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Abstract

In this thesis, the author defines an invariant of rational homology 3-spheres

equipped with a contact structure as an element of a cohomotopy set of the Seiberg-

Witten Floer spectrum as defined in Manolescu (2003). Furthermore, in light of the

equivalence established in Lidman & Manolescu (2018a) between the Borel equiv-

ariant homology of said spectrum and the Seiberg-Witten Floer homology of Kro-

nheimer & Mrowka (2007), the author shall show that this homotopy theoretic

invariant recovers the already well known contact element in the Seiberg-Witten

Floer cohomology (vid. e.g. Kronheimer, Mrowka, Ozsváth & Szabó 2007) in a nat-

ural fashion. Next, the behaviour of the cohomotopical invariant is considered in

the presence of a finite covering. This setting naturally asks for the use of Borel

cohomology equivariant with respect to the group of deck transformations. Hence,

a new equivariant contact invariant is defined and its properties studied. The in-

variant is then computed in one concrete example, wherein the author demonstrates

that it opens the possibility of considering scenarios hitherto inaccessible.
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Impact Statement

This thesis has impacted the knowledge on a well known and powerful invari-

ant used in numerous results of the past two decades in the field of contact topology.

This was achieved by refining it via a homotopy theoretic approach whilst showing

that it recovers the classical one in a natural fashion. As an application, the au-
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ther implications of the work presented in this thesis via use of different topological

methods.
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1. Introduction

It is well known from the work of Taubes (1994) that symplectic 4-manifolds

with b+2 > 1 have non-trivial Seiberg-Witten invariants. This is accomplished by

perturbing the Seiberg-Witten equations in a manner dictated by the symplectic

form multiplied by a large positive real number. The effect of doing so is that the

Seiberg-Witten equations gain an obvious canonical solution, which turns out to be

unique and non-degenerate.

Perhaps a little less well known is that one can do something similar for con-

tact 3-manifolds. This was pursued in Taubes (2007) and was ultimately crucial

for the proof of the Weinstein conjecture. In the 3-dimensional case, one adds, as

a perturbation, the contact form multiplied, again, by a positive real number. A

canonical solution to the Seiberg-Witten equations immediately becomes apparent,

and, if the real number be made large enough, one finds that this solution is au-

tomatically non-degenerate. Uniqueness does not hold in the 3-dimensional case in

the same form as it does in the 4-dimensional case; if it did, all contact rational ho-

mology 3-spheres would be L-spaces. Nonetheless, another sort of uniqueness does

hold but one which concerns Seiberg-Witten trajectories. The distinguished contact

monopole does not admit any non trivial Seiberg-Witten trajectories coming into

it in the forward time limit. This implies that this solution defines a cocycle and

therefore a class in monopole Floer cohomology. As it turns out, this class is the well

known contact invariant studied in Kronheimer, Mrowka, Ozsváth & Szabó (2007)

and is equivalent to the contact invariants in Heegaard Floer and embedded contact

homologies.

In Manolescu (2003), a Seiberg-Witten Floer spectrum was defined, which was

later shown to recover the monopole Floer cohomologies through its Borel U(1)-

equivariant cohomology. An important detail here is that the construction of the

spectrum avoids altogether the use of any generic perturbations. Taubes’ approach

to defining the contact invariant, despite requiring a generic perturbation in order

to work in a Morse theoretic setting, has the property that the contact monopole

is already non-degenerate before the addition of the generic perturbation. In the

present thesis, the author applies Taubes’ approach to the contact invariant in the

context of the Seiberg-Witten Floer spectrum in order to conveniently avoid the use

of generic perturbations altogether.
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Theorem 1.1: Given a contact rational homology 3-sphere (Y, λ) there exists a

cohomotopical contact invariant,

SWF(Y, sλ)→ T (λ),

where sλ is the SpinC structure on Y defined by the contact form λ and T (λ) is a
(de)suspension of a U(1)-equivariant Thom space of a vector bundle over the U(1)-

orbit of the contact monopole in global Coulomb gauge. Moreover, the classical

cohomological contact invariant is recovered by pulling back via this map a class in

the Borel U(1)-equivariant cohomology of T (λ).

A similar invariant is constructed in Iida & Taniguchi (2021); however, the

work in the present thesis is entirely independent and differs in significant ways.

Firstly, the author uses a different set of analytical results to ensure the existence

of his invariant and also relies more heavily on certain aspects of Conley theory

to define it. Secondly, here, U(1)-equivariance is kept manifest throughout, which

means one can consider implications in Borel equivariant cohomology; indeed, the

author was able to prove, via the techniques developed in Lidman & Manolescu

(2018a), how the cohomotopical invariant recovers the well known cohomological

invariant by passing to Borel equivariant cohomology. It should also be noted that

the construction presented in the present thesis and the one of Iida & Taniguchi

(2021) are sufficiently different that it is not clear if the two invariants are indeed

equivalent or not. Of course, one would be inclined to think that two such invariants

should really be holding the same information. However, proving their equivalence

might be a difficult task due to the different analytical foundations used, so this goal

is not pursued in the present thesis.

The author’s main goal, after arming himself with the cohomotopical invariant,

was to study covering spaces. The avoidance of generic perturbations is important

in this context, as demonstrated in Lidman & Manolescu (2018b), due to the im-

possibility of producing sufficiently generic equivariant perturbations. The author’s

cohomotopical contact invariant can also be made G-equivariant for G the group of

deck transformations of a finite regular covering. This allows him to consider Borel

G-equivariant cohomology and deduce certain vanishing and non-vanishing results

via the use of the localization theorem.

The central question one considers is whether the lift of a tight contact struc-

ture remains tight or becomes overtwisted in the covering. The results derived via
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use of the contact invariant shed light on this problem. In the work of Lin & Lip-

nowski (2022), the term minimal L-space is introduced to refer to rational homology

3-spheres having a single solution to the Seiberg-Witten equations for any SpinC

structure. For such a manifold, the Seiberg-Witten Floer spectrum is always the

sphere spectrum. Moreover, in the case of a finite covering, the Seiberg-Witten Floer

G-spectrum is the sphere G-spectrum. In this context, the author shall establish the

following theorem.

