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Sympathetic cooling and squeezing of two colevitated nanoparticles
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Levitated particles are an ideal tool for measuring weak forces and investigating quantum mechanics in macro-
scopic objects. Arrays of two or more of these particles have been suggested for improving force sensitivity and
entangling macroscopic objects. In this article, two charged, silica nanoparticles, that are coupled through their
mutual Coulomb repulsion, are trapped in a Paul trap, and the individual masses and charges of both particles are
characterized. We demonstrate sympathetic cooling of one nanoparticle coupled via the Coulomb interaction to
the second nanoparticle to which feedback cooling is directly applied. We also implement sympathetic squeezing
through a similar process showing nonthermal motional states can be transferred by the Coulomb interaction.
This work establishes protocols to cool and manipulate arrays of nanoparticles for sensing and minimizing the
effect of optical heating in future experiments.

DOI: 10.1103/PhysRevResearch.5.013070

I. INTRODUCTION

The ability to cool and control the center-of-mass (CoM)
motion of levitated nanoparticles and microparticles, coupled
with their extreme isolation from the environment, makes
them ideal candidates for measuring weak forces. They have
been proposed as detectors in the search for dark-matter
candidates [1–3], for investigating the macroscopic limits
of quantum mechanics [4–8], and for measuring short-range
forces [7–11]. To date, only a few investigations have focused
on cooling and controlling more than a single particle levitated
in vacuum [12,13]. Arrays of levitated nanoparticles are of
interest, as they can be used to enhance the detection of dark-
matter candidates [2,3], measure vacuum friction [14], and
for evidencing the quantumness of gravity via entanglement
[15,16]. Even arrays as small as two particles can be useful
for increasing the isolation from external noise sources [17].
A first step towards utilizing arrays of levitated particles is
the development of tools to control the motion of colevitated
particles.

Sympathetic cooling has been used extensively in ion
trapping experiments to cool atomic and molecular species
where no favorable internal transitions for laser cooling are
available [18–22]. It is made possible by the coupling from
the Coulomb interaction between cotrapped ions. Coupling
between two levitated nanoparticles in vacuum has been
demonstrated with optical binding [12] and via the Coulomb
interaction [13]. The ability to cool and control all particles
via a single particle using light, while not illuminating the
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other cotrapped particles, can be used to minimize heating
[23,24], particularly when they contain internal atomiclike
systems such as nitrogen vacancy centers, whose internal state
manipulation is highly temperature dependent.

The coupling between the particles in the array allows,
in principle, to transfer other more complex motional states
as well. Among these, squeezed states are considered the
simplest, more easily accessible nonclassical states [25,26].
In the quantum regime and in the presence of a multimode
system, as is considered here, squeezed states are an important
resource which can allow the generation and observation of
entanglement between different mechanical degrees of free-
dom [27,28]. Even far from the quantum domain, squeezed
states have important applications for enhanced force sensing
[29,30].

In this paper we cotrap a pair of silica nanoparticles in
a linear Paul trap that are coupled through their mutual
Coulomb repulsion. By implementing a velocity damping
scheme [31–39] on just one particle, we sympathetically
cool the motion of the second particle to achieve sub-Kelvin
normal-mode temperatures. This differs from previous work
[13] where both particles were cooled simultaneously. Impor-
tantly, we also show that the Coulomb interaction can transfer
other states between cotrapped particles by squeezing the nor-
mal modes of the system with a parametric drive [27,28,40–
45] on just one particle.

II. THEORY

The equations of motion (EoM) for two harmonic oscilla-
tors coupled via the electrostatic force are given by

z̈1 + γ1ż1 + ω2
1z1 = Ffluct,1

m1
+ Q1Q2

m14πε0(z2 − z1)2
, (1)

z̈2 + γ2ż2 + ω2
2z2 = Ffluct,2

m2
− Q1Q2

m24πε0(z2 − z1)2
, (2)
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where zi are the positions of the particles (i = {1, 2} denote the
particle), γi are the damping constants, ωi are the natural fre-
quencies, mi are the masses, Ffluct,i are the thermal force noises
defined by 〈Ffluct,i(t )Ffluct, j (t ′)〉 = 2miγikBT0δ(t − t ′)δi, j ( j =
{1, 2}), where kB is the Boltzmann constant and T0 is the tem-
perature of the surrounding thermal bath, Qi are the charges of
the particles, and ε0 is the permittivity of free space. Several
techniques for levitating multiple nanoparticles exist, but here
we will focus on the case of particles cotrapped in a single
linear Paul trap. Paul traps confine charged particles using a
combination of static and oscillating electric fields.

