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ABSTRACT In order to implement highly efficient brain-machine interface (BMI) systems, high-channel
count sensing is often used to record extracellular action potentials. However, the extracellular recordings are
typically severely contaminated by artefacts and various noise sources, rendering the separation of multi-unit
neural recordings an immensely challenging task. Removing artefact and noise from neural events can
improve the spike sorting performance and classification accuracy. This paper presents a deep learning
technique called deep spike detection (DSD) with a strong learning ability of high-dimensional vectors
for neural channel selection and artefacts removal from the selected neural channel. The proposed method
significantly improves spike detection compared to the conventional methods by sequentially diminishing
the noise level and discarding the active artefacts in the recording channels. The simulated and experimental
results show that there is considerably better performance when the extracellular raw recordings are cleaned
prior to assigning individual spikes to the neurons that generated them. The DSD achieves an overall
classification accuracy of 91.53% and outperformes Wave_clus by 3.38% on the simulated dataset with
various noise levels and artefacts.

INDEX TERMS Artefact removal, channel selection, convolutional neural network (CNN), deep learning,
deep spike detection (DSD), extracellular recordings, real-time sorting, spike sorting.

I. INTRODUCTION
Extracellular recordings have been widely used to monitor
neuronal activity by implanting multi-electrodes in the cortex
and capturing multi-dimensional neural data. The captured
data are a mixture of neuronal activities. A processing step,
known as spike sorting, is necessary to separate the multi-unit
activities and assign the captured spikes to their originating
neurons [1], [2]. Spike sorting is an invaluable research tool
applied in brain-machine interface (BMI) research for study-
ing and decoding neural signals arising from the implanted
electrodes and understanding the mechanisms of the
brain [3], [4]. It is also essential for deciphering intentions
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from brain activity in BMIs [5] and improving patient control
of prostheses via devices [6], [7].

Due to the negative impacts of numerous noise sources [8]
and captured artefacts on the recorded neural data, the per-
formance of the spike sorting processing pipeline is often
degraded [9]. In multiple channel recordings with microelec-
trode arrays (MEAs) [10], [11], a considerable number of
channels record pure noise activities [12], whereas others
record a substantial amount of noise with neural events and
artefacts. Neurons far from the electrode tips are seen as
artefacts, which represent spurious neural events from dis-
tant active neurons and have a significant negative impact
on the recorded signal and consequently on spike sorting
performance.

Spike sorting is more challenging than clustering in most
other domains due to the above mentioned drawbacks.
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It is difficult to extract the underlying and discriminative
spike features for assigning individual spikes to their originat-
ing neurons from combinations of multiple complex signals
and variations in waveform shapes. Attempts have previously
been made to eliminate common-noise artefacts in record-
ings, [13], [14], [15], [16], [17], [18]. There is no simple noise
model [19], [20].

In most applications, a clean signal is necessary to decipher
the neural recordings accurately. Therefore, improving the
performance and accuracy of the spike sorting algorithm
requires refining the raw data. However, identifying channels
containing active neurons and recognizing the authentic spike
waveforms from a stream of spikes is very challenging [21].

Deep learning-based algorithms have proven to be highly
effective in a variety of domains and applications, including
brain decoding and classification. For example, in [22], the
principal component analysis network (PCANet) deep learn-
ing technique is used to simplify the computationally inten-
sive nature of traditional spike sorting algorithms. In [21],
an approach based on deep learning was used to extract online
invasive BMI application feature vectors.

In [23], MEA recordings of different action potentials were
classified using a supervised deep learning model comprised
of long short-term memory (LSTM) and a convolutional
neural network (CNN). An efficient unsupervised form of
deep learning-based spike sorting with manual labeling is
presented in [24]. In [25], a CNN was employed to distin-
guish between categories of spikes. An L2-normalized deep
convolutional autoencoder (CAE) with spike sorting-aware
loss was exploited for feature extraction for fully unsuper-
vised and online spike sorting [26]. In [27], a supervised
deep learning was used to distinguish spike events from non-
neural events, together with deep learning for offline spike
sorting [28].

Deep learning-based algorithms are utilized to denoise
neural signals effectively. In [29], a deep encoder-decoder
network was used to denoise two-dimensional (2D) images
of neuronal physiology, resulting in a significant improve-
ment in the distribution of the signal-to-noise ratio (SNR).
CAE have been shown to be superior to the conventional
band-pass technique in electroencephalogram (EEG) filter-
ing [30]. In [31], CNN and LSTM networks outperformed
conventional wavelet approaches in denoising electrocardio-
grams (ECG). In [32], an EEG denoising model for raw
waveform-based data using a residual convolutional neural
network (1D-ResCNN) was introduced and, in an end-to-end
manner, utilized to map a noisy EEG signal to a clean EEG
signal capable of enhancing the SNR significantly and pro-
ducing cleaner waveforms. Yang et al. [33] removed ocular
artefacts (OA) from EEG recordings utilizing a deep learning
network (DLN). There is both an online and an offline com-
ponent to the method. After removing OAs from the training
data, a DLN was trained offline to reconstruct the EEG sig-
nals. During the online phase, the DLNmodel acted as a filter
to automatically remove OAs from the corrupted EEG data.
In [34], a MATLAB-based open-source toolbox that uses

FIGURE 1. Diagram depicting different stages of the proposed spike
sorting algorithm, including the deep spike detection (DSD). The
end-to-end method consists of three main components: First, the DSD
which consists of two phases for both the accurate selection of neural
channels and artefact removal from the selected channels, yielding
cleaned neural data for the feature extraction stage and subsequently
classification of the extracted features utilizing K-means clustering.

machine learning strategies based on neural networks to label
and train models for detecting artefacts in invasive neuronal
signals. The authors of [35] use CNN to select channels,
after which multiple classes of motor imagery intentions are
decoded. In [36], EEG decoding and visualization utilizing
deep learning were exploited. It is expected that a convo-
lutional neural network will outperform other methods in
these well-established contexts for tasks involving neural data
channel selection and artefact removal.

