
Healthcare Analytics 2 (2022) 100082

A
m
E
S
a

b

A

K
D
P
C
E
H

1

s
p
t
w
c
C
i
n
i

t
[
(
w
u
s

h
R

2
(

Contents lists available at ScienceDirect

Healthcare Analytics

journal homepage: www.elsevier.com/locate/health

n integrated discrete event simulation and particle swarm optimisation
odel for optimising efficiency of cancer diagnosis pathways✩

lizabeth A. Cooke a,∗, Nadia A.S. Smith a, Spencer A. Thomas a, Carolyn Ruston a,
ukhraj Hothi b, Derralynn Hughes b

National Physical Laboratory (NPL), Hampton Road, Teddington, TW11 0LW, UK
Royal Free London NHS Foundation Trust (RFL), Pond St, London, NW3 2QG, UK

R T I C L E I N F O

eywords:
iagnostics analytics
article swarm optimisation
ancer diagnosis
fficiency optimisation
ospital operations

A B S T R A C T

The National Health Service (NHS) constitution sets out minimum standards for rights of access of patients to
NHS services. The ‘Faster Diagnosis Standard’ (FDS) states that 75% of patients should be told whether they
have a diagnosis of cancer or not within 28 days of an urgent GP referral. Timely diagnosis and treatment
lead to improved outcomes for cancer patients, however, compliance with these standards has recently been
challenged, particularly in the context of operational pressures and resource constraints relating to the COVID-
19 pandemic. In order to minimise diagnostic delays, the National Physical Laboratory in collaboration with
the Royal Free London (RFL) NHS Foundation Trust address this problem by treating it as a formal resource
optimisation, aiming to minimise the number of patients who breach the FDS. We use discrete event simulation
and particle swarm optimisation to identify areas for improving the efficiency of cancer diagnosis at the RFL.
We highlight capacity-demand mismatches in the current cancer diagnosis pathways at the RFL, including
imaging and endoscopy investigations. This is due to the volume of patients requiring these investigations
to meet the 28-day FDS target. We find that increasing resources in one area alone does not fully solve the
problem. By looking at the system as a whole we identify areas for improvement which will have system-wide
impact even though individually they do not necessarily seem significant. The outcomes and impact of this
project have the potential to make a valuable impact on shaping future hospital activity.
. Introduction

The National Health Service (NHS) constitution sets out minimum
tandards for rights of access of patients to NHS services [1]. For cancer
atients there are nine operational standards which cover the whole
reatment pathway from receipt of referral to treatment. Compliance
ith these standards has recently been challenged, particularly in the

ontext of operational pressures and resource constraints relating to the
OVID-19 pandemic. However, delivering timely treatment for cancer

s now more important than ever since it is evident that a significant
umber of cancer patients throughout the pandemic have been delayed
n their presentation to services [2].

Symptoms with positive predictive value of cancer have been used
o create NICE guidance for urgent referral to be seen within 2 weeks
3]. Additionally, in April 2020 a new ‘Faster Diagnosis Standard’
FDS) [4,5] was introduced which states that patients should be told
hether they have a diagnosis of cancer or not within 28 days of an
rgent GP referral. This target is currently set at 75%. The overall
tandard for cancer diagnosis and treatment is 85% of patients starting

✩ Using cancer diagnosis process data to identify bottlenecks and areas for improving efficiency within a London hospital trust.
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treatment within 62 days of an urgent GP referral [6]. Evidence sug-
gests that timely diagnosis and treatment leads to improved outcomes
for cancer patients [7–9]. To achieve the FDS standard evidence-
based Timed Diagnostic Pathways have been developed and provide
milestones for most appropriate sequence and combination of investi-
gations [10].

The Royal Free London (RFL) NHS Foundation Trust is a large
provider of cancer treatment in North London, with a catchment area
reach including specialised services of 2.5 million patients, and receives
the second largest volume of urgent GP referrals for suspected cancer
in the NHS [11]. Ensuring there is sufficient capacity to diagnose and
treat incoming referrals in line with national targets is a priority which
presents challenges. Meeting this challenge is critical as modelling sug-
gests a likely increase in the number of cancer deaths due to diagnostic
delays caused by the pandemic [12].