Theorem 1.2: Let π : Y → Y/G be a regular prime order covering of minimal L-

spaces and suppose that λ be a tight contact form on Y/G with non-vanishing

cohomological contact invariant. Then, the lifted contact form, π∗λ, has non-

vanishing cohomological contact invariant (and, therefore, is tight) provided that

d3(Ker π∗λ)+1/2 = d(Y, π∗sλ), where d3 denotes Gompf’s three-dimensional invari-

ant of hyperplane fields and d denotes the Ozsváth-Szabó invariant.

Examples of minimal L-spaces include all sol rational homology 3-spheres due

to the work of Lin (2020). Another example is the Hantzsche-Wendt manifold,

the unique flat rational homology 3-sphere. A few more examples exist amongst

the hyperbolic manifolds as shown in Lin & Lipnowski (2022). However, the most

evident class of examples of minimal L-spaces is that of the elliptic manifolds. In

this case, increased knowledge of the contact topology, in particular the fact that

the cohomological contact invariant never vanishes for tight contact structures and

no two distinct contact structures have the same SpinC structure, allows the author

to prove the following stronger theorem.

Theorem 1.3: Let π : Y → Y/G be a prime order regular covering of elliptic

manifolds and suppose that λ be a tight contact form on Y/G. Then, the lifted

contact form, π∗λ, is isotopic to a tight contact form λ′ on Y if and only if it be

homotopic to λ′.

This result leads to a scheme for determining tightness of the lift of a tight

contact structure on an elliptic manifold based purely on the homotopy theoretic

obstruction classes of the contact structures involved. This reduces significantly the

complexity of the problem and can be used in concrete calculations. The rationale

is to try to determine the obstruction theoretic invariants of hyperplane fields – that

is, the d3 invariant and the SpinC structure – for the lifted contact structure, π∗λ,

from those of λ. If those be seen to match the values for a known tight contact
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structure on Y , then one shall know that π∗λ is isotopic to it. The issue that arises

is that it is non trivial to determine the lifting behaviour of the obstruction theoretic

invariants, especially of the d3 invariant.

In order to solve this problem, the author found himself having to develop

techniques which seem not be discussed in the literature in a particularly well de-

tailed manner. These shall be detailed in the present thesis and rely mostly on use

of the Kirby calculus. As an example, the author shall study the case a certain

tight contact structure on the (−8)-surgery on the left-handed trefoil which shall be

shown to lift to a virtually overtwisted contact structure on the lens space L(12, 7)

via the double covering.

The main ingredient needed to perform these calculations is a form of G-

equivariant almost-complex filling for the given covering of contact manifolds, which

consists of an almost complex 4-manifold-with-boundary extending the given G-

action on its contact boundary and potentially having a branching surface in its

interior. Such a filling can often be produced by appealing to the notion of equiv-

ariant handle attachments in the context of the Kirby calculus. With such a filling

at hand, one can apply the G-signature theorem, as was done by Khuzam (2012),

to deduce the lifting behaviour of d3 invariants.

The other matter that one must understand carefully is the lifting behaviour

of SpinC structures. This is more elementary, albeit still difficult in practice, and

can be tackled in different manners. The method pursued here shall follow a similar

approach to the lifting of d3 invariants by using Kirby calculus to express Spin

structures in terms of obstruction theory and then studying the lifting behaviour of

Spin structures. The behaviour of SpinC structures follows easily thence.
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2. Seiberg-Witten Equations and Contact Structures

This section shall introduce the basic definitions and analytical results required

from Seiberg-Witten theory. Throughout this thesis, the author shall use a version

of the Seiberg-Witten equations adapted to the presence of a contact form which

was first introduced in Taubes (2007) and Taubes (2009) and was subsequently

used in Taubes’ work in the correspondence between monopole Floer homology and

embedded contact homology.

Consider an oriented 3-manifold Y satisfying b1(Y ) = 0. A contact form λ is a

1-form on Y satisfying λ ∧ dλ > 0. The subbundle of TY given by Ker λ is called a

coorientable contact structure. In this thesis, all contact structures shall be assumed

coorientable. As shall be seen, the version of the Seiberg-Witten equations which

shall be used always admits a canonical solution, Cλ, which, provided a certain

parameter r > 0 be made large enough, is nicely behaved in two fundamental ways.

It is non-degenerate irrespective of any genericity requirements, and it is not the

forward time limit of any Seiberg-Witten trajectory. These two properties shall be

instrumental later in the present thesis. The solution Cλ is essentially defined in a

manner that make its spinor component bounded away from zero; a feature which

is unique to this solution provided r be made large enough.

In what follows, agree to fix a metric g on Y with the property that λ ∧ dλ =

Volg. Use ξ := Ker λ. Fix a complex structure J ∈ End(ξ) on the bundle ξ

compatible with g in the sense that g(−,−) = dλ|ξ(−, J−). Use R ∈ ΓTY to

denote the Reeb vector field; that is, the vector field satisfying ιRdλ = 0, ιRλ = 1.

Write ξ ⊗ C = Λ1,0ξ ⊕ Λ0,1ξ, where Λ1,0ξ and Λ0,1ξ are, respectively, the (±i)-
eigenbundles of J . Likewise, for the dual, write ξ∗ ⊗ C = Λ1,0ξ∗ ⊕ Λ0,1ξ∗. Denote

Λp,qξ∗ := Λp
C
Λ1,0ξ∗⊗Λq

C
Λ0,1ξ∗. There is canonical SpinC structure on Y defined via

the specification of its spinor representation bundle in the following way.

Definition 2.1: Define the spinor bundle

Sλ :=
⊕

q

Λ0,qξ∗ = Λ0,0ξ∗ ⊕ Λ0,1ξ∗

with Clifford multiplication cℓ : TY → EndC(Sλ) defined so as to satisfy, for α ∈
Λ0,qξ∗ and X ∈ ξ,

cℓ(R)α = (−1)q+1iα, cℓ(X)α =
√
2
(
(X0,1)∗ ∧ α− ι(X0,1)α

)
.
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Remark 2.2: The notation (X 7→ X∗) : TY ⊗ C → T∗Y ⊗ C denotes the C-

anti linear isomorphism induced by the metric.