This paper introduces a deep learning-based spike sorting
termed deep spike detection (DSD) with improved spike
detection accuracy. As shown in Figure 1, it embeds two
convolutional neural networks into the conventional spike
processing pipeline for the selection of the active neural chan-
nels and the removal of artefacts from the selected channels.
The proposed method utilizes deep two-dimensional (2D)
and one-dimensional (1D) CNNs. The DSD extracts discrim-
inative spike and artefact features from the input channel to
exclusively remove artefacts from extracellular recordings.
A feature vector is constructed by concatenating a batch of
waveforms with a length equal to the number of samples to
produce the input vector. A batch of waveforms is classified
as a neural channel by the channel selection if at least one
waveform in the batch represents a spike. In contrast, it only
qualifies a batch as an artefact if all waveforms inside the
batch are artefacts. The artefact removal also determines
whether a batch contains spikes and discards artefact events
if so. By removing artefact channels and artefacts, the spike
sorting performance increases since the classification algo-
rithm only processes neural channels containing clean spike
events. After removing the artefacts, the active neurons are
sorted using principal component analysis (PCA) feature
vectors and the K-means classification algorithm. The main
contributions of this paper are summarized as follows:

• Embedding deep learning algorithms into spike process-
ing pipeline to select active neural channels and extract
discriminative spike waveforms.

• Complete removal of artefacts from the selected chan-
nels utilizing an optimized complementary CNN model
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with deep spike waveform identification capability
based on morphological characteristics.

• Enhanced feature learning for efficient hardware imple-
mentation to improve classification performance.

The rest of the paper is structured as follows: Section II
describes the proposedDSD algorithm andmethodology. The
results are presented in Section III, followed by a discussion
in Section IV. Finally, Section V makes some concluding
remarks.

II. MATERIALS AND METHODS
A. OVERVIEW OF THE ALGORITHM
The proposed algorithm comprises three processing steps,
as shown in Figure 1. The first step is a two-stage DSD
algorithm, which is followed by a PCA feature extractor that
also reduces the dimensionality of cleaned neural events by
retaining only few features. The extracted features of events
representing neural data are subsequently classified using the
K-means clustering algorithm.

The DSD algorithm is a hierarchical structure consisting of
two phases capable of accurately detecting spikes in extracel-
lular recordings. The hierarchical structure is constructed by
combining two designed CNN-based networks to accurately
select neural channels and detect spikes in the selected neu-
ral channels, respectively. The performance of the proposed
method was evaluated using both simulated and experimental
datasets.

B. DATASETS
The effectiveness of the proposed method was evaluated
using the simulated labeled dataset made available by [37].
The dataset consists of twenty subsets with disparate levels
of noise and similarity between the spikes. Depending on the
degree of similarity between the spikes, the subset data is
classified into four types of difficulty, namely Easy1, Easy2,
Difficult1, and Difficult2. Four noise levels of standard devi-
ation are contained within each type of difficult data (0.05,
0.10, 0.15, and 0.20). The datasets are available with spike
times, associated labels, and degrees of overlap between
spikes. Using the ground-truth spike times stated in each
dataset, 48 sampling points of spikes were extracted, making
them appropriate for testing the proposed DSD algorithm and
classification performance (see Section III-C).
In this study, both non-human primates (NHPs) and human

patients’ experimental datasets were used. The human experi-
mental datasets were obtained from [38] as well as [39], [40],
where micro-wires and Utah arrays were used to record from
human patients. Two sets of micro-wires were inserted into
the hippocampus of two human patients, and two Utah arrays,
each containing 100 electrodes placed in a 10 × 10 grid,
were inserted into the posterior parietal cortex of two other
patients.

The NHPs dataset was obtained from collaborative
research in computational neuroscience (CRCNS) [41], [42].
Implanted Utah arrays were used to record data from a
macaque monkey’s primary visual cortex. In addition to the

TABLE 1. Details of the experimental datasets.

CRCNS dataset, publicly available datasets captured from
two rhesus macaques (X and B) using single micro-electrodes
were also used. All datasets contain 48 sampled, pre-
processed, labeled events since deep learning models require
labeled data for supervised learning tasks for training and val-
idation. Table 1 provides detailed information on the experi-
mental datasets.

The datasets were divided into a training set and a test-
ing set. The training set contains 70% of the data needed
to optimize the parameters and the hyperparameters of the
proposed DSD algorithm. The testing set, which is made up
of the remaining 30%, was used to evaluate the generalization
capability of the DSD performance on unseen data. In order
to prevent biases during training, a more balanced dataset was
created by subsampling the data of both classes to generalize
well to the distribution. Generalizing well essentially means
being able to learn factors inherent to that distribution so
that one can perform well on any data sampled from that
distribution. The training samples of neural events are almost
twice as many as the training examples of artefact events.
Consequently, to avoid bias during training, an equal number
of samples were randomly chosen from each class. Further-
more, validation data were used to avoid overfitting by using
early stopping criteria.

