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Abstract

The function of proteins can often be inferred from their three-
dimensional structures. Experimental structural biologists
spent decades studying these structures, but the accelerated
pace of protein sequencing continuously increases the gaps
between sequences and structures. The early 2020s saw the
advent of a new generation of deep learning-based protein
structure prediction tools that offer the potential to predict
structures based on any number of protein sequences.
In this review, we give an overview of the impact of this new
generation of structure prediction tools, with examples of the
impacted field in the life sciences. We discuss the novel op-
portunities and new scientific and technical challenges these
tools present to the broader scientific community. Finally, we
highlight some potential directions for the future of computa-
tional protein structure prediction.
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Introduction
One of the fundamental approaches to understanding
the function of proteins is to investigate their three-
www.sciencedirect.com
dimensional structures [1]. The most reliable

approach to determining the structure of proteins in-
volves time-consuming and expensive experimental
techniques. Based on structures archived in the Protein
Data Bank (PDB), the most prevalent experimental
method is X-ray crystallography, followed by electron
microscopy (EM) [2]. While these methods can yield
high resolution and high-quality protein structures, the
associated effort and costs make it impossible for
structural biologists to keep up with the ever-increasing
number of known protein sequences. Indeed, the gap
between protein sequences and their structures has

grown by orders of magnitude over the past decade [3].

Protein structures are determined solely by their amino
acid sequences, challenging researchers and scientific
software developers to design algorithms to accurately
predict protein structures from sequence data [4].
Computational protein structure prediction tools have
been around for decades, but the early 2020s saw a huge
step forward in terms of the accuracy of models [5]. The
unprecedented quality of models predicted by Alpha-
Fold 2.0 during the 14th Critical Assessment of Struc-

ture Prediction competition, followed by the release of
an improved version of RoseTTAFold, made accurate
protein structure prediction tools available to the broad
scientific community [6e8]. These models can now
match the accuracy of experimentally determined
structures and sometimes even surpass them, as
observed in an extensive comparison of NMR-based
protein structures and predicted models [9,10]. It is
important to note, that while these tools do not require
template structures, they do rely on sufficiently deep
multiple sequence alignments (MSA). Shallow MSAs

lead to poor model quality, reflected in low local confi-
dence scores. These algorithms provide confidence
metrics such as the pLDDTscore, which corresponds to
the model’s prediction of its score on the local Distance
Difference Test, and the predicted aligned error (PAE),
which gives information on the confidence of the rela-
tive position of residue pairs in the model. Since the
release of these algorithms, research groups have
performed rigorous validation and assessment of
predicted coordinates and pLDDT confidence scores
against various classes of proteins, such as
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transmembrane proteins, centrosomal and centriolar
proteins, and whole proteomes, with only the validation
of PAE data yet to be comprehensive [11e13].

In 2022, over 214 million predicted protein structures
became available in the AlphaFold Protein Structure
Database (AlphaFold DB), covering most of the se-
quences in the UniProt database [14]. Access to

predicted protein structures on this scale made struc-
tural data available to a broader audience than ever
before. Researchers with no prior experience in protein
modelling can now use these models to tackle chal-
lenging biological problems, noting that familiarity with
model confidence metrics is still essential to making
robust interpretations.

In this review, we give an overview of how the massive
amount of predicted protein structures and the under-
lying open-source algorithms impact the life sciences.

We discuss new opportunities and new challenges posed
by these significant developments. Finally, we speculate
about the directions protein structure prediction might
move towards next.
The impact of high-accuracy protein
structure models
The new generation of protein prediction tools required
data from the public protein sequence and protein
structure resources to train their algorithms. Predicted
models now benefit structure determination efforts,
structure-based drug design and structural bioinfor-
matics analysis on a scale that was impossible before
(Figure 1) [14].

Over the past decades, structural biologists solved over
190,000 macromolecular structures and made them
publicly available through the PDB archive [2]. Now,

tools such as AlphaFold help scientists predict protein
structures that proved too elusive in the past. Predicted
protein structures are now routinely used to assist in
crystallographic phasing by molecular replacement
[15,16] and to fit predictions against electron-
microscopy maps [17]. Similar synergistic approaches
that combine experimental data and predictions have
helped determine the structure of challenging molecu-
lar machines, such as the nuclear pore complex [18,19].

