GCase inhibition in microglia is sufficient to impair the physiological ability
of microglial to protect neurons against oxidative stress and neurotoxic stimuli [30]: this
acquired microglia phenotype may contribute to the increased risk of neurodegeneration
observed in GBA1 carriers.

To investigate the microglial phenotype due to GCase inhibition, in the current study,
we developed and applied a non-invasive imaging approach to primary cultures generated
by murine models of both sexes. This original methodology allowed us to record in real
time the changes in cell morphology induced by specific pharmacological stimuli, with the
aim of associating the dynamic variation in cell shape and motility to the biochemical effects
induced by the treatments. With this analysis, we found that the effects of GCase inhibition
in microglia are sex-dependent, thus showing a greater loss of the neuroprotective ability
of female microglia compared with male microglia.

2. Materials and Methods
2.1. Cell Cultures

Primary neurons were derived from the cerebral cortex of p0–p1 mice following stan-
dard operational procedure using the neural tissue dissociation kit—postnatal neurons (Cat.
130-094-802, Miltenyi Biotec, Bergisch Gladbach, North Rhine-Westphalia, Germany), as
previously described [30]. In brief, the brain cortices from 6 mice of both sexes were pooled
as a single experimental group and subjected to enzymatic and mechanical dissociation,
then 150,000 primary neuronal cells were seeded for each well of a poly-L-ornithine-coated
24-well plate, replacing half of the medium volume every 2 or 3 days. At day 10, 37,500 pri-
mary microglia cells isolated from the whole brain of adult male or female mice (age
3–6 months) were seeded on a neuron layer [19]; briefly, the brains from two mice were
pooled and subjected to enzymatic and mechanical dissociation and microglia were purified
using a magnetic column and anti-CD11b-coated microbeads (Cat. 130-093-634, Miltenyi
Biotec). Neuronal and microglial cultures were grown in Neurobasal A medium (Cat.
10888-022, LifeTechnologies, Carlsbad, CA, USA) containing 1% streptomycin–penicillin,
1% GlutaMAX, 2% B-27 Supplement (Cat. 17504-044; Gibco, Thermo Fisher Scientific,
Waltham, MA, USA), and 10 mM HEPES (Cat. H0887, Merk, Darmstadt, Hesse, Germany),
in a humidified 5% CO2-95% air atmosphere at 37 ◦C.
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2.2. Cell Treatments

For lipopolysaccharide (LPS) experiments, cultures were treated with a final concen-
tration of 10 µg/mL LPS O111:B4 (Cat. L2630, Merk) for 6 h or vehicle (water); for the CBE
experiments, cultures were treated with a final concentration of 200 µM CBE (Cat. 234599,
Merk) or vehicle (water) for 48 h and then subjected to time-lapse microscopy.

2.3. Fluorescent Image Acquisition and Processing

Time-lapse sessions were performed on live microglia for 20 random fields per
condition using an Axiovert 200M microscope with AxioVision Imaging System (ver-
sion 4.9, RRID:SCR_002677, https://www.micro-shop.zeiss.com/it/ch/system/software+
axiovision-axiovision+programma-axiovision+software/10221 accessed on 22 March 2022,
Carl Zeiss Ltd., Cambridge, UK) at ×20 magnification; the recording was performed for
2 h taking a picture every 5 min. An algorithm was generated to segment and analyze
GFP-positive cells (namely, microglia) using Fiji software (version 2.0.0, RRID:SCR_002285,
http://fiji.sc accessed on 22 March 2022, ImageJ, NIH, Nature Methods, 2012). The back-
ground was subtracted and set constant across the experimental groups; the class of pixels
with a value over the defined threshold (foreground) that corresponds to green fluorescent
objects were subject to the despeckle and smoothing function. Then, the objects with an area
greater or equal to 130 µm2 were subjected to the “analyze particle” function to calculate
the “Area”, “Center of mass”, “Shape descriptors”, and “Feret’s diameter” for each object
in each frame. The area was converted from pixels to the surface in µm2; the coordinates
of the center of mass of each object were used to calculate the distance covered by the cell
during the time lapses. Among the “Shape descriptors”, we operated with the solidity, a
value that corresponds to the area/convex area of the object; between the “Feret’s diameter”
values we used the “Feret Angle” to calculate the number of rotations of each object during
the recording. A math operation was used to perform the clustering analysis: in brief,
for each parameter obtained from the analysis, the values of the vehicle and treated cells
were used to identify the median parameter for the experiment, this median was used as a
threshold to cluster the cells into two groups (over or under the median); the combination
of two parameters was used to generate four different clusters.