Since labeled data are required for supervised learning
and classification tasks, ground truth labeling is obtained
by employing KiloSort [8]. KiloSort is a MATLAB-based
offline automated spike sorting algorithm that effectively
clusters multi-channel neural spike signals based on the geo-
metric layout of the electrode array. KiloSort is optimally
used with Phy, an open-source manual clustering Python
library with a graphical interface designed to improve the
manual refinement of automatic spike sorting. Adjustments
are made, which are mainly focused on channel selection
attributes and the sensitivity of neuron identification. These
are based on each channel’s visualization of the overlaid
waveform clusters to assess how many clusters are present,
the interspike interval distribution of any potential single
spike, and whether each potential single unit is stationary
(i.e., present for the majority of the recording session). The
Phy is only used to manually curate Kilosort’s automatic
spike sorting, merging (or splitting) to combine (or to divide)
two clusters in order to unify spikes from the same neuron or
separate spikes from distinct neurons, and labeling. Clusters
that contain only artefact events are labelled as ‘‘artefact’’,
while spike events are labelled as ‘‘spike.’’
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FIGURE 2. The CNN model architecture utilized for channel selection. The
neural data is successively processed to identify the neural and artefact
channels. Input is convolved using trained kernel functions in order to get
informative feature maps. The convolved feature maps are downsampled
by the pooling layer, and the output decision is generated by the Softmax
classifier. The corresponding sizes are annotated.

C. CHANNEL SELECTION
Channel selection is the first phase of the DSD. In this paper,
the channel selection phase is a deep learning algorithm that
uses the CNN [43] algorithm to track and select neural data
recording channels while discarding artefact channels. The
number of channels varies according to the probe used to
record extracellular recordings. The channel selection net-
work architecture is illustrated in Figure 2.

Given a dataset of neural signal separated into labeled
trials, Di = {(x1, y1), . . . . . . ., (xNi , yNi )} where Ni denotes
the total number of recorded labeled trials and x i represent
the ith feature vector and yi the corresponding class label, the
goal is to train a neural network,

f (xi; θ ) : xi ∈ Rb×w → yi (1)

on Di such that the output of the parametric decoder is used
to assign the correct label yi to each raw data feature vector
xi by learning the parameters θ , iteratively from the training
data, i.e the ith sample is a neural channel if yi = 1 and
yi = 0 is an artefact channel. The θ represents the parameters
of the channel selection CNN while loss is measured by
the cross-entropy with b and w are the height and width
respectively. Since the channel selection CNN operates on
batches of data, the batch size b used is 20.

In this study, the complete dataset consists of
32,235,500 labeled waveforms that yield 1,611,775 labeled
input feature vectors. The input is 48 × 20 neural data
in 2D matrix form, denoted as x above, where 48 is the
sample waveform segment for a time duration of 1.6 ms.
The construction of a single feature vector, denoted by x,
is accomplished by concatenating a batch of b waveforms of
length w, which ultimately results in the creation of a feature
vector xi ∈ Rb×w.
The feature vector x is labeled a neural channel if one

of the concatenated events is identified as a spike activity.
Alternatively, x is labeled as an artefact channel if all the
concatenated events constitute artefact activities (Figure 2).
The goal is not to determine howmany orwhichwaveforms in
the batch contain spikes, but rather to determine which batch
of waveforms yields likelihood of containing a spike event.

The designed channel selection CNN model is shown in
Figure 2. It takes each feature vector x as described above and

processes it through the neural network architecture shown
in Figure 2, which consists of four convolutional layers,
three pooling layers, a fully connected layer with one hidden
layer, and the classifier layer is a softmax layer with a neural
channel and an artefact channel as output. The details of
the CNN layers used in channel selection are also annotated
in Figure 2.
During forward propagation, the convolution operation is

performed by sliding each filter across the width and height
of x of the input 2D data with a stride of 1. This yields
2D convolved feature maps, which are subjected to nonlin-
ear activation maps for additional processing. The activation
function employed is rectified linear units (ReLUs),

f (x) = max(x, 0). (2)

Two sequential convolutional layers (conv1 and conv2) with
a kernel size of 3 × 1 and strides of 1 × 1 extracted the
temporal and spatial features, respectively. The subsequent
convolutional layers (conv3 and conv4) employ time-based
convolution. Fully connected (FC) layers were the final
two layers. The first two FC feature maps include 500 and
100 neurons, respectively. The last layer is fully connected to
two outputs i.e. neural or artefact channel. These kernel sizes
were selected in accordance with the spatial extent of single-
unit activities. For an illustration of how many and what size
filters make up each convolutional layer, see Figure 2.

With the exception of the first convolutional layer, a pool-
ing layer followed each convolutional layer. Max pooling
layers are added to reduce the dimensionality and extract the
most complex features from the convolved feature map. Prior
to executing downsampling, zero-padding of convolutional
layer 3 and convolutional layer 4 was chosen across the width
without data change.

