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Localized immune surveillance of primary melanoma in
the skin deciphered through executable modeling
Rowan Howell†, James Davies†, Matthew A. Clarke, Anna Appios, Inês Mesquita, Yashoda Jayal,
Ben Ringham-Terry, Isabel Boned Del Rio, Jasmin Fisher*‡, Clare L. Bennett*‡

While skin is a site of active immune surveillance, primary melanomas often escape detection. Here, we have
developed an in silico model to determine the local cross-talk between melanomas and Langerhans cells (LCs),
the primary antigen-presenting cells at the site of melanoma development. Themodel predicts that melanomas
fail to activate LC migration to lymph nodes until tumors reach a critical size, which is determined by a positive
TNF-α feedback loopwithinmelanomas, in linewith our observations ofmurine tumors. In silico drug screening,
supported by subsequent experimental testing, shows that treatment of primary tumors with MAPK pathway
inhibitors may further prevent LC migration. In addition, our in silico model predicts treatment combinations
that bypass LC dysfunction. In conclusion, our combined approach of in silico and in vivo studies suggests a
molecular mechanism that explains how early melanomas develop under the radar of immune surveillance
by LC.
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INTRODUCTION
Treatment of metastatic melanoma has been revolutionized over the
past decade with the emergence of immune checkpoint therapy, but
it remains a deadly disease, accounting for 75% of skin cancer
deaths despite only making up 5% of skin cancer cases (1). Surgical
removal of primary melanomas is an effective treatment, with a 99%
5-year survival rate in patients presenting with localized disease.
However, prognosis deteriorates rapidly to 68% once melanoma
cells escape the skin and spread to regional lymph nodes (LNs)
and 30% in patients with systemic metastatic disease (2). Moreover,
survival rates are decreased in patients with multiple primary
tumors (3). Improving our understanding of the immune response
to primary melanoma could help improve care for patients with
early-stage melanoma and shed light on the evolutionary pressures
shaping metastatic melanoma through immune editing.

Primary melanomas develop in the skin, a site of active immune
monitoring of environmental insults. The effectiveness of immune
checkpoint therapy in melanoma patients compared to other
cancers has been attributed to the immunogenicity of metastatic
melanomas; this immune reactivity can result from production of
melanoma-specific differentiation antigens, such as MART1, and
generation of neoantigens due to the high ultraviolet (UV)–
induced mutational burden in melanomas (4). This raises the ques-
tion, therefore, of why primary melanomas do not activate robust
immune surveillance in the skin. Localized adjuvant immunother-
apy before surgical resection of the primary tumor has shown
promise in limiting regional metastasis and improving recur-
rence-free survival (5), and T cell infiltration into primary melano-
mas correlates with a reduced risk of recurrent metastatic disease
(6), suggesting that activation of skin immunity is beneficial to pa-
tients. However, we understand little about how the cutaneous

immune system interacts with growing melanomas in situ. Improv-
ing our understanding of the mechanisms of potential immune
avoidance by melanomas in the epidermis may allow for the devel-
opment of improved immunotherapies to augment surgical
resection.

The skin is host to a unique system of active immune surveil-
lance, wherein a network of immune cells maintains a balance to
ensure detection of invading harmful pathogens while avoiding
the initiation of responses to harmless environmental insults.
Located in the same basal epidermal region as melanocytes, Lang-
erhans cells (LCs) are the only resident antigen-presenting cells in
the epidermis and therefore predicted to be the first immune cells
capable of detecting the earliest stages of melanomagenesis. Despite
developing from embryonicmacrophages, LCs sharemorphological
and functional similarities to dendritic cells (DCs); upon detection
of an invading pathogen, LCs detach from surrounding keratino-
cytes (KCs) and migrate via the dermis through the lymphatic
system to draining LNs, where they may interact with naïve T
cells (7). Migration of LCs is tightly linked to an up-regulation of
peptide-loaded surface major histocompatibility complex (MHC)
and costimulatory molecules such that LCs are poised to prime
naïve T cells in LNs (8, 9). LC residency in the skin and migration
to draining LNs are principally controlled by a balance between
transforming growth factor–β (TGF-β) and proinflammatory cyto-
kines. Autocrine TGF-β is required for attachment of LCs to KCs,
and increased expression of TGF-β is sufficient to trap LCs in the
epidermis (10). LC activation and release from residency in the epi-
dermis is driven by the production of inflammatory factors, namely,
tumor necrosis factor–α (TNF-α) and interleukin-1β (IL-1β), in re-
sponse to infection or inflammation. In nonmalignant skin, migra-
tion is primarily a response to activation of surrounding KCs and
infiltration of dermal cytokines (7). Binding of TNF-α initiates an
immunogenic gene program within LC, leading to activation of an
effector T cell response (11).

Despite the colocalization of LCs with melanocytes, to date,
there is little cellular evidence documenting the interaction
between LCs and melanomas in the skin, and clinical studies have
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focused on LC function after migration to sentinel LNs. LCs isolated
from patient LNs containing melanoma cells have an inactivated
phenotype, similar to noninvolved LNs at distal sites or may even
be immunosuppressive (12–14), and are inefficient at priming T
cells in vitro (15). Moreover, a decrease in the expression of
human leukocyte antigen (HLA) molecules on LCs in sentinel
LNs correlates with increased primary tumor depth (16). These
studies suggest that migrating LCs are not activated by cutaneous
melanomas. However, deciphering the complexity of melanoma-
LC interactions in the skin has frequently been hampered by a
lack of available primary melanomamaterial matched with adjacent
skin containing LCs. Therefore, we understand little about how epi-
dermal LCs may sense and respond to growing melanomas in situ.

With the development of highly multiplexed imaging tech-
niques, there has been a growing appreciation for the numerous
cell types inhabiting tumors and their contributions to patient out-
comes. Recent studies have applied these techniques to primary
melanomas and have identified, for example, the importance of T
cell activation status to classification of tumors (17) and key inter-
actions between immunosuppressive macrophages and CD8+ T
cells (18). These findings highlight the need for computational ap-
proaches that can represent the behavior of different cell types
within the tumor. Existing modeling approaches [reviewed in
(19)] examine either molecular details of oncogenic pathways [for
example, (20, 21)] or use coarse-grained representations of cell
states and types [for example, (22–24)]. To predict the impact of
mutations or targeted therapies on cellular interactions, computa-
tional models operating across these levels of abstraction are
required.