2.4. Animals and Treatments

The animals were fed ad libitum and housed in individually ventilated plastic cages
within a temperature range of 22–25 ◦C under a relative humidity of 50% ± 10% and an
automatic cycle of 12 h light/dark. C57BL/6 and CX3CR1+/GFP mice were supplied by
Charles River (Charles River LaboratoriesWilmington, MA, USA, RRID:MGI:2159769 and
MGI:J:84544) and ARE-luc2 mice (MGI:7388153) were generated in our laboratory [31]. For
pharmacological treatments, mice (15–30 weeks old) were administered 100 mg/kg/day
CBE or vehicle (PBS) via i.p. injection for 3 days before the purification of microglia.

2.5. Luciferase Enzymatic Assay

Luciferase assays were performed as illustrated previously [32]. In brief, microglia-
neuron cultures were lysed with luciferase cell culture lysis reagent (Cat. E1531, Promega,
Madison, WI, USA), and the protein concentration was determined with a Bradford as-
say [33]. The luciferase activity assay was carried out in luciferase assay buffer by measuring
luminescence emission with a luminometer (Veritas, Turner, Promega) for 10 s to obtain the
relative luminescence units (RLU).

2.6. Clinical Data

Clinical data were obtained from the Accelerating Medicines Partnership Parkin-
son’s Disease (AMP-PD) knowledge portal, downloaded on the 28 May 2020 (release
15 October 2019). Correct GBA sequencing was obtained using Gauchian (Version 1.0.2,
https://github.com/Illumina/Gauchian accessed on 26 September 2022), a software de-
scribed in a previous publication [34]. Participants with the following tags were included:

https://www.micro-shop.zeiss.com/it/ch/system/software+axiovision-axiovision+programma-axiovision+software/10221
https://www.micro-shop.zeiss.com/it/ch/system/software+axiovision-axiovision+programma-axiovision+software/10221
http://fiji.sc
https://github.com/Illumina/Gauchian
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“PD”, “Genetic Registry PD”, “Genetic Cohort PD”, “Genetic Registry Unaffected”, “Ge-
netic Cohort Unaffected”, and “Healthy Control”. Participants marked as “Prodromal”
and “SWEDD” (scans without evidence for dopaminergic deficit) were excluded from
the analysis.

2.7. Statistical Analysis

For the cellular experiment, statistical analyses were performed employing Prism 7
(version 7.00, RRID:SCR_002798, http://www.graphpad.com accessed on 26 September
2022, GraphPad Software Inc., San Diego, CA, USA) and multiple t-test versus vehicle were
used to determine if there were significant differences in means and a p-value lower than
0.05 was considered to indicate statistical significance. For the clinical data, statistical anal-
ysis was carried out using R (version 4.2.1, RRID:SCR_001905, http://www.r-project.org
accessed on 26 September 2022, Ugeskr Laeger, 2008). Pearson’s Chi-squared test was used
to compare sex differences between carriers and non-carriers of GBA variants.

3. Results
3.1. Image-Based Microglia Analysis Allows Detecting Functional Clusters

To investigate the changes in microglia morphology occurring as a consequence of
specific stimuli, we generated an unbiased imaging approach allowing for the dynamic
quantification of shape and movement variations of single cells over a fixed period of time.
To mimic the physiological microglial environment, we seeded primary adult microglial
cells obtained from CX3CR1+/GFP mice, constitutively expressing GFP [35], on a layer of
neuron-enriched primary culture of cortical cells from syngeneic wild-type mice (Figure S1)
known to structurally support microglia [19]. The bias of the neuronal layer was avoided by
using a mix of female and male neurons. Time-lapse microscopy allowed the recording of
morphology and movements of GFP-positive microglia over 2 h; the recorded movies were
processed with the ImageJ software [36] to obtain morphological and kinetic descriptors
for each cell in the acquired field of view (Figure 1A, Video S1). Briefly, the background
was subtracted from the acquired images, which were, in turn, binarized using a defined
threshold that enabled cluster regions of pixels based on the similarity threshold to dis-
tinguish cell shapes and generate an object for each cell. Then, the binarized images were
processed to remove noise by using the smooth and despeckle functions of the software to
produce sharp objects.