Batch normalization is chosen as a regularization technique
to improve classification accuracy. The normalizationmethod
standardizes each layer of the network input of the CNN for
each batch of data to a mean value of 0 and a variance of 1.
Dropout [44] is another regularizationmethod, in which some
input neurons’ values are randomly set to zero. Finally, the
cross-entropy cost function is modified by including an L2
regularization term, which ensures that all weight parameters
have small values to avoid a single weight parameter from
dominating the classification decision.

The optimization problem is solved using mini-batch gra-
dient descent with momentum (Mini-batch SGDM), a pop-
ular optimization technique for updating the biases and
weights. For the model learning, Mini-batch SGDM was
used for the iterative learning, with a learning rate start-
ing at 0.1 and being tuned piecewise, decreasing by 10 for
every 5 training epochs. The Mini-batch SGDM was chosen
to be 0.90. With a step size of 0.2, grid search was performed
from 0 to 5 using L2 regularization and the optimal was found
to be 1.8. An early stopping criterionwas employed to prevent
overfitting on the testing data at each epoch bymonitoring the
validation error. If the error increases or remains unchanged
over six successive epochs, the training is terminated. Finally,
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FIGURE 3. Templates of artefacts (Artefact 1, Artefact 2 . . . . . . . . . Artefact 9).

dropout regularization was used to prevent overfitting by
deciding whether or not to discard an input neuron with a
probability of 0.5. The trained network assigns one of two
labels, as neural and artefact, to an input feature vector.

D. ARTEFACT REMOVAL
The channel selection phase identifies the channels that
record neural events. Additionally, these channels record a
substantial amount of noise and artefacts. It is impossible to
get rid of every possible source of artefacts from recordings.
Therefore, it is absolutely necessary to distinguish neural
spike events from other types of events, such as artefacts,
in order to achieve the highest possible level of data quality
and unit yield in the neural channels of choice. Neurons far
from the electrode tips are regarded as artefacts [45], which
represent spurious neural events from distantly active neu-
rons and have a significant negative impact on the recorded
signal. Individual microelectrodes can become rather close
to one another in arrays or bundles of microwires. Since the
volume of recordings on different channels can overlap, it is
possible to capture the same unit on more than one channel
simultaneously, resulting in duplicate spike events, a source
of artefacts that is often overlooked. In addition, electrical
interference, cable and head movement, broken cables, etc.
within the recording setup could all result in spurious spike
events [46]. All of these technical glitches originate from
sources other than neurons, and can produce artefacts that
look very similar to spikes of neurons, and can be recorded on
several channels simultaneously. Importantly, an artefact in
this context is defined as anywaveform that did not exceed the
threshold of the network setting in this work. Some templates
of the artefacts captured in this work are shown in Figure 3.
As was demonstrated in the preceding paragraph, corrupted
segments are detrimental to any analysis and therefore must

FIGURE 4. Architecture of the artefact removal. Convolutional and
pooling layers are utilized to convolve and downsample the input.
Number of kernels and size are specified for each convolutional and
pooling layer. Zero padding is used during the first convolutional layer
only. A stride of one and kernel size of 1 × 2 is utilized.

be identified and dealt with in order to produce reliable
results. This includes artefact removal or discarding the seg-
ment. By analyzing the recorded data closely, it is found that
artefacts across channels frequently share very similar event
shapes.

The initial assumption is that the electrode arrays record
a variety of spike waveforms, either recognized as authentic
spikes or spurious (or artefact) waveforms. By implementing
artefact removal, a reversing process is introduced to remove
spurious waveforms from the active neural channels that have
an adverse impact on the overall classification performance.
The labeled training data in Section II-B was used to achieve
this goal of designing supervised learning. The architecture
of the artefact removal is shown in Figure 4. The temporal
characteristics of the spike waveform have a significant effect
on accuracy. For this reason, a 1D CNN was trained on the
temporal pattern.

The requirements for the architecture must be able to iden-
tify and extract the most crucial abstract features and not be
limited to specific feature categories. The artefact removal
CNN model receives 48 samples as input. The 1D CNN
utilizes three convolutional layers and two pooling layers
followed by a fully connected layer to process each data
segment, and the softmax function is employed in the final
layer, which outputs a value denoting the probability of a
spike or artefact.

Unique features are extracted in the convolutional layer.
Each filter is convolved across the width of the input segment
and then slides with a stride of 1, to extract the most abstract
features that differentiate the spike waveforms from artefacts.
This produces 1D feature maps that have been convolved.
Smaller strides result in more comprehensive and dense fea-
ture extraction and do not exclude an excessive amount of
information. Consequently, the value of the stride was fixed
at 1. Using a smaller convolution kernel allows for more
feature extraction with less data than when using a larger
convolution kernel. Then, nonlinearity is introduced using
an activation layer. By introducing nonlinearity into the data
and employing the ReLU f (x) = max(x, 0), the optimization
problem is solved. Max-pooling is also utilized to eliminate
superfluous data and reduce computational complexity.
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The cross-entropy cost function is minimized using an
L2 regularization term. In addition, batch normalization is
utilized to standardize the intermediate outputs of the model
to a zero mean and unit variance for each mini-batch of
training inputs. The hyperparameters are tuned using Mini-
batch SGDM, as described in Section II-C.