We have adopted an approach integrating experimental investi-
gation of an in vivo preclinical model of melanoma, with

computational modeling of LCs and melanoma (Fig. 1). The appar-
ent lack of immune surveillance of growing melanomas in the skin
suggests that malignant melanocytes are either ignored or escape
recognition by LCs. To probe the molecular mechanisms that
could facilitate LC-melanoma cross-talk, we developed an execut-
able model of LC regulation. Executable models can be used to rep-
resent biological mechanisms as discrete state transition systems
(25, 26) to predict the effects of mutations and drugs on cell pheno-
type. Executable models have previously been used to provide
mechanistic insights and suggest alternative treatment combina-
tions for diseases such as leukemia (27, 28) and breast cancer
(29), as well as the immune response to coronavirus disease 2019
(COVID-19) (30). Here, we developed an executable LC model to
generate and test hypotheses about the molecular mechanism of
action underpinning evasion of LC control. Our computational
model revealed a potential role for tumor-derived TNF-α in the
delayed migration of LCs, which was experimentally validated by
measurements of TNF-α expression of in vivo tumors. Simultane-
ously, we developed an executable model of melanoma, linking
driver mutations to tumor cell behavior and predicting response
to known targeted therapies. By combining the LC and melanoma
models, we developed a melanoma-LC executable model based on
the impact of melanoma-derived TNF-α on epidermal LCs. In silico
drug screening applied to the melanoma-LC executable model re-
vealed that mitogen-activated protein kinase (MAPK) pathway in-
hibitors such as dabrafenib and trametinib can prevent LC
migration, despite effectively inhibiting melanoma cell growth, sug-
gesting that care must be taken with the use of targeted therapies to
treat primary tumors. This screening analysis also highlights effec-
tive combination therapies that are not predicted to affect LC behav-
ior. Our computational model therefore represents a comprehensive
executable map of the signaling underlying immune evasion in the
epidermis.

RESULTS
Melanoma growth results in delayed migration of LCs to
draining LNs
To determine whether LCs respond to melanoma growth in the
epidermis, we established a clinically relevant syngeneic
injectable murine melanoma model using the YUMM1.7
(BrafV600E/WTCdkn2a−/− Pten−/−) cell line (31) and measured the
frequency of epidermal LCs [CD11b+MHCII+CD24+EpCam+

cells; fig. S1 (32)] at the tumor site, in contralateral flank skin,
and in LNs draining these sites (Fig. 2, A and B). These data dem-
onstrated a relative enrichment of LC at the tumor site 7 days after
injection, at which point the tumors were small but detectable.
However, by days 10 and 14 after injection, there was no difference
in LC frequency across the skin sites. Tracking the accumulation of
migrating LCs in the draining LNs demonstrated a delay in migra-
tion (Fig. 2B); an increase in the frequency of LN LCs was observed
in somemice 10 days after injection but this was not consistent until
day 14 when the tumors were large, and most mice had to be eutha-
nized (fig. S2A). Enhanced expression of Ki67 in LCs in melanoma-
adjacent skin at day 7 (fig. S2B) suggests that accumulation of LCs at
this point was due to enhanced proliferation of LCs rather than re-
cruitment to the site of the tumor. Therefore, to understand themo-
lecular mechanism underlying the delayed migration of LCs

Fig. 1. Schematic workflow of melanoma-LC interaction modeling. Publicly
available data were used to build and test the LC model. Different hypotheses
for the interaction betweenmelanoma and LCs were compared to in vivomeasure-
ment of LC behavior to identify the underlying signaling mechanisms. These in-
sights were leveraged to build an integratedmelanoma-LCmodel, which was used
to screen for biomarkers of immune evasion and potential therapeutics to treat
primary melanoma.
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proximal to tumors, we developed an executable model of LC
regulation.

An executable network models LC behavior
To model LCs, we built an executable qualitative network model
[(33); Fig. 2C] using the BioModelAnalyzer (BMA) tool (https://
biomodelanalyzer.org). The model is an executable computer
program describing the core pathways linking driver mutations
and transcriptional states to observable cell behaviors. We reasoned
that the ability of LCs to activate immune surveillance against cuta-
neous melanomas would depend on three key outputs: residency of
LCs within the epidermis and by correlation activation of migration
to draining LNs, survival of LCs, and proliferation of LCs. It is es-
tablished that LCs migrate in response to IL-1β (34), but this is
thought to depend on IL-1R signaling in KCs (35). Therefore, the
model makes clear the dependence of the IL-1β pathway on KC sig-
naling. The LC model consists of 38 nodes and 46 edges (either ac-
tivatory or inhibitory; table S1). Each node can occupy discrete
levels of activity, with each node in the model having three possible
states (0 to 2). The level of activity at any discrete time point is de-
termined by the activity of its regulators, as described mathemati-
cally by a target function (table S2). A detailed description of the
model and its components is given in Supplementary Text. We val-
idated the model against a set of 17 experiments from the literature
(table S3); the model correctly predicted 100% of 21 experimental
measurements from these 17 experiments.

Delayed LC migration to LNs is explained by melanoma-
derived TNF-α
The LC model contains nine soluble signaling molecules, many of
which have been linked to melanoma biology: TNF-α (36), TGF-β
(37), IL-1β (38), canonical WNT ligands and the soluble frizzled in-
hibitor DKK (39), ligands of the CSF1 receptor CSF1 (40) and IL-34
(41), and Tyro3, Axl, andMerTK (TAM) receptor ligands Pros1 and
Gas6 (42). Therefore, we used changes in expression of these factors
as the basis for different hypotheses to predict changes in LC behav-
ior in the presence of melanomas in our syngeneic mouse model
(Fig. 3A). Given that no loss of LCs, indicating changes in survival,
was observed in vivo (Fig. 2A) and there was no predicted decrease
in LC survival in our computational model, we focused our atten-
tion on proliferation and residency. This analysis demonstrated that
hypotheses involving changes in TGF-β, IL-1β, and TNF-α altered
the residency behavior of LCs, while changes in the other factors
specifically affected proliferation. Each of the hypotheses can be cat-
egorized on the basis of the proliferative and residency behavior
predicted by the modeling (Fig. 3B). Comparing the experimental
measurements from the mouse model to the computational model
predictions demonstrated that CSF1, Gas6, IL-34, or WNT up-reg-
ulation or DKK down-regulation by melanoma cells could explain
increased LC proliferation without affecting residency behavior at
day 7, although by day 14 LC numbers had reduced to homeostatic
levels (Fig. 2A). By comparison, decreased residency of LCs at day
14 could only be explained by up-regulation of TNF-α or IL-1β
(Fig. 3B), and we focused on this response.