Remark 2.3: Note that this fully determines the Clifford action due to the fact that

TY = 〈R〉R ⊕ ξ. This map can be checked to indeed define an irreducible Clifford

module; vid. Petit (2005) for a proof and more details about this matter.

Definition 2.4: Denote the underlying SpinC structure, that is, the principal

SpinC(3)-bundle, by sλ → Y .

Remark 2.5: Notice that the determinant line bundle is simply det sλ = Λ0,1ξ∗ ∼= ξ∗

where ξ∗ is equipped with the complex structure induced by J .

Definition 2.6: Use A(E) to denote the affine space of Hermitian connexions on a

Hermitian vector bundle E → Y .

Definition 2.7: Define the configuration space by C(Y, sλ) := A(det sλ) × Γ(Sλ).
Use C(Y, sλ)k to denote its completion in the topology induced by the Sobolev norm

L2
k.

Definition 2.8: The tangent bundle TC(Y, sλ) → C(Y, sλ) is the bundle having as

fibre over C ∈ C(Y, sλ) the space TC(Y, sλ)|C = Γ(iT∗Y ⊕ Sλ). Use TC(Y, sλ)k for

its Sobolev L2
k completion.

Definition 2.9: Use τ : Sλ → iT∗Y to denote the quadratic map defined by sending

ψ 7→ cℓ−1

(
ψ ⊗ ψ∗ − 1

2
|ψ|2id

)
.

Definition 2.10: Denote DA : ΓSλ → ΓSλ the Dirac operator defined by a connex-

ion A on detSλ.

Definition 2.11: Define the contact configuration, Cλ ≡ (Aλ, ψλ) ∈ A(det sλ)⊕Sλ
by setting its spinor component to be the constant function ψλ := 1 ∈ Γξ∗0,0

∼= Y ×C
and by requiring its connexion component Aλ to solve the Dirac equation DAλ

ψλ =

0.

Remark 2.12: This canonical configuration shall play a pivotal rôle in this thesis.

Definition 2.13: Let r > 0. The canonically perturbed Seiberg-Witten vector field

of (Y, λ) is the vector field X λ,r : C(Y, sλ)→ TC(Y, sλ) given by

X λ,r(A,ψ) =

(
∗1
2
(FA − FAλ

) + rτ(ψ)− ir

2
λ, DAψ

)
.
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Remark 2.14: Notice that, for any value of r > 0, the contact configuration solves

the Seiberg-Witten equation

X λ,r(Cλ) = 0.

That is, Cλ is a fixed point of the Seiberg-Witten vector field.

Definition 2.15: Denote the gauge group by G(Y ) := C∞(Y,U(1)). Use G(Y )k for

its completion in the Sobolev L2
k norm.

Definition 2.16: For (A,ψ) ∈ C(Y, sλ), define the linearized gauge action by

L(A,ψ) : C
∞(Y, iR)→ TC(Y, sλ)|(A,ψ), u 7→ (−du, uψ).

Use L∗
(A,ψ) for its formal L2-adjoint.

Definition 2.17: The local Coulomb gauge is the subspace

KC := KerL∗
C ⊂ TC(Y, sλ)|C .

Denote by K → C(Y, sλ) the vector bundle with fibres the local Coulomb gauges.

Use KC,k and Kk to denote the L2
k Sobolev completions.

Definition 2.18: Denote by ΠLC
C : TC(Y, sλ)|C → KC the L2-orthogonal projection.

Definition 2.19: A configuration (A,ψ) ∈ C(Y, sλ) is said to be irreducible if ψ is

not identically zero.

Definition 2.20: An irreducible solution C ∈ X−1
λ,r(0) is said to be non-degenerate

if the derivative

ΠLC
C ◦DC X λ,r : KC → KC

be surjective.

Remark 2.21: It is customary in Seiberg-Witten theory to ensure non-degeneracy

of all solutions through the addition of a generic perturbation; however, often, doing

so has its downside. One of the key advantages of the Seiberg-Witten Floer spectrum

construction (Manolescu 2003) is that it avoids the need for such a perturbation al-

together. This was crucial in the results of Lidman & Manolescu (2018b) concerning

the Smith-type inequality of Seiberg-Witten Floer homology. Avoiding the use of a

generic perturbation shall also be exploited in the present thesis; however, as will be

seen, it is still necessary to make sure that Cλ be non-degenerate. This is ensured

by the following theorem of Taubes.
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Remark 2.22: For ease of reference, the author shall make use of the following

convention. When a proposition state the existence of a certain constant which

shall be of use later in the text, that constant shall be labelled with the number of

the proposition.

Theorem 2.23: (Taubes 2007) There exists r2.23 > 0 such that, for r > r2.23, the

contact configuration is non-degenerate.

Proof: Prior to coming across this result in Taubes (2007), the author wrote an

independent proof for it, which turns out to consist of a significantly different argu-

ment. This alternative proof can be found in §11 of the present thesis. QED

Besides the non-degeneracy property, the configuration Cλ enjoys two unique-

ness properties that shall prove important.

Theorem 2.24: (Taubes 2009) There exists r2.24 > 0 and δ2.24 > 0 such that, for

r > r2.24, the only configuration C = (a, ψ), up to a gauge transformation, satisfying

X λ,r(C) = 0, |ψ| ≥ 1− δ2.24

is the contact configuration C = Cλ.

Proof: Vid. Taubes (2009), Proposition 2.8. QED

Theorem 2.25: There exists r2.25 > 0 such that, for r > r2.25, any trajectory

γ : R→ C(Y, sλ) satisfying

d

dt
γ(t) = −X λ,r (γ(t)), lim

t→−∞
γ(t) = C, lim

t→∞
γ(t) = Cλ,

where the limits are with respect to the Sobolev norm L2
k for any k ≥ 5, must satisfy

γ(t) = Cλ for all t ∈ R.