The softmax function was deployed in the final network
layer. The softmax classifier is used to predict whether the
input data is a spike or an artefact. The final connected layer
has two output dimensions, i.e, spike or artefact.

E. FEATURE EXTRACTION AND CLUSTERING
The essential part of this study is to show that removing
artefact events improves the spike sorting performance even
with the simplest clustering algorithm. Typically, neural data
generated too far from the recording electrodes’ tips and
artificial events are regarded as artefacts. Consequently, it is
difficult for any classification algorithm to distinguish them
as distinct clusters. However, the proposed DSD algorithm
notably isolates the artefacts. After removing artefacts, clus-
tering is therefore a trivial task.

PCA is used as a feature extractor in this work on the
spike data. Using the eigenvectors with the most variability
in the acquired data, the high-dimensional spike events are
projected onto 2D or 3D principal component space using
PCA. The feature vectors are Z-normalized to ensure that all
features have a mean of zero and a standard deviation of one.

The first stage is to transform the spike waveform data
into fewer dimensions by extracting the most crucial features
that differentiate the waveforms, thus forming clusters. Using
this method, meaningful features were successfully extracted
even from signals with high structural similarity. The low
dimensional projection of PCA does not capture enough
discriminatory power. Therefore, in this study, a criterion
that keeps a certain amount of variability in the presented
data intact and constructs low dimensional feature vectors
is applied. The number of principal components (features)
selected is 85% of the variability of the data. The criterion
of keeping 85% of the variability intact resulted in at most
seven or eight principal components.

The K-means algorithm is then used to classify the fea-
tures with a squared Euclidean distance metric to initialize
the centres of the specified number of clusters. The max-
imum number of predicted clusters in this study is three.
For near-optimal clustering analysis, the K-means tool in
MATLAB was utilized with 10 iterations.

III. RESULTS
In this paper, three metrics were used to evaluate the sorting
performance. The metrics for precision and recall will be
reported for the channel’s selection and artefact removal,
while accuracy will be used for clustering performance.

Precision (P) is determined by dividing the number of true
positive spikes (TPS) by the total number of all detected
spikes, which corresponds to the sum of (TPS) and false
positive spikes (FPS) due to artefacts and overlapping per-
turbations.

Mathematically, it is expressed as;

P =
TPS

TPS + FPS
. (3)

The recall (R) is calculated by dividing the number of
true positive spikes (TPS) by the total number of detected
spikes, including (TPS) and the false negative spikes (FNS)
which show the spiking activities comprising those that were
detected and those that were incorrectly labeled as artefact.
R is calculated using

R =
TPS

TPS + FNS
. (4)

The classification accuracy (CAcc) is the sum of the true
positives for each cluster and the total number of activities for
each cluster (i.e., a generalization of recall), expressed as

CAcc =

N∑
i=1

TPSi

N∑
i=1

(TPSi + FNSi)

(5)

where N is the number of clusters.
Algorithm implemented in MATLAB R2021b on a Win-

dows platform personal computer with an Intel(R) Core (TM)
i5-10310U CPU running at 2.21 GHz, 16 GB of RAM, and
an Intel(R) UHD GPU. The training phase of the models
was written, implemented, and trained in MATLAB R2021b
on a 2 x AMD EPYC 7543 32-Core CPU, 512GB RAM,
4 x NVidia 80Gb Tesla A100 GPU server.

A. CLASSIFICATION ACCURACY OF CHANNEL SELECTION
The channel selection CNN assigns one of two labels, as neu-
ral or artefact, to a feature vector consisting of 20 waveforms.
The trained model of the channel selection algorithm was
evaluated on the test data. It performs well in classifying
the feature vectors across all subjects, with few false nega-
tives. The model has wrongly classified only four channels
out of seven hundred and ninety-two channels, as shown in
Table 2, which shows that the model has great generalization
capability. Its performance was consistently evaluated on the
individual channels to evaluate the effectiveness of the model
across all channels.

In the recording sessions with the micro-wire implanted
device, seven of the channels did not record any data. From
the remaining nine, eight could record neural activity. All
feature vectors of channel 1 and channels 3-9 were labeled
as neural channels. Channel 2 did not record any neural
data and was therefore labeled an artefact channel. The algo-
rithm detected both neural and artefact channels with more
than 95% accuracy in each channel.With an average accuracy
of 99.5%, the channel selection correctly selects the channels
recording neural activity.

In order to correctly train the CNN model to be able
to achieve the best classification performance, hyperparam-
eters need to be optimized. The batch size is one of the
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TABLE 2. Results for channels selection performance evaluation on human patients and NHPs datasets.

main hyperparameters that need to be tuned. To evaluate the
impact of batch size and learning rate on classification per-
formance, several experiments with different parameter sets
were performed. This study examines the impact of varying
the learning rates while the batch size remains unchanged.
Table 3 depicts the detailed results. On the contrary, attempts
were made to compare experiments with varying batch sizes
while maintaining the same learning rate. Table 4 displays
the results. As demonstrated, batch size and learning rate are
interdependent and can have a significant effect on classifi-
cation performance.

TABLE 3. Imapct of learning rate on classification performance.

Figure 5 shows the classification accuracy with a learning
rate of 0.001 when the channel selection CNN model is
trained and evaluated for each batch size. From Table 4, the
accuracy is comparable for the same batch size.

TABLE 4. Imapct of batch size on classification performance.