In order to minimise diagnostic delays, the National Physical Lab-
oratory (NPL) in collaboration with the RFL has proposed addressing
this problem by treating it as a resource optimisation problem, aiming
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to minimise the number of patients who breach the FDS. Although the
FDS for cancer diagnosis is that 75% of patients receive a diagnosis
within 28 days of urgent GP referral, the RFL set an internal target,
which we use in this study, of 85% in order to align with the target
for timely treatment. This also aligns with the overall standard for care
target of 85% of patients starting treatment within 62 days of urgent
GP referrals.

1.1. Literature review

Various aspects can lead to delays in cancer pathways, such as
the impact of patients moving between secondary and tertiary centres.
Methods have been used to investigate or explain these delays using
audits [13], qualitative methods [14], and mixed methods [15]. A
shift in resources required to prioritise urgent referrals may increase
the waiting times for non-urgent referrals, causing delays. Similarly,
diversion of resources to one pathway with high volume of referrals
such as skin cancer may result in loss from other cancer pathways un-
less all cancer pathways are considered simultaneously. Furthermore,
referral patterns are not static but change stochastically, as a result of
awareness-raising campaigns and other influences. Seasonal variations
in presentation of cancers have been observed [16], impacting on
relative utilisation of resources.

A particular challenge within healthcare is that re-design often
must occur whilst services are still running. Being able to explore the
potential impact of changes prior to implementation may help min-
imise the likelihood of changes having unintended consequences [17].
Simulation modelling to help understand resource allocation issues and
explore different scenarios may therefore be of value for operational
management of cancer pathways [18].

Discrete event simulation is a computer-based modelling approach
that can be used to address such challenges in demand capacity mod-
elling [19]. For example, examining diagnostic pathways for lung
cancer in Wales demonstrated that ensuring the patient attends their
first outpatient appointment within 7 days and streamlining the diag-
nostic tests would have the potential to remove approximately 20 days,
resulting in a 20–25% increase of patients receiving treatment within
62 days. If patients begin their treatment within 21 days of diagnosis
almost all patients would meet the 62-day target [20]. Streamlining
interdependent pathways such as cancer referrals is a challenging task
due to their high dimensionality and complex dependencies.

Optimisation theory is an interdisciplinary research area which
draws techniques from Mathematics, Physics, Computer Science, and
Engineering [19] and is well suited to solving high dimensional and
interdependent tasks. Optimisation theory has applications in schedul-
ing [20], resource allocation [21], communications [22], and data
science [23] and has also led to numerous successes in industrial
applications such as in manufacturing, where supply chains and factory
floor layouts have been optimised to achieve cost savings and improved
efficiency [24].

Particle swarm optimisation (PSO) is a type of optimisation algo-
rithm that is widely applied to real-world optimisation [25,26]. The
PSO algorithm was originally developed to simulate the collective
behaviour of swarms of social animals such as fish [26]. The basis
of the algorithm is that potential solutions to a given problem (such
as parameter or weight values) are coded as individuals within a
swarm. These potential solutions are typically randomly initialised and
updated through successive iterative learning cycles [27]. For PSO, the
individuals in the swarm have an associated position, the potential
solution, and velocity in the search space [28]. During the learning
cycles each individual is evaluated against the objective function. The
algorithm retains the best solution from each particle and the best solu-
tion found by the swarm. The position and velocity of each individual
is then updated based on the best values to balance local and global
searching. PSO has been shown to converge faster than other common

optimisation algorithms such as genetic algorithms [29] and simulated
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annealing [30] which is an essential requirement for methods to be
clinically useful.

Some applications of optimisation in a clinical context have been
used, e.g. to assign blocks in the operating room to reduce overcrowd-
ing in patient beds [31], for choosing the optimal location for new
facilities [32] or for optimising operating room scheduling [33] but
have been historically less widespread than in other application areas
such as manufacturing and supply chain design [34].

PSO is a popular algorithm for optimisation problems due to its high
performance and search efficiency for obtaining optimal solutions [35].
As such, they have been used in number of relevant application ar-
eas including disease detection and diagnosis [36–38], medical data
analysis [39–41], resource allocation [42], task assignment [43] and
scheduling problems [44,45].

1.2. This paper

In this work we formulate a resource allocation optimisation prob-
lem using PSO to optimise the efficiency of cancer diagnosis at the RFL.
This paper describes how the problem was formulated and presents
the optimised resources needed for the RFL to comply with diagnostic
targets.

