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Abstract

We show that the popular reinforcement learning (RL) strategy of estimating the state-
action value (Q-function) by minimizing the mean squared Bellman error leads to a regres-
sion problem with confounding, the inputs and output noise being correlated. Hence, direct
minimization of the Bellman error can result in significantly biased Q-function estimates.
We explain why fixing the target Q-network in Deep Q-Networks and Fitted Q Evaluation
provides a way of overcoming this confounding, thus shedding new light on this popular but
not well understood trick in the deep RL literature. An alternative approach to address
confounding is to leverage techniques developed in the causality literature, notably instru-
mental variables (IV). We bring together here the literature on IV and RL by investigating
whether IV approaches can lead to improved Q-function estimates. This paper analyzes
and compares a wide range of recent IV methods in the context of offline policy evaluation
(OPE), where the goal is to estimate the value of a policy using logged data only. By
applying different IV techniques to OPE, we are not only able to recover previously pro-
posed OPE methods such as model-based techniques but also to obtain competitive new
techniques. We find empirically that state-of-the-art OPE methods are closely matched in
performance by some IV methods such as AGMM, which were not developed for OPE1.

Keywords: Instrumental variable regression; Generalized method of moments; Rein-
forcement learning; Two Stage Least Squares; Offline policy evaluation
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1. Introduction

Deep neural networks have made it possible for reinforcement learning (RL) to attain super-
human performance in challenging domains such as ATARI from raw sensory data (Mnih
et al., 2015) and Go (Silver et al., 2016). While RL is starting to be used for real-world
applications (Bellemare et al., 2020), its adoption remains fairly limited. Standard RL
techniques require repeated interaction with the environment. This is often too costly to
implement practically, and running a poor policy could lead to disastrous outcomes (e.g.,
in power plants or healthcare decision-making systems). While controlling a large and/or
complex real-world system can be costly and risky, data acquisition is often comparatively
cheap. The goal of offline RL is to evaluate and learn new policies based only on logged
data, without any interaction with the environment.

In this paper, we focus on the problem of Offline Policy Evaluation (OPE), also known in
the literature as Off-policy Policy Evaluation. OPE involves estimating the value of a new
policy using logged data produced by possibly many different policies. This is a problem of
great significance because individuals and organizations often need to choose a single policy
among a wide set of proposed policies for deployment. Choosing which policy to deploy
well can result in improved user satisfaction, or better medical treatments.

A plethora of methods have been proposed to address this problem; see e.g. Precup
(2000); Precup et al. (2001); Dud́ık et al. (2011); Thomas and Brunskill (2016); Jiang and
Li (2016); Liu et al. (2018); Farajtabar et al. (2018); see also Levine et al. (2020); Fu
et al. (2021) for recent reviews. We focus here on methods that are relying on an estimate
of the state-action value function, known as the Q-function. It is well-known that the
Q-function can be estimated by minimizing the mean squared Bellman error. However,
the resulting regression problem is not standard as the inputs and the output noise are
correlated, leading to some confounding. We show here that fixing the target Q-network
in the popular Deep Q-Networks (DQN) (Mnih et al., 2013) and Fitted Q Evaluation
(FQE) (Le et al., 2019) can be re-interpreted as a strategy addressing this confounding.
We then investigate a different class of approaches to address the same problem. In causal
inference, Instrumental Variables (IV) regression is a standard strategy for learning causal
relationships between confounded treatment and outcome variables from observational data
by utilizing an instrumental variable, which affects the outcome only through the treatment
(Stock and Trebbi, 2003). The connection between RL and IV ideas was made early on by
Bradtke and Barto (1996) when introducing Least Square Temporal Differences (LSTD),
a method to estimate on-policy linearly parameterized value functions. Their derivation
made use of the two-stage least squares (2SLS) algorithm, the most standard IV regression
technique. However, the connection between RL and IV seemed to have been largely ignored
ever since in the literature.

Here we build on this connection. We exploit the fact, shown by Xu et al. (2021),
that we can estimate a Q function parameterized by a neural networks using non-linear IV
regression techniques. We can thus use the non-linear IV techniques recently developed in
machine learning (Hartford et al., 2017a; Lewis and Syrgkanis, 2018; Singh et al., 2019a;
Muandet et al., 2019; Bennett et al., 2019a; Dikkala et al., 2020; Luofeng et al., 2020; Xu
et al., 2021) to perform Q function estimation.

Our contributions in this paper are four-fold.
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• We show that estimating the state-action value (Q) by minimizing the mean squared
Bellman error leads to a regression problem with confounding, the inputs and output
noise being correlated. We provide a re-intepretation of the popular strategy consisting
of fixing the target Q-network in Deep Q-Networks (DQN) (Mnih et al., 2013) and
Fitted Q Evaluation (FQE) (Le et al., 2019) as a way to overcome confounding.

• We extend the IV interpretation of the on-policy state value (V ) linear estimation
problem to off-policy state-action value (Q) linear estimation. As shown recently by
Xu et al. (2021), we can further recast the problem of non-linear Q-function evaluation
and OPE as a non-linear IV regression problem, bringing together the literature on
IV and RL.

• We review recent IV methods developed in machine learning, including Deep IV (Hart-
ford et al., 2017a), Kernel IV (Singh et al., 2019b), Deep Generalized Method of Mo-
ments (Deep GMM) (Bennett et al., 2019b), adversarial GMM (AGMM) (Dikkala
et al., 2020) and Deep Feature IV (DFIV) (Xu et al., 2021) and specialize them to
the OPE problem. By doing so, not only do we recover some OPE techniques already
available, but also obtain novel methods and insights.

• We evaluate the performance of these techniques empirically on a variety of tasks and
environments, including Behaviour Suite (BSuite) (Osband et al., 2019) and Deep-
Mind Control Suite (DM Control) (Tassa et al., 2020). We found experimentally that
some of the recent IV techniques such as AGMM display performance on par with
state-of-the-art FQE methods. We open-source the implementation of all methods
and datasets at https://github.com/liyuan9988/IVOPEwithACME.

Our main findings are that when doing OPE for a policy near to that which generated
the available data, the confounding effect can be very pronounced, and ignoring it — as
in Deterministic Bellman Residual Minimization (DBRM) (Saleh and Jiang, 2019) — is
problematic. In this scenario, we find that the best IV method - AGMM - performs on
par with FQE, and is only outperformed by distributional FQE. On more difficult scenarios
where the evaluation policy is far from the behavioral policy, additional effects due to a
combination of distribution shift and model mismatch come into play. In this context,
while AGMM performs on par with FQE and DFQE, DBRM is also competitive, while
being more stable than competing methods.

Note that there have been recent papers combining IV techniques to RL; see e.g. Bennett
et al. (2021); Li et al. (2021); Liao et al. (2021). These papers use IV methods for non-
standard RL models with unobserved confounders, whereas we focus here on the standard
RL model.

The rest of this paper is organized as follows. In Section 2, we define the RL model of
interest, and provide overviews of the offline policy evaluation problem and of instrumental
variable regression. In Section 3, we review the LSTD method of Bradtke and Barto (1996),
introduced to estimate linearly parameterized value functions and show how it is related
to 2SLS, the most popular IV method. In Section 4, we recast the problem of non-linear
Q function estimation as a non-linear IV problem, and then review some of the promising
recent techniques that have been developed in this context. In Section 5, we propose two
sets of benchmarking problems with stochastic environments to assess the performance of
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those methods in their application to OPE, compared with a state-of-the-art OPE baseline.
Section 6 concludes with a discussion.

2. Background

2.1 Reinforcement learning and offline policy evaluation

Reinforcement learning considers a Markov decision process 〈S,A, P,R, µ0, γ〉, where S is
the state space, A is the action space, and P (s′|a, s) is the probability or probability density
of making a transition to state s′ when taking action a in state s. R(r|s, a) denotes the
probability density of observing reward r after having taken action a from s, and µ0(s)
is the initial state distribution. Let π be a policy of an agent, and denote π(a|s) as the
probability or probability density of selecting action a in state s ∈ S. With a discount
factor γ ∈ (0, 1], the state-action value function - i.e. Q function - is defined by

Q(s, a) = E

[ ∞∑
t=0

γtrt|s0 = s, a0 = a

]
, (1)

with at ∼ π(· | st), st+1 ∼ P (·|st, at), rt ∼ R(·|st, at) for t ≥ 0.
Common tasks in reinforcement learning including estimating the value of a given target

policy π or optimizing the policy value with respect to π, where the policy value is defined
by the expected sum of discounted rewards from the initial state distribution

ρ(π) = Es0∼µ0

[ ∞∑
t=0

γtrt

]
= Es∼µ0,a|s∼π[Q(s, a)], (2)

When an agent is prohibited to interact with the environment directly, one has to rely
on an existing dataset of trajectories or transition tuples (s, a, r, s′), to estimate the policy
value or learn the optimal policy. The dataset could have been collected by one or a mixture
of potentially unknown policies of potentially unknown analytical form, denoted by πb(·|s),
and the corresponding state action distribution is denoted by µb.