During most training trials, with the same learning rate
of 0.001, the classification accuracy and batch accumulation
time increase with increasing batch size (Figure 5a). The
average time it takes for all channels to accumulate wave-
forms is depicted in Figure 5b.

It is essential to optimize the trade-off between accurate
classification and batch size selection. When the batch size
was set at 20, the classification accuracy was 97.5%. With
increasing iterations steps and a batch size of 65 prior to
saturation, the classification accuracy was 99.5%. Compar-
ing the two plots reveals that the channel selection CNN
requires 270 ms to construct a feature vector with a batch size
of 10. This yields an acceptable classification rate of 97%.
The accuracy of batch accumulation is a significant factor

FIGURE 5. Impact of batch size and accumulation time on classification
performance.

in online decoding. Therefore, in order to perform online
decoding, it is essential to construct a feature vector and track
neural signals from each channel. The batch size decision
may be less constrained for offline spike sorting.

From the experimental analysis demonstrated as shown in
Table 3, the best accuracy and the lowest loss were achieved
with a learning rate of 0.001 and batch size of 20. A batch size
of 20 is selected for this work, while the selection of batch size
is application dependent.
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FIGURE 6. Three different examples of artefact removal are shown. Artefact events are shown in green, while neural events are shown in
red. (a) neural and artefact are fully separated. (b) neural and artefact are partially overlapped. (c) neural and artefact are having higher
overlapped. PC1 and PC2 are used 2D for projection of spike clusters.

B. CLASSIFICATION ACCURACY OF ARTEFACT REMOVAL
The channel selection phase achieves a 99.5% rate of accu-
racy in identifying channels with neuronal activity, i.e., only
four wrong predictions out of a total of seven hundred and
ninety-two channels (see Table 2). The trained model of
artefact removal was evaluated on identified neural channels
by the channel selection phase performance to determine
the robustness of the model to evaluate the likelihood that
a neural waveform is a spike event or artefact. The artefact
CNN model is trained on different waveform types from a
diverse set of subjects in the training set. The model was
exposed to variability in classification of previously sorted
spikes utilizing KiliSort, a MATLAB-based application, with
each waveform assigned a binary label of yi = 1 if it is a
spike and yi = 0 if it is an artefact. The artefact removal
performance remains consistent during all evaluations, with
an accuracy (recall) of 88.9% and 95.4%. The overall classi-
fication accuracy (CAcc) of the artefact removal is 92.3%.

For visualization purposes, three different samples were
selected. As the results show, Figure 6 depicts the waveforms
with predicted labels for each class and the PCA-based pro-
jection of waveforms onto 2D feature space. The performance
of the artefact removal on three different types of recording
channels was shown.

Figure 6a depicts the performance of the artefact removal
on the channel where spike events and artefacts are suf-
ficiently separated. In this case, it is easy for even a
simple clustering algorithm to accurately identify the two
clusters.

In Figure 6b, neural events and artefacts are partially
overlapped in PCA space. Hence, conventional spike sort-
ing pipeline clustering algorithms will struggle to automat-
ically extract discriminative features to distinguish between
two clusters and systematically fail when spike events and
artefacts overlap. However, Figure 6c shows another type
of channel where neural events and artefacts are almost
completely overlapped. This will be a very challenging task
for a clustering algorithm to clearly define the differences
between the neural waveforms of two clusters due to the
overlapping artefact. The artefact removal has identified the
spike events for each neuron across all channels and discarded
the artefacts. It aided the classification process simplifies
as shown in Figure 6c. Despite increasing artefacts and
overlapped waveforms as shown in the output waveforms
(spike and artefact) in PCA space, the artefact removal in this
work successfully isolates the overlapped clusters as shown
in the mean waveform (spike and artefact) plots. The results
reveal that the addition of the artefact removal algorithm
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TABLE 5. Comparison of classification accuracy on simulated dataset. The number in parentheses represents the number of overlapped spikes, (FP -
False Positives).

shows robust learning capability as a pre-processing step that
improves the performance of the clustering algorithm.

C. CLASSIFICATION ACCURACY OF THE CLUSTERING
ALGORITHM
The channel selection in conjunction with the artefact
removal nearly cleaned the neural data of artefact events
in two complementary steps. To extract the most abstract
features, the neural waveform data is transformed to fewer
dimensions using PCA, which differentiates the waveforms
forming the clusters. The extracted features were fed into
the K-means algorithm to identify the neural waveforms
that are associated with each cluster on a single channel
(i.e., the maximum number of clusters is 3). In addition to
showing good reliability and robustness under varying noise
levels, the results demonstrate the proposed method’s ability
to extract features that cluster well and are easily separated
from one another. If more advanced methods for feature
extraction are used, the accuracy is very likely to improve.

1) SIMULATED DATASET
To evaluate the effectiveness and classification accuracy
(CAcc) of the proposed pipeline, comparisons were made
with a conventional but powerful method, Wave_clus [47],
with the simulated dataset. Table 5 and Table 6 display the
outcomes for the data with varying degrees of noise.

Table 5 shows the number of false negative spikes (FNS)
and false positive spikes (FPS) compared with Wave_clus.
The DSD gives high accuracy in both cases where overlap-
ping spikes shown in parentheses are included and excluded.
In a few cases, the method described in this paper performed
suboptimally.