Considering the axial direction of a linear Paul trap where
the trap is formed by only static fields, the uncoupled secular

frequencies of the two particles are given by ωi =
√

2QiκU0

miz2
0

.

Including the Coulomb interaction, the total potential for the
trapped particles is given by [46]

V (z1, z2) = 1
2

(
u1z2

1 + u2z2
2

) + Q1Q2

4πε0|z2 − z1| , (3)

where ui = 2QiκU0

z2
0

. The equilibrium positions of each particle,

zeq
i , can be calculated by setting ∂V

∂zi
= 0 and solving for zi.

From these, an equilibrium separation of

zeq
sep = zeq

2 − zeq
1 =

(
Q1Q2(1 + Q2

Q1
)

u24πε0

) 1
3

(4)

can be calculated which is mass independent. Moving to a co-
ordinate system given by the particles’ deviations about their
equilibrium positions, si = zi − zeq

i , and assuming si � zeq
sep,

the interaction term in Eq. (3) can be expanded to second
order about the equilibrium positions. By ignoring damping
and external forces, the Euler-Lagrange EoM are found to be[

s̈1

s̈2

]
= −

[
V11 V12

V21 V22

][
s1

s2

]
= −V

[
s1

s2

]
, (5)

where Vi, j = 1
mi

∂2

∂zi∂z j
V (z1, z2)|zeq

sep
. Assuming the oscillator

motion takes the form si = si,0e−iωt , then the problem is re-
duced to finding the eigenvalues and eigenvectors of matrix V,
which describe the normal modes of the system. The eigenval-
ues are given by

ω2
± = κU0

z2
0

(A + B ∓
√

C2 + B2 + D), (6)

where

A = Q1

m1
+ Q2

m2
, (7)

B = 2Q2

(1 + Q2/Q1)

(
1

m1
+ 1

m2

)
, (8)

C = Q1

m1
− Q2

m2
, (9)

and

D = 4Q2

(1 + Q2/Q1)

(
Q1

m1
+ Q2

m2

)(
1

m1
+ 1

m2
− 2

)
. (10)

Provided the eigenvalues are positive (ω2
± > 0), then the mo-

tion is stable and the normal-mode frequencies are given by

ω±. The normalized eigenvectors are given by

e± = 1√
1 + r2±

[
1
r±

]
, (11)

where

r± = −
m1ω

2
±

z2
0

2κU0

(
1 + Q2

Q1

) − Q1 − 3Q2

2Q2
. (12)

The product r+r− = −m1/m2, and therefore these eigenvec-
tors are only orthogonal when m1 = m2. In this case, the
values of r± become mass independent. The eigenvectors
define the normal modes in terms of the displacement of the
individual particles such that[

s1

s2

]
= z+e+ + z−e−, (13)

where z+ and z− are the amplitudes of the normal modes.
For two particles with the same charge and mass (like atomic
ions), the eigenvalues and eigenvectors reduce to

ω+ = ω0, ω− =
√

3ω0, (14)

e± = 1√
2

[
1

±1

]
, (15)

where ω0 =
√

2Qκ

mz2
0
U0. In this case we can consider e+ the in-

phase CoM motion and e− the out-of-phase stretching motion
of the two-particle system.

By assuming the same mass and size for both particles,
then the uncoupled EoM for the two normal-mode amplitudes
can be written as

z̈+ + γ0ż+ + ω2
+z+ = Ffluct,+

m
, (16)

z̈− + γ0ż− + ω2
−z− = Ffluct,−

m
, (17)

where m1 = m2 = m, γ1 = γ2 = γ0, and 〈Ffluct,k (t )
Ffluct,m(t ′)〉 = 2mγ0kBT0δ(t − t ′)δk,m with k, m = {+,−}.
Each mode will thermalize to the energy of the surrounding
thermal bath, i.e., mω2

±〈z2
±〉 = kBT0.