Predicted models are not replacing experimentally

determined protein structures, especially structures of
large macromolecular assemblies, but they have affected
specific software and data processing pipelines. For
example, the Diamond Light Source, the UK’s national
synchrotron, has AlphaFold configured on-site to help
researchers combine predicted models with the X-ray
diffraction data they obtain as part of the downstream
data processing pipeline. Indeed, synchrotrons, EM fa-
cilities and bioinformatics facilities now frequently host
Current Opinion in Structural Biology 2023, 79:102543
an instance of AlphaFold on-site. Another emerging
practice is using predictions to design crystallisation
constructs by identifying and excluding longer flexible
segments, improving the chance of successful crystal-
lisation [20]. In another application, predicted models
help identify potentially interesting post-translational
modification (PTM) sites. PTM sites are generally
found on accessible, flexible regions of proteins, and

AlphaFold models can help locate such regions. This
approach effectively filters the number of potential
PTM sites and helps researchers focus on the experi-
mental evaluation of more likely candidate sites [21].

The large-scale application of deep learning-based pro-
tein structure modelling highlighted the prevalence of
intrinsically disordered regions in every modelled pro-
teome [22]. While initial reports suggested that the
confidence measure of AlphaFold, the pLDDT score
[12], strongly correlates with intrinsic disorder pro-

pensity, recent studies show a more complex relation-
ship [23]. Based on large-scale analyses, pLDDTscores
lower than 50 are caused either by genuinely poor pre-
dictions due to shallow multiple sequence alignments or
negatively correlated with intrinsic disorder pro-
pensities. However, this correlation seems to hold only
for so-called entropic chains and flexible linkers [24]. In
the case of disordered regions that adopt stable tertiary
structures through binding-induced folding, AlphaFold
generally predicts the bound forms with high pLDDT
scores [25].

The availability of experimental structures in the PDB
led to the birth and steady growth of protein domain
classification efforts such as CATH, SCOP, ECOD,
SCOPe and SCOP2 [26e29], where protein domains are
identified and classified according to their evolutionary
history. The growth of these resources always depended
on the growth of the PDB, and initiatives such as
Gene3D and Pfam [30,31] aimed to increase the
structural coverage of the sequence space by obtaining
domain assignments using Hidden Markov Models
(HMM) matches created from protein domains.

AlphaFold dramatically changed the protein domain
landscape, as millions of domain sequences became
potentially well-modelled domain structures. While a
boon for many scientists studying proteins without
available structures in the PDB, the sheer size of the
data and the potential consequences of basing further
research on less-than-optimal models require careful
vetting. For instance, 700,000 putative CATH domains
were identified in the initial AlphaFold DB release of 21
model organisms, but filtering based on model quality
and disordered regions reduced this number by

49% [32].

In addition to model quality considerations, predicted
structures generally lack contextual molecules, which
may cause inaccurate interpretations. For example, tools
www.sciencedirect.com
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Figure 1

An overview of deep learning-based protein structure prediction workflows
The new generation of protein prediction tools used protein sequence data from the UniProt database and protein structures from the PDB to train their
models. These tools can provide predicted structures for virtually any protein sequence. This benefits protein structure determination efforts by fitting
against experimental data and provides input to structure-based drug design pipelines and structure-based functional annotation software.
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such as P2Rank rely on physicochemical attributes to
identify potential binding sites. The absence of co-
factors, ions and other small molecules in AlphaFold
models can influence its behaviour [33]. Data resources
such as AlphaFill help address this limitation by
expanding AlphaFold models with cofactors, ions and
ligands [34].
New challenges posed by the scale of the
available predicted structures
The dataset of 214 million predictions in the AlphaFold
DB [14] immensely increased the coverage of the pro-
tein sequence space with protein structures and posed

new challenges and opportunities in the fields of struc-
tural biology and structural bioinformatics. Analytical
software optimised to process hundreds of thousands of
protein structures may struggle to run efficiently on a
much larger dataset. Even data retrieval of a custom data
set to start larger scale analysis is not trivial.

While AlphaFold DB provides archive files (TAR files)
for 48 proteomes and the Swiss-Prot data set, these are
subsets of the data and have their own limitations.
Specifically, the archive files only contain the atomic

coordinates in compressed PDB and mmCIF files, but
the equally important predicted aligned error (PAE)
data is missing. The PAE data contains information
about the confidence in the relative position of residue
pairs. Without this information, it is impossible to
determine if the position of two seemingly adjacent
regions or domains in a predicted AlphaFold structure
can be considered reliable.