Proof: This is nearly what is stated by Taubes (2009), Proposition 5.15, but not

quite. Please find an adaptation of Taubes’ proof in §12 of the present thesis.

QED
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3. Review of Seiberg-Witten Floer Spectra

Armed with the analytic results from the previous section, the first goal of

the present thesis shall be to define a homotopy theoretic invariant emerging from

the contact configuration. This invariant shall live in an equivariant cohomotopy

set of the Seiberg-Witten Floer Spectrum SWF(Y, sλ) defined by Manolescu (2003).

This section shall review that construction with a slight adaptation; the Seiberg-

Witten flow used shall be the one canonically perturbed by the contact form as was

described in the previous section. This shall allow for the definition of the contact

invariant in the next section.

Let Y , λ and g be as in the previous section.

Definition 3.1: The unperturbed Seiberg-Witten vector field is

X : C(Y, sλ)→ TC(Y, sλ), X (A,ψ) =
(
1

2
∗FA − τ(ψ), DAψ

)
.

Remark 3.2: The construction in Manolescu (2003) uses X as the Seiberg-Witten

vector field. The version of the Seiberg-Witten vector field used in the present thesis

is X λ,r and it differs from X in two ways. Firstly, the spinor component of X λ,r
is scaled by r1/2 compared to X ; this distinction shall be evidently immaterial in

the construction. Secondly, X λ,r contains the constant term ( ir
2
λ−∗1

2
FAλ

, 0) added

on. In the language of Lidman & Manolescu (2018a), this amounts to the addition

of a “very tame” perturbation (vid. Lidman & Manolescu 2018a, Definition 4.4.2),

which, as demonstrated there (vid. Lidman & Manolescu 2018a, Proposition 6.1.6),

does not affect the construction of the spectrum. Hence, the spectra defined with

X λ,r and X shall be the same.

Definition 3.3: The normalized Gauge group is the subgroup G◦(Y ) ⊂ G(Y ) con-
sisting of those u ∈ G(Y ) which can be written as u = eif such that

∫
Y
∗f = 0.

Definition 3.4: By the global Coulomb gauge with respect to the connexion Aλ, one

means

W :=
(
Aλ +Ker(d∗ : iΩ1(Y )→ iΩ0(Y ))

)
⊕ Γ(Sλ) ⊂ C(Y, sλ).

Remark 3.5: The affine space W shall be thought of as a vector space with zero

being (Aλ, 0); that is, connexions shall be thought of as purely imaginary 1-forms

by subtracting Aλ.

Remark 3.6: Any G◦(Y )-equivalance class [(Aλ + a, ψ)] ∈ C(Y, sλ)/G◦(Y ) has a
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unique representative in global Coulomb gauge; that is, there is a unique (Aλ +

a′, ψ′) ∈ W such that [(Aλ + a′, ψ′)] = [(Aλ + a, ψ)] ∈ C(Y, sλ)/G◦(Y ).

Definition 3.7: The global Coulomb projection, ΠGC : C(Y, sλ) → W , is given by

sending a configuration (Aλ + a, ψ) ∈ C(Y, sλ) to its unique G◦(Y )-equivalent in

global Coulomb gauge.

Remark 3.8: The map ΠGC may be computed as follows. Let G : L2
m(Y ) →

L2
m+2(Y ) denote the Green’s operator of the Laplacian ∆ : Ω0(Y ) → Ω0(Y ). One

can show that

ΠGC(Aλ + a, ψ) = (Aλ + a− dGd∗a, eGd∗aψ).

As a consequence, note that ΠGC maps bounded sets to bounded sets.

Definition 3.9: The enlarged local Coulomb slice is the subspace

KE
(A,ψ) ⊂ TC(Y, sλ)|(A,ψ)

defined as the L2-orthogonal complement to the orbits of G◦(Y ).

Definition 3.10: Denote by G◦(Y ) the Lie algebra of G◦(Y ).

Remark 3.11: Any equivalence class [(b, φ)] ∈ TC(Y, sλ)|(A,ψ)/G◦(Y ) has a unique

representative in enlarged local Coulomb gauge.

Definition 3.12: By the enlarged local Coulomb projection, one means

ΠELC
(A,ψ) : TC(Y, sλ)|(A,ψ) → KE

(A,ψ)

defined by sending a vector to the unique representative in enlarged local Coulomb

gauge of its equivalence class in the quotient TC(Y, sλ)|(A,ψ)/G◦(Y ).

Remark 3.13: Note that ΠLC and ΠELC are maps defined on the tangent bundle

TC(Y, sλ), whereas ΠGC is defined on C(Y, sλ). Of course, ΠGC induces a map

TC(Y, sλ)→ TW via the pushforward ΠGC
∗ .

Definition 3.14: Set XGC
λ,r := ΠGC

∗ X λ,r.

Remark 3.15: Fix some integer k ≥ 5 and consider, henceforth, XGC
λ,r as a map

Wk → Wk−1 where Wm denotes the completion of W in the Sobolev norm L2
m.

Definition 3.16: Define the Fredholm linear operator ℓ : Wk → Wk−1 by the

formula

ℓ(Aλ + a, ψ) =

(
Aλ +

1

2
∗da, DAλ

ψ

)
.
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Definition 3.17: Define the (non-linear) operator c : Wk →Wk−1 by c := XGC
λ,r − ℓ.

Remark 3.18: Note that XGC
λ,r = ℓ+ c where c is a compact operator as explained

in Manolescu (2003), §4.

Definition 3.19: For µ > 1, denote by W µ ⊂ Wk, the subspace consisting of

the span of the eigenvectors of ℓ with eigenvalues in the interval (−µ, µ). Use

p̃µ : Wk →W µ to denote the L2-orthogonal projection.

The family of operators p̃µ must now be smoothed out in a particular way.

For that end, fix a smooth function β : R → R satisfying supp β = [0, 1] and
∫
R
β(x)dx = 1. A preliminary version of the smoothed out family is as follows.