Data of current referral and diagnostic resource activity from hospi-
tal services in RFL were translated into a model which has subsequently
been validated and optimised. Our aim is to create an optimal model
which will provide a total service solution for all pathways simulta-
neously, compensating for any potential negative impact of resource
allocation from one pathway on another. Here we present our work
and discuss how this model was constructed and how it may be applied
in the context of the NHS, which is now meeting the dual challenges
of recovery from the first waves of the pandemic whilst maintaining
heightened provision of care for patients affected by COVID-19.

2. Proposed model

This Section describes the formulation of the resource allocation
optimisation problem, including the data provided, the way it was
visualised and interpreted, the set-up of the model and the optimisation
runs that were carried out. Firstly, we define the main concepts and
variables used throughout the paper.

2.1. Main concepts and variables within the model

Throughout the rest of this paper, we frequently use some key
terms and concepts. For clarity and ease of reference, we define these
concepts in this Section.

Investigation: any step in the diagnostic pathway to the point of
discharge or multi-disciplinary team (MDT) discussion at which the
diagnosis of cancer is confirmed or refuted (e.g., Outpatient Appoint-
ment (OPA) Clinic, Ultrasound (US), Biopsy (Bx), . . . , MDT for breast,
discharge).

Capacity: how many investigation slots are available in the model
definition of a working day.

Current capacity values were calculated for each investigation type
as follows:

• For imaging investigations (CT, MRI, PET, Ultrasound), the ca-
pacity was calculated using the number of scanners in the trust
and the percentage of scanner time allocated to cancer patients
for each scanner.

• For endoscopy investigations, the capacity was calculated using
data about the number of endoscopy rooms running lists in the
trust and number of points per list.

• For radiology and pathology reports and clinics, the capacities
were estimated such that targets are achieved — e.g., biopsy
reporting target is 7 calendar days.
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Fig. 1. Timed pathway map for Oesophageal cancer produced by NHS England [46].
• For remaining investigations, where no relevant data was avail-
able, numbers were set in consultation with relevant clinicians as
far as possible (e.g., for examinations under anaesthetic (EUA))
or the capacity was set to an arbitrarily high number if the
investigation was not a constraining factor (e.g., for referrals).

ptimised capacity values per investigation are an output of the
ptimisation model.

iming: actual duration of each investigation per patient.
The timing values were calculated where possible per investigation

sing the activity data provided, as follows:

• For imaging investigations, the timings per investigation per tu-
mour site were calculated from historical imaging activity data.
The median and range of timings for each imaging modality are
shown in Table 1. The minimum, median and maximum times
were calculated from these data and weighted by how much time
is available for cancer imaging compared to other examination
types (elective, emergency, routine, etc.) — e.g., the median time
for a lung CT is of the order of 15 min, but with the calculated
weighting it is 2.6 h.

• For endoscopy investigations, a point system was used — each
tumour site endoscopy has a certain number of points associated
with it and each point equals 15 min.

• For the rest of the investigations, a well-informed estimation in
consultation with clinicians was used as a timing.

atients seen per day: calculated as capacity over timing per investi-
ation.

reach: when a patient has not received a diagnosis or otherwise of
ancer by 28 days from referral and thus breaches the FDS standard

orking day: the model assumes a 7-day working week with 12-hour
orking days, but the model outputs have then been converted to a
-day working week with 12-hour working days to reflect that > 90%
f investigations are completed Monday–Friday.
3

Table 1
Timings from historical imaging activity data showing the median time used for each
modality, and the range of times. The range shows the 10th to 90th interpercentile
range to avoid extreme outliers.

Modality Median scan time (min) Time range (min)

CT 15 11–15
MRI 37 22–45
Mammography 15 6–15
PET CT 30 18–30
Ultrasound 20 8–20

2.2. Data provided

In order to formulate the resource allocation optimisation problem,
a range of retrospective data from the Trust was provided that cov-
ered a period of one year (from April 2019–March 2020 inclusive),
including:

• Monthly volume of referrals for each tumour site taken from the
cancer information system — Somerset Cancer Registry (SCR)
(see Table 2)

• Pathway maps that outline the typical sequence of steps for
patients referred to a particular cancer pathway, provided for all
cancer types that are diagnosed at the RFL (see Fig. 1)

• Activity data from the radiology information system, Comput-
erised Radiology Information System (CRIS), along with hours
of operation and number of scanners for each of the imaging
modalities

• Activity data from the endoscopy information system, Unisoft,
along with data on available capacity

• Activity data from the pathology information system, WinPath
• Historic performance against cancer access standards

No patient-identifiable information was included in formulating or
running the resource allocation optimisation.