Fig. 2. Behavior of LCs in the melanoma-adjacent epidermis. (A) Frequency of epidermal LCs (of total single epidermal cells) from skin surrounding tumors or un-
related contralateral skin at indicated time points after injection of YUMM1.7 cells. (B) Frequency of LCs (of total single LN cells) in tumor-draining LNs or uninvolved LNs at
different time points after tumor injection. For (A) and (B), each point represents individual mice pooled from two independent experiments; N = 5 to 6 biological
replicates per tissue per time point. Paired data were analyzed using a Wilcoxon matched pairs signed-rank test. White circles show nontumor skin, and gray circles
show tumor skin. (C) LC network model as seen in the BMA tool. Pink nodes represent proteins or complexes, gray nodes represent secreted proteins, and blue
nodes represent receptors. Activating interactions are represented by arrows (→), and inactivating interactions are represented by bars (⟞). TBR_LC refers to the
TGF-β receptor in LCs. The _LC suffix is used to distinguish proteins that are also present in the melanoma model (see also Fig. 4).
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Fig. 3. TNF-α expression is associated with LC migration. (A) The heatmap shows the predicted behavior of LCs based on different hypotheses for the molecular
mechanism of melanoma control of LCs as predicted by the LC network model. Proteins listed in the columns are up-regulated, except for DKK, which is down-regulated.
(B) Flow chart demonstrating how experimental observations of LC residency and proliferation determine a consistent molecular hypothesis. (C) Line graphs show the
relative expression (compared to β-actin) of selected genes by YUMM1.7 melanoma cells in culture, or from engrafted YUMM1.7 tumors harvested at day 14. Circles show
individual experimental samples (white, in vitro cultures, N = 3; gray, ex vivo tumors, N = 3 to 5 biological replicates), with bars showing themean ± SD over all samples. Ex
vivo tumor results are pooled from three independent experiments. Datawere analyzed using aMann-Whitney test, and P values are indicated on the graphs; ns indicates
P > 0.05. (D) The line graph shows the relative expression (compared to β-actin) of TNF-α by sorted KCs harvested from nontumor (NT) or tumor-adjacent (T) skin epidermis
7 or 14 days after injection. Points show individual mice; data are from pooled mice from two independent experiments (day 7, N = 3; day 14, N = 2); data were analyzed
using aWilcoxonmatched pairs signed-rank test, ns = not significant. (E) Violin plots show the expression of CD86 (geometric mean fluorescent intensity) on gated LN LC,
B220+ B cells, CD11c+MHCII+ resident DC, and CD11c+MHCIIhigh migrating DC draining day 14 established melanomas. Plots show median (solid line) with quartiles
(dotted lines). Data are pooled from three independent experiments; N = 9 per group. Matched samples were analyzed using a Friedman (one-way ANOVA) nonpara-
metric test; multiple comparisons show no significant difference between LC, resident DC, and migrating DC, but LC versus B cells. P = 0.011.
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To link our computational hypotheses to in vivo biology, we
compared gene expression from day 14 murine intradermal
tumors to in vitro cultured YUMM1.7 cells (Fig. 3C). Expression
of Tnf, Il1b, Pros1, and Gas6 was enhanced upon tumor growth in
vivo, as wasDkk1, in contrast to studies showing down-regulation of
DKK genes in melanoma cell lines in vitro, relative to melanocytes
(39). Levels of Wnt3a mRNA were below detection threshold, and
no changes in the other genes were found (Fig. 3C). In healthy skin,
KCs are the major source of TNF-α, which is produced upon IL-1β–
dependent signaling (35) and which stimulates migration of immu-
nogenic LC (11). Therefore, we questioned whether melanoma cells
could become the dominant source of TNF-α in the skin or whether
indirect activation of KCs in tumor-bearing skin, for example, via
melanoma IL-1β, would also contribute to TNF-α–dependent mi-
gration of LCs. To address this question, we analyzed TNF-α pro-
duction from KCs isolated from skin adjacent to small (day 7) or
large (day 14) tumors compared to cells isolated from the contralat-
eral flank (Fig. 3D and fig. S3). These data demonstrated a minor
response to melanoma growth by KCs, and levels of Tnfa were
notably lower than in melanoma cells (Fig. 3C). Thus, our function-
al and observational analysis converged on the up-regulation of
TNF-α as a mechanism of LC migration in large tumors. Since
TNF-α induces migration of LC to LN, we investigated whether

melanoma-activated LC had the potential to stimulate naïve T
cells upon migration to tumor-draining LN in our murine model
and analyzed expression of the costimulatory molecule CD86 on
LC compared to other resident (B cells, CD11c+MHCII+ DC) and
migrating (CD11c+MHCIIhigh DC) antigen-presenting cells.
Figure 3E shows that expression of CD86 varied between mice,
but that some LC and migrating DC expressed higher levels of
CD86 than LN resident cells. Together, our findings are consistent
with the hypothesis that melanoma growth in the skin does not
trigger KC-dependent mechanisms of LC activation, but rather
that melanoma-derived TNF-α may induce LC migration once
large primary tumors have developed.

An integrated melanoma-LC model captures the impact of
melanoma-derived TNF-α on LCs
Our data suggested that LCs were ignorant to melanoma growth
until tumors reached a critical mass. Therefore, to determine the
cellular mechanisms by which this may occur and further character-
ize the relationship between melanoma and epidermal LCs, we de-
veloped an integrated executable model based on melanoma-
derived TNF-α. First, we built a melanoma model linking driver
mutations and transcriptional states to observable cell behaviors.
We chose to model BRAFV600E and NRAS-mutant tumors

Fig. 4. An autocrine TNF-α signaling loop underlies detection ofmelanoma by LCs. (A) Schematic showing themodel for a molecular mechanism of autocrine TNF-α
signaling inmelanoma. (B) The positive feedback loop formed by autocrine TNF-α leads to bistability. (C) Executable model of melanoma-LC signaling as seen in the BMA
tool. Pink nodes represent proteins or complexes, orange nodes represent processes or phenotypes, cyan nodes represent genes or genetic modifications, gray nodes
represent secreted proteins, and blue nodes represent receptors. Activating interactions are represented by arrows (→), and inactivating interactions are represented by
bars (⟞). The _LC suffix is used to distinguish proteins that are also present in the melanoma model.
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Fig. 5. In silico screening identifies key mutations that inhibit LC migration. (A) Heatmap showing baseline, unperturbed levels of each behavior node. Multicolored
squares indicate values of constraints (maximum and minimum) identified for each given node. The color of each cell corresponds to the level of the respective node. All
data are shown in four melanoma backgrounds and a healthy skin control, indicated with black and white panels below each plot. (B to D) Heatmaps show effect on
predicted LC residency of loss-of-functionmutations, gain-of-functionmutations, and targeted therapies. In (B) and (C), the number next to a node represents the value to
which it is set in the perturbation.
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because these mutations are dominant in a substantial fraction of
cutaneous primary melanomas (43) and are well represented in pre-
clinical models. We aimed for the model to account for the main
drivers of disease and how these drivers predict the response (in
terms of proliferation and apoptosis of tumor cells) to a variety of
external stimuli and targeted therapies. This model consists of 89
nodes linked by 162 regulatory edges (tables S4 and S5). As with
the LC model, each node can occupy discrete levels of activity,
but in this case, each node in the model has a minimum of 2 and
maximum of 7 possible states. A detailed description of the model
and its components is given in Supplementary Text. We tested the
model against a set of 135 experiments from the literature (table S6).
While we model the impact of the differentiation status, as con-
trolled by the level ofMITF expression [from 0 to 3; (44)], regulation
of this state is considered outside of the scope of the model. The
model successfully predicted the outcome of 176 of 198 (89%) ex-
perimental measurements from the 135 literature experiments. A
full description of how and why the model fails to represent the re-
maining 11% of experimental measurements is provided in Supple-
mentary Text.