The goal of offline policy evaluation (OPE) is to evaluate the value of a target policy,
π, based on the offline behavior dataset. This problem has been extensively studied in the
literature. The readers are referred to Levine et al. (2020) for a review and Voloshin et al.
(2019b); Fu et al. (2021) for benchmarks of recent OPE algorithms.

One family of OPE approaches is to estimate the value function based on the Bellman
equation,

Q(s, a) = Er∼R(·|s,a) [r|s, a] + γEs′∼P (·|s,a),a′∼π(·|s′)
[
Q(s′, a′)|s, a

]
, ∀s ∈ S, a ∈ A. (3)

We can solve the Bellman equation as a least square regression problem for the reward r
on the state-action pair (s, a)

E [r|s, a] = Q(s, a)− γE
[
Q(s′, a′)|s, a

]
, (4)

and find the function Q to minimize the mean squared Bellman error (MSBE) (Sutton and
Barto, 2018, p. 268) with respect to the behavior distribution

Q = arg min
Q

E(s,a)∼µb,r∼R

[(
r −Q(s, a) + γEs′∼P (·|s,a),a′∼π(·|s′)

[
Q(s′, a′)

])2]
. (5)
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We then use Equation (2) for the evaluation policy π.

2.1.1 A Simple Biased Estimator

A simple algorithm to approximate the objective of Equation (5) using transition samples
(s, a, r, s′, a′) from the dataset is known as Deterministic Bellman Residual Minimization
(DBRM) (Saleh and Jiang, 2019). We consider here a simple variant of DBRM as a baseline
with two independent action samples from the given target policy,

QDBRM = arg min
Q

E
[(
r −Q(s, a) + γQ(s′, a′

(1)
)
)(

r −Q(s, a) + γQ(s′, a′
(2)

)
)]

, (6)

where (s, a) ∼ µb, r ∼ R, s′ ∼ P (·|s, a), a′(1) ∼ π(·|s′), a′(2) ∼ π(·|s′). The argument within
the expectation of Equation (6) is an unbiased estimate of MSBE only if the MDP’s transi-
tion dynamics P and the target policy π are deterministic. If this is not the case, we would
require two independent samples of s′ starting from the same (s, a) to obtain an unbiased
estimate of the MSBE objective in Equation (5) (Baird, 1995). This is usually not possible.
More practical and sophisticated methods have been proposed to mitigate the bias (Antos
et al., 2008; Munos and Szepesvári, 2008).

2.1.2 Fitted Q Evaluation

Alternatively, one can move the troublesome expectation in Equation (4) from inside the
regression function to the target as follows,

E [r|s, a] = Q(s, a)− γE
[
Q(s′, a′)|s, a

]
=⇒ E

[
r + γQ(s′, a′)|s, a

]
= Q(s, a), (7)

and minimize the least squared temporal difference (TD) error iteratively, with the Q func-
tion on the left hand side being fixed at every iteration,

Qk = arg min
Q

E(s,a)∼µb,s′∼P,a′∼π,r∼R

[(
Q(s, a)−

(
r + γQk−1(s

′, a′)
))2]

. (8)

This method is known as fitted Q evaluation (FQE) (Le et al., 2019), a variant of the fitted
Q iteration (Ernst et al., 2005) algorithm. Fu et al. (2021) show that FQE outperforms other
OPE algorithms in a deep OPE benchmark. The same idea was used in other approximate
dynamic programming approaches such as the Deep Q Network (DQN) (Mnih et al., 2015)
where the parameters of the target Q network (corresponding to Qk−1 in Equation (8))
were fixed when updating the online Q network.

2.2 Instrumental variable regression

Instrumental variable (IV) regression methods (Stock and Trebbi, 2003) are standard tech-
niques developed in the causal inference and econometrics literature, which are used to
predict the effect of actions X (called treatment) on the world when the treatment affects
the distribution of the variable of interest Y , which is called the outcome. IV regression
provides a framework to assess this effect (called the structural function) by using an in-
strumental variable Z, which only affects the treatment directly, but has no direct effect on
the outcome.
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Instrumental variables can be found in many contexts, and IV regression is extensively
used by economists and epidemiologists. For example, (Wright, 1928; Blundell et al., 2012)
used supply cost shifters as instrumental variables, and estimate the effect of price on the
demand to correct for confounders such as the time of the year. IV regression has also been
used to measure the effect of a drug in the scenario of imperfect compliance (Angrist et al.,
1996), or the influence of military service on lifetime earnings (Angrist, 1990).

Formally, we aim to learn a relationship between X and Y , which is generated from

Y = fstruct(X) + ε, E [ε] = 0, E [ε|X] 6= 0, (9)

where fstruct is the structural function, which we assume to be continuous, and ε is an
additive noise term. The challenge is that E [ε|X] 6= 0, which reflects the existence of
a latent confounder. Hence, we cannot use ordinary supervised learning techniques since
fstruct(x) 6= E [Y |X = x].

To deal with the confounder ε, we assume to have access to an instrumental variable
Z ∈ Z which satisfies the following assumption.

Assumption 1 The conditional distribution P (X|Z) is not constant in Z and one has
E [ε|Z] = 0.

Intuitively, Assumption 1 means that the instrument Z induces variation in the treatment
X but is uncorrelated with the hidden confounder ε. The causal graph describing these
relationships is shown in Figure 1.2 Note that the instrument Z cannot have an incoming
edge from the latent confounder that is also a parent of the outcome. It follows directly
from Assumption 1 that

E [Y |Z] = E [f(X)|Z] + E [ε|Z] =

∫
X
f(X)P (X|Z)dX. (10)

Classically, IV regression is solved by the two-stage least squares (2SLS) algorithm; we
learn a mapping from the instrument to the treatment in the first stage, and learn the
structural function in the second stage as the mapping from the conditional expectation
of the treatment given the instrument (obtained from stage 1) to the outcome. Originally,
2SLS assumes linear relationships in both stages, i.e.,

X = Zω + δ, fstruct(X) = Xθ ,

where ω and θ are unknown regression coefficients and δ is a random variable satisfying
E [δ|Z] = 0. In the case when the dimension of X equals that of Z, the 2SLS estimator has
the following simple form

θ̂ =
(
Z>X

)−1 (
Z>Y

)
, (11)

where we somewhat abuse notation and denote by X, Z the matrices of observed treatment
and instrumental variables, by Y the vector of outcomes, and each row corresponds to one
observation.

2. We show the simplest causal graph in Figure 1 It entails Z ⊥⊥ ε, but we only require Z and ε to be
uncorrelated in Assumption 1. Of course, this graph also says that Z is not independent of ε when
conditioned on observations X.
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Z X Y
f (X)

ε

Figure 1: Causal graphical model for instrumental variable methods.

Instrumental variable methods have been extended to non-linear settings first in eco-
nomics (Newey and Powell, 2003; Carrasco et al., 2007; Darolles et al., 2011; Blundell et al.,
2012; Chen and Christensen, 2018; Voloshin et al., 2019a) and more recently in machine
learning (Hartford et al., 2017a; Lewis and Syrgkanis, 2018; Singh et al., 2019a; Muandet
et al., 2019; Bennett et al., 2019a; Dikkala et al., 2020; Luofeng et al., 2020; Xu et al., 2021).
One approach has been to use non-linear feature maps. Sieve IV (Newey and Powell, 2003;
Chen and Christensen, 2018) uses a finite number of explicitly specified basis functions.
Kernel IV (KIV) (Singh et al., 2019a) and Dual IV regression (Muandet et al., 2019) ex-
tend sieve IV to allow for an infinite number of basis functions using reproducing kernel
Hibert spaces (RKHS). Although these methods enjoy desirable theoretical properties, the
flexibility of the model is limited due to the prespecified features. To mitigate this lim-
itation, Xu et al. (2021) proposes Deep Feature IV (DFIV) method, in which one learns
features adaptively using neural networks while preserving the two-stage nature of 2SLS.

Another non-linear approach to the stage 1 regression is to estimate the conditional
distribution P (X|Z) (Carrasco et al., 2007; Darolles et al., 2011; Hartford et al., 2017a).
This allows flexible models, including deep neural nets, as proposed in the DeepIV algorithm
of (Hartford et al., 2017a). However, the conditional density estimation can be costly, and
can suffer from high variance when the treatment is high-dimensional.

As a further alternative, several recent works (Lewis and Syrgkanis, 2018; Bennett et al.,
2019a; Dikkala et al., 2020; Luofeng et al., 2020) have been inspired by another instrumental
variable technique, the Generalized Method of Moments (GMM) (Hansen, 1982), and find
non-linear structural functions to ensure that the regression residual and the instrument are
uncorrelated. These works do not require two stage regression, and the resulting methods
are often formulated as solving a minimax optimization problem.