Table 6 shows the classification accuracy in compari-
son with Wave_clus. The proposed method demonstrated
an accuracy greater than 93%, in contrast to the Wave_clus
spike sorting algorithms, which demonstrated an overall
classification accuracy of less than 89% when the level of
noise was greater than 0.3 in the Easy1 sub dataset. More-

TABLE 6. Comparison of classification accuracy on simulated dataset, the
proposed DSD algorithm versus Wave_clus [47] and
SpikeDeep-classifier [28].

over, the pipeline produced the best performance on Diffi-
cult2, the most difficult subset from the simulated dataset,
with an average spike sorting classification accuracy of
91.48% as compared to Wave_clus’s 81.89%. In most cases,
the pipeline showed superior performance over Wave_clus,
except in Difficult1, where Wave_clus outperformed the pro-
posed method when the noise levels were 0.15 and 0.2.
This poor performance is one of a few cases where the
DSD scored sub-optimally due to the higher number of
false positives in the pipeline than Wave_clus, as shown in
Table 5. Furthermore, the Wave_clus used powerfull fea-
ture extractor, dimensionality reduction and classification
(discrete wavelet transform (DWT)>Kolmogorov-Smirnov
(KS)>superparamagnetic (SPC)) in contrast to DSD utilizing
only K-means. On the contrary, the average classification
accuracy of the pipeline is 91.53%, an improvement of 3.38%
over Wave_clus. Compared to Wave_clus, the advantages of
the proposedmethodweremore apparent. Across all datasets,
Wave_clus deteriorated as noise levels increased.
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FIGURE 7. Classification results. Artefact events are shown in green, while neural events are shown in other colours. (a) Three neural units merged into
one cluster (b) Three neural units merged into two (c) A channel with three distinct units. In each example, the K-means clustering algorithm’s results
are displayed in the first row of each example, and the CAOM’s results are displayed in the second row.

The performance of the DSD algorithmwas also compared
to that of SpikeDeep-classifier [28], a deep learning-based
spike sorting algorithm, on datasets from [37]. As shown in
Table 6, the DSD algorithm classifier maintains a slightly
higher accuracy of 1% than SpikeDeep-classifier and obtains
a comparable number of true-positive clusters. A potential
reason for this slightly higher accuracy is that the focused
class of artefacts in this work has a more negative impact
on the spike sorting pipeline compared to the background
activities of SpikeDeep-classifier [28], despite the advanced
feature extraction and clustering of SpikeDeep-classifier.
Furthermore, the DSD demonstrate a high level of reliability
with a large dataset and functions in a trulymultichannel envi-
ronment. The results show that the DSD algorithm is more
robust than the SpikeDeep-classifier algorithm, with slightly
fewer hits but consistently fewer false-positive clusters.

The computational cost of algorithms is an important fac-
tor for online applications with microelectrode arrays with
hundreds of channels. Therefore, a lower computational cost
makes it more suitable as a feature extractor for BMI decod-
ing applications. The total number of parameters in DSD is
30% less than SpikeDeeptor and SpikeDeep-classifier. The
number of floating point operations (FLOPs) and multiply-
and-accumulate operations (MACs) of the DSD are 30%

less than SpikeDeeptector and SpikeDeep-classifier’s FLOPS
and MACS. The DSD is 25% less computationally inten-
sive than SpikeDeep-classifier and thus will be more easily
implemented on a hardware resource-constrained device as
a real-time spike sorting processor employing a deep neural
network.

2) EXPERIMENTAL DATASET
Experimental datasets are used to evaluate the proposed DSD
pipeline. As shown in Table 2, only one hundred and nine
of the five hundred and seventy-six channels in the human
dataset (Utah array) were predicted to be neural channels.
Only a small number of channels record neural activity from
multiple neural sources that are each located in different brain
areas. However, only three neural sources were captured on a
small number of channels. The optimal number of clusters on
the recording channels is predicted using K-means clustering
in conjunction with cluster accept or merge (CAOM).

The main idea is to assess the degree of similarity and
difference pairwise by examining each pair of clusters that are
mutually closest to one another and determining whether the
two clusters should be merged. Only six channels out of one
hundred and seven were predicted to have a different number
of clusters. For any number of units, the overall accuracy

15140 VOLUME 11, 2023



C. O. Okreghe et al.: Deep Neural Network-Based Spike Sorting With Improved Channel Selection and Artefact Removal

achieved is greater than 91%. Moreover, the performance of
the classification algorithm and CAOM across all individual
recording sessions remains stable.

A visual inspection and evaluation of the quality of the
obtained clusters are demonstrated. Figure 7 shows the clas-
sification algorithm in conjunction with CAOM. Figure 7a
depicts the output of the K-means algorithm with three neural
units merged into one. The CAOM output is displayed in
the second row. The similarity between units is determined
according to CAOM criteria. In addition, the second row
of figures depicts the mean waveforms and PCA projection
in 2D. Figure 7b illustrates the output that is predicted by the
K-means algorithm after three neural units have been merged
into two. The CAOM output is displayed in the second row.
Figure 7c presents the results that were predicted by the
K-means algorithm, which consists of three clusters. In this
particular instance, each of the three clusters has been con-
sidered a distinct cluster.