There is limited research into the mechanisms of TNF-α produc-
tion in melanoma cells by stromal cells (45), and measurements in
cell culture have found variability in TNF-α production between cell
lines (36). Regulation of the TNF gene is complex [reviewed in (46)]
but is known to depend on a set of transcription factors, including
the NFAT family, Ets-1, Elk1, ATF2, cJUN, and Sp1. Ets-1 is a
known downstream target of the MAPK pathway (47), and cJUN
is known to be dysregulated in melanoma (48, 49). Inhibition of
Sp1 with decoy oligodeoxynucleotides was shown to decrease in
vivo expression of Tnf in B16-F10 melanoma cells (50). Therefore,
we pursued a mechanism of TNF expression in melanoma based on
Sp1, Ets-1, and cJUN activity (Fig. 4A). TNF-α is known to induce
its own production (51), leading to an autocrine signaling loop.
These positive feedback loops are associated with bistability in bio-
logical systems (52), meaning that the system can occupy one of two
possible states. In this case, we would expect there to exist condi-
tions under which melanoma cells can maintain TNF-α production
through autocrine signaling, or not, depending on whether the
feedback loop is engaged (Fig. 4B). With this in mind, we added
the mechanisms of TNF-α production to the melanoma model
and integrated it with the LC model to create a melanoma-LC
model (Fig. 4C and tables S7 and S8).

We first confirmed that the melanoma-LC model replicated the
same experiments that each of the individual models did (table S9);
the melanoma-LC model replicated the same set of experiments as
the individual models, except for five cases, where the model devi-
ated numerically from the specification; further details are de-
scribed in Supplementary Text. For a typical BRAFV600E-driven
tumor, the model exhibits two steady states, one with the TNF-α
feedback loop engaged and the other with it turned off, as expected.
This does not depend on loss of PTEN, but transition into the
MITFlow transcriptional state locks the model into the state produc-
ing TNF-α.

In silico screening identifies key mutations within different
melanoma mutational backgrounds that inhibit LC
migration
The executable model of melanoma-LC interactions predicted that
melanoma cells occupying transcriptional states with high TNF-α

expression induced LCmigration from the melanoma-adjacent epi-
dermis (Fig. 5A). We reasoned that this would create a potential se-
lection pressure to lose TNF-α expression to avoid initiation of the
anti-tumor T cell response. Therefore, to test this, and to identify
loss-of-function mutations that block LC migration, we used in
silico screening to systematically investigate the impact of melano-
ma mutations on LC residency in four melanoma backgrounds
driven by BRAFV600E (table S10 and Fig. 5, B and C). In MITFhigh
backgrounds, regardless of PTEN mutation, the model can occupy
one of two states (Fig. 4B)—one in which TNF-α is produced and
LC migration is induced and another in which LCs remain resident
in the epidermis. In bothMITFlow backgrounds, the TNF-α loop is
always engaged, leading to constitutive TNF-α production and
reduced LC residency. Therefore, we sought mutations that could
enhance LC residency in all of these backgrounds, potentially offer-
ing the melanoma cells a selective advantage.

Focusing on the loss-of-function mutations (Fig. 5B), a loss of
cJUN, Sp1, and Ets-1 function, which are key to TNF-α production
in the model, promoted residency of LCs irrespective of the genetic
background of the melanomas, while loss of signaling via the TNF
receptor enhanced residency only in MITFhigh backgrounds. These
data suggested that while TNF-α production by melanomas has a
fundamental influence on LC behavior, reinforcement of the
feed-forward loop via TNF-α signaling within melanomas is more
highly dependent on the tumor genetics. Loss-of-function muta-
tions in BRAF, MEK, or ERK could lead to loss of TNF-α and en-
hanced LC residency in the model, but these mutations are highly
unlikely to offer a selective advantage in real tumors due to their
detrimental effects on cell proliferation and apoptosis (figs. S4A
and S5A). Likewise, MAPK pathway gain-of-function mutations
that enhanced LC residency would also be associated with poor
tumor growth since extremely high levels of MAPK signaling are
detrimental to cells (figs. S4B and S5B) (53, 54). MITF up-regula-
tion, which is associated with reduced proliferation levels (fig. S5B)
(44), is evident in tumors immediately following treatment with
BRAF inhibitors (55, 56) and was predicted to enforce LC residency
in all backgrounds (Fig. 5C). Consistent with the biological role of
TGF-β in controlling LC residency within the epidermis, our anal-
ysis demonstrated that loss of TGF-β was associated with a decrease
in LC residency in healthy skin and in theMITFhigh state (Fig. 5B),
while mutations that directly promoted TGF-β gain of function
strongly or indirectly led to TGF-β up-regulation (for example,
MAPK gain-of-function mutants) retained LCs in healthy skin
and across the melanoma backgrounds (Fig. 5C). We noted that
loss of IL-1β expression could also enhance LC residency across
the melanoma backgrounds, supporting the potential TNF-α–inde-
pendent activation of LC migration by IL-1β (57). It was notable
that the gain in function of a panel of genes including those
coding Wnt5a, ROR2, PKC, PKA, p38, and JNK promotes LC mi-
gration in theMITFhigh state (Fig. 5C). This mechanism occurs via
activation of cJUN, leading to stabilization of the TNF-α feedback
loop. As cJUN activity defines the MITF low transcriptome (48),
factors such as Wnt5a, which can activate cJUN, are associated
with the dedifferentiated melanoma state (58). This reinforces the
view that the MITFlow state is associated with the TNF-α feedback
loop. Therefore, together, these data demonstrate that cutaneous
melanomas may acquire mutations that limit LC migration to
LNs without affecting fitness and survival of the growing tumors.
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Computational analysis predicts combinatorial melanoma
treatments that preserve LC function in the skin
Targeted therapies are focused on disabling melanoma growth, but
there is little understanding of how treatments may affect the estab-
lishment of immune surveillance. Optimal therapeutic approaches
would disarm tumors while augmenting migration of tumor
antigen–bearing LCs to T cells in draining LNs. Therefore, having
defined how melanoma mutagenesis affects LC behavior, we next
investigated the impact of targeted therapies on LC residency by re-
peating our in silico screens on the melanoma-LCmodel using a list
of targeted therapies known to interact with proteins represented in
the model (table S11 and Fig. 5D). We looked for therapies that
would enhance LC migration across all transcriptional and
genetic backgrounds. We identified three drugs targeting TGF-β
signaling: TGF-β1 monoclonal antibodies, SIS3 and GW788388
(59), and the Id2 inhibitor AGX51 (60). Id2 acts downstream of
TGF-β signaling in LCs (61) and is a direct inhibitor of Residen-
cy_LC in the model. Inhibitors of TGF-β signaling act directly on
LCs, which migrate in response to loss of TGF-β signaling (62).
However, these effects are nonspecific and have no activity against
melanoma growth or survival (figs. S4C and S5C), and the drugs are
predicted to affect LCs in healthy tissue as well. We also tested
whether combinations of two drugs could affect LC migration in
the model but found that no combination, except combinations in-
cluding drugs that were effective individually, was effective (fig. S6).
Therefore, TGF-β signaling inhibitors may be a therapeutic avenue
to enhancing LC immune control of primary melanomas.