While the PDB, mmCIF and PAE data can all be
downloaded from the AlphaFold DB prediction pages, it
is not a very efficient approach when collating a custom,

large data set. To help address this, the complete dataset
is made available on the Google Cloud Public Datasets
platform. This allows users to retrieve the complete
dataset (w23 terabytes, w1 million TAR files) and to
query the database for assembling and downloading
large sets of predictions.

The availability of millions of predicted structures raises
challenges ranging from data storage to identifying
remote homologs and ways to traverse these new large
swaths of structure space quickly. State-of-the-art

methods for homology annotation of uncharacterized
domains before the early 2020s relied on local alignment
tools such as BLAST [35], searches against HMM li-
braries such as HMMER3 [36] and HHsuite [37] if only
the sequences were available, or using accurate but very
slow structural aligners like DALI, SSAP, TMalign, CE
[38e41]. While still valuable, HMMs struggle to detect
remote homologs, and using structure alignments is
unfeasible with the sheer amount of structures available.
Fortunately, the release of AlphaFold DB coincided with
Current Opinion in Structural Biology 2023, 79:102543
new language models that were successfully trained on
proteins, and multiple new predictors based on em-
beddings from these protein language models were
created, tested and validated in various scenarios and
were found to outperform established tools for homology
detection (including HMMs) [42,43], disorder predic-
tion [44] and ligand-binding prediction [33,45,46]. In
the case of AlphaFold-derived protein domain models,

they identified in the first release of AlphaFold a correct
CATH homologous superfamily for 8% of domains that
were elusive to Hidden Markov Models.

Predicted domain assignments to homologous super-
families require validation by structural comparisons
against known homology domains. Using current struc-
tural aligners based on double dynamic programming
such as SSAP or DALI isn’t a feasible solution due to the
amount of AlphaFold-derived models. Almost concur-
rently with the first release of AlphaFold Database,

Foldseek - a new, ultra-fast structural aligner by van
Kempen and colleagues, was released with comparable
accuracy toTMalignwhile being over 20,000x faster [47].

Combining embeddings-based predictions for homolo-
gous superfamily assignments and their validation using
Foldseek opened the gates to large-scale annotations of
protein domains across structure space. In addition to
being applicable without requiring MSAs, embedding-
based approaches have the added benefit of working
on unlabelled data which could ease its application for

tasks such as ligand binding prediction.
Conclusion and future perspectives
Having unrestricted access to millions of predicted
protein structures enables new and innovative research.
While posing new challenges to existing scientific soft-

ware, the amount of new structural data opens up many
opportunities in several fields of the life sciences.

Predicting whole assemblies is perhaps the new frontier
since these are the functional units in many biological
processes. Indeed, accurate models for the whole human
interactome may soon be within reach [48,49]. Shortly
after the release of AlphaFold and RoseTTAFold, re-
searchers experimented with adopting these algorithms
to predict assemblies with some success. Concurrently, a
team at DeepMind created a specialised version of

AlphaFold, AlphaFold-Multimer, which achieved rela-
tively good accuracy [50]. One could expect that the
emphasis will shift to modelling assemblies, and the
state-of-the-art algorithms will compete in the Critical
Assessment of Prediction of Interactions (CAPRI) and
CASP [51].

It would be similarly impactful to develop more accurate
tools for modelling interactions between proteins and
small molecules [52]. The availability of a reliable
www.sciencedirect.com
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molecular docking algorithm based on advanced AI
technologies could revolutionise the field of structure-
based drug discovery and accelerate medical
research [53].

Creating AI tools that can provide a window into the
dynamic nature of proteins is another potential direction
[54]. While AlphaFold already demonstrated the prev-

alence of structurally flexibly regions in many
proteomes, these models only provide single snapshots
from all the possible conformations [55]. Modelling
biologically relevant conformational ensembles would
open up new opportunities in understanding the bio-
logical function of many proteins and could allow drug
discovery projects to target intrinsically disordered re-
gions, which is notoriously challenging [56].

Other applications of AI-based structure prediction al-
gorithms could include modelling the structural effects

of post-translational modifications, the conformational
consequences of mutations and variants, and applica-
tions in the field of protein design, but it is important to
note that the current versions of popular tools like
AlphaFold cannot predict the structural consequences
of mutations [57e60].

The arrival of the new generation of accurate protein
structure prediction tools is a transformative time for
structural biology, structural bioinformatics, drug dis-
covery and many other fields of the life sciences. While

these tools apparently excel at their tasks, within certain
limitations, the Research and innovation have been
accelerated, and a new era of discovery through the
application of advanced AI technologies has started.
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