A threshold of 130 µm2 for the surface size was selected to sort the shapes of cells
(microglia) from those originating from cellular debris. The selected shapes were processed
to measure two static morphology descriptors: the cell area in square micrometers and the
solidity (Figure 1B) [37]. The latter is defined as the ratio of the area divided by the area of
the smallest convex set polygon that contains the cell [36], thus resulting in a higher solidity
for ameboid rather than for ramified shapes, in a range from 0 to 1 values (Figure 1B). For
each cell, measurements were taken in every frame of the time-lapse acquisition; median
values of these measurements described the predominant morphology during recording
and were used to generate the graphs (Figure 1C,E). Coefficients of variation (CV%) for
area and solidity were calculated to obtain numeric descriptors of the dynamic changes
occurring during the 2 h measurements (Figure 1D,F). The CV% of the cell area due to
the size variation was taken as a surrogate marker of cell contractility, while the CV%
of the solidity was considered as a measure of the morphological modifications in terms
of complexity.

http://www.graphpad.com
http://www.r-project.org
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representation of the image-based method for the morpho-functional clustering: GFP-marked 
microglia dynamics were recorded by time-lapse microscopy, and the acquired images were 
segmented and processed with Fiji software to obtain shape and dynamic descriptors for each 
microglial cell during the time lapse period. (B) Representative images of shape descriptors (area 
and solidity) used for the analysis. (C–H) Quantitative single-parameter analysis of 
lipopolysaccharide (LPS)-treated male microglia; the analysis includes (C) median area, (D) 
coefficient of variation (CV%) of the area, (E) median solidity, (F) CV% of solidity, (G) rotation, and 
(H) distance covered. The values are presented as mean ± SD (top) and as frequency distribution 
(bottom) of n = 3 independent experiments. The drawings are a schematic representation of the 
parameter reported in the graph. *** p < 0.001 calculated by t-test versus vehicle. 

Figure 1. Unbiased morpho-metric method to detect morpho-functional changes. (A) Schematic
representation of the image-based method for the morpho-functional clustering: GFP-marked mi-
croglia dynamics were recorded by time-lapse microscopy, and the acquired images were segmented
and processed with Fiji software to obtain shape and dynamic descriptors for each microglial cell
during the time lapse period. (B) Representative images of shape descriptors (area and solidity) used
for the analysis. (C–H) Quantitative single-parameter analysis of lipopolysaccharide (LPS)-treated
male microglia; the analysis includes (C) median area, (D) coefficient of variation (CV%) of the
area, (E) median solidity, (F) CV% of solidity, (G) rotation, and (H) distance covered. The values
are presented as mean ± SD (top) and as frequency distribution (bottom) of n = 3 independent
experiments. The drawings are a schematic representation of the parameter reported in the graph.
*** p < 0.001 calculated by t-test versus vehicle.
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Since microglia are cells able to sense the environment and migrate in response to
specific stimuli [38], the distance traveled by microglia during the recording time was
also considered as a parameter inherently linked to their activity: distance was calculated
by tracing the shift in the center of mass of each cell occurring frame by frame, in terms
of coordinates (x, y). To define the total covered distance, all shifts were summed and
converted into µm values (Figure 1H). Finally, we measured the number of rotations
performed by each cell, which is another descriptor representing microglial dynamics.
In order to calculate this parameter, the ellipse in which the cell can be inscribed was
identified and used to calculate the angular displacements frame-by-frame, which were, in
turn, added up to obtain the total rotation of the cells during the recording, expressed as
angular degree values (Figure 1G).