Our analyses revealed that the MAPK pathway inhibitors dabra-
fenib (mutant BRAF inhibitor), trametinib (MEK), and ulixertinib
(ERK) reduce LCmigration inMITFhigh backgrounds. Note that ve-
murafenib, another mutant BRAF inhibitor commonly used to treat
melanoma, would be modeled identically to dabrafenib; in this
analysis, these drugs could be used interchangeably. All MAPK in-
hibitors enhance LC residency because the MAPK pathway is re-
quired for Ets-1 activity and, consequently, for TNF expression in
melanoma in the model. Furthermore, trametinib and ulixertinib
inhibit the MAPK pathway in LCs, which reduce both LC survival
and proliferation (fig. S7). To test these predictions, we used an ex
vivo LC migration assay in which the direct impact of trametinib
and ulixertinib on TNF-α–induced LC migration could be analyzed
in the absence of the additional impact of these drugs on tumor
growth. Thus, murine epidermal sheets were cocultured for 48
hours with TNF-α with or without targeted drugs at concentrations
known to inhibit MAPK signaling pathway components (63). We
did not observe a difference in viability of LCs between groups in
these short-term cultures (Fig. 6A). However, while TNF-α activat-
ed increased migration of LCs into the culture medium, we no
longer observed this trend upon addition of trametinib or ulixerti-
nib to the culturemedium (Fig. 6B). Therefore, our data suggest that
potential off-target effects leading to blockade of immune surveil-
lance due to retention of LCs in the skin should be considered when
using MAPK inhibitors.

Our in silico screening analysis demonstrated that none of the
currently available treatments would induce LC migration in
MITFhigh melanomas, and that some, in fact, prevented egress of
LCs out of the skin. Therefore, we extended the search to look for
the most effective combination therapies that would not enhance
LC residency (Fig. 6C). We identified four combination treatments
matching these criteria. The IκB kinase (IKK) inhibitor BMS-34554

(64) was identified in combination with the phosphatidylinositol 3-
kinase (PI3K) inhibitor copanlisib (65) and the Akt inhibitor cap-
iversatib (66). However, the predicted survival and proliferation of
the LCs under treatment with these factors (figs. S8 and S9) indicat-
ed that these drugsmay be cytotoxic to LCs, which depend on PI3K/
Akt pathway signaling for survival. Alternatively, we identified the
MDM2 inhibitor idasanutlin (67) in combination with the CDK4
inhibitor abemaciclib (68) and E2F inhibitor HLM0064749 (69).
These combinations did not affect LC migration and were not pre-
dicted to have adverse effects on LC survival or proliferation (figs.
S8 and S9). Therefore, selection of these treatments may represent
effective strategies to combat melanoma without undermining LC-
based immune surveillance.

DISCUSSION
Our understanding of immune interactions in metastatic melano-
mas has expanded substantially in the past decade, and with this,
the use of monoclonal antibodies to reactivate immune detection
and destruction of tumors has revolutionized treatments. Despite
this, treatment of primary melanomas has remained unchanged.
Surgical removal of primary melanomas can be curative, but the
success of treatment in preventing reoccurrence of melanomas is
highly dependent on the thickness of the malignant lesion; once
melanoma cells escape the confines of the skin, the prognosis dete-
riorates rapidly (70). Activating early immune detection of melano-
mas could improve the treatment of primary thick tumors before
metastasis, but this requires a better understanding of how
tumors are able to develop undetected within the active immune
environment of the skin. LCs are immune sentinels of the skin
and reside in the epidermis at the site of melanoma development,
but how tumor growth may influence LC behavior remains under-
studied. Here, we have combined a murine in vivo model of mela-
noma development with in silico executable modeling of
melanoma-LC interactions to investigate whether and how LCs
respond to malignancy in the skin. Our experimental data demon-
strated that LCs do not respond to early skin tumors, but activation-
induced migration to draining LNs is only triggered once melano-
mas have reached a critical mass. Combining in silico models with
in vivo validation of tumor gene expression suggested a mechanism
for melanoma immune evasion based on production of TNF-α by
the tumor, whereby a positive feedback loop induced by TNF-α sig-
naling allows for small tumors with negligible TNF-α production
and large tumors producing significant amounts of the cytokine.
In silico screening of the melanoma-LC model suggested that treat-
ment of primary melanomas with MAPK pathway inhibitors could
have the unintended consequence of further limiting LC control of
the tumor. However, our screen demonstrated that patients may
benefit from combinatorial delivery of targeted drugs to block
tumor growth without disarming immune surveillance by LCs in
the skin.

Our experimental data demonstrated that LCs are not activated
upon development of small melanomas; injection of the tumor
bolus induced proliferation of LCs in situ without activation and
release out of the epidermis. However, LC migration was activated
once skin tumors had reached a large critical volume. Analysis of
LCs from patient sentinel LNs has demonstrated that they are inef-
ficient at priming naïve T cells (12–14), and we observed variable
levels of CD86 on LC in tumor-draining LN. However, we suggest
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Fig. 6. Combination screening predicts combinatorial melanoma treatments that preserve LC function in the skin. (A and B) Summary graphs show the impact of
MAPK inhibitors on TNF-α–induced LC migration. (A) Summary graph showing viability (% live cells) in the different culture conditions. Tram., trametinib (0.1 μM); Ulix.,
ulixertinib (0.5 μM). Symbols represent individual samples from three pooled experiments without (circles) or with (triangles) TNF-α stimulation. (B) Summary graphs
showing total number (left) and frequency (right) of LCs emigrating out of epidermal sheets in the presence or absence of TNF-αwith DMSO (circles), trametinib (upright
triangles), or ulixertinib (downward triangles). Symbols show mean ± range of three independent experiments. There were no significant differences between paired
groups using a Wilcoxon nonparametric paired test. (C) Top, heatmap showing predicted tumor growth score (proliferation − apoptosis); bottom, heatmap showing the
level of the Residency_LC node. Red squares highlight optimal combinations. Data are shown in the BRAFV600E CDKN2A−/− PTEN−/− MITFhigh background. Drug targets are
listed in table S11.
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that even in situations where immunogenic CD86high LCs do en-
counter T cells, the delay in migration means that anti-tumor T
cells are unable to counteract the tumor microenvironment and ini-
tiate rejection of the large established tumors. Our current experi-
ments do not determine whether LCs are ignorant of melanoma
growth or retained in the skin at early time points. We observed a
trend in increase in TGF-β production by some YUMM tumors at
day 14, and it has recently been shown that expression of the TGF-
β–activating integrin αvβ8 in patients correlates with Breslow depth
(71). Thus, activation of LC autocrine latent TGF-β by melanoma
αvβ8 may contribute to retention of LCs in the skin. These data are
consistent with earlier studies in which “progressor” squamous cell
carcinomas inhibited LC migration in a TGF-αvβ8–dependent
manner, while LC migration was unimpeded by “regressor
tumors” (72).