Definition 3.20: Define a family of operators pµprel :Wk →W µ by

pµprel :=

∫ 1

0

β(t)p̃µ−tdt

Remark 3.21: This preliminary version could well be used to define the Seiberg-

Witten Floer spectrum and, indeed, is essentially the operator family which appears

in the original definition in Manolescu (2003). However, in Lidman & Manolescu

(2018a), the authors use a slightly modified version which turns out to be needed

in proving some technical results. Some of those technical results shall be used in

the present thesis. To define the final version of the operator family, a few more

data need to be fixed. Firstly, choose an unbounded strictly increasing sequence

{µi} ⊂ R such that, for no i, be µi an eigenvalue of ℓ. Next, fix a sequence of small

real numbers {εi} ⊂ R such that the intervals [µi − εi, µi + εi] be disjoint and not

contain any eigenvalue of ℓ. At last, pick smooth bump functions {βi : R→ [0, 1]}
such that supp βi ⊂ [µi − εi, µi + εi].

Definition 3.22: Define the family of operators pµ : Wk → W µ by

pµ :=
∑

i

βi(µ)p̃
µ +

(
1−

∑

i

βi(µ)

)
pµprel.

Remark 3.23: The family of operators pµ is smooth in µ but still has the property

that, for all i, pµi = p̃µi.

Definition 3.24: By the canonically perturbed Chern-Simons-Dirac functional, one

means

CSDλ,r : C(Y, sλ)→ R,

CSDλ,r(Aλ + a, ψ) :=

∫

Y

∗r〈ψ,DAλ+aψ〉 −
∫

Y

a ∧ da− ri

2

∫

Y

λ ∧ da.

20



Definition 3.25: A finite type curve γ : R→ C(Y, sλ), γ = (A,ψ), is a curve such

that the maps t 7→ CSDλ,r(γ(t)) and t 7→ ‖ψ(t)‖C0 be bounded as functions R→ R.

Definition 3.26: A curve γ : R→ Wk is said to be a Seiberg-Witten trajectory in

global Coulomb gauge if

d

dt
γ = −XGC

λ,r (γ(t)).

Definition 3.27: ForR > 0, and a normed vector space V , use B(V,R) ⊂ D(V,R) ⊂
V to denote, respectively, the open and closed balls of radius R. Use S(V,R) =

D(V,R) \ B(V,R) to denote the sphere of radius R.

Theorem 3.28: (cf. Manolescu 2003, Proposition 1) There exists R > 0 such that

all finite type trajectories of XGC
λ,r are contained in the ball B(Wk, R) ⊂Wk.

Proof: Firstly, note that the proof in Manolescu (2003) can be easily adapted to the

present case of the perturbed Seiberg-Witten flow. That result provides a constant

R′ > 0 such that, up to a gauge transformation, all Seiberg-Witten trajectories of

finite type sit inside the ball B(Wk, R
′) ⊂ C(Y, sλ)k. Therefore, a Seiberg-Witten

trajectory in global Coulomb gauge is, locally, the global Coulomb projection of a

Seiberg-Witten trajectory residing in the ball B(Wk, R
′) ⊂ C(Y, sλ)k. But the global

Coulomb projection map ΠGC : C(Y, sλ)k → Wk maps bounded sets to bounded

sets. QED

Remark 3.29: Henceforth, assume R > 0 to be such that all finite type Seiberg-

Witten trajectories in Coulomb gauge fit in B(Wk, R).

Remark 3.30: Also, fix a family of U(1)-equivariant bump functions uµ : W µ → R

satisfying

uµ|D(Wµ,2R) = 1, uµ|Wµ\B(Wµ,3R) = 0

and, uµ constant on the sphere S(W µ, t)) ⊂ W µ of radius t for all t ∈ [0,∞). Note

that the norm on W µ ⊂ Wk is defined by the Sobolev norm L2
k of Wk.

Definition 3.31: Define the finite dimensional approximation to the Seiberg-Witten

vector field as

X µ
λ,r = uµ · (ℓ+ pµc).

Furthermore, use ϕµλ,r :W
µ ×R→W µ to denote the flow given by the O.D.E.

d

dt

∣∣∣∣
t=0

γ(t) = −X µ
λ,r(γ(t)).
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The flow lines of ϕµλ,r are called approximate Seiberg-Witten trajectories in global

Coulomb gauge.

Definition 3.32: Use Sµλ,r ⊂ B(W µ, R) to denote the union of all flow lines of ϕµλ,r

which remain inside of B(W µ, R) for all time.

Theorem 3.33: (Manolescu 2003, Proposition 3) For µ > 0 sufficiently large com-

pared to R, any flow line of ϕµλ,r which be contained in the disk D(W µ, 2R) is, in

fact, contained in the open ball B(W µ, R).

Proof: The proof in Manolescu (2003) of the non-perturbed case of this theorem

can be trivially adapted to the case at hand. Alternatively, this result is a special

case of Lidman & Manolescu (2018a), Proposition 6.1.2(i) and Proposition 6.1.5,

noting that the perturbation used in this thesis is “very tame”. QED

The author shall now recall the pertinent definitions from Conley theory. For

a reference, the reader is directed to Conley (1978), Floer (1987) and Mischaikow

(1995). In what follows, suppose that G be a compact Lie group, Γ be a locally

compact Hausdorff space with a continuous G-action and φ : Γ×R→ Γ a continuous

and equivariant flow.

Definition 3.34: Let U ⊂ Γ be a G-invariant subset, the maximal invariant set of

U is

Inv(U) := {u ∈ U | (∀t ∈ R)(φ(u, t) ∈ U)}.

Definition 3.35: Let S ⊂ Γ be a G-invariant compact subset. S is called an isolated

invariant set if there be a compact neighbourhood U ⊃ S such that Inv(U) = S.

Definition 3.36: Let S ⊂ Γ be an isolated invariant set. A pair of G-invariant

compact sets (M,N) satisfying N ⊂M ⊂ Γ is called an index pair for S when:

(i) M \N be an isolating neighbourhood for S;

(ii) for all t ≥ 0 and x ∈ N , if ϕ({x} × [0, t]) ⊂M , then ϕ({x} × [0, t]) ⊂ N ;

(iii) for all t ≥ 0 and x ∈M , if ϕ(x, t) /∈M , then ϕ({x} × [0, t]) ∩N 6= ∅.