To validate the method, we analyzed the descriptor changes associated with a well-
characterized microglia polarization, namely, the one caused by the potent endotoxin
lipopolysaccharide (LPS) [39], a strong inducer of a pro-inflammatory microglial pheno-
type [40]. Male-derived microglial cells were cultivated on the layer of primary neuron-
enriched cultures for 24 h and treated with 10 µg/mL LPS. Microglia morphology and
motility were analyzed and compared with vehicle-treated cells by processing videos cap-
tured from 6 h up to 8 h after the treatment, a time point that is associated with high gain
of pro-inflammatory features [41]. The experiment revealed that the selected descriptors
were effective in detecting and describing specific features of microglia induced by LPS
(Figure 1 and Video S2) [42,43]. In detail, the area of the analyzed cells did not change
during the acquisition (Figure 1C,D), but the treatment induced an increase in their solidity
of about 13% meaning that when microglia were treated with LPS, their shape became
more ameboid (Figure 1F), while cells maintained their complexity across time, since the
variation of solidity (CV% solidity) was higher in vehicle-treated and lower in LPS-treated
cells (Figure 1G). As expected, the cell kinetics were also affected by LPS, showing an
increase of about 43% in the number of rotations (Figure 1G) and of about 27% in the
covered distance (Figure 1H) when compared with vehicle-treated cells.

The results showed that the single-parameter analysis was efficiently identifying phe-
notypic changes induced by a strong stimulus—as potent as LPS is—occurring in the overall
microglial population, but did not provide any detail on the presence of microglia subpop-
ulations with different behaviors (Figure 1A–H, Video S2). This is particularly important,
since microglia shows a peculiar heterogeneity in physiological conditions suggesting the
existence of various subpopulations reacting differently upon stimulation [44,45]; we at-
tempted to discriminate these different microglia subpopulations by combining our cellular
descriptors in a cluster analysis. We performed a biparametric analysis to test whether
we could distinguish the existence of distinct morpho-functional categories: the medians
of morpho-dynamic descriptors were used as a cutoff to assign each cell to a descriptive
category representative of a value above or under the media. By using the combination of
two parameters, cells were clustered into four different subpopulations. As an example, by
analyzing solidity and area (Figure 2A) it was possible to generate four clusters representing
microglia subpopulations: Cluster 1 “simple & big”, Cluster 2 “simple & small”, Cluster 3
“complex & big” and Cluster 4 “complex & small”. Cluster 1 is composed of cells that have
both area and solidity above the median. In contrast, the cells with area and solidity under
the median fall in Cluster 4; cells with a bigger area and low solidity fall in Cluster 3; and
small and simple cells are in Cluster 2.
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Figure 2. Morpho-functional biparametric analysis of LPS-treated male microglia. (A) Biparametric
analysis of microglial solidity and area allows to cluster the cells into four categories: “complex &
big”, “complex & small”, “simple & small”, and “simple & big”. The percentage of each population
is reported as a radar graph relative to three independent experiments. Drawings represent the
morphology representative of the category. * p < 0.05, and ** p < 0.01; calculated by t-test versus vehicle.
(B) Biparametric analysis represented as histogram of the median ± SEM of the subpopulation
percentage obtained in 3 different experiments; the two parameters obtained to generate the clusters
are reported on the top of the graph. * p < 0.05, and ** p < 0.01 calculated by t-test versus vehicle.

The categories generated for each parameter are reported in Tables 1 and S1. The
application of this approach to the data obtained with the LPS experiment, in keeping
with previous reports [19,42,43,46], revealed that after treatment a population of cells char-
acterized by a “complex & small” shape mostly disappeared, while an increase in the
subpopulation of “simple & small” cells was observed (Figure 2A) and the subpopula-
tion of “simple & big” cells, which was under-represented in the vehicle-treated samples,
became prominent after LPS treatment (Figure 2A). The cluster analysis was applied to
identify different morpho-functional subpopulations and was reported in specific his-
tograms (Figure 2B) demonstrating how the different subpopulations were affected by the
LPS treatment. The graphs show that LPS treatment increased the subpopulation of “small
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& motile”, ”big & motile”, “steady & motile”, “contractile & simple”, “simple & small”,
“simple & big”, “simple & motile”, and “rotant & motile” (Figure 2B). Interestingly, the
method was able to also detect that some categories of cells did not respond to LPS and their
subpopulation remained unaffected after the treatment, e.g., “steady & static”, “variable
& motile”, “complex & motile”, and “simple & static” (Figure 2B). These results demon-
strated that the dynamic morpho-functional analysis allowed to discriminate microglial
subpopulations differentially responding to specific stimulations.

Table 1. For each parameter, using the median as a cut-off, we generated two groups named as
reported in the table. Therefore, a microglial cell is included in one or the other group according to
the value of the descriptor if it is bigger or lower with respect to the median value.