We developed an executable LCmodel based on extensive review
of the published literature and generated hypotheses to predict po-
tential melanoma-derived factors that would affect the LC behavior
observed in vivo. This analysis demonstrated a clear division of LC
signaling between survival and proliferation versus residency.
Factors such as the myeloid growth factors CSF1 and IL-34 and
TAM receptor ligands Pros1 and Gas6 were important for LC sur-
vival and proliferation in situ, while the analysis confirmed the
dominant migration-activating roles of the proinflammatory cyto-
kines IL-1β and TNF-α, with enhanced residency conferred by
TGF-β. To test the biological significance of our predictions, we
compared gene expression between in vitro cultured YUMM1.7
cells and ex vivo large tumors 14 days after injection. This analysis
demonstrated relatively high levels of Tnf and Il1b expression within
the skin, supporting the observed migration of LCs at this time
point. We further showed that at this point, the melanomas were
the dominant source of TNF-α rather than KCs surrounding the
tumor area. LC growth factors were not expressed at high levels
by in vivo tumors; however, we observed significant increases in
Pros1 and Gas6; both TAM receptor ligands have previously been
associated with the suppression of anti-tumor immunity (73, 74),
and Pros1 is known to inhibit differentiation of bone marrow–

derived LCs (75), suggesting that growing melanomas may directly
impair LC function in situ before migration.

To determine the molecular mechanisms by which melanomas
impaired LC function, we generated a model of primary cutaneous
melanoma and integrated this with our LC model. The transition
from benign nevi to in situ melanomas has been well described
(76, 77), occurring through mutations to the MAPK signaling
pathway, especially BRAFV600E (43), and other tumor suppressor
genes such as CDKN2A and PTEN (78). Such mutations may
occur as a result of exposure to UV mutagenesis, while certain in-
herited variants of genes, such as CDKN2A, can also predispose in-
dividuals to melanoma (79). Together, these genetic changes result
in proliferation and transformation of neoplastic nevi that may ul-
timately acquire the potential to break through the epidermal base-
ment membrane and enter the circulation via the dermal
lymphatics. We modeled BRAFV600E and NRAS-mutant tumors,
which form most patient cutaneous primary melanomas in the
clinic (43), and considered a range of further molecular alterations,
namely,MITF status, loss of PTEN, presence of BRAFV600E, and loss
of CDKN2A. Reasoning that migration of LCs to draining LNs was
central to the role of LCs in activating T cell responses, and thereby
immune surveillance against cutaneous melanomas, our computa-
tional analyses focused on the factors that would alter LC residency
in the epidermis. This approach identified melanoma-derived TNF-
α as themajor factor driving LCmigration once tumors had reached
a critical mass. Mechanistically, we predicted that a model of mel-
anoma-LC interaction based on TNF-α production by melanoma
cells exhibited bistability in MITFhigh backgrounds. This is consis-
tent with a paradigm where small tumors, or tumor cells in vitro,
occupy a state devoid of TNF-α (Fig. 7). The development of a
large tumor coincides with occupation of a state showing notable
production of TNF-α. This could arise as a result of accumulation
of the cytokine, which may be produced by melanoma cells at low
level, or as a result of localized inflammation driven by infiltrating
immune cells leading towidespread TNF-α production in the rest of
the tumor. Our computational model also predicts that dedifferen-
tiated MITFlow cells consistently occupy a state with high TNF-α
production. Thus, our executable model encapsulates a hypothesis

Fig. 7. Schematic summarizing the findings from this study. Diagram shows the molecular mechanisms suggested by our data. In small tumors, TNF-α does not
accumulate to sufficient levels to maintain an autocrine signaling loop in the tumor. In larger or dedifferentiated tumors, increased levels of TNF-α accumulate to
engage the autocrine feedback loop andmaintain high levels. Increased TNF-α triggers migration to LNs. However, patient data suggest that at this point LCs are dysfunc-
tional and immune rejection of established melanomas does not occur.
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for the mechanism of immune evasion during development of
primary melanoma.

The push toward precision oncology has created a need for tech-
niques that can account for the unique nature of each patient’s
cancer. Unlike costly and time-consuming patient-derived xeno-
graft and organoid models, personalizable computational models
offer a cost-effective alternative. If such computational models are
to account for the impact of the immune system on effective
therapy, then representations of stromal and immune components
of tumors as well as cancerous cells will be required. A key strength
of our computational approach is that, by modeling both tumor and
immune cells, we can account for the impact of perturbations to
both cell types. Computational modeling of KCs and melanocytes
has proven an informative strategy to probe the impact of UVB ra-
diation on melanogenesis (80), but here, we apply mechanistic,
pathway-based modeling to melanoma and immune cells. Using
our integrated executable LC-melanoma model, we screened the
negative impact of targeted drugs that would affect melanoma sig-
naling pathways and demonstrated that the MAPK pathway inhib-
itors dabrafenib (mutant BRAF inhibitor), trametinib (MEK), and
ulixertinib (ERK) would be detrimental to immune surveillance by
reducing LC migration to LNs. Consistent with this prediction, ad-
dition of trametinib and ulixertinib to LC emigration cultures
reduced TNF-α–induced migration out of the epidermis. By con-
trolling for this unwanted effect, we subsequently predicted effective
drug combinations that did not limit LC migration and could also
determine that LC survival was not impaired by these treatments.
As our computational models are based on literature-derived net-
works, all of the effects identified are interpretable, meaning that
each drug applied can be linked to a specific molecular mechanism.
This is in contrast with black box machine learning approaches (81,
82), which often cannot be linked to specific molecular mecha-
nisms. While in this work we account solely for melanoma cells
and LCs, future computational models may integrate other
immune cells such as T cells. By integrating further cell types into
the computational model, a more holistic representation of tumors
could be generated, allowing for further characterization of off-
target effects in primary melanoma.

Our computational modeling approach allows us to explore the
molecular mechanisms behind the observed phenomena, but as
with all models, they are dependent on the data analysis that under-
pins them. In executable models, this data analysis leads to the def-
inition of edges in a network and target functions that determine its
dynamic behavior. In this study, we built the model manually from
information available in the literature (see tables S1, S4, and S7 for
sources). While building models automatically from structured da-
tasets, such as the STRING database, is a promising alternative to
manual analysis, existing databases suffer from lack of cell type spe-
cificity and often do not include the signed, directed interactions
needed for executable modeling (83). On the basis of our data anal-
ysis, our model explains melanoma cell apoptosis and proliferation
and LC apoptosis, proliferation, and migration. Other behaviors,
such as activation of LCs, are presently not included, and therefore,
the model cannot predict how activation of LCs will be affected by
perturbations, although it could be expanded in the future to
explore these additional cell behaviors. In this study, we have imple-
mented the model with the BMA tool, which uses a synchronous
update scheme. Some other modeling techniques use asynchronous
schemes, which can be more accurate representations of biological

systems where chemical reactions do not occur at uniform speeds,
or where a small number of molecules lead to stochastic decisions
that are better captured by the nondeterminism inherent in asyn-
chrony. However, for large networks with a low range of values
for nodes, such as ours, the difference between synchronous and
asynchronous models is small, and asynchronous computation
may exaggerate small differences (33). Furthermore, to be able to
profile many potential combination treatments requires an analysis
method that scales to large networks, and asynchronous stable states
are more difficult to compute (84). We previously demonstrated the
utility of asynchronous update schemes in other modeling systems
(85–87). Last, the unified model makes predictions relating to phe-
nomena occurring over varying time scales, from phosphorylation
events on the order of milliseconds to cell migrations occurring over
hours. Although the model makes predictions about the behavior of
cells on the longer time scale of migration, themodel itself only aims
to predict the establishment of cellular states, including those initi-
ating migration. Therefore, the model only deals with reactions oc-
curring on the shorter time scale of minutes.