Theorem 3.37: (Conley 1978, non-equivariant; Floer 1987 and Floer & Zehnder

1988, equivariant) For any isolated invariant set S ⊂ Γ, there exists an index pair

(M,N) and the G-equivariant pointed homotopy type M/N is independent of the

choice of (M,N).

Definition 3.38: The G-equivariant homotopy type of M/N where (M,N) is an
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index pair for an isolated invariant set S is called the Conley index of S and denoted

IG(S, φ).

Theorem 3.33 can now be reinterpreted in this language.

Corollary 3.39: Sµλ,r is a U(1)-invariant isolated invariant set with isolating neigh-

bourhood D(W µ, 2R) for the U(1)-equivariant flow ϕµλ,r.

The author shall now introduce the relevant definitions from equivariant stable

homotopy theory. Here, the author shall deviate slightly from the route taken in

Manolescu (2003); this is done in the interests of later sections that shall deal with

Seiberg-Witten Floer spectra equivariant with respect to the deck transformations

of a covering. In Manolescu (2003), in order to perform the required desuspensions,

an ad hod version of the Spanier-Whitehead category is used. In the present thesis,

instead, the author shall use the, by now, more standard category of spectra. This

increases slightly the complexity of the definitions, but nothing new is gained as the

Spanier-Whitehead category embeds into the category of spectra in a simple way.

For more details, the reader is directed to May & al. (1996). In what follows, let G

be a compact Lie group. Whenever the author say G-space, he means in fact pointed

G-space.

Definition 3.40: A G-universe U is an orthogonal G-representation of countable

dimension having the following two properties:

(i) For each finite dimensional subrepresentation V ⊂ U , the direct sum of V with

itself countably many times, V∞, also occurs as a subrepresentation in U .

(ii) The trivial representation R, therefore also R∞, occurs as a subrepresentation

in U .

Definition 3.41: For V a G-representation, denote by V + its one-point compacti-

fication; note that V + is a G-space and call it a representation sphere of G. For X

a G-space, the V th suspension of X is the smash product ΣVX := V + ∧ X . The

V th loop space of X is the G-space ΩVX of all maps V + → X with G acting by

conjugation.

Remark 3.42: There is an adjunction between the suspension functor ΣV and the

loop space functor ΩV on G-spaces. That is to say that, for G-spaces X1 and X2,

there is a natural bijection between the space of maps ΣVX1 → X2 and the space

of maps X1 → ΩVX2.
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Definition 3.43: A G-prespectrum E indexed on the G-universe U consists of the

following data.

(i) A set of G-spaces, EV , one for each finite dimensional subrepresentation V in

U .

(ii) A set of G-equivariant structure maps, σV,W : ΣW−VEV → EW , one for each

pair of nested finite dimensional subrepresentations, V ⊂W ⊂ U , whereW−V
denotes the orthogonal complement of V in W .

Definition 3.44: A map of G-prespectra f from a G-prespectrum E to a G-

prespectrum F , both indexed on the same universe U , consists of a set of G-

equivariant maps of G-spaces fV : EV → FV , one for each finite dimensional sub-

representation V ⊂ U , such that the evident diagrams

ΣW−VEV −→ EW

y
y

ΣW−V FV −→ FW

all commute for any pair of nested representations V ⊂ W ⊂ U . A homotopy

between two maps of prespectra f, g : E → F is a map of prespectra h : E∧I+ → F

where I+ denotes the interval [0, 1] with a disjoint base point added; here, the smash

E ∧ I+ between a prespectrum and a space is simply to be interpreted spacewise.

A map of prespectra f is called a weak equivalence if all of its constituent maps of

spaces, fV , be weak equivalences.

Definition 3.45: The suspension prespectrum functor, Σ∞
U , from G-spaces to G-

prespectra indexed on the universe U is defined by assigning to a G-space X the

prespectrum Σ∞
U X consisting of (Σ∞

U X)V := ΣVX and structure maps the identity

maps.

Definition 3.46: Given a G-representation V in the universe U and X a G-space,

the V th desuspension of X, denoted Σ−VΣ∞
U X , is a G-prespectrum indexed on U

defined as follows. For W ⊂ U , the W th space of Σ−VΣ∞
U X is either a single point,

in the event that V not be contained in W , or it is the G-space ΣW−VX , in the

event that V be contained in W . Meanwhile, the structure maps ΣU−WΣW−VX →
ΣU−VX are the evident ones.

Definition 3.47: A G-prespectrum E indexed on the G-universe U is called a

spectrum whenever all the adjoints, EV → ΩW−VEW , to the structure maps be
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homeomorphisms. The category of G-spectra and maps as defined above for pre-

spectra is denoted GSU . The homotopy category of G-spectra is defined as the

category with the same objects as GSU but with morphisms being the homotopy

classes of maps of prespectra; this category is denoted hGSU . The stable homotopy

category of G-spectra consists of the category hGSU together with formal inverses

for all the weak equivalences; this category is denoted h̄GSU .

Theorem 3.48: The forgetful functor from spectra to prespectra has a right adjoint

called the spectrification functor.

Proof: Vid. May & al. (1996), §XII.2. QED

Definition 3.49: By composing the suspension prespectrum functor, Σ∞
U , with the

spectrification functor, one obtains a functor from G-spaces to GSU . This functor

shall be called the suspension spectrum functor and shall also be denoted by Σ∞
U .

Likewise, the desuspension of a G-space X , Σ−VΣ∞
U X can be regarded as being in

h̄GSU .

Remark 3.50: As the notation suggests, there is a desuspension functor, Σ−V ,

defined for all spectra, not just for suspension spectra. However, it is somewhat

more subtle to define and the author shall not require it in the present thesis.

Remark 3.51: The stronger notion of spectra as opposed to prespectra is not

so important in the present thesis because the main desire is simply to be able to

perform desuspensions. Nonetheless, it has become standard in the literature to work

with spectra because of their ability to classify homology and cohomology theories

and also the superior properties that the category of spectra enjoys. Therefore, the

author decided to phrase everything in terms of spectra for ease of reference.