3. Relationship between LSTD and Linear IV

Solving Equation (5) requires computing the conditional expectation E [Q(s′, a′)|s, a]. This
is usually infeasible in practice because it would require being able to reset the environment
to state s and draw multiple samples of the next state s′. Bradtke and Barto (1996)
proposed the Least Square Temporal Difference (LSTD) algorithm to solve this problem
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with a single sample of s′. Specifically, they consider estimating the state value function
V (s) = Ea∼π [Q(s, a)] in the on-policy RL setting, i.e., πb = π, and assume the value
function can be parameterized as a linear function of a fixed set of features. Bradtke and
Barto (1996) pointed out originally that Equation (5) could be reformulated and solved
with a linear IV method.

Lagoudakis and Parr (2003) proposed to model the state-action value function Q instead
of V using a similar linear combination of features, and extended LSTD to LSTD-Q so that
it could be applied to off-policy RL, πb 6= π. Their derivation does not rely on IV ideas.
We propose here an alternative derivation of LSTD-Q which is a natural extension of the
IV approach pioneered in Bradtke and Barto (1996) to the Q function.

We consider a linear approximation of the form

Q(s, a) = φ(s, a)> θ, (12)

where φ(s, a) is a set of features evaluated at (s, a) and θ is the parameter vector to estimate.
If Equation (12) were exact and not an approximation, then we could rewrite Equation (4)
as

r︸︷︷︸
Y

= Q(s, a)− γQ(s′, a′) +
(
γQ(s′, a′)− γE

[
Q(s′, a′)|s, a

])
+ (r − E [r|s, a]) (13)

=
(
φ(s, a)− γφ(s′, a′)

)︸ ︷︷ ︸
X

>
θ + γ

(
φ(s′, a′)− E

[
φ(s′, a′)|s, a

])>
θ + r − E [r|s, a]︸ ︷︷ ︸

ε

, (14)

where (s, a) ∼ µb, s′ ∼ P (s′|s, a), a′ ∼ π(a′|s′). The decomposition in Equation (13)
was discussed in Xu et al. (2021). Equation (14) matches the regression formulation in
Equation (9) (see Figure 2 for the causal graphical model).

r
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Figure 2: Causal graphical model of LSTD

Because the observation noise ε and input X are correlated through the sample of s′, a′,
we have a confounded regression problem, that is

E [ε] = 0, but

E [ε|X] 6= 0, because E
[
φ(s′, a′)− E

[
φ(s′, a′)|s, a

]
|s, a, s′, a′

]
6= 0 . (15)

Solving the least squared minimization problem of Equation (14) directly will lead to an
inconsistent estimate of θ. By choosing the feature of (s, a) as the instrumental variable,
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Z = φ(s, a), we can show that Z is uncorrelated with both terms in ε

corr(φ(s, a), φ(s′, a′)− E
[
φ(s′, a′)|s, a

]
) = 0, corr(φ(s, a), r − E [r|s, a]) = 0 , (16)

which follows directly from Lemma 4 in Bradtke and Barto (1996) by swapping s for (s, a).
Therefore, we have E [ε|Z] = 0. In this scenario Assumption 1 for applying IV regression is
satisfied. We can thus derive the same LSTD-Q estimator using 2SLS as

θ̂ =
(

Φ>
(
Φ− γΦ′

))−1
Φ>R , (17)

where Φ,Φ′, and R are matrices where every row corresponds respectively to the transpose
of φ(s, a), φ(s′, a′) and r from the offline dataset, except for a′ ∼ π(a′|s′).

We note that the derivation by Bradtke and Barto (1996) requires that the value func-
tion lives in the linear subspace of the features, Equation (12). Then they show that as
the number of data increases, the solution converges under regularity conditions to the
least-square fixed-point approximation (without mentioning it). The instrumental variable
interpretation also requires the structural function in Equation (14) to hold, which is derived
from Equation (12). Convergence of the LSTD algorithm does not require Equation (12)
to be valid. Lagoudakis and Parr (2003) show that there is indeed no need to make such an
assumption, and obtain a direct derivation by least-square fixed-point approximation. We
refer the readers to Lagoudakis and Parr (2003) for this alternative interpretation.

Remark 1 In the formulation of FQE in Section 2.1.2, because Q(s′, a′) is part of the
output, the resulting regression problem becomes

r + γφ(s′, a′)> θ︸ ︷︷ ︸
Y

= φ(s, a)︸ ︷︷ ︸
X

> θ + γ
(
φ(s′, a′)− E

[
φ(s′, a′)|s, a

])>
θ + r − E [r|s, a]︸ ︷︷ ︸

ε

. (18)

One can see that this regression problem is not confounded as ε is uncorrelated with X (see
Equation (16)), but θ in the target Y has to be fixed when estimating the parameter.

4. Policy Evaluation with Non-linear Functions and Non-linear IV

In this section, we will first extend the LSTD algorithm to the scenario with a non-linear
value function and formulate it as a non-linear IV problem. We then introduce a few
recent representative non-linear IV methods as OPE algorithms under that setting, using
our notations for consistency whenever possible.

4.1 Extension to Non-linear Value Functions

When the value function Q is a non-linear function of (s, a), it was shown recently by Xu
et al. (2021) that we can estimate it by solving a non-linear IV regression problem following
Equation (13) with the corresponding causal graphical model in Figure 3,

r︸︷︷︸
Y

= Q(s, a)− γQ(s′, a′)︸ ︷︷ ︸
f(X)

+
(
γQ(s′, a′)− γE

[
Q(s′, a′)|s, a

])
+ (r − E [r|s, a])︸ ︷︷ ︸

ε

, (19)
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where (s, a) ∼ µb, s′ ∼ P (s′|s, a), a′ ∼ π(a′|s′) and the structural function is f(s, a, s′, a′) =
Q(s, a)− γQ(s′, a′) with X = (s, a, s′, a′). Choosing the instrument Z = (s, a), it is easy to
show that Z satisfies Assumption 1 as P (X|Z) is not constant in Z, where Z is a subset of
X and E(ε|Z) = 0.

r
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Figure 3: Causal graphical model for policy evaluation with non-linear Q function.

In practice, we need to parameterize the structural function f(s, a, s′, a′). It is sensible
to use a parameterization of the form

fθ(s, a, s
′, a′) = Qθ(s, a)− γQθ(s′, a′) (20)

instead of parameterizing f directly. We should also keep in mind that when we use ap-
proximate Q functions it will not be true that E(ε|Z) = 0 exactly. The induced bias will
be illustrated later in the experiments with an under-fitted function approximator.

The dependency of the output noise ε on the next state s′ bears resemblance to the
“colored” noise in the GPTD formulation (Engel et al., 2005). However, we emphasize here
that the GPTD formulation fails to reflect the confounding issue inherent to the Bellman
residual minimization problem because the noise N(s, s′) in GPTD is still assumed to be
uncorrelated with s′ even though dependent. Therefore, their solution may still lead to a
biased estimator.

Depending on the function family of Qθ and how to apply the instrumental variables,
we will present a few representative non-linear IV methods in the setting of offline policy
evaluation in the following sections.

4.2 Deep IV

The Deep IV method in Hartford et al. (2017b) is based on the identity Equation (10)

E [Y |Z] =

∫
X
f(X)P (X|Z)dX. (21)

It is a two-stage regression approach that estimates the nonlinear relationships between Z
and X, and X and Y , using a neural network function approximator in each stage. In the
first stage, Deep IV trains a treatment network to estimate the conditional distribution of
treatment Pφ(X|Z) by maximum likelihood estimation. The network outputs a categorical
distribution if the treatment variable X is discrete and a mixture of Gaussian distributions
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if it is continuous. In the second stage, it estimates the structural function using an outcome
network fθ(X) by regressing Y on the conditional expectation EPφ(X|Z) [fθ(X)|Z] where the
estimate of the expectation is obtained by Monte Carlo samples from Pφ(X|Z).

In our RL context, recall that X = (s, a, s′, a′) while Z = (s, a), so the non-degenerate
part of the conditional distribution of the treatment is given by

P (s′, a′|s, a) = P (s′|s, a)π(a′|s′). (22)

Thus, applying Deep IV in the RL context consists first of estimating the transition distri-
bution P (s′|s, a) using a generative model (as we know the target policy π(a′|s′)). We then
compute a Monte Carlo estimate of E(fθ(X)|Z) with multiple samples, and estimate Q by
minimizing the approximate MSBE in Equation (5).

Hartford et al. (2017b) also allow for observable confounders, but this extension is
unnecessary in our scenario. Deep IV is closely related to the model-based reinforcement
learning algorithm Dyna-Q (Sutton, 1990), which also learns the transition distribution
and then Q by minimizing the TD error. The difference is that Dyna-Q uses Q-learning
to minimize the TD error in the Bellman optimal equation in order to improve the policy
instead of estimation, and it requires only a single sample of s′ to provide an unbiased
estimate of the gradient, similar to the iterative FQE algorithm.