Groups Generated

Parameter Under the Median Over the Median

Median area Big Small
CV% area Inactive Contractile

Median solidity Complex Simple
CV% solidity Steady Variable

Median motility Static Motile
Median rotation Stationary Rotant

3.2. Male and Female Microglia Show Different Morpho-Functional Phenotypes

Once validated, the morphometric approach was used to test whether sex differences
could be detected in the dynamic behavior of microglia. To this end, primary brain microglia
cells from male or female mice were isolated from adult CX3CR1+/GFP and seeded on
neuron-enriched primary cortical cells from syngeneic wild-type mice (mixed population
of male and female mice). After 24 h of seeding, microglia dynamics were recorded
for 2 h to identify possible sex-related differences in unstimulated conditions. Indeed,
different subpopulations were present in female and male microglia: when compared
with male, female microglia showed cluster subpopulations of “big & static”, “variable
& static”, “inactive & complex”, “complex & small”, ”complex & static”, and “rotant &
static” (Figure 3). These data suggest that female microglia in physiological conditions are
enriched in subpopulations characterized by complex and static cells, possibly interacting
with the surrounding microenvironment, with a less pro-inflammatory profile. This is
in accordance with previous reports indicating that, in female mice microglia are more
dedicated to the maintenance of brain homeostasis, while male microglia are more inclined
to perform defensive tasks [19].

3.3. Chemical Inhibition of β-Glucocerebrosidase (GCase) Exerts a Differential Effect in Male and
Female Microglia

We previously demonstrated that the pharmacological inhibition of microglial GCase
with conduritol-B-epoxide (CBE) interferes with the neuroprotective function of microglia [30].
To characterize the microglia morphology in response to GCase inhibition, we carried out
the morpho-functional analysis after treating cocultures with 200 µM CBE: this concentra-
tion was selected in order to ensure an almost total (−98% activity) inhibition of GCase
activity sufficient to selectively interfere with the microglia neuroprotective functions [30],
while with negligible effects on the activity of additional glycosidase targets [47,48]. The
dynamic changes in microglial morphology were recorded at early time points (48 to 50 h
after treatment), a time window in which neuronal and microglia mortality due to CBE
were virtually absent [30]. The morphometric analysis revealed that GCase inhibition of
male microglia changed the phenotype of specific subpopulations, increasing cells char-
acterized by a static and less contractile phenotype (Figure 4A). We observed increases
in cell populations with “big & static”, “steady & static”, “simple & big “, “simple &
static”, and “stationary & static” cells, while a decrease in the subpopulations of cells
was observed in “big & motile”, “variable & motile”, “contractile & complex”, “complex
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& motile”, and “stationary & motile” (Figure 4A). Overall, the phenotype observed was
characterized by a large and static morphology (Video S3), inclusive of large and simple
shapes associated with a low motility. Since it has been reported that microglia can acquire
a pro-inflammatory phenotype after long-term GCase inhibition [49,50], we compared the
phenotype triggered by LPS (Figure 2B) with the short-term treatment with CBE (48–50 h).
Surprisingly, the morpho-functional analysis of male microglia treated with LPS or CBE
(Figure 4B) demonstrated opposite effects by increasing (LPS) or decreasing (CBE) the
motility in most subpopulations.
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Figure 3. Morpho-functional biparametric analysis of male and female microglia. Biparametric
analysis is represented as a histogram of the median ± SEM of the subpopulation percentage obtained
in 3 different experiments. The two parameters obtained to generate the clusters are reported on the
top of the graph. * p < 0.05, ** p < 0.01 calculated by t-test versus vehicle.