Hospital resources are finite and allocating resource between path-

ways is an interrelated problem as altering resources for one pathway
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Table 2
Volume of urgent cancer referrals, per month, to each of the speciality teams at RFL from April 2019–March 2020. Data are taken from the Somerset Cancer
Registry.

Period 2019/20 Q1 2019/20 Q2 2019/20 Q3 2019/20 Q4

Sub-Category Apr May Jun Quarter Jul Aug Sep Quarter Oct Nov Dec Quarter Jan Feb Mar Quarter

Anal <5 <5 <5 <15 <5 <5 <5 <15 <5 <5 <5 <15 <5 <5 <5 <15
Bladder 156 142 118 416 156 147 130 433 132 129 123 384 121 113 107 341
Brain/Central Nervous System 36 47 47 130 47 30 48 125 32 47 37 116 41 31 32 104
Breast 827 785 808 2420 882 706 721 2309 871 806 914 2591 818 856 627 2301
Dermatology 746 792 814 2352 949 925 898 2772 919 849 662 2430 788 636 663 2087
Gynaecological 313 298 277 888 304 280 274 858 292 294 308 894 293 176 233 702
Haematological 67 54 52 173 54 49 49 152 60 52 51 163 48 53 63 164
Head and Neck 226 256 219 701 261 220 242 723 279 248 237 764 239 264 229 732
HPB-HPB 8 10 5 23 6 10 10 26 18 9 14 41 5 11 5 21
Lower Gastrointestinal 607 626 554 1787 538 596 540 1674 677 636 550 1863 571 533 603 1707
Lung 117 127 129 373 120 106 117 343 133 160 134 427 126 140 81 347
Oesophago-gastric 207 214 196 617 217 204 225 646 271 247 223 741 248 199 203 650
Prostate 132 146 107 385 147 118 127 392 142 122 154 418 160 155 164 479
Renal 15 12 13 40 23 19 23 65 18 18 19 55 13 16 15 44
Testicular 8 14 7 29 15 9 18 42 12 11 12 35 11 15 15 41
may impact on another. For example, increasing the number of CT
scans to deal with a spike in lung cancer referrals may lead to a
decrease in the available capacity of CT scans for patients on a lower
gastrointestinal pathway. For each cancer tumour site there is typically
an optimal pathway that describes the ideal sequence of investigations
and steps along a patient’s cancer pathway, an example of which is
outlined in Fig. 1 [46].

2.3. Model set up

The base resource allocation model was set up as a discrete-event
simulation with fixed-increment time progression. In this model, pa-
tients are simulated with assigned cancer types, distributed according
to the historical numbers seen by the RFL. They are then passed through
the appropriate diagnostic pathway given their cancer type. For each
stage of the pathway, e.g., investigations such as a CT scan or a biopsy
being taken, there is an associated capacity (number of patients who
may be seen at once) and time to complete. Once the patient completes
their pathway, their total time in the system is logged. The model runs
over a defined period of time, currently set to 24 weeks including 12
weeks of ‘‘warm-up’’ time to allow the system to fill with patients
and stabilise, and every 28 days calculates the number of patients
who breach the FDS. The 12-week warm up time was established by
monitoring the system over a longer period of time and checking when
the system started showing a stable output between consecutive 28-day
windows. The base model run on a 64-bit Windows OS with 1.6 GHz
CPU takes 5–10 min to complete.

This base model may be run with current capacities from the RFL
to validate against their known breach numbers. It may then be run
with an optimisation algorithm (described in Section 2.6) to minimise
the output number of breaches by changing the capacities for each
investigation.

Appendix A gives a more detailed description of the notation used
in the code and an outlined pseudo-code.