4.3 KIV and DFIV

KIV (Singh et al., 2019a) and DFIV (Xu et al., 2021) introduce nonlinear feature maps in
the IV formulation. Similar to Deep IV, this approach is also based on Equation (10), and
solves for f by minimizing

L(f) = EY Z
[
(Y − EX|Z [f(X)])2

]
+R(f),

where R(f) is the regularization for f . KIV and DFIV regress to the expected features of
X on Z, however, in contrast to Deep IV, which estimates the conditional distribution of
P (Z|X); density estimation is not necessary for estimating EX|Z [f(X)] , and can be more
difficult in practice. KIV and DFIV employ the following models:

f(X) = w>φ(X), E [φ(X)|Z] = V ψ(Z),

where w, V are the learnable linear weights and φ(X), ψ(Z) are the nonlinear feature maps
for the treatment and the instrument, respectively.

KIV considers static feature maps from a Reproducing Kernel Hilbert Space (RKHS)
for φ(X), ψ(Z) and learns weights w, V by a two-stage regression: stage 1 performs the
regression from the instrument Z to the treatment features φ(X) to learn weight V ; then
in stage 2, weights w are learned by minimizing the loss L(f) using the predicted treatment
features V ψ(Z). DFIV additionally learns feature maps φ(X), ψ(Z) using neural networks
in the same two-stage regression.

Note that in the RL context where X = (s, a, s′, a′) and Z = (s, a), the loss L is identical
to MSBE defined in eq. (5) apart from the regularization term. This two-stage regression
proceeds as follows. As in eq. (12), KIV and DFIV model Q(s, a) = φ(s, a)>θ where
φ is a feature map and θ are the parameters. Furthermore, they model the conditional
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expectation as Es′,a′|s,a [φ(s′, a′)] = V ψ(s, a), where ψ(s, a) is another feature map and V is
the parameter matrix to be learned.

In stage 1, V is learned by minimizing the following loss,

V̂ = arg min
V

L1(V ), L1(V ) = Es,a,s′,a′
[
‖φ(s′, a′)− V ψ(s, a)‖2

]
+ λ1‖V ‖2, (23)

where λ1 > 0 is a regularization parameter. This is a linear ridge regression problem with
multiple targets, which can be solved analytically. In stage 2, given V̂ , θ is obtained by
minimizing the loss

θ̂ = arg min
θ
L2(θ), L2(θ) = Er,s,a

[
‖r − θ>(φ(s, a)− V̂ ψ(s, a))‖2

]
+ λ2‖θ‖2, (24)

where λ2 > 0 is another regularization parameter. Stage 2 corresponds to a ridge linear
regression from φ(s, a)− V̂ ψ(s, a) to r, and also has a closed-form solution.

In KIV, from the characteristics of RKHS functions one can learn a non-linear Q function
while retaining the closed-form solution of the two-stage regressions. In DFIV, because of
the use of adaptive features for φ(s, a) and ψ(s, a) parameterized with neural networks they
learn those features by alternating the two regression stages, which enables one to learn a
more flexible Q function compared to KIV. In this paper, we consider a variant of DFIV
that regresses φ(s, a) − γφ(s′, a′) instead of φ(s′, a′) on instrumental variables in stage 1,
with details explained in Appendix A. We found this approach is more stable than the
original version in the experiments. While we can derive a similar variant for KIV, we did
not notice an improvement in performance.

4.4 Generalized Method of Moments

A family of non-linear IV methods is based on the moment restrictions derived from As-
sumption 1 of instrumental variables,

E(ε|Z) = E(Y − f(X)|Z) = 0, ∀Z. (25)

In the linear setting, we require the following unconditional moment to be zero, whose
solution is Equation (11),

E(εZ) = E[(Y − f(X))Z] = 0. (26)

In the non-linear setting, by defining a set of potentially infinitely many test functions of
Z, g ∈ G, we require all the unconditional moments to be zero,

Ψ(f, g) = EX,Y,Z [(Y − f(X))g(Z)] = 0, ∀g. (27)

The unified solution in the family of Generalized Method of Moments (GMM) (Hansen,
1982) is a saddle-point of the following minimax objective function,

f∗ = arg inf
f∈F

sup
g∈G

Ψn(f, g) +Rf (f)−Rg(g) , (28)

where g is optimized to find the largest violation of the moment condition for the current
estimate of f and the expectation in Ψ is the empirical estimate from a dataset of size n.
Rf (f) and Rg(g) are regularization terms for f and g, respectively, for identifiability.
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In the context of RL, this objective is thus given by

Q∗ = arg inf
Q∈Q

sup
g∈G

Ψn(Q, g) +Rf (Q)−Rg(g) ,

with Ψn(Q, g) = Es,a∼µb,s′∼P,r∼R,a′∼π
[
(r −Q(s, a) + γQ(s′, a′))g(s, a)

]
. (29)

Here g acts to find the largest moment of the TD error. Variants of GMM method differ in
the choice of the function space Q, G and the regularization functions.

4.4.1 Deep GMM

Inspired by the optimally weighted GMM method in linear IV problems, Bennett et al.
(2019b) propose the Deep GMM method. In the linear setting with a fixed set of feature
bases, f1, ..., fm, the test function g is defined as a linear combination of the bases g(Z) =
vT f(Z). The optimally weighted GMM (OWGMM) yields the minimum variance estimate
of the linear weights θ by setting Rf (f) = 0 and Rg(v) = 1

4v
TCv (see definition of the

matrix C in Bennett et al. (2019b) which is a function of the optimal weights θ̃.

Bennett et al. (2019b) extend OWGMM to the non-linear setting and parameterizes both
f (Q in RL) and g with neural networks, Qθ and gφ, and uses the following regularization,

RQ(Qθ) = 0 ,

Rg(gτ ) =
1

4
Es,a∼µb,s′∼P,r∼R,a′∼π

[
g2τ (s, a)(r −Qθ̃(s, a) + γQθ̃(s

′, a′))2
]
, (30)

where θ̃ should be a consistent estimator of the true parameter value. In practice, Bennett
et al. (2019b) suggests to set θ̃ to the latest estimate of θ in the iterative optimization
process.

Deep GMM reduces to OWGMM in the linear function setting and results in the most
efficient estimator in that case. The efficiency of this particular regularization scheme is not
discussed in the non-linear case in Bennett et al. (2019b). However, Dikkala et al. (2020,
Sec. 6) argues that such re-weighting is not required if one simply wants a fast convergence
rate in the projected RMSE, defined next in Equation (31).

4.4.2 Adversarial GMM Networks (AGMM)

Dikkala et al. (2020) consider the general minimax objective function in Equation (28)
and focus on the generalization performance of the projected residual mean squared error,
defined as √

EZ
[(

EX
[
f̂(X)− f0(X)|Z

])2]
, (31)

where f̂ is the optimal solution of Equation (28) on a dataset, and f0 is the optimal solution
of arg inff∈F supg∈G Ψ(f, g).

The authors discuss the choice of the function spaces and regularization constants in
order to derive a bound on the estimation error rate. They also instantiate the objective in
different function spaces, including Reproducing Kernel Hilbert Spaces, High-dimensional
Sparse Linear Function Spaces, Neural Networks, etc. When applying their theoretical
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findings to neural networks, the regularizers on the function Qθ(s, a) and gτ (s, a) in the RL
context are as follows3,

RQ(Qθ) = a‖θ‖22 ,
Rg(gτ ) = b‖τ‖22 + Es,a∼µb

[
g2τ (s, a)

]
, (32)

where a and b are hyper-parameters for the L2 regularization on the network parameters.

4.4.3 Adversarial Structural Equation Models (ASEM)

Luofeng et al. (2020) introduce the generalized structural equation model (SEM) problem
with IV being a special instance,

Af = b, (33)

where A : H → E is a conditional expectation operator between two separable Hilbert
spaces of square integrable functions, f ∈ H is the structural function of interest and
b ∈ E is known or can be estimated. When applied to IV regression, this reduces to
the same conditional moment restriction in Equation (25), under conditions f ∈ L2(X ),
Af = E [f(X)|Z] ∈ L2(Z), b = E [Y |Z] ∈ L2(Z).

With a similar dual formulation as other GMM methods introduced in preceding sec-
tions, Luofeng et al. (2020) propose a general solution to the SEM problem using an ad-
versarial training approach with a minimax objective function, and both functions are
parameterized with neural networks:

f∗ = arg min
f∈L2(X )

max
g∈L2(Z)

E[(f(X)− b(Z))g(Z)] +
α

2
E[f(X)2]− 1

2
E[g(Z)2] . (34)

They establish the consistency of the estimator theoretically under regularity conditions.
In the RL context, the two networks should satisfy Qθ ∈ L2(S × A), gτ ∈ L2(S × A), and
the corresponding regularizers are

RQ(Qθ) =
α

2
Es,a∼µb

[
Q2
θ(s, a)

]
, Rg(gτ ) =

1

2
Es,a∼µb

[
g2τ (s, a)

]
, (35)

where α is a hyper-parameter. In this paper, we consider an additional L2 regularization on
the network parameters θ and τ as in AGMM, and tune the associated hyper-parameters
together with α. It is easy to see that AGMM described in the previous subsection is a
special case of ASEM with α = 0 (the different multiplier in Rg does not change the solution
of Qθ after rescaling gτ accordingly).