A sex-difference in microglial reactivity has been previously described [19], so we
investigated if the CBE treatment differentially affected the microglia phenotype obtained
from female or male mice. Thus, we treated cocultures of female microglia with CBE and
recorded the effects at the same time points (48 to 50 h after treatment) as the previous
experiment. As reported in Figure 5A, GCase inhibition induced a radical shift in female
microglia morpho-functionality, leading to an increased representation of subpopulations of
“small & motile”, “steady & static”, “contractile & complex”, “simple & big”, and “simple &
static” and a decrease in the subpopulations of “big & static”, “steady & motile”, “variable
& motile”, “inactive & complex”, “complex & small”, “complex & static”, “complex &
motile”, and “rotant & motile” (Figure 5A) cells. Comparison of the results obtained with
female (Figure 5A) and male microglia (Figure 4A) after CBE treatment revealed that some
subpopulations were differentially enriched, and that CBE treatment induced more marked
morpho-functional changes in female microglia (Figure 5B).
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Figure 4. Morpho-functional biparametric analysis of CBE-treated male microglia. (A) Biparametric
analysis is represented as a histogram of the median ± SEM of the subpopulation percentage obtained
in 4 different experiments, the two parameters obtained to generate the clusters are reported on the
top of the graph; * p < 0.05, ** p < 0.01, *** p < 0.001 calculated by t-test versus vehicle. (B) Variation in
subpopulation composition for LPS (Figure 2B) and CBE (A) treatment versus the vehicle-treated cells.
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Figure 5. Morpho-functional biparametric analysis of CBE-treated female microglia. (A) Biparametric
analysis represented as a histogram of the median ± SEM of the subpopulation percentage obtained
in 3 different experiments. The two parameters obtained to generate the clusters are reported on
the top of the graph. * p < 0.05, ** p < 0.01 calculated by t-test versus vehicle. (B) Variation in
subpopulation composition for CBE-treated male (Figure 4A) and CBE-treated female (A) microglia
versus the vehicle-treated cells.

Based on these results, we decided to test whether this more pronounced effect of CBE
on female microglia also reflected alterations in their neuroprotective functions; indeed, we
previously demonstrated that microglia are able to increase neuronal NRF2 transcriptional
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activity that protect neurons from neurotoxin effects, a mechanism which is impaired by
GCase inhibition [30]. We purified microglia from groups of female and male wild-type
mice treated with vehicle or 100 mg/kg CBE for 3 days to inhibit microglial GCase [30];
the purified microglia were seeded over a neuronal cell layer derived from ARE-luc2 mice
(Figure 6A), transgenic animals in which a luciferase reporter is expressed under the control
of the Nrf2 transcription factor [31,32]. This system allowed us to measure the ability
of microglia to increase the neuronal Nrf2 activity simply by measuring the luciferase
activity in the coculture. Interestingly, female microglia extracted from vehicle-treated mice
revealed a more prominent effect in inducing Nrf2 response when compared with male
microglia. The effect of CBE treatment, which is expected to reduce neuronal to microglia
Nrf2 response [30], was sufficient to blunt the differences observed between male and
female microglia obtained from vehicle-treated mice (Figure 6B), thus suppressing the
neuroprotective action exerted by microglia independently from the sex of origin.
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Figure 6. CBE treatment reduces the neuronal Nrf2 response induced by microglia. (A) Scheme of the
experiments reported in B aimed at testing the effect of primary microglia (µglia) extracted from male
or female mice treated with CBE. (B) Luciferase activity measured in protein extracts derived from
ARE-luc2 neurons cultured with microglia derived from CBE- or vehicle-treated mice (A). Data are
presented as mean ± SEM of n = 7 independent samples. * p < 0.05, ** p < 0.01 calculated by unpaired
t-test vs. the corresponding sample.

Based on these data, which suggest that a reduction in GCase activity decreases the
protective microglial response in female mice, we hypothesized that the normal male
predominance seen in PD patient populations would be abolished in PD subjects with
GBA1 variants.

We analyzed the AMP-PD database that includes a total of 3497 individuals (Figure 7).
Of these, 1971 (56.4%) were males and 1526 (43.6%) were females. For idiopathic PD cases
alone, there were 1236 males (63.4%) and 715 females (36.6%). In the GBA-PD group,
there were 163 males (57.4%) and 121 females (42.6%). Statistical analysis showed that the
male predominance in idiopathic PD is lost in GBA1-associated PD, although this just fails
significance at p = 0.0525.
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4. Discussion