In reality, the procedures and investigations needed by cancer pa-
tients do not always run to plan. Scanners break down, appointments
get rearranged, and patients do not attend for various reasons. In
the model this was taken into account by allowing for a random
probability that a patient would be assigned to an investigation but not
actually undergo the procedure. This probability, the ‘‘investigation not
performed’’ rate, was set to 4.4% based on historical data from the RFL.

2.4. Data visualisation and problem formulation

Using the historical patient referral numbers (Table 2) and the rec-
ommended pathways for different cancer types (Fig. 1), a visualisation
of the system where all pathways can be seen in a Sankey diagram is
4

presented in Fig. 2. The width of each line is proportional to the number
of patients referred for each type of cancer. Cancer referral types are
colour coded. This shows that some investigations are only undertaken
by patients with a single cancer type, and thus have relatively low
patient numbers (e.g., orchidectomy in the testicular cancer pathway).
Fig. 2 gives a clearer picture of where bottlenecks – i.e., investigations
required by larger numbers of patients – might be.

All patients in this case were assumed to start their pathway at an
out-patient ‘‘two-week wait’’ (2WW) clinic, and end with a (specialist)
multi-disciplinary team meeting ([S]MDT) which resulted in a diagno-
sis of cancer, or not. In practice, some patients will enter their pathway
by proceeding straight to an investigation and enter the clinic later.
Similarly, some patients may be discharged before the MDT meeting.
These fixed points are used here to simplify the model.

The data provided in the cancer pathways as described in Sec-
tion 2.2 and Fig. 1 outline the order of investigations usually needed by
patients with a given suspected cancer. In consultation with the RFL,
some adaptations were made from the diagram in Fig. 2 in the problem
formulation: in practice, rectal examinations are typically undertaken
within the 2WW clinic, so these have been combined for the purposes
of the model. Similarly, pathology as seen in Fig. 2 was combined with
biopsy in the model as this is the same investigation at different times
for the gynaecology pathway. Orchidectomy was removed due to the
low patient numbers and limited scope for resource management.

For the model, the pathways were translated into a format that
could be inputted into the optimisation model. We illustrate how this
was achieved in Fig. 3. Each step in a given pathway is numbered
sequentially — e.g., in the lung pathway, a Positron Emission Tomogra-
phy/Computed Tomography (PETCT, #4) is always carried out before
a biopsy (#6). Steps with the same order number also have a tag
indicating whether the investigations are carried out in an arbitrary
order, or only one/some of the investigations are needed – e.g., in the
brain pathway, a patient could have a CT (#2) and CT report (#3) or
an MRI (#2) and MRI report (#3). Tags also exist to indicate if a given
investigation is always done, or only for some patients.

2.5. Validation

Before optimising any investigation capacities, the model was run
with the RFL’s current capacities (or estimates where exact figures were
unavailable) to validate the output timings and number of expected
breaches. The model output showed expected breaches of 33% with
a range of approximately 0.5% either side of the median, i.e., 67% of
patients were expected to be diagnosed within 28 days of referral. The
historical numbers from the RFL for timely diagnosis range between
54%–76% with a median of 68%. This suggests that the timing and
capacity numbers used in the model are reasonable estimates for the
true values, with the median values matching very closely.
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Fig. 2. A Sankey flow diagram depicting the various routes through cancer diagnosis pathways taken by patients. Purple blocks show investigations in the pathways; their height
epresents the number of patients requiring that investigation. Coloured ribbons show routes taken by patients with different suspected cancer types; the width of the lines represents
he number of patients. HN here refers to head and neck cancers, OG refers to oesophago-gastric cancers.
Fig. 3. The translation of the cancer diagnosis pathways into a format readable by the optimisation model. Each step in a given pathway is numbered sequentially. Steps with
the same order number also have a tag indicating whether the investigations are carried out in an arbitrary order, or only one/some of the investigations are needed. Tags also
exist to indicate if a given investigation is always done, or only for some patients.
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The optimisation outputs a capacity for each investigation. How-
ever, capacity is not measured in the same way for all investigations,
e.g., physical number of scanners, staffing levels, room availability. To
directly compare all investigations, we therefore convert the output
capacity into patients seen per day. For this we assume a 12-hour
working day, as historical data from the RFL shows 99% of cancer
patients are seen between 08:00 and 20:00. We also assume a 5-
day working week as fewer than 10% of cancer investigations are
performed at weekends.