The motion of each particle will contain a fraction of the
energy from each mode that is determined by the charge of
that particle. By considering that energy is proportional to the
variance of the displacement and using Eq. (13) we find the
relations

E1,+
E1

= E2,−
E2

= 1

r2+ + 1
, (18)

E2,+
E2

= E1,−
E1

= 1

r2− + 1
, (19)

where Ei represents the total energy of particle i, and Ei,k

represents the energy in particle i coming from mode k. From
this it can be seen that each particle will contain a total
energy equal to the thermal bath. As the charge difference
increases, |r±| → ∞ and r∓ → 0 and the particles no longer
display normal modes. For Qi 
 Qj we find ω− = ωi and
ω+ = √

3ω j so the particle with large charge oscillates at its
trap frequency and the particle with small charge is strongly
affected by the electrostatic repulsion.
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FIG. 1. (a) The experimental setup for sympathetic cooling and squeezing. Two 387-nm-diameter, silica particles are trap simultaneously
in a Paul trap. One arm of a 637-nm laser is focused onto each particle individually. The power in each arm is balanced such that the scattering
from each particle is approximately equal when measured on the CMOS camera. One of the arms is also focused onto a quadrant photodiode
for real-time detection of the motion of one particle. A force is applied to the same particle to either cool or squeeze the normal modes by
modulating the power of a 1030-nm laser. The feedback signal is generated from the real-time measurement of the particle position. BS:
beam splitter, QP: quadrant photodiode, and SPF: short-pass filter. (b) Two cotrapped particles in the Paul trap. The separation between these
particles is 198 ± 1 μm.

The radial motion of trapped nanoparticles will also couple
to form normal modes; however, the coupling scales much
more strongly with charge difference than the axial modes.
For large charge differences, both particles are almost com-
pletely unaffected by the other and oscillate close to their trap
frequencies. The radial normal modes can be calculated in a
similar manner to the axial normal modes [47].

III. EXPERIMENTAL METHOD

In this experiment we use a linear Paul trap with four
parallel rod electrodes for radial trapping and two “endcap”
electrodes for axial trapping. The four parallel rods are held in
place by two gold-coated printed circuit boards which contain
the electrical connections for the rods and have an endcap
electrode etched into each [48]. The parabolic coefficients
were calculated using finite element modeling and found to be
r0 = 1.1 mm, z0 = 3.5 mm, κ = 0.071, and η = 0.82. Typical
trap parameters are V0 = 100 − 150 V, U0 = 20 − 50 V, and
ωr f = 2π × 8 − 12 kHz.

Silica nanoparticles, with charges of up to 6000e, were
loaded into the trap at ∼10−1 mbar using the electrospray
technique [48,49]. Two particles were either trapped simul-
taneously or, after trapping one particle, more nanoparticles
were sprayed into the trapping region until a second was
caught. Particles were monitored on a complementary metal
oxide semiconductor (CMOS) camera using scattered light
from a 637-nm diode laser. Since both particles were illumi-
nated by the 637-nm laser (Fig. 1), time traces of the particle
motion could also be recorded on the CMOS camera at 1000
frames per second [48,50]. The time traces were calibrated by
moving the camera a fixed distance with a translation stage
and recording the resulting displacement of the image. Both
particles were recorded simultaneously in the same camera

image so that the phase difference between the displacement
of the particles was known. The camera acted as an out-of-
loop detector for measuring the temperature when feedback
cooling the particles.

Real-time detection of the particle motion was done us-
ing a quadrant photodiode. Individual arms of the 637-nm
beam illuminated each particle such that just the motion of
one particle was measured on the quadrant photodiode. The
signal from the quadrant photodiode was fed to a Red Pitaya
FPGA to generate a feedback signal to either cool or squeeze
the particle motion. The PYRPLsoftware package was used to
filter the position signal of the particle around the appropriate
mode, then either delay the signal (to cool the motion) or
mix the signal with a sinusoidal wave at twice the central
frequency of the mode (to squeeze the motion), followed by
amplification. The feedback signal was then used to modulate
the power of the 1030-nm diode laser and create a force on the
particle. Despite relatively high intensities of 2 × 108 W m−2

for the 1030-nm laser, the trapping frequencies of particles
were shifted by less than 2% due to the additional laser.