Microglial cells are characterized by the presence of different subpopulations, which
differ in abundance and morphology, and are characterized by distinct genetic programs,
protein expression patterns, and the ability to respond to environmental stimuli [14,15].
The distribution of these subpopulations follows a spatiotemporal definite pattern: indeed,
specific phenotypes can be detected at different evolutionary stages, but they can also
coexist simultaneously in the brain parenchyma of adult animals [44,51]. The morphology
of microglia is indicative of their functional status [6,10], thus analysis of microglial shape
can anticipate information about the biochemical pathways triggered in these cells by
pathophysiological processes [52]. Standard morphological analysis based on immuno-
cytochemistry images provides snapshots of cell shape and offers a static view of the cell
population [37] but it does not detect dynamic changes, such as the variation in cell pro-
trusions or changes in migration, features that are certainly key components of microglial
biology and allow better deciphering of their behavior [53]. In our study, we added the
temporal dimension to standard shape analysis by applying time-lapse fluorescence mi-
croscopy to our in vitro model of the multicellular condition of the brain, encompassing
a co-culture of GFP-expressing primary microglia and primary cortical cells enriched in
neurons. In this context, we applied an unbiased imaging-based analysis for each microglia
cell of the investigated population, and for each frame of the recorded movies, we measured
standard morphological cues that included cell dimension and complexity, together with
novel dynamic descriptors able to describe time-dependent changes in microglia motility,
contractility, rotation, and complexity. The method was effective for detecting changes
occurring in pro-inflammatory microglia, which have been previously described [42,54]
and include changes in the cellular shape towards the amoeboid morphology, and a general
increase in the motility (Figures 1 and 2).

The first set of experiments was designed to validate the method and the results were
in line with prior knowledge, but at the same time revealed information on the response
of primary microglia to pro-inflammatory stimuli by disclosing resilient subpopulations
of cells that did not undergo substantial changes after stimulation. These subpopulations
show phenotypes that—following the classification generated by our protocol—are defined
by the descriptors “complex & motile”, “simple & static”, “stationary & motile”, and “rotant
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& static”, and display a non-responsive phenotype against LPS stimuli (Figure 2B). Thus,
our morpho-functional analysis provided a direct demonstration that adult microglia exist
in different subtypes, each characterized by peculiar shapes, and possibly by different gene
expression profiles and functions [44,52], and that these subtypes can differently respond
to stimulations.

Once validated, we have applied the morpho-functional analysis to evaluate sex-
related differences in the composition of microglia subpopulations. In previous studies,
biochemical, morphological, and functional data recognized sex-related differences in mi-
croglia revealing that male microglia have a constitutive mild pro-inflammatory phenotype,
while female microglia are reminiscent of surveilling microglia, that for definition are
stationary and ramified cells sensing the environment [19,55,56]. These differences were
shown to be genetically determined, independent of hormonal status and of the microenvi-
ronment; indeed, they are also maintained when microglia are maintained in culture, when
cross-transplanted in a brain of opposite sex, and when microglia were extracted from
brains of ovariectomized females, where the hormonal environment was similar to male
mice [19]. It is likely that these sex-related differences in microglia are contributing to the
differential sex-specific susceptibility and severity of some neurological diseases [12,57,58].

In our morpho-functional analysis, male microglia, when compared with female cells
were enriched in subpopulations defined by the descriptors “small & motile”, “simple
& motile”, “contractile & simple”, “steady & motile”, “small & simple”, and “simple
& big” (Figure 3), which are increased when cultures are treated with LPS (Figure 2B),
thus supporting the notion that male microglia show a higher tendency to acquire a pro-
inflammatory phenotype than female microglia. In contrast, in female microglia we found
a marked presence of subpopulations defined by the descriptors “big & static”, “variable
& static”, “inactive & complex”, “complex & small”, and “complex & static” (Figure 3),
categories that are decreased after LPS treatment (Figure 2B) supporting the hypothesis that
female cells show a less pro-inflamed phenotype, with a profile reminiscent of surveilling
microglia [10,19].