The optimisation outputs a capacity, C, i.e., the number of slots
hich may be used by patients. The unit for this is [C] = patients

we use square bracket notation to define units). We convert this to
5

atients seen per day by dividing it by the time it takes to process a
ingle patient: 𝑇1, where [𝑇1] = days. Thus, the number of patients
een per day, N, is given by Eq. (1) and [N] = patients/day. As an
llustrative example, if the hospital had one CT scanner (𝐶 = 1 patients)
nd each patient took 0.1 days (1.2 h in a 12-hour day) to have a CT
can (𝑇1 = 0.1 days), then the number of patients seen in CT per day is
= 1∕0.1 = 10 patients/day.

= 𝐶
𝑇1

(1)

All results in Section 3 are presented as number of patients that are
required to be able to be seen per day (N) in a 5-day working week in
order to meet the 28-day FDS.
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2.6. Optimisation to minimise breaches

The aim of optimising the model is to lower the number of patients
breaching the FDS. The base model has 29 different, interconnected
investigations with capacities which may be changed. This means that
there may be many possible solutions (local minima) which achieve the
aim of reducing breach numbers to fewer than 15%.

Each configuration of capacities input into the model will produce
a value of a quality metric (the objective), i.e., number of breaches. By
changing the capacities, we can search for a particular set of capacities
which is optimal, in this case lowering the number of breaches to
fewer than 15%. As there are 29 different investigations, and therefore
capacities, which may be changed, it would be infeasible to check the
number of breaches for all possible combinations. We therefore use an
optimisation algorithm to check solutions, measure the quality metric,
and return better solutions more quickly and efficiently.

There are different approaches which may be used to search for
optimised solutions. In this problem, we use a stochastic approach for
the following reasons: the objective function cannot easily be expressed
explicitly in an algebraic form, the search space is high-dimensional,
and it is simpler to include constraints on the various capacities.
In particular, we use a stochastic PSO algorithm to optimise capaci-
ties. PSO was chosen as the number of combinations of the capacity
for all 29 investigations is too large to feasibly check every possible
combination. PSO instead checks a sample of random solutions and
then iterates towards those that provide better solutions. We run the
PySwarms [47] global-best PSO algorithm with cognitive parameter =
0.4, social parameter = 0.6, and inertia = 0.8 to allow for exploration
of different solutions.

In this case, each particle represents a vector of different capacities
for each investigation in the diagnostic pathways. The PSO algorithm
is run on the base model with each particle and the output, number
of breaches per 28-day window, recorded. All the solutions are then
evaluated, the best ones noted, and the particle ‘‘positions’’ (capacities
of each investigation) are changed to try to move towards better
solutions. The algorithm iterates for a given number of trials, and the
best generated solution is returned at the end. We then check if this
solution is successful, i.e., one for which there were fewer than 15%
patient breaches per 28-day window. If the best solution returns more
than 15% breaches, we do not accept the results.

As we do not expect a single, global optimum, we run the optimi-
sation algorithm multiple times with the same starting parameters to
show the range of possible solutions due the stochastic nature of both
the model, and the optimisation algorithm. The optimisation process
was run 25 times in total. This number of runs was chosen as high
enough to show the range of solutions, but low enough that it could
be run in a timely manner without the need for high performance
computing; the optimisation process takes about an hour to complete
on a 64-bit Windows OS with 1.6 GHz CPU.

This allows the RFL to select different results based on feasibility
of, for example, changing resources in a given area. This is also useful
for the RFL to be able to test different conditions and scenarios (for
example, procurement of a new scanner) or re-optimise in the case of
unexpected shortages or increases in resourcing.

3. Results

Different scenarios of patients flowing through the diagnosis path-
ways over the course of 6 months were run and validated against actual
performance at the RFL, using the data described in Section 2.2. The
model was optimised using the PSO algorithm to see where capacity
might need to be increased to improve patient flow through the system
to reduce the number of patients breaching the FDS to less than 15%.
Note that given 29 inter-connected model variables, corresponding to
each of the investigations, there is no single optimised solution but
instead a subset of possible optimal solutions, as can be seen in Fig. 4.
6

Fig. 5 shows the same plot as Fig. 4, but with each run of the opti-
misation highlighted, with the output numbers listed. This information
is now allowing the RFL to select where capacity can be increased.
Different optimised solutions may then be selected based on the RFL’s
capacities and the impact on needs in other areas such as urgent care
and non-cancer patients. The RFL is also able to create business cases
for further resources where required.