In this study, we have explored one facet of cutaneous immune
surveillance of melanomas—the early detection of growing tumors
by LCs—using a unique synthesis of computational modeling and
experimental validation to deepen our understanding in a way that
could not be achieved by experiment alone. Our results add to an
increasing appreciation of the complex immune networks, includ-
ing conventional and regulatory T cells and other macrophage pop-
ulations that are co-opted by melanomas to avoid immune
detection and facilitate spread beyond the skin. Developing our un-
derstanding of the mechanisms of immune surveillance by LCs and
other immune cells could lead to development of strategies to
unleash immune control of melanoma in the skin.

MATERIALS AND METHODS
Murine model of cutaneous melanoma
Female C57BL/6 (B6) mice (6 to 8 weeks old) were purchased from
Charles River. Mice were housed in specific pathogen–free condi-
tions. All procedures were conducted in accordance with the UK
Home Office Animals (Scientific Procedure) Act of 1986 and
were approved by the UCL Animal Welfare and Ethical Review
Body (PP4506002). Murine B6 YUMM1.7 tumor cells [American
Type Culture Collection (ATCC) CRL-3362] were grown in Dulbec-
co’s modified Eagle’s medium (DMEM)–F12, Hepes (Thermo
Fisher Scientific, no. 11330032) supplemented with 10% heat-inac-
tivated fetal bovine serum (iFBS, Merck, F7524-500ML), β-mercap-
toethanol, 1% penicillin, streptomycin, L-glutamine, and
nonessential minimal essential medium (MEM) amino acids (all
Thermo Fisher Scientific or Sigma-Aldrich) according to ATCC
recommendations. Cells were harvested with 0.05% EDTA
(Thermo Fisher Scientific, no. 25300062) and counted before injec-
tion. Mice received 5 × 105 tumor cells injected intradermally into
the shaved flank. Recipients were cohoused where possible.

Generation of tissue single-cell suspensions
Back skin
Approximately 1-cm2 areas of skin were removed from either adja-
cent to the tumor site or the contralateral flank. The skin was floated
on 3 ml of Hanks balanced salt solution (HBSS) (Thermo Fisher
Scientific) 2% iFBS with 1 ml of dispase II (10 mg/ml; Thermo
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Fisher Scientific, catalog no. 04942078001) overnight at 4°C. The
epidermis was peeled off, mechanically chopped up into small
pieces, and vortexed in HBSS/10% iFBS. Epidermal cells were fil-
tered through 70- and 40-μm cell strainers (Greiner, Thermo
Fisher Scientific, nos. 542040 and 542070) before centrifugation
and resuspension in fluorescence-activated cell sorting (FACS)
buffer [1% iFBS/1 mM EDTA (Thermo Fisher Scientific, no.
E7889-100ML) in phosphate-buffered saline (PBS)].
Lymph nodes
Draining LNs were mechanically disrupted in FACS buffer using a
syringe plunger. The cells were filtered through a 40-μm cell strainer
and resuspended in FACS buffer.
Tumor cells
Tumors were isolated with care to remove all attached skin. The
tissue was manually chopped into small fragments and incubated
at 37°C for 1 to 2 hours in digestion buffer [Liberase (25 μg/ml;
Sigma-Aldrich Roche, 5401119001) and deoxyribonuclease (250
μg/ml; Thermo Fisher Scientific, Roche, catalog no. 10104159001)
in 1× DNA buffer (1.21 tris base, 0.5 g of MgCl2, and 0.073 g of
CaCl2) in 1 ml of PBS]. Digested tissue was transferred into C
tubes (Miltenyi Biotec, no. 130-093-237) containing RPMI 1640
(Thermo Fisher Scientific) and 10% iFBS and physically disrupted
using the GentleMACS tissue dissociator (Miltenyi Biotec). Cells
were filtered through a 40-μm cell strainer and resuspended in
Qiagen buffer RLT (Qiagen, no. 74004) containing 1% β-mercap-
toethanol for isolation of RNA.

Flow cytometry and cell sorting
Epidermal and LN cells were distributed in 96-well V-bottom plates
and incubated in 2.4G2 hybridoma supernatant (containing
αCD16/32) for at least 10 min at 4°C to block Fc receptors. For
cell surface labeling, cells were incubated with fluorochrome-conju-
gated antibodies diluted in 100 μl of FACS buffer (PBS/1 mM
EDTA/1% iFBS) at 4°C for at least 20 min in the dark. To detect
LCs, the same flow panel was used for both epidermal and LN
cell suspensions: anti–B220-BV786 (clone RA3-6B2 BD, Bioscienc-
es, no. 563894, RRID AB_2738472), anti–CD45.2-PerCP-Cy5.5
(clone 104, eBioscience, no. 45-0454-82, RRID AB_953590),
anti–CD11b-efluor450 (eBioscience, no. 48-0112-82, RRID
AB_1582236), anti–MHCII-APC-Cy7/780 (clone M5/114, eBio-
science, no. 47-5321-82, RRID AB_1548783), anti-CD24-BV650
(clone M1/69, BD Horizon, no. 563545, RRID AB_2738271), and
anti–EpCAM-APC (clone G8.8, eBioscience, no. 17-5791-82
RRID AB_2716944). Live cells were identified by exclusion of pro-
pidium iodide. LCs and KCs were sorted from epidermal single-cell
suspensions using an equivalent flow cytometry panel as for isola-
tion of LCs (fig. S3). Multicolor flow cytometry data were acquired
with a BD LSRFortessa X20 analyzer equipped with BD FACSDiva
software, and cells were sorted directly into RLT buffer (Qiagen, no.
74004) containing 1% β-mercaptoethanol using BD FACSAria
Fusion. Flow cytometry data were analyzed with FlowJo v10
(LLC, USA), and live cells were pregated on singlets (FSC-A
versus FSC-H) and a morphological FSC/SSC gate.