Do these differences influence the development and progression of a neurodegenera-
tive process? Previous data from our lab showed that microglia may contribute to brain
neuroprotection by inducing the Nrf2 pathway in neurons through direct contact between
microglial cells and neurons. This Nrf2 activation is reduced when microglial GCase is
pharmacologically inhibited, an effect that renders dopaminergic neurons more sensitive to
neurotoxic stimulations [30]. On the basis of these data, we hypothesized that the reduced
microglial neuroprotective functions might contribute to the observed increased risk of
PD in carriers of GBA1 mutations and prompted us to analyze the microglial morpho-
functionality after GCase inhibition. Interestingly, the morpho-functional analysis on static
descriptors demonstrated that inhibition of GCase enriched the microglial population
with cells characterized by an ameboid-like (“simple & big”) morphology such as those
observed with LPS (Figure 4) and typical of the pro-inflammatory activation. Similar
peculiar microglial morphologies with bigger soma and less protrusion have been detected
in murine and vertebrate GCase-deficient models induced by genetic modification [59,60]
and in brain areas (such as substantia nigra) of neuropathic GD patients [61,62], and were
often associated with a pro-inflammatory phenotype. However, with our morpho-metric
analysis, the use of dynamic descriptors clearly distinguished the effects of LPS and CBE
treatments on microglia, showing that male CBE-treated cells were static and less contrac-
tile, a phenotype markedly different from the pro-inflammatory phenotype (Figures 2B and
4B), and characteristic of inactive microglia. This is in line with our previous expression
data showing that no pro-inflammatory genes were induced by the CBE treatment in
immortalized microglia [30]. The more stationary phenotype and the decreased number
of protrusions suggest that CBE-treated microglia display a reduced contact surface with
the neuron membranes, a condition likely contributing to the decreased Nrf2 expression in
neurons [30]. The reduction in Nrf2 levels might increase the risk of neurodegeneration
especially in neurons of the substantia nigra that are frequently exposed to oxidative stress
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due to dopamine metabolism [63]. In the case of GBA1 mutations, the microglial GCase
inactivation is constitutive and over time could promote pathways leading to the promotion
of neurodegeneration.

Interestingly, female microglia seem to be more affected by GCase impairment; indeed,
the morpho-functional phenotype is more divergent from the vehicle when compared with
male microglia (Figure 5). The CBE effect on female microglia increases the subpopula-
tions characterized by a less active behavior (less ramified shape and static) to a greater
extent compared with male microglial cells. Moreover, female microglia also displayed a
divergent response compared with male microglia; indeed, CBE treatment increased the
subpopulations defined by the descriptors as “small & motile” and “complex & contractile”.
To the best of our knowledge, this is the first description that the inhibition of GCase is able
to have a different effect on the morphology and motility of male and female microglia.

Intriguingly, the effect of GCase inhibition is more penetrant in female microglia,
reducing the superior ability of female microglia to induce Nrf2 in neurons to the same
extent found in male microglia (Figure 6). This dramatic change in female microglia function
is likely diminishing the greater neuroprotective ability of female microglia, rendering
them comparable to male microglia. These sex-related morpho-functional differences may
have functional consequences: it is tempting to speculate that the increased neuroprotective
ability of female microglia could contribute to the 1.5–2-fold reduced risk of developing
idiopathic PD observed in female individuals, a sex bias which appears to be reduced in
GBA1-PD patients (Figure 7) [64–68]. Indeed, the majority of studies report higher female
prevalence in GBA-PD or do not observe sex-related differences [65–68], suggesting that
the protective effect associated with female sex is indeed blunted by GBA mutations [66].
However, a firm explanation of this difference with idiopathic PD has not been reported.
Our data suggest that the differential effects of these mutations on the microglial phenotype
might contribute to the differences observed between idiopathic and GBA-PD in terms of
loss of male predominance.

5. Conclusions

We report a novel methodological approach toward the identification of dysfunctions
of microglia in models of neurological diseases. The morpho-functional method was
revealed to be sufficiently sensitive to recognize phenotypic differences in unstimulated
microglia derived from the brain of male or female animals. Moreover, the technique
demonstrated the existence of discrete subpopulations of microglia, each characterized
by specific morphological descriptors, indicative of different specific phenotypes and a
differential response to specific stimuli. This novel perspective provides insight into the
microglial heterogeneous behaviors that might underlie pathological stimuli in different
CNS regions or in the function of sex and age [69]. Indeed, the identified morpho-functional
parameters allowed us to describe the morphological changes induced, not only by a well-
known pro-inflammatory agent (LPS), but also by the CBE model of reduced GCase activity
and GBA1-PD. Our data, for the first time, demonstrates that GCase inhibition triggers
a specific microglial morpho-functional phenotype associated with a reduced ability of
microglia to perform neuroprotective functions, with more dramatic consequences for
microglia isolated from female animals. This finding might contribute to the understanding
of the sex-related differences clinically observed in idiopathic PD.
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https://www.mdpi.com/article/10.3390/cells12030343/s1, Table S1: cluster generated for each
couple of parameters, Figure S1: primary cortical cells layer composition to support microglial
function, Video S1: method description, Video S2: representative time lapses of male GFP marked
microglia after vehicle or LPS treatment, Video S3: representative video of the population of microglia
that increase after CBE treatment.
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