Table 3 shows a table summarising the results of all 25 optimisa-
tion runs. Figs. 4 and 5 omit some investigations such as biopsy for
clarity due to the large scale of these numbers. We note that biopsy
reports take a significantly longer time than the biopsies hence the
daily capacity is much lower. Additionally, US reports are completed
immediately after the US investigation hence are omitted. We report
the numbers for these omissions in Table 3. Table 3 just shows the
minimum, maximum and median values for each investigation from
all optimisation runs as the full solutions from each run are shown in
Fig. 5. Note that using simply the minimum values for all investigations
will not result in the RFL meeting the FDS as the investigations are
all inter-connected (Figs. 4 and 5). Also listed are the RFL’s current
capacities for comparison. Each row is highlighted to show whether
the current capacity is sufficient for requirements or less than required
for all optimisation runs. The red and yellow highlighted investigations
are priority areas for improvement in order to minimise breaches and
achieve the FDS.

4. Discussion

In this study, we have demonstrated a model which will allow
optimisation of available diagnostic capacity for patients on urgent
cancer pathways and highlighted the areas where increased capacity is
required in order to meet the 28-day FDS standard even with optimal
efficiency.

The novelty of the approach presented is in the application area. As
mentioned briefly in Section 1, the use of mathematical optimisation in
a healthcare context is not as common as in other application areas and,
furthermore, not many of the methods in healthcare have been applied
to optimising disease diagnostic pathways [48]. The work developed
here offers an improvement to efficiently diagnosing cancer pathways
formulated as a mathematical problem in comparison to other methods
such as case management [49].

We have shown some capacity demand mismatches in the cur-
rent cancer diagnosis pathways at the RFL. Examples include imaging
investigations such as CT scans and ultrasounds, and endoscopy inves-
tigations such as oesophago-gastro-duodenoscopy (OGD). This is due
to the volume of patients and the number of different cancer pathways
requiring these investigations within the timeframe to meet the 28-day
FDS target.

Previous work has addressed patient diagnosis time in a single
cancer pathway [50,51]. In this work, we have examined all can-
cer diagnosis pathways as a complete system. Figs. 4 and 5 show
that changing resource in any one investigation impacts the resources
needed in other investigative areas. This suggests that studies which
look at individual areas may miss the wider context, and not neces-
sarily improve overall patient diagnosis times. Looking at the system
as a whole, we identified areas for improvement which will have
system-wide impact. In other areas, provision exceeds the optimal level,
informing future resource planning and realignment that can provide
benefit to these and other areas.

Additional use of mathematical optimisation in healthcare would
have a further benefit — it lays a solid foundation for the successful
rollout of AI interventions [52]. After systematic changes to healthcare
workflows and processes through mathematical optimisation, AI tech-
niques can further enhance these systems. Examples of the use of AI
in a healthcare context include improving the efficiency of the oper-
ating room environment with an optimisation and machine learning
model [53] and improving patient flow on mental health in-patient
units [54].
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Fig. 4. Results from 25 optimisation runs showing the capacity of patients needing to be seen for each investigation in a 5 day (12 h per day) working week. Each grey line
represents a solution which results in fewer than 15% of patients breaching the 28-day gold standard for diagnosis. Highlighted are two runs to show the spread in results and the
importance of optimising all investigations simultaneously. By lowering capacity in one investigation, capacity must be increased elsewhere to meet targets. The red stars show
the current working capacity at the RFL.
Fig. 5. Animation/plots of the results from 25 optimisation runs showing the capacity of patients needing to be seen for each investigation in a 5 day (12 h per day) working week.
Each grey line represents a solution which results in fewer than 15% of patients breaching the 28-day gold standard for diagnosis. Coloured lines highlight each run individually
and the corresponding numbers are shown in the table to the right. The red stars show the current working capacity at the RFH. An animated version of this figure is available
in the supplementary material.
These ideas and models are also applicable in other medical ar-
eas where there are pathways to follow/flow through. For example,
pharmaceutical processes [55], diabetes [56] or dementia [57] diag-
nosis pathways, emergency department flow [58], or major trauma
pathways [59].