4.4.4 Other adversarial IV methods

Lewis and Syrgkanis (2018) propose another AGMM algorithm that minimizes the L2 norm
of the vector

(Φ(1)
n ,Φ(2)

n , . . . ,Φ(m)
n )

consisting of a finite set of moments (test functions), and solve it with a no-regret on line
learning algorithm in an adversarial training fashion. This corresponds to a finite set of G
and no regularizations in the objective of Equation (28).

3. Personal communication with the authors
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Muandet et al. (2019) consider a slightly different conditional moment objective,

f∗ = arg min
f∈F

EY,Z
[(
Y − EX|Z [X|Z]

)2]
. (36)

Note that the expectation with respect to Y is outside of the square operator compared to
Equation (25). This objective leads to a different dual formulation,

f∗ = arg inf
f∈F

sup
g∈G

Ψn(f, g)− 1

2
EY,Z [g(Y, Z)] , (37)

where the adversarial function g is defined in the joint domain of Y and Z. Muandet et al.
(2019) assume both f and g lie in reproducing kernel Hilbert spaces, which allows to obtain
an analytical expression for the solution.

4.4.5 Related OPE Methods

Dual formulations have also been considered in the OPE literature, see e.g. (Nachum
et al., 2019; Yang et al., 2020; Mousavi et al., 2020; Uehara et al., 2020). Most of these
works apply a saddle-point optimization method to estimate the density ratio between the
distributions of state-action pairs under the evaluation policy π and the behavioural policy
πb, each such distribution corresponding to the probability of encountering a state-action
pair and averaging over time using the discount factor γ. This is an alternative approach
to OPE based on importance sampling rather than the value function. Yang et al. (2020)
point out that estimating the density ratio function is the dual formulation of estimating
the Q function with their particular objective. The closest work to our IV interpretation
is Uehara et al. (2020). The objective of their MQL algorithm is the squared Ψn without
regularization,

Q∗ = arg inf
Q∈Q

sup
g∈G

Ψ2
n(f, g) .

5. Experiments

In this section, we first demonstrate the advantage of IV methods over the biased DBRM
and iterative Fitted Q Evaluation (FQE) algorithm in the OPE problem using a simple
MDP environment, and conduct an ablation study to investigate the influence of the model
and algorithm parameters. We then propose a set of OPE benchmark problems with a
varying level of randomness in the system dynamics. We evaluate the performance of all
the non-linear IV methods in the paper on those problems, and compare to DBRM, FQE
and distributional FQE which are state-of-the-art OPE method (Fu et al., 2021).

5.1 Simple MDP problem

Let us consider a simple MDP with 100 discrete states allocated uniformly along the interval
[−2, 2]: si = −2 + 4

100 i, i ∈ {0, 1, . . . , 99}. The agent always starts at the first state s0 in
every episode and terminates at the last state s99. There is only a single action, a = right,
in every state to move to right, and therefore the policy is always fixed. The state is
transitioned to the right neighboring state with a probability of p > 0 or stays in the same
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location. It is easy to show that the resulting state distribution µ(s) pooled from different
steps across the trajectory, i.e. the offline data distribution, is uniform among all the non-
terminating states i ∈ {0, 1, . . . , 98}, whatever the value of p and µ(s99) = pµ(s98). The

reward function is defined with a Gaussian kernel as R = exp(− s2

0.22
), and is illustrated in

Figure 4 together with Q(s, a = right).
As there is only a single policy in this environment, the target policy is the same as

the behavior policy. We sample a dataset of N = 105 transitions with p = 0.5, and
estimate the state value using a fixed set of D = 90 Gaussian kernel features φj(s) =

exp
(
(s−(−2+(4/D)j))2

0.12

)
, j = {0, 1, . . . , 89}. For this linear instrumental variable regression

problem, we compare the LSTD-Q method in Section 3 with DBRM, which reduces to a
naive least square minimization algorithm in this case, and FQE, which alternates solving
a least squared minimization in Equation (18) with the linear weights θ in Y being fixed
and replacing those weights with the solution.
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Figure 4: Simple MDP. Left: reward function. Right: The ground truth and estimated
Q(s, a = right) by LSTD-Q, DBRM and FQE with p = 0.5. LSTD-Q overlaps FQE.

The estimates of the Q function for all methods are shown in Figure 4. The estimate
of LSTD-Q matches the ground truth value very well, while DBRM - which ignores the
confounding problem - leads to a heavily biased estimate as expected. The estimate of FQE
also matches the ground truth, but requires multiple iterations to converge to the solution
as shown in Figure 6 (right). This is because the TD formulation of FQE can only propagate
the state value information along the reverse order of state dynamics s′ → s by one step at
every iteration.

Next, we conduct an ablation study to investigate how the advantage of IV method
depends on the following four variables: dataset size N , feature dimensions D, transition
randomness (1−p), and the extent of off-policyness. While the target policy always matches
the behavior policy in this problem, we create an offline dataset with a shifted distribution by
sampling the states with the following distribution µ(s) ∝ exp(αs), where α = 0 corresponds
to the original uniform distribution, and a larger value of α leads to a shifted distribution
towards the right end of the state space.

We display the absolute error of the estimated state value at the initial state Q(s0, a =
right) by LSTD-Q and DBRM in Figure 5. The error of FQE is not shown because it
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Figure 5: Simple MDP ablation study. Each plot shows the absolute error ofQ(s0, a = right)
as a function of dataset size, number of features, stochasticity of the dynamics, and the
distribution shift between the dataset and that generated by the target policy. The dots
represent the default setting in Figure 4.
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Figure 6: The absolute error of Q(s0, a = right) as a function of optimization iteration in
the linear (left) and non-linear setting (right). LSTD-Q is solved analytically in the linear
setting.
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converges to the same solution as LSTD-Q in the linear case. We find the error of LSTD-Q
increases and eventually becomes on par with DBRM when we reduce the size of the dataset,
or increase the data distribution shift, which also decreases the effective dataset size. The
error of LSTD-Q also increases when we reduce the number of features, which will lead to
model misspecification, and could violate the IV requirement that the residual needs to have
zero mean. Lastly, we see that DBRM is unbiased when the dynamics are deterministic,
p = 1, but the bias increases quickly when p decreases. In contrast, the error of LSTD-
Q increases but much more slowly, which we suspect is due to an increasingly diverse
distribution of transitions (s, s′) that requires more data to learn the estimate accurately.

When we use a non-linear value function, the solutions given from IV techniques do
not coincides with FQE, and both methods require iterative optimization. Nonetheless, the
policy evaluation algorithms based on non-linear IV (e.g. DFIV) preserve the relatively
faster convergence rate than FQE in this example, as shown in Figure 6 (right). Here we
estimate the value function from the raw state s and estimate an multi-layer perceptron
(MLP) with two hidden layers, each with 50 units and ReLU activation function. Both
methods use a learning rate of 10−4.

From this ablation study, we demonstrate that the advantages of using an IV method
over a simple method like DBRM and FQE can be significant, but that the magnitude of
this benefit depends on multiple variables. On a more complex and comprehensive OPE
benchmark, we study in the following section whether recent non-linear IV methods are
competitive with state-of-the-art OPE methods such as FQE and Distributional FQE (Fu
et al., 2021).

5.2 OPE benchmark problems

5.2.1 Environments

We consider a list reinforcement learning environments from two widely used task collec-
tions: Behaviour Suite (BSuite) (Osband et al., 2019) and DeepMind Control Suite (DM
Control) (Tassa et al., 2020). BSuite is a collection of traditional RL environments with a
discrete action space. We choose three environments that can be solved by a standard DQN
agent (Mnih et al., 2015): Catch, Cartpole, and Mountain Car. DM Control is a collection
of physics-based simulation environments, using MuJoCo physics, for studying continuous
control problems with a continuous action space. We choose four environments that can be
solved by a standard D4PG agent (Barth-Maron et al., 2018): Cartpole Swingup, Cheetah
Run, Walker Walk, Humanoid run. A brief description of each of the seven environments
is provided as follows with illustrations in Figures 7 and 8:

• BSuite

– Catch: A 10x5 Tetris-grid with single block falling per column. The agent can
move left/right in the bottom row to ‘catch’ the block.

– Mountain Car: The agent drives an underpowered car up a hill (Moore, 1990).

– Cartpole: The agent can move a cart left/right on a plane to keep a balanced
pole upright (Barto et al., 1983).

• DM Control

18



On Instrumental Variable regression for Deep OPE

– Cartpole Swingup: Swing up and balance an unactuated pole by applying forces
to a cart at its base. The physical model conforms to Barto et al. (1983).

– Cheetah Run: A running planar biped based on Wawrzyński (2009).

– Humanoid Run: A simplified humanoid with 21 joints, based on the model in
Tassa et al. (2012).

– Walker Walk: An improved planar walker based on the one introduced in Lillicrap
et al. (2015).