IV. DISCUSSION
In this study, a DSD is introduced to deal with the problem
of noisy channels and artefact removal. Most spike sorting
studies do not consider artefact channels and artefacts, despite
the fact that removing them is one way to improve data
quality. However, in a setting designed for recording, it is not
possible to get rid of all of the factors that could be disruptive.
Consequently, it is crucial to examine the negative impacts of
artefacts in neural data. Two deep neural network classifiers
are trained to select channels recording neural events and
separate spikes from artefacts in the selected channels in
real-time extracellular electrophysiological recordings using
a pool of previously spike-sorted and labelled data.

Unlike the SpikeDeeptector [27], the DSD channel selec-
tion is focused on a defined class of artefacts. It is less generic
than the SpikeDetector and more sensitive to deep and tem-
poral spikes. Though the purpose of this study was to enrich
the potential of classic spike detection with a simple imple-
mentation of a deep learning-based spike detection algorithm,
it unequivocally demonstrates that it is robust to the defined
class of artefacts. It has a better classification score and is
more efficient than SpikeDeeptector. The DSD CNN design
has the advantage of evaluating the entire recording space
by a convolutional filter convolving across the entire spatial
dimension, capturing spatial features more effectively.

The DSD algorithm is unique in comparison to the
SpikeDeeptector [27] method. The DSD makes use of CNN
architecture to extract both spatial and temporal features from
spike signals simultaneously recorded in multi-channel elec-
trodes while the SpikeDeeptector uses convolution only for
discovering time dependencies along the spike/artefact sam-
ples and possible dependencies between different samples.
Acknowledging how the temporal features of spike signals
are extremely mitigated by artefacts, the DSD CNN design
focuses on extracting the spatial feature of the spike data,
adapts to non-stationary data, and is, therefore, well suited for
acute recordings. By incorporating a generalized prototype

loss-based on distance cross-entropy, the algorithm learned
features that were closer to its class to improve the intra-
class compactness, which makes feature representation more
discriminative.

For a single waveform input runs through the trained net-
work, the output was a value between 0 (likely an artefact
channel) and 1 (likely a neural channel), which represented
the network’s output probability of a channel to be classified
as a neural or artefact channel. In contrast, SpikeDeeptector
introduced a criterion to assign labels to entire channels by
calculating themode of the predicted outputs of all the feature
vectors of the given channel.

Contrarily to background activity rejector (BAR) [28],
the input to the DSD’s artefact removal included data from
channels with very distinct spike waveforms. These channels
still included both artefact (labeled as 0) and spike (labeled
as 1) waveforms. The training set was designed to emphasize
relatively well-isolated single-unit action potential shapes
while also exposing the network to a variety of spike and
artefact waveforms.

The proposed DSD algorithmwas most effective at finding
events within clusters that were already labeled as artefacts
in the dataset. The evaluation of DSD on both simulated
and experimental data revealed a low false-positive rate and,
consequently, a high level of specificity for the algorithm. The
exact FPS rate results are contingent on a number of factors,
including the percentage of artefacts, the number of channels,
the clusters, and so on.

The CAOM is used to estimate the exact number of neural
units on a recorded channel. In this study, the maximum
number is fixed at 3. Some recording configurations result
in a greater number of neuronal units per channel, but this
is often not the case with permanently implanted electrodes.
In such a circumstance, CAOM’s hyperparameters must be
retuned. Consequently, an algorithm (HDBSCAN or t-SNE)
that provides a more generic solution for determining the
number of clusters will be used in the future in place of
CAOM or clustering.

Embedding the DSD algorithm in a conventional spike
sorting pipeline displayed a good degree of sorting precision
in both simulated and experimental datasets. In the simulated
dataset, even with varying degrees of noise and similarity
between the spike waveforms, the proposed DSD pipeline
performed extremely well in classifying the spikes. Conse-
quently, it is plausible to conclude that the proposed DSD
pipeline demonstrated excellent detection and accuracy. The
performance of the approach was based on two factors: the
selection of neural channels and the removal of artefacts. Both
phases had a considerable positive impact on performance
and accuracy. In future work, the deep neural networks will
incorporate CAE and unsupervised subspace learning [48]
to extract discriminative features that will handle issues of
computational complexity.

In multiple channel recordings with microelectrode arrays,
the recorded activity may be the overlap of multi-neuron
spikes, which will degrade the traditional spike sorting
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performance. The existence of this issue has been widely
reported. Some newmethods have been proposed to solve the
problem of overlapped spikes [49]. However, the challenges
associated with the overlapping of spikes are not yet well
resolved. Futureworkwill address this challenge and improve
the DSD’s classification accuracy further by utilizing deep
neural networks.

V. CONCLUSION
In this study, a deep neural network-based framework to clas-
sify neuronal spikes was proposed. By embedding two convo-
lutional neural network algorithms for channel selection and
artefact removal, respectively, in the conventional pipeline,
the spike sorting pipeline largely improves the classification
accuracy with enhanced detection. It improves the sorting
performance by identifying the inactive recording channels as
well as discarding the artefacts before feature extraction. The
channel selection successfully selects the channels that record
neuronal events with an average accuracy of 99.5%, while the
artefact removal accuracy is 92.3%. The combined utilization
of the channel selection and artefact removal with K-means
clustering is potentially promising and yields a classification
accuracy of 87% and 91.53% on experimental and simulated
datasets respectively, outperforming the traditional approach.
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