The model comes with its limitations: we are assuming the effi-
ciency of the hospital is as described, i.e., we are assuming constant
efficiency of scanners, procedures and clinics and do not account for
variation in operational efficiencies in practice. Future implementations
will also seek to include different start and endpoints for different
patient pathways. Furthermore, we have not included human factors
such as staff being unwell or staff reacting to changing situations,
for example. Our model relies on broad statistics, and the fact that
these issues might balance out on average over time, but it is not a
true representation of an individual patient’s trajectory through the
diagnostic pathway.
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5. Conclusions

The collaboration between NPL and the RFL is ongoing. Future
work will consider further refinement of the model based on new
data; validation against real-world scenarios within the RFL; adapting
the model to use real-time data direct from the RFL systems; and
expansion to other hospitals/trusts. In particular, future investigation
may look at the distribution of breach numbers by cancer type. Careful
consideration needs to be taken towards ensuring there are no biases
introduced by the optimisation. For example, increasing resources for
faster treatments to reduce breaches in a single area, rather than across
the board.

The outcomes and impact of this project have the potential to make
a valuable impact on shaping future hospital activity. This project
has demonstrated the utility of a collaboration between a national
government laboratory and an NHS hospital in the unprecedented and
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Table 3
Summary of results from all 25 optimisation runs. Shown are the current capacities for each investigation, and the lowest, highest, and median
capacities output by the optimiser. Note that no single optimisation results in all the lower values, these numbers simply show the range
of results produced. The colours indicate whether the current capacity is higher than required by any optimised run (blue), sufficient for
requirements (green), slightly less than required by most optimisation runs (yellow), or severely less than required for all optimisation runs
(red). Rows shown in white were unconstrained as these investigations are not usually a limiting factor in patients’ pathways. Note that reporting
for ultrasound (USReport) is highly correlated with ultrasound (US) as the reporting is undertaken immediately after the investigation by the
same member of staff.
extreme situations of the COVID-19 global pandemic. The project has
been an important example of two disparate areas of the health system
coming together with a joint determination to improve outcomes for
patients.
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Appendix A. Pseudo-code

Notation

• M = number of investigations
• A = number of cancer types

• C = (Mx1) vector of capacity for each scanner
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M

A

a

R

• W = (MxAx3) matrix of time for each investigation for each
cancer for each of [min, median, max] timings. To allow for addi-
tional cleaning measures in place during the COVID-19 pandemic,
we add 10 mins to each of these: W = W+10

• P = matrix of virtual ‘‘patients’’. This should be in a randomised
order to mimic patients arriving at the hospital and so that
all patients of a single cancer type do not enter the system
consecutively

• S = vector of investigations containing information on the investi-
gation type and how many patients are currently undergoing each
investigation

• t = time index that will increase through the loop
• dt = time increment to increase by on each loop (e.g., half a

day, 15 mins, 1 min). The smaller this is, the longer the code
will run (larger loops), but the more ‘‘resolution’’ obtained on
investigation times. For example, a procedure taking 15 minutes
will not be well-resolved if the time step is 1 hour

• tau = window size, e.g., 28 days
• L = number of windows over which to calculate breaches
• B = number of breaches (Lx1) vector
• n = patient index, number of patients currently in the system

ethod

• Initialise: set up S based on C and W. Set up initial P
• Loop from 1 to L (windows) in steps of 1:

◦ Loop from 1 to tau in steps of dt (days in window):

– Add new patients, patients currently in system is n
– Loop from 1 to n in steps of 1: (add patients to an

investigation where possible)

∗ If patient P(n) is not currently occupied (in
an investigation), check if all investigations are
done and remove to list of ‘‘complete’’ patients
or select next investigation required from list

∗ Check if the investigation is available in S. If
True, send patient to investigation & update
investigation time_required_to_complete based
on cancer type

– Increase t
– Loop from 1 to n in steps of 1: (check all patients

currently in an investigation)

∗ If patient P(n) is in an investigation, check
time and whether they are done. Remove from
investigation if done, else leave

∗ Add random probability that patient completes
the investigation but is not noted as complete
in the system to account for ‘‘investigation not
performed’’

◦ Calculate B

• Calculate average B
• Update C and repeat to minimise avg(B)

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.health.2022.100082.
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