(a) Catch (b) Mountain Car (c) Cartpole

Figure 7: Three BSuite tasks

(a) Cartpole Swingup (b) Cheetah Run (c) Humanoid Run (d) Walker Walk

Figure 8: Four DM Control tasks

Every environment has a real-valued state space S ⊆ RDS , and a discrete action space
A = {0, 1, 2, . . . , DA − 1} for BSuite tasks and continuous action space A ⊆ RDA for DM
Control tasks, respectively.

All environments have deterministic system dynamics, which would be hard to find in
real-world applications. In order to study how IV methods can address the bias introduced
through the confounding variable of the next state s′, we modify the original environments
with additional randomness in the dynamics. Specifically, for BSuite environments, we
randomly replace the agent action by a uniformly sampled action with a probability of
p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, resulting in a stochastic transition distribution,

P̃ (s′|s, a) = (1− p)P (s′|s, a) +
p

DA

DA∑
ã=0

P (s′|s, ã) . (38)
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For DM Control environments, we insert some Gaussian noise to the agent action, ε ∼
N (0, σ2) with σ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}, resulting in a stochastic transition distribution,

P̃ (s′|s, a) =

∫
ε
P (s′|s, a+ ε)N (ε|0, σ2)dε . (39)

Note that the randomly perturbed action is transparent to the agent. When p = 0 or σ = 0,
it reduces to the original deterministic environment.

Overall, we create 42 environments for our experiments with 7 different tasks and 6
levels of dynamics randomness per task. The state and action dimensions are provided in
Table 1 and 2.

Catch Mountain Car Cartpole

Dimensions
D 50 3 6
A 3 3 3

Target policy Train Episodes 2K 500 1K

Near-policy
Dataset

Train Episodes 20K 5K 1K
Train Transitions 180K 759K∼1.59M 325K∼833K
Valid Episodes 2K 500 100
Valid Transitions 19K 75.1K∼158K 33K∼83K

Pure Offline
Dataset

Train Episodes 1.8K 450 900
Train Transitions 16.2K 75K∼160K 512K∼671K
Valid Episodes 200 50 100
Valid Transitions 1.8K 8K∼14K 71K∼80K

Table 1: BSuite tasks. Every Catch episode has 9 transitions. The average length of
an episode in the Mountain Car/Cartpole increases/decreases as the level of environment
randomness p increases. The training and validation data ratio is 9:1.

Cartpole Cheetah Humanoid Walker
Swingup Run Run Walk

Dimensions
D 5 17 67 24
A 1 6 21 6

Target policy Train Episodes 300 4K 100K 1.5K

Pure Offline
Dataset

Train Episodes 270 3.6K 9K 1.35K
Train Transitions 270K 3.6M 9M 1.35M
Valid Episodes 30 400 1K 150
Valid Transitions 30K 400K 1M 150K

Table 2: DM Control Suite tasks. Every episode has 1000 transitions. The training and
validation data ratio is 9:1. The offline dataset of the Humanoid Run task is subsampled
with by 10% from the 100K episodes generated from the training process.
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5.2.2 Target policies for evaluation and offline datasets

We run the default DQN agent for every random level of the three BSuite tasks and the
default D4PG agent for the four DM Control tasks from the ACME library (Hoffman et al.,
2020) until the episodic return does not increase noticeably any more. The number of
training episodes is provided in Table 1 and 2. We use the learned policy with a small
amount of action noise as the target policy for evaluation. For the DQN agent, we use an
ε-greedy policy, that is, taking the greedy action of arg maxaQ(s, a) with a probability 1−ε
and a random action otherwise where ε = 0.1. For the D4PG agent, we use the learned
policy network with an additive Gaussian noise with a standard deviation of 0.2.

We consider two types of offline datasets with a different level of difficulty for OPE: an
easy near-policy dataset and a hard pure offline dataset. The size of the dataset for each
environment is given in Table 1 and 2.

For the easy dataset, we consider the three BSuite tasks only. For every task we define
the behavior policy in the same way as the target policy except with a slightly larger
exploration probability of ε = 0.3 instead of 0.1. Therefore the behavior policy is close
to the target policy. We then play the behavior policy in the corresponding environment
repeatedly and collect a sufficiently large off-policy dataset for each task.

For the hard dataset, we restart the agent training process with a different random seed
and collect the episodes along the training. The resulting dataset consists of episodes gen-
erated from various partially trained policies, some of which are close to the initial random
policies while others are close to a well-optimized policy. The dataset is then split randomly
into training and validation subsets with a ratio of 9:1. This is akin to the data generation
protocol in the RL Unplugged dataset (Gulcehre et al., 2020) with two differences: (1) we
modify environments with random dynamics from the original deterministic environment,
(2) the dataset is collected from the training process of a different random seed, therefore
the policies used to generate the dataset could be substantially different from the target
policy to be evaluated.

5.3 Experiment setup and hyper-parameter selection

We compare a list of representative non-linear IV methods, including Kernel IV (KIV), Deep
IV, Deep Feature IV (DFIV) and three adversarial IV methods: Deep GMM, Adversarial
GMM Networks (AGMM), Adversarial approach to structural equation models (ASEM). We
also include as baselines the deterministic Bellman residual minimization (DBRM) and two
variants of the fitted Q evaluation methods with a deterministic (FQE) and distributional
(DFQE) Q representation respectively. (D)FQE was shown to be the best performing OPE
algorithm in a recent benchmark paper (Fu et al., 2021) under a similar task setting as in
this paper.

All algorithms except KIV use the same network architecture to estimate the Q function
as in the trained agent for a fair comparison. For BSuite tasks, the Q network is an MLP
with layer size 50-50-1 and ReLU activation. The input is a concatenation of the flattened
observation and one-hot encoding of the discrete action variable. For DM Control tasks, it
is an MLP with layer size 512-512-256-1, ELU activation and a layer normalization after the
first hidden layer. The input is the concatenation of the flattened observation and action
variables. The architecture of additional networks in each algorithm, such as the generative
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model in Deep IV and the adversarial function network in AGMM, ASEM and DeepGMM
are selected as part of the hyper-parameter search procedure that will be discussed later.
We use OAdam for adversarial methods as suggested by Bennett et al. (2019b); Dikkala
et al. (2020) and Adam for other methods.

We compare all the algorithms with respect to the accuracy of estimating the target
policy value ρ(π) (Eq. 2), i.e., the expected cumulative discounted reward from the initial
state distribution. The estimate is computed as

ρ̂(π) = Es∼µ0,a|s∼π[Q̂π(s, a)], (40)

where Q̂π is given by each algorithm under comparison. We normalize the policy value into
a range of [0, 1] for ease of comparison across environments:

ρNorm =
ρ− ρmin

ρ− ρmax
(41)

where ρmin /max := −1/1 for BSuite Catch and ρmin /max := Rmin /max

∑1000
t=0 γ

t for other
environments. We measure the accuracy in terms of the absolute error |ρ̂Norm − ρNorm|
in this paper. Other metrics such as the policy ranking correlation and regret have been
considered in the literature (Paine et al., 2020; Fu et al., 2021) when multiple target policies
are available in the same environment. Our experiment setup does not meet that condition
and those metrics are hence not included.

Some of the algorithms implemented are sensitive to the choice of hyper-parameters.
In order to ensure a fair comparison, we run a thorough hyper-parameter search for every
algorithm in every environment. We randomly sample up to 100 hyper-parameter settings
for every algorithm and choose the setting with the best metric on a held-out validation
dataset. Due to the large number of tasks (environment and dataset combinations), we
search for the best hyper-parameter at one environment random level in every dataset
(p = 0.2 for BSuite and σ = 0.4 for DM Control tasks) and apply the same setting to other
levels. Once the hyper-parameter is selected, we run each algorithm with 5 random seeds
for every task to measure the mean and variance of the estimate.

Note that due to the state distribution shift between the behavior policy and target
policy, the best hyper-parameter setting on the validation dataset from the behavior dis-
tribution does not guarantee a good performance when evaluating the target policy value.
It remains an open research problem how to select the hyper-parameter for OPE given one
does not have access to the ground truth value (Paine et al., 2020). We explain the metric
adopted for selecting the hyper-parameters of each algorithm in details in Appendix B.

5.4 Results

5.4.1 Near-policy dataset

We first study the performance of all the algorithms on the easy offline dataset with a near-
policy data distribution and sufficiently larget data size. Figure 9 shows the scatter plot
of the estimated policy value versus the ground-truth value. Each dot represents the mean
and 1-standard deviation of the estimate from 5 random runs for every environment and
every random level. Additionally, we show the absolute error of the estimates for each task
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Figure 9: Estimated policy value vs groundtruth with the near-policy dataset
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Figure 11: Distribution of the absolute error across all tasks with the near-policy dataset

24



On Instrumental Variable regression for Deep OPE

in Figure 10 and a box-plot of the distribution of errors pooled from all tasks as a summary
in Figure 11.