IV. PARTICLE CHARACTERIZATION

Figure 1(b) shows two particles trapped in the Paul trap.
Using the CMOS camera, the equilibrium separation of the
particles was measured to be zeq

sep = 198 ± 1 μm. This is
much larger than the expected amplitude of a single particle in
thermal equilibrium with a frequency of ω0 = 2π × 200 Hz
(
√

〈q2〉 = 6.8 μm), so the Taylor expansion used in Eq. (5)
is valid. The power spectral density (PSD) of two coupled
particles can be seen in Fig. 2(a), taken at a pressure of
1.3 × 10−2 mbar. Unlike a single uncoupled particle which
would display only one mode [48,50], both particles display a
mix of the normal modes of a system showing they are axially
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FIG. 2. (a) PSDs of the motion of the two particles calculated
from a time trace taken on the CMOS camera. The imbalanced mode
energies between each particle show each particle has a different
charge. (b) PSDs of the normal modes of the two-particle system.
The normal modes are recovered from the motion of the individual
particles by calculating the eigenvalues of the system. Neither mode
has any component of the other mode present in the PSD; therefore
they are completely orthogonal, and the masses of the two particles
are approximately equal.

coupled, and it can be seen that they do not contain equal
mode energy, suggesting each particle has a different charge.
The normal modes, z±, are constructed from the measured
time traces using the linear transform described in Eq. (11).
To find the normal modes of the system, the values of r±
are varied until the PSD of the z± mode shows a minimal
amount of the z∓ mode. Figure 2(b) shows the PSDs of the
normal modes for r+ = 0.6 and r− = −1.6. Each normal
mode is clearly seen with no component of the other mode,
suggesting the normal modes are orthogonal and the masses
of each particle are approximately equal. The total energy in
each particle was calculated by integrating the area under the
PSDs of the individual particles and used to calculate their
masses by assuming each particle is in thermal equilibrium
with the surrounding gas. The particle radii are measured to
be r1 = 195 ± 3 nm and r2 = 192 ± 3 nm, assuming a density
of 1850 kg/m3. These values both agree with one another
and agree with the nominal radius of 193.5 nm. Together, this
is clear evidence that two single particles of approximately
equal mass were trapped. Other pairs of trapped particles
were measured to also have the mass of single particles with
separations ranging from 150 μm to 200 μm.

The individual particle charges are different enough such
that no coupling between the radial modes of each particle
can be seen. This means the radial frequencies can be used
to measure the individual charge-to-mass ratios of the two
particles in the same manner as for a single trapped particle.
By varying the frequency and voltage of the AC signal sup-
plied to the rod electrodes while measuring the frequencies

of the radial modes, charges of Q1 = 2135 ± 58 e and Q2 =
906 ± 15 e were calculated using the mass values determined
earlier. We can verify the charges by using them to calculate
the theoretical values of r± and Ei,+/Ei for the axial modes
and comparing them to the measured values. We find r− =
−1.60 ± 0.03 and r+ = 0.61 ± 0.04, which are close to those
used to construct the PSDs in Fig. 2(b), and that E1,+

E1
= E2,−

E2
=

0.72 ± 0.03, which agrees with values E1,+
E1

= 0.73 ± 0.04 and
E2,−
E2

= 0.71 ± 0.04 measured from the PSDs. This shows that
the radial modes have sufficiently small coupling to be treated
as uncoupled.

V. SYMPATHETIC COOLING

By modulating the power of a 1030-nm laser focused onto
just one of the particles (particle 1) the normal modes can be
cooled. Through the Coulomb interaction, the same modes of
the other particle are also cooled. If a force proportional to the
velocity of the z+ is applied to particle 1, the resulting EoM
for the two normal modes are

z̈+ + (γ0 + γ f b)ż+ + γ f bδż+ + ω2
+z+ = Ffluct,+

m
, (20)

z̈− + γ0ż− − γ f bż+ − γ f bδż+ + ω2
−z− = Ffluct,−

m
, (21)

where γ f b is the feedback gain and δż+ is imprecision noise
in the detection. Provided ω− − ω+ 
 γ0 + γ f b, the γ f bż+
term in Eq. (21) will have a negligible effect on the z− mode
and can be ignored. Additionally, in practice the feedback
signal is bandpass filtered such that the γ f bδż+ term does not
affect the z− mode. Thus the z+ mode is cooled while the
z− mode remains unaffected. Similar equations can be found
for the two modes (by interchanging all ± subscripts) when
cooling the z− mode. Since the particles are the same mass,
the temperature compression ratio for a mode should be equal
in each particle [47]. The cooled mode will have a temperature
given by [32,35,37,39]

T+ = T0,+
γ0

γ0 + γ f b
+ 1

2

mω2
+

kB

γ 2
f b

γ0 + γ f b
Snn,+, (22)

where T0,+ is the initial temperature of the CoM mode, and
Snn,+ = ∫ ∞

−∞ δz+(t )δz+(0)eiωt dt is the spectral density of the
imprecision noise and is assumed to be white and Gaussian
over the linewidth of the oscillator mode. A similar expression
is found for the z− mode. By increasing the feedback gain, a
minimum temperature will be found that is dependent on the
frequency of the mode.