Remark 3.52: Notice that the Coulomb gauge W is a U(1)-universe isomorphic to

R∞ ⊕C∞. Such an isomorphism can be defined by picking a basis of eigenvectors

of ℓ. Note that this universe does not contain all representations of U(1). Indeed, if

C denote the standard representation, where U(1) →֒ C is the unit circle, then the

tensor product C⊗C C is not in the universe. This choice of universe is compatible

with what is done in Manolescu (2003), where desuspensions are only allowed with

respect to R and C.

Definition 3.53: When thinking of W as a universe, denote it by W.

Definition 3.54: Given an interval I ⊂ R, use W I to denote the span of the
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eigenvectors of ℓ with eigenvalues in the interval I. Hence, e.g., W µ = W (−µ,µ).

Theorem 3.55: (Manolescu 2003, §7) Up to canonical isomorphism in h̄U(1)SW ,

the spectrum

Σ−W (−µ,0)

Σ∞
W IU(1)(S

µ
λ,r, ϕ

µ
λ,r)

only depends on Y , the SpinC structure sλ and the metric g.

A disadvantage of working with the category h̄U(1)SW is that the universeW
depends, at least superficially, on the metric g. This can be addressed by applying

a change of universe to pass over to a standard choice of universe isomorphic toW.

In order to demonstrate that the choices involved are immaterial to the final result,

the author shall invoke one more concept from stable homotopy theory.

Definition 3.56: Given two G-universes U0 and U1 and a linear isometry f : U0 →
U1, define the associated (restrictive) change of universe functor,

f∗ : h̄GSU1 → h̄GSU0,

by defining it on prespectra as the functor that sends a prespectrum E with structure

maps σ to the prespectrum f∗E with structure maps f∗σ such that

(f∗E)V = Ef(V ), (f∗σ)V,W = σf(V ),f(W ).

Likewise, define the associated (inductive) change of universe functor,

f∗ : h̄GSU0 → h̄GSU1,

by defining it on a prespectrum E with structure maps σ to be the prespectrum

f∗E with structure maps f∗σ satisfying the following. For finite dimensional sub-

representations V ⊂W ⊂ U1, denote V ′ := V ∩ f(U0) and W ′ :=W ∩ f(U0). Then,
set

(f∗E)V := Ef−1(V ′) ∧ (V − V ′)+,

and define the structure map (f∗σ)V,W to be the composite

Ef−1(V ′) ∧ (V − V ′)+ ∧ (W − V )+
∼−→Ef−1(V ′) ∧ (W ′ − V ′)+ ∧ (W −W ′)+

id∧f−1∧id−−−−−−→ Ef−1(V ′) ∧ (f−1(W ′)− f−1(V ′))+ ∧ (W −W ′)+

σf−1(V ′),f−1(W ′)∧id−−−−−−−−−−−−→ Ef−1(W ′) ∧ (W −W ′)+.
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Proposition 3.57: (Lewis Jr., May & Steinberger 1986, Proposition 1.2) f∗ is left

adjoint to f∗.

Theorem 3.58: (Lewis Jr., May & Steinberger 1986, Theorem 1.7 and Corollary

1.8) The functors f∗ : h̄GSU1 → h̄GSU0 defined by different choices of linear isom-

etry f are canonically and coherently isomorphic. The same holds for the functors

f∗. Moreover, if f be an isomorphism, f∗ is an equivalence of categories with its

inverse being f∗.

Remark 3.59: The author shall not expand on the precise meaning of canonical nor

coherent in the present thesis; for that, the reader is directed to the proof of Lewis

Jr., May & Steinberger (1986), Theorem 1.7. Suffice it to say that, by canonical, one

means that the choices which appear in the proof are immaterial, and, by coherent,

one means that certain diagrams that should commute do indeed commute.

Definition 3.60: Define U to be the U(1)-universe R∞ ⊕C∞.

The essential point to be taken from Theorem 3.58 is that, since one may pass

between the categories h̄U(1)SU and h̄U(1)SW in a natural fashion, one can think

of the desuspension functor Σ−W (−µ,0)
as being defined on h̄U(1)SU by intertwining

with the changes of universe.

Definition 3.61: Given a finite dimensional subrepresentation V ⊂ W, define the

desuspension functor

Σ−V : h̄U(1)SU → h̄U(1)SU

as the composite

h̄U(1)SU f∗−→ h̄U(1)SW Σ−V

−−−→ h̄U(1)SW f∗

−−→ h̄U(1)SU ,

where f : U → W is any isometric isomorphism defined by a choosing a basis of

eigenvectors for ℓ.

Proposition 3.62: The endofunctor Σ−V on h̄U(1)SU is well defined up to canon-

ical isomorphism.

Proof: Immediate from Theorem 3.58. QED

With this understood, henceforth, the author shall often drop f∗ and f∗ from

the notation.
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Definition 3.63: Define the metric dependent Seiberg-Witten Floer spectrum as

SWF(Y, sλ, g) :=Σ−W (−µ,0)

Σ∞
U IU(1)(S

µ
λ,r, ϕ

µ
λ,r)

∼=f∗Σ−W (−µ,0)

Σ∞
W IU(1)(S

µ
λ,r, ϕ

µ
λ,r) ∈ h̄U(1)SU ,

where f : U → W denotes any isometric isomorphism defined by a basis of eigen-

vectors for ℓ.

Corollary 3.64: The spectrum SWF(Y, sλ, g) is well defined up to canonical iso-

morphism in h̄U(1)SU .

Proof: Corollary of Theorem 3.55 and Theorem 3.58. QED

Next, the author proceeds to explain how to (de)suspend away the metric

dependence.

Definition 3.65: Let X be an oriented 4-manifold-with-boundary such that ∂X =

Y . Given a class c ∈ H2(X,Z) define its square, c2 ∈ Q, as follows. Let c′ ∈
H2(X ;Q) be the image of c under the change of coefficients H2(X ;Z)→ H2(X ;Q).

Since b2(Y ) = 0, there is an exact sequence

H2(X, Y ;Q)→ H2(X ;Q)→ 0.