Quantitative reverse transcription PCR
RNA was isolated using the Qiagen Micro RNeasy Kit (no. 74004).
RNA was reverse-transcribed to cDNA with a High-Capacity RNA
Reverse Transcription kit (Thermo Fisher Scientific, Life Technol-
ogies, no. 4368814). Quantitative reverse transcription polymerase

chain reaction (qRT-PCR) was performed on the QuantStudio 5
Real-Time PCR System (Thermo Fisher Scientific) using SYBR
Green (MAXIMA SYBER GREEN/ROX qpcr 2X VWR, no.
K0221). Primers were synthesized by Thermo Fisher Scientific
and are listed on table S12. Raw data for each gene were generated
in the form of cycle threshold (Ct) values, and gene expression was
calculated relative to β-actin using the 2−ΔΔCT method.

LC migration assay
Epidermis was separated from ear skin as described for back skin
above, and the epidermis from one ear per well floated on 1 ml of
completed medium (RPMI 1640, Lonza, Switzerland), 5% iFBS, 1%
L-glutamine (2 mM), 1% penicillin-streptomycin (100 U/ml), and
50 μM β-mercaptoethanol (all from Thermo Fisher Scientific or
Sigma-Aldrich, UK) in 24-well plates. Wells were supplemented
with recombinant murine granulocyte-macrophage colony-stimu-
lating factor (GM-CSF) (20 ng/ml) and TNF-α (25 ng/ml)
(Thermo Fisher Scientific, PeproTech, nos. 315-03 and 315-01A).
Cultures also received dimethyl sulfoxide (DMSO) vehicle, 0.1
μM trametinib, or 0.5 μM ulixertinib every 24 hours. After 48
hours, the medium was harvested and LC numbers were deter-
mined by flow cytometry using our LC flow cytometry panel and
CountBright Absolute Counting Beads (Thermo Fisher Scientific,
no. C36995), as per the manufacturer’s instructions. Exclusion of
propidium iodide was used to determine viability. Trametinib
(GSK1120212) (871700-17-3) was purchased from Generon, and
ulixertinib (S7854) was purchased from SelleckChem. Drugs were
dissolved in DMSO and stored at −20°C.

Experimental study design and statistics
The study was designed according to ARRIVE guidelines. Sample
sizes were based on previous experiments. No outliers were exclud-
ed, and the number of replicates and independent experiments is
given in each figure. Samples analyzed by flow cytometry were ex-
cluded when technical errors resulted in an absence of cells being
recorded. There was no randomization or blinding. Statistical anal-
ysis was performed, and the graphs were generated using GraphPad
Prism version 9. Comparison of matched tissue samples from the
same mouse was performed using a nonparametric Wilcoxon
matched pairs signed-rank test (Figs. 2 and 3), and paired cell
types within the same LN using a Friedman [one-way analysis of
variance (ANOVA)] nonparametric test (Fig. 3). Gene expression
data for Fig. 3 were not normally distributed, and the two
samples were compared using a Mann-Whitney test. P < 0.05 was
considered significant.

Qualitative networks
We model the networks underlying melanoma and LC behavior as
discrete qualitative networks (33). Qualitative networks are related
to Boolean networks (88), but instead of being limited to an ON or
OFF state, each node can take any integer value in a finite range. The
networks are built using the freely available and open-source (MIT
License) BMA tool (https://biomodelanalyzer.org) (89). The net-
works consist of nodes representing proteins, complexes, genes,
the action of drugs such as mutant BRAF inhibitors (90), and pro-
cesses such as proliferation. The interactions between nodes are rep-
resented as edges (see tables S1, S4, and S7), which can represent
either activation [represented by an arrow (→)] or inhibition [rep-
resented by a flat head (⟞)]. At any time point in a simulation,
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each node has an associated level of activity, which can take any
value within a range specific to that node. This level of activity is
determined by a mathematical function, known as the target func-
tion, which takes the level of activity of the nodes regulating the
node in question as its input. Unless otherwise specified, the
target function is given by avg(pos) − avg(neg), where pos refers
to positive regulators (activators) of the node and neg refers to neg-
ative regulators (inhibitors). When necessary, more complex func-
tions are used to describe behavior such as cases where one input
has a dominating effect over another. The target functions used in
the models, and their rationale, are described in tables S2, S5, and
S8. In cases where nodes with different ranges of activity interact, a
scaling factor is used. If node X has a range of a − b and regulates
node X′ with range a′ − b′, then it is scaled in the target function of
X′ using the formula

ðX � aÞðb0 � a0Þ
ðb � aÞ þ a0

For a given initial state of the network, the model updates syn-
chronously, eventually deterministically reaching a single attractor.
When this attractor consists of a single steady state, it is called a
fixed-point attractor; attractors with more than one state are re-
ferred to as loops. During model testing and analysis, we determine
whether the network reaches a single fixed-point attractor from all
initial states (91). When more than one attractor exists, we call this a
bifurcation. When a single fixed-point is identified, the level of the
nodes in this state is used as themodel’s predictions.When a loop or
bifurcation is identified, the midpoint between the limits identified
as per Cook et al. (91) is used. A detailed description of the protocol
for network simulation is given by Schaub et al. (33).

Model testing
The models were built using an iterative, bottom-up approach. The
melanoma and LC models were built using manual curation of ex-
perimental data from the literature; the evidence used for each edge
is provided in tables S1, S4, and S7, respectively, and an in-depth
discussion of the literature underlying the model is provided in
the Supplementary Materials. We then gathered a separate list of
experiments for each cell type to evaluate the models (tables S3,
S6, and S9, respectively). For these experiments, we recorded how
changes in genetic backgrounds or perturbations such as targeted
therapies (such as BRAF inhibitors) or targeted genetic interven-
tions (such as short hairpin RNAs) affected cellular behaviors. A
list of background mutations and knownMITF status used to sim-
ulate specific cell line is provided in table S13. Using these back-
grounds, the experimental conditions were reproduced in the
model and compared to the cellular behavior described in the liter-
ature (the background constraints used for screening can be found
in tables S14 to S16). The model was developed through iterative
rounds of model development and comparison to the experimental
data.

In silico screening
To identify melanoma mutations with the potential to alter LC sig-
naling, we inactivated (set the target function to equal its minimum
value) or activated (set target function to its maximum value) each
node in the network individually and in pairwise combinations. We
placed bounds on the network stable states under these conditions

using the BMA Command Line tool BioCheckConsole and the
VMCAI engine and record the impact on each of the melanoma
and LC behavior nodes (Fig. 5, A and B). We also screened the
network against a list of therapies known to target nodes in the
network (table S11) by enforcing the relevant conditions through
target functions, as we did for the mutation screen. We report the
value of the behavior nodes in either the stable state identified or, if
no steady state was found, the midpoint of the bounds place on the
node using the algorithm described by Cook et al. (91) (full dataset
given in data S1). The analysis was repeated for four mutational and
transcriptional backgrounds and a healthy state control (table S10).
Tumor growth score reported in Fig. 6 is calculated as the difference
between the proliferation and apoptosis nodes.

Illustrations
Figures 1, 4 (A and B), and 7 were created using BioRender.com.
Plots were generated using R (92) with the pheatmap (93), RColor-
Brewer (94), ggplotify (95), and tidyverse (96) packages.
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