Most algorithms provide an accurate estimate of the policy value on this dataset, except
Deep GMM, Deep IV, and KIV. We observe experimentally that the training process of
Deep GMM is very unstable compared the other two adversarial approaches (AGMM and
ASEM). Figure 12 shows a typical trajectory of the training loss and the estimated policy
value along the training process. We suspect it is due to the use of the optimal weighting Cθ̃
in the regularization term. Deep IV fails with both a large mean absolute error and variance.
In particular, in the Catch environment, the generative model completely fails to predict the
next state. This illustrates the challenge of modeling a moderately-high dimensional state
space (50-dimensions) using a simple feed-forward network to predict the parameters of a
mixture of Gaussian generative model as proposed in Hartford et al. (2017b). We expect the
performance to improve with a more sophisticated generative model as evidenced by recent
model-based OPE work in Zhang et al. (2021). KIV fails in the Cartpole and Mountain Car
environments with a large error too. This is in agreement with the observation by Xu et al.
(2021) that shallow features are not capable of modeling complex structural functions.

Figure 12: A typical trajectory of the training loss (left) and the estimated unnormalized
policy value (right) of DeepGMM (green), AGMM (orange), and ASEM (blue) as a function
of training steps. The plots are obtained from the task of BSuite Catch with environment
random level p = 0.2. A valid policy value should be in the range of [−1, 1]. The curves of
AGMM and ASEM overlap on even other in the right plot.

Figure 11 shows that DFQE is the most accurate OPE method on this dataset. Among
the IV methods, AGMM, ASEM and DFIV all give fairly small estimation errors across all
tasks while AGMM performs the best.

5.4.2 Bias in DBRM

The bias in DBRM due to ignoring the confounding variable s′ is clearly observed in the
Cartpole and Catch environments where the error increases with the level of randomness.

We further inspect its bias in the Q estimation in the following ablation study using the
Catch environment with an environment random level p = 0.4 as an example. After AGMM
converges, we take the last hidden layer of the value network as a set of deep features, and
re-fit the weights of the output linear layer. Given the fixed features, it reduces to a standard
IV problem with linear functions. We fit the linear weights with two methods, DBRM and
LSTD-Q, and compare the new estimated Q value of the 15 unique initial state-action pairs
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of Catch together with those obtained by AGMM in Figure 13. The estimates of LSTD-
Q and AGMM match the ground truth very well within a 95% confidence interval while
DBRM estimate shows a significantly large error. This suggests that DBRM suffers, as
expected, from a bias in the presence of environment randomness even when using a good
set of deep features.
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Figure 13: Estimated policy value in the DBRM ablation study. Every dot represents one
initial state-action pair. The error bar shows the 95% confidence interval of the ground-
truth value estimation.

5.4.3 Pure offline dataset

We then evaluate all the algorithms on the hard dataset in both BSuite and DM Control
environments. The episodes are generated from a mixture of partially trained policies from
a different run, and the distribution of states is likely to have a quite different coverage from
the distribution generated by the target distribution.

We show the scatter plot of the estimated policy value versus ground truth in Figure 14,
the absolute error of the estimation per task and pooled together in Figure 15 and Figure 16
respectively.

Apparently, none of the algorithms considered here outperform all the other algorithms
in all tasks. For example, DFQE and FQE perform relatively well in most tasks but fail
on the Humanoid Run and Walker Walk control tasks. In contrast, AGMM estimates the
policy value most accurately among all methods on the challenging Humanoid Run tasks but
has higher error in BSuite catch, DM Control Cheetah Run and Walker Walk tasks. This
observation is consistent with the results in (Xu et al., 2021) that benchmarks other OPE
algorithms in deterministic environments, where they observe that “no evaluated algorithm
attains near-maximum performance under any metric”.

Nonetheless, by inspecting the estimation error in Figure 15 and Figure 16 we notice that
the relative performance of IV methods is roughly in agreement with the results observed in
the near-policy dataset. AGMM is the most robust IV method implemented here. ASEM
and DFIV has a similar median error in all tasks but have a few large estimation errors in
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some tasks such as Walker Walk and BSuite Cartpole. Given the similarity between AGMM
and ASEM, we conjecture that the relatively worse performance of ASEM is due to a bad
choice of the hyper-parameters as it has more regularization hyper-parameters to tune. KIV
and Deep IV obtain considerably larger error than all the other methods, followed by Deep
GMM, which has large variance in a few tasks such as Mountain Car and Walker Walk.

Surprisingly, DBRM that simply ignores the stochasticity of the dynamics displays the
most robust performance among all the algorithms. It converges quickly and almost always
provides estimates of lowest variance among different runs compared to the other more
complicated algorithms, at the price of a somewhat higher median error.

Nonetheless, this observation is indeed understandable. The estimation error of the
policy value comes from multiple sources including: (1) the approximation error due to
lack of model capacity (2) generalization error due to the limited dataset size (3) the off-
policyness, or the divergence between the offline data distribution and the target policy
distribution, which affects the effective size of the dataset (4) optimization error, affected
by the optimization algorithm, and (5) the bias of ignoring the stochasticity of the dynamics.
As demonstrated in Section 5.1, the benefits of IV methods depend on multiple conditions.
Compared to the large near-policy dataset on BSuite, the pure offline dataset, including the
continuous control tasks has higher modeling challenges, less data, and a larger divergence
between the behavior and target distributions. All the other sources of error may dominate
the bias present in DBRM, and due to the simplicity of DBRM as a single minimization
problem, it is simpler to optimize than the loss of the other algorithms.

6. Conclusion

The regression problem one needs to solve when estimating a Q-function suffers from con-
founding as a result of the inputs and the output noise being correlated. If this confounding
is ignored, one can obtain significantly biased Q-function estimates. We have shown here
that fixing the target Q-network in DQN and FQE can be thought of as a way to over-
come this confounding problem. As first suggested in Xu et al. (2021), another approach
overcoming this problem consists of using IV regression techniques.

By exploiting this observation and bringing together the literature on IV and RL, we
have presented here various general nonlinear IV techniques developed recently in machine
learning to estimate Q-functions parameterized by neural networks in the OPE context.
This has allowed us not only to recover previously proposed OPE methods such as model-
based techniques but also to obtain novel techniques. We have assessed the performance of
the resulting algorithms on a simple MDP model and two sets of benchmarking problems.

On the simple MDP problem, we find that the confounding effect can be very pro-
nounced, and ignoring it as in Deterministic Bellman Residual Minimization (DBRM) (Saleh
and Jiang, 2019) is problematic. In this example, an IV method like LSTD proves very use-
ful. On more realistic examples from BSuite and DM Control, we have investigated scenarios
where the evaluation policy is close to the behavioral one and where it is far from it. When
doing OPE for a policy near to the one having generated data, we find that the confounding
effect could be very pronounced and that techniques like DBRM are performing poorly. We
also find that the best IV method - AGMM - displays performance on par with FQE and is
only outperformed by distributional FQE. However, when evaluating a policy far from the
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Figure 14: Estimated policy value vs groundtruth with the offline dataset
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Figure 15: Absolute error of policy value estimation with the offline dataset
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Figure 16: Distribution of the absolute error across all tasks with the offline dataset

one(s) having generated the observations, the combination of distribution shift and model
mismatch has a non-negligible impact on performance. While we observe that AGMM also
performed on par with FQE and DFQE, DBRM surprisingly also performs very well, and in
general appears more stable (suffers from fewer outliers with poor performance) than FQE
and DFQE.
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Appendix A. Variant of DFIV

With the linear assumption of the Q function, Qθ(s, a) = φ(s, a)>θ, we can follow the
derivation of LSTD and write the structural function as

f(s, a, s′, a′) =
(
φ(s, a)− γφ(s′, a′)

)>
θ .

The original DFIV method exploits the decomposition of the structural function and re-
gresses the expected deep features depending on (s′, a′) only, E [φ(s′, a′)|s, a], in the first
stage. We consider a variant where we regress the entire feature map directly E [φ(s, a)− γφ(s′, a′)|s, a] =
V ψ(s, a), and obtain the following stage 1 regression,

V̂ = arg min
V

L1(V ), L1(V ) = Es,a,s′,a′
[
‖φ(s, a)− γφ(s′, a′)− V ψ(s, a)‖2

]
+ λ1‖V ‖2.

(42)

Stage 2 regression is then simplified as

θ̂ = arg min
θ
L2(θ), L2(θ) = Er,s,a

[
‖r − θ>V̂ ψ(s, a)‖2

]
+ λ2‖θ‖2. (43)

While both versions make use of instrumental variables, we find in the experiments that
the second variant is more stable during training. A potential explanation is that the stage
1 target, φ(s, a)− γφ(s′, a′), has a smaller variance than φ(s, a) when the state-action pair
(s, a) changes smoothly in consecutive steps, and is easier to model by a least squares
regression. Further investigation is yet to be done to verify this hypothesis.

Appendix B. Hyper-parameter selection

We choose the hyper-parameters of each IV algorithm using the recommended method in
their original work. To be self-contained, we give a brief description for each method in
this section. We split the offline dataset randomly into a training Dtrain and validation
Dvalid dataset with a ratio of 9:1, train each algorithm on Dtrain and choose the best hyper-
parameters using Dvalid. The mini-batch size is 1024 unless explicitly specified.