In the experiment, the feedback was implemented by ap-
plying a bandpass filter to the position signal of the particle
to remove noise and other modes from the feedback signal,
then amplifying and adding a π/2 phase shift to estimate the
current velocity of the particle [35,39]. Figure 3(a) shows the
spectra of the two modes cooled to minimum temperatures
of T+ = 200 ± 10 mK and T− = 190 ± 40 mK (calculated
from the area under the PSDs and the previously measured
masses) at a pressure of P = 3.2 × 10−7 mbar and spectra
of the modes with no cooling (T+ = T− = 293 K) at P =
1.3 × 10−2 mbar. As expected, the temperature compression
ratio of a mode was found to be the same for each particle.
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FIG. 3. (a) Spectra for the cooled z+ (left) and z− (right) modes at
a pressure of P = 3.2 × 10−7 mbar (dark lines) shown alongside the
spectra of the modes with no cooling at P = 1.3 × 10−2 mbar (light
lines) where the modes are expected to be in thermal equilibrium
with the surrounding gas. (b) Temperature of the normal modes in
the experiment (markers) and theory (lines) vs feedback gain. The
disagreement between theory and experiment suggests there is an
additional source of heating for the normal modes.

The final temperatures reached are approximately twice as
high as the expected temperatures from measurements of de-
tection noise and pressure. By comparing the measured mode
temperature as a function of feedback gain to the theoretical
prediction [Fig. 3(b)] we see that the temperatures are higher
at low gain than expected. This suggests additional heating of
the particle motion, which calculations show could be partly
due to voltage noise in the electronics. The voltage noise is
increased compared to a single particle, since the particles
are pushed off-center by their Coulomb repulsion. Alternative
trap geometries could be used to reduce this effect. At a
pressure of 10−1 mbar, where the particle mass was measured,
this level of voltage noise would have a negligible effect on the
motion of the particle.

To decrease the temperature further, the detection noise
could be improved or the pressure could be reduced further.
The additional force noise would have to be removed before
reducing the pressure since white, Gaussian noise sources
increase the temperature of the oscillator scaling with 1/γ0

whereas velocity damping only scales with
√

γ0. Here, we
measure a detection noise of Snn = 3 × 10−15 m2 Hz−1, which
limits the final temperature at a given pressure. Recent exper-
iments with single particles in Paul traps have demonstrated
detection noise as low as 2.9 × 10−24 m2 Hz−1 [51]. Using
a similar detection technique and a numerical aperture (NA)
limited by the trap geometry (NA = 0.5) would allow us to
reach a minimum occupancy of n̄ ∼ 0.5 [52] with similar
additional optical losses to other experiments [53]. In order

to remain in the underdamped regime where the theory is
valid, the oscillator frequency would have to be increased
and the background gas damping would have to be reduced.
An oscillator at a frequency of ∼500 Hz and a background
pressure of ∼10−11 mbar would be sufficient provided other
noise sources are kept negligible.

VI. SYMPATHETIC SQUEEZING

Squeezing the motion of a mechanical oscillator has
been achieved with several methods including parametric
modulation [27,28,40–45], nonadiabatic shifts [54–56], and
back-action evading measurements [57–60]. Parametric mod-
ulation is usually implemented by modulating the oscillator
spring constant at twice the mode resonance frequency. In
the Paul trap this would drive both particles. In order to
show a sympathetic operation, we use a measurement-based
scheme to parametrically drive only one particle. This scheme
also avoids acting on either particle with a linear drive that
would appear from modulating the trap potential [61,62]. A
measurement of the particle position was filtered around the
appropriate mode using a Lorentzian bandpass filter with a
bandwidth of 152 Hz then mixed with a sinusoidal signal
at twice the resonance frequency of that mode to produce a
signal to modulate the 1030-nm laser. An additional delay was
added to the signal to minimize errors to the phase response
of the filter. The laser imparted a force F ∝ z±sin(2ω±t ) onto
particle 1. If we were, for example, squeezing the z+ mode,
this results in the following EoM for the normal modes:

z̈+ + γ0ż+ + ω2
+z+ + (z+ + δz+)Gsin(2ω+t ) = Ffluct,+

m
,

(23)

z̈− + γ0ż− + ω2
−z− + (z+ + δz+)Gsin(2ω+t ) = Ffluct,−

m
,

(24)

where G is a gain applied to the signal. Similar to the case
for sympathetic cooling, the z− mode remains unaffected by
the applied force provided ω− − ω+ 
 γ0. In this instance,
δz+ � z+ and therefore has a negligible impact on the dynam-
ics of the system. Thus the z+ mode experiences a parametric
drive while the z− mode is unaffected. In the case of squeezing
with a parametric drive, the variance of the X and Y quadra-
tures is given by [41]

〈X 2〉 = 〈x2〉
1 − g

, (25)

〈Y 2〉 = 〈x2〉
1 + g

, (26)

where g = G × ω0/2γ0. It can be seen that this limits the
maximum achievable squeezing to –3 dB before the onset of
parametric instability in the X quadrature [63,64].

Figure 4 shows phase-space plots of the quadratures of the
z+ mode of both particles, with and without a parametric drive
applied to particle 1 at a pressure of P = 1.2 × 10−2 mbar.
Squeezing was performed at a relatively high pressure to re-
duce the measurement time required to accurately sample the
squeezed thermal state. The quadratures were extracted from
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FIG. 4. Phase-space diagrams showing a thermal and squeezed
state for the z+ mode of both particles at a pressure of P = 1.2 ×
10−2 mbar. Both particles display squeezed states despite interaction
with only particle 1. The particles used here have approximately
equal charges; therefore the mode energies should be equal as they
appear here.

the displacement data by applying a demodulation followed
by a 50-Hz low-pass filter to the z+ mode and sweeping
the demodulation frequency until maximal squeezing was
observed. A clear signature of squeezing can be seen in the
elongations of the phase-space distributions in both particles.
Anomalous heating of the mode was also seen as the gain of
the squeezing operation was increased. Simulations based on
the experimental parameters, implemented with the leapfrog
algorithm, suggest that this is due to using a tightly focused
beam to generate the force for squeezing the particle. Since the
beam waist is comparable to the amplitude of particle motion,
the particle feels an additional position-dependent component
to the feedback force. Taking the heating into account, we
were able to measure −1.70 ± 0.05 dB and −1.69 ± 0.05 dB
of squeezing in the z+ mode of particles 1 and 2, respectively.
The squeezing gain was limited by the nonlinear effect of the

tight beam generating a spiraling in the phase-space plots [56].
Both the z+ and z− mode could be squeezed using this method.

Transferral of the thermal squeezed state between the par-
ticles shows that nonthermal states can also be transmitted via
the Coulomb force. For an array of coupled nanoparticles, this
property could be used to control and readout the state of the
array from only a single nanoparticle. For large arrays, this
could be technically easier than reading out the state of every
single nanoparticle.

VII. CONCLUSIONS

We have demonstrated and characterized coupling between
two charged nanoparticles that produces two orthogonal
normal modes of motion. Both sympathetic cooling and
squeezing of the motion of one particle were shown through
interaction with another coupled particle. This demonstrates
thermal and nonthermal states can be transferred via the
Coulomb interaction. Such techniques could be extended to
a mixed species system with particles of similar masses or
to an array of many nanoparticles. As a result, this work
represents an important tool in implementing the creation of
macroscopic quantum superpositions [15,65–68] via coupling
of the normal modes of a cotrapped silica-nanodiamond pair
to the internal quantum state of a nitrogen vacancy center in
the nanodiamond. Such a technique can be applied to experi-
ments which have previously been limited by internal heating
of samples [24].

Our results are a first step towards schemes that utilize the
coupling between levitated particles. Large arrays of coupled
particles would have a range of motional frequencies that
scale with the number of particles. This would be ideal for
sensing over a wide range of frequencies simultaneously, such
as in ultralight dark-matter searches [3]. Using sympathetic
techniques would allow control and readout of the entire array
from a single particle, simplifying the experimental procedure
compared to an uncoupled array.
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