Please note, however, that choosing the best hyper-parameters on the validation set does
not guarantee a high accuracy in evaluating the target policy value, because the behavior
distribution of states where the algorithm learns from is different from the evaluation dis-
tribution where the target policy induces and the learned OPE algorithm should be tested
in. There is currently no commonly accepted way of choosing hyper-parameters in the of-
fline reinforcement learning setting (see, e.g. Paine et al. (2020), for an attempt in choosing
hyper-parameters for offline RL algorithms).

B.1 Kernel Instrumental Variable

We use random Fourier features to approximate the squared exponential kernel. The hyper-
parameters of KIV are provided in Table 3. The validation metric for choosing the hyper-
parameters is the stage-2 loss, eq. (24), without regularization.
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Hyper-parameter Value range

Stage-1 regularization {10−8, 10−6, 10−4, 10−2}
Stage-2 regularization {10−8, 10−6, 10−4, 10−2}
Number of random features {128, 256, 512, 1024}

Table 3: Hyper-parameter of KIV. Values in braces are candidates to search over.

Hyper-parameter Value range

Training steps 105

Stage-1 regularization {10−8, 10−6, 10−4, 10−2}
Stage-2 regularization {10−8, 10−6, 10−4, 10−2}
Value net regularization {10−8, 10−6, 10−4, 10−2}
Instrument net regularization {10−8, 10−6, 10−4, 10−2}
Value net learning rate {10−5, 3× 10−5, 10−4, 3× 10−4, 10−3}
Instrument net learning rate {10−5, 3× 10−5, 10−4, 3× 10−4, 10−3}
Instrument net hidden units (BSuite) {(50, 50), (100, 100), (150, 150)}
Instrument net hidden units (DM Control) {(512, 512, 256), (768, 768, 384), (1024, 1024, 512)}

Table 4: Hyper-parameter of DFIV. Values in braces are candidates to search over.

B.2 Deep Feature Instrumental Variables

The hyper-parameters of DFIV include the L2 regularization strength in the regression of
both stages, L2 regularization strength for the value and instrumental network parameters,
the learning rate of the Adam optimizer, and the network architecture of the instrument
network. The mini-batch size is fixed at 2048. Details are shown in Table 4. The validation
metric for choosing the hyper-parameters is the stage-2 loss in Equation (43), without
regularization.

B.3 Deep IV

The hyper-parameters of Deep IV include the hidden layer sizes and the number of mixing
components in the treatment network, learning rate of treatment and value networks, and
the number of Monte Carlo samples in estimating the integral in Equation (10). The
treatment network outputs both a mixture of Gaussian distribution to predict the next
state s′ and a Bernoulli distribution to predict if the current state is a terminating state.
Details are shown in Table 5.

As suggested in Hartford et al. (2017b) we choose the hyper-parameters associated with
training the treatment network according to the log-likelihood on the validation dataset,
and those associated with training the value network according to the regression loss on the
validation dataset.
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Network Hyper-parameter Value range

Treatment
net

Training steps 105

Hidden units (BSuite) {(32, 32), (64, 64), (128, 128)}
Hidden units (DM Con-
trol)

{(128, 128, 128), (256, 256, 256),
(512, 512, 256), (768, 768, 384)}

# mixing components {1, 3, 10}
Learning rate {10−5, 3 × 10−5, 10−4, 3 ×

10−4, 10−3, 3× 10−3}

Value net

Training steps 105

# samples {1, 3, 10}
Learning rate {10−5, 3×10−5, 10−4, 3×10−4,

10−3, 3× 10−3}

Table 5: Hyper-parameter of DFIV. Values in braces are candidates to search over.

B.4 Generalized Method of Moments

B.4.1 DeepGMM

The hyper-parameters of DeepGMM include the hidden layer sizes of the adversarial net-
work, learning rate of the value network ηv and a learning rate multiplier for the adversarial
network ηa = ληv, and the parameters β1 and β2 for the OAdam optimizer. Details are
shown in Table 6.

We follow the hyper-parameter selection method in Bennett et al. (2019b). For every
candidate of hyper-parameter setting and every checkpoint during the training i, we evaluate
the value function Qθi and adversarial function gτi on a fixed set of validation data points.
The metric for choosing the hyper-parameters is the objective in Equation (29) except that
it is evaluated on the validation set (both Ψn and the expectation in Rg), the function g is
in the finite set {gτi}, and Qθ̃ in the regularization Rg is averaged over all Qθi .

θ∗ = arg min
θ∈{θi}

max
τ∈{τi}

Ψn(Qθ, gτ )− 1

4
E
[
g2τ (s, a)(r −Qθ̃(s, a) + γQθ̃(s

′, a′))2
]
, (44)

The hyper-parameters used to train θ∗ is selected.

B.4.2 Adversarial GMM and SEM

The hyper-parameters of Adversarial GMM and SEM are similar to DeepGMM with ad-
ditional hyper-parameters in the regularization terms. Details are shown in Table 7 and
Table 8.

We choose the best hyper-parameter based on the early stopping method in the open-
sourced implementation4 of AGMM. Particularly, we keep a set of candidate parameters
Qθi and gτi and the validation set as in the previous section, and then find parameter θi
with minimum moment violation

θ∗ = arg min
θ∈{θi}

max
τ∈{τi}

Ψn(Qθ, gτ ) . (45)

4. https://github.com/microsoft/AdversarialGMM/tree/main/mliv/neuralnet
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Hyper-parameter Value range

Training steps 205

Adversarial net hidden
units (BSuite)

{(50, 50), (100, 100), (150, 150)}

Adversarial net hidden
units (DM Control)

{(512, 512, 256), (768, 768, 384), (1024, 1024, 512)}

Value net learning rate {10−5, 3× 10−5, 10−4, 3× 10−4, 10−3}
Instrument net learning
rate multiplier

{1, 5, 10, 50}

OAdam (β1, β2) {(0, 0.01), (0.5, 0.9)}

Table 6: Hyper-parameter of DeepGMM. Values in braces are candidates to search over.

Hyper-parameter Value range

Training steps 205

Adversarial net hidden
units (BSuite)

{(50, 50), (100, 100), (150, 150)}

Adversarial net hidden
units (DM Control)

{(512, 512, 256), (768, 768, 384), (1024, 1024, 512)}

Value net learning rate {10−5, 3× 10−5, 10−4, 3× 10−4, 10−3}
Instrument net learning
rate multiplier

{1, 5, 10, 50}

OAdam (β1, β2) {(0, 0.01), (0.5, 0.9)}
Value net parameter
regularization a

{10−10, 10−8, 10−6, 10−4, 10−2}

Adversarial net param-
eter regularization b

{10−10, 10−8, 10−6, 10−4, 10−2}

Table 7: Hyper-parameter of Adversarial GMM. Values in braces are candidates to search
over.

In order to avoid the max operator to be dominated by a test function with a large magni-
tude, we normalize all the gτi functions on the validation set, that is,

g̃(s, a) =
1

|Dvalid|
EDvalid

[g(s, a)] .
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Hyper-parameter Value range

Training steps 205

Adversarial net hidden
units (BSuite)

{(50, 50), (100, 100), (150, 150)}

Adversarial net hidden
units (DM Control)

{(512, 512, 256), (768, 768, 384), (1024, 1024, 512)}

Value net learning rate {10−5, 3× 10−5, 10−4, 3× 10−4, 10−3}
Instrument net learning
rate multiplier

{1, 5, 10, 50}

OAdam (β1, β2) {(0, 0.01), (0.5, 0.9)}
Value net parameter
regularization a

{10−8, 10−6, 10−4, 10−2}

Adversarial net param-
eter regularization b

{10−8, 10−6, 10−4, 10−2}

Value net parameter
regularization α

{10−8, 10−6, 10−4, 10−2}

Table 8: Hyper-parameter of Adversarial SEM. Values in braces are candidates to search
over.

40


	Introduction
	Background
	Reinforcement learning and offline policy evaluation
	A Simple Biased Estimator
	Fitted Q Evaluation

	Instrumental variable regression

	Relationship between LSTD and Linear IV
	Policy Evaluation with Non-linear Functions and Non-linear IV
	Extension to Non-linear Value Functions
	Deep IV
	KIV and DFIV
	Generalized Method of Moments
	Deep GMM
	Adversarial GMM Networks (AGMM)
	Adversarial Structural Equation Models (ASEM)
	Other adversarial IV methods
	Related OPE Methods


	Experiments
	Simple MDP problem
	OPE benchmark problems
	Environments
	Target policies for evaluation and offline datasets

	Experiment setup and hyper-parameter selection
	Results
	Near-policy dataset
	Bias in DBRM
	Pure offline dataset


	Conclusion
	Variant of DFIV
	Hyper-parameter selection
	Kernel Instrumental Variable
	Deep Feature Instrumental Variables
	Deep IV
	Generalized Method of Moments
	DeepGMM
	Adversarial GMM and SEM