Pick any preimage c̃ ∈ H2(X, Y ;Q) for c′. Define

c2 := (c̃ ⌣ c̃)[X, Y ] ∈ Q.

Definition 3.66: Define a number n(Y, sλ, g) ∈ Q as follows. Choose some simply-

connected 4-manifold-with-boundary X with SpinC structure t such that ∂X = Y

and such that t agree with sλ on Y . Assume further that X have a neighbourhood

of its boundary which be isometric to [0, 1] × Y . Fixing some connexion B on

det t extending arbitrarily the connexion Aλ on det sλ, use D±
B to denote the Dirac

operators of (X, t). Denote the signature of X by σ(X). With this notation in place,

let

n(Y, sλ, g) := indCD+
B −

1

8
(c1(det t)

2 − σ(X)).

Proposition 3.67: (Manolescu 2003, §6) The number n(Y, sλ, g) does not depend

on the choices involved in its definition. Indeed,

n(Y, sλ, g) =
1

2

(
η(DAλ

, 0)− dimRKerDAλ
− 1

4
η(Sign, 0)

)

where η(D, z) denotes the η function of an operator D (vid. Atiyah, Patodi & Singer

1975), and Sign is the operator on Ω1(Y )⊕ Ω0(Y ) given by(
∗d −d
−d∗ 0

)
.
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Proposition 3.68: (Manolescu 2003, §7) If N denote the cardinality of the finite

set H1(Y ;Z), then 8Nn(Y, s, g) is an integer and its residue modulo 8N does not

depend on g.

Definition 3.69: Let n(Y, s) ∈ Q be such that 8Nn(Y, s) ∈ {0, . . . , 8N − 1} be the

residue modulo 8N of 8Nn(Y, s, g).

Theorem 3.70: (Manolescu 2003, §7) Up canonical to isomorphism in h̄U(1)SU ,
the spectrum

SWF(Y, sλ) := ΣC
n(Y,s)−n(Y,sλ,g)

SWF(Y, sλ, g)

only depends on Y and the SpinC structure sλ.

Remark 3.71: The author is deviating from what is stated in Manolescu (2003)

slightly in using the (de)suspension by Cn(Y,s)−n(Y,sλ,g) instead of by C−n(Y,sλ,g).

The reason being his desire to operate in the standard category of spectra, U(1)SU ,
which does not allow for a desuspension by a “rational” dimensional representation

in any obvious manner. In Manolescu (2003), a variant of the Spanier-Whitehead

category is used, which can easily be made to formally admit such (de)suspensions.

The main result of Lidman & Manolescu (2018a) is that the U(1)-equivariant

Borel cohomology of the SWF spectrum corresponds to the classical monopole Floer

cohomology. In order to state this theorem, the author should firstly clarify what is

meant by the cohomology of a spectrum in the present context. The rightful sort of

G-equivariant cohomology theory to consider for G-spectra indexed on a universe

V is that of RO(G;V)-graded cohomology (vid. May & al. 1996, §XIII). In order to

avoid having to deal with such complexities, the author decided to introduce the

following language which shall simplify considerably the treatment.

Definition 3.72: Let h∗G denote a Z-graded G-equivariant (reduced) cohomology

theory on G-spaces. The author shall say that h∗G satisfies the suspension axiom

with respect to the universe V when, for any G-space X and any finite dimensional

subrepresentation V ⊂ V, there be a natural isomorphism

hnG(X) ∼= hn+dimV
G (ΣVX).

Definition 3.73: Given a G-prespectrum E indexed on a universe V and G-

equivariant cohomology theory h∗G on G-spaces satisfying the suspension axiom with

respect to the universe V, define the cohomology of E as

hnG(E) := Colim
V⊂V

hn+dimV
G (EV ).

29



Remark 3.74: It is easy to see from this definition that, for a desuspension spectrum

Σ−VΣ∞
V X , the cohomology is simply given by the cohomology of the space X but

with a grading shift.

hnG(Σ
−VΣ∞

V X) = hn+dimV
G (X).

Definition 3.75: The Borel G-equivariant cohomology theory for G-spaces with co-

efficients in an abelian ring R is defined as follows. Denote by EG a free contractible

G-space and by BG the quotient EG/G. Then, for a G-space X ,

cH̃∗
G(X ;R) := H̃∗((EG×X)/G;R).

Remark 3.76: Following May & al. (1996), the notation c indicates the “geomet-

ric completion” involved in obtaining the underlying spectrum from the equivariant

Eilenberg-MacLane spectrum and helps one distinguish Borel from Bredon coho-

mology.

Proposition 3.77: For a G-universe V containing only finite dimensional subrep-

resentations V such that the vector bundle (V × EG)/G over BG be R-orientable,

the Borel cohomology theory with R-coefficients satisfies the suspension axiom for

V.

Proof: This follows directly from the Thom isomorphism theorem. QED

Remark 3.78: In the case at hand of G = U(1) and universe U = R∞ ⊕ C∞,

it is clear, therefore, that the Borel cohomology theory with Z-coefficients satisfies

the suspension axiom for U because a direct sum of a complex representation and a

trivial real representation always define Z-orientable vector bundles over BG. Hence,

one can speak of the Borel cohomology of the SWF spectrum.

Theorem 3.79: (Lidman & Manolescu 2018a, Theorem 1.2.1) Letting ĤM∗(Y, s)

denote the Q-graded “from” monopole Floer cohomology of Kronheimer & Mrowka

(2007), there is an isomorphism

ĤMq(Y, s) ∼= cH̃
q−n(Y,s)
U(1) (SWF(Y, s);Z).

In particular, letting the “tilde” monopole Floer cohomology, H̃M∗(Y, s), be the

mapping cone of the U -map on ĤM∗(Y, s), there is an isomorphism

H̃Mq(Y, s) ∼= H̃q−n(Y,s)(SWF(Y, s);Z).
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Definition 3.80: For future reference, define the metric dependent tilde monopole

Floer cohomology to be

H̃M∗(X, s, g) := H∗(SWF(X, s, g);Z).
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4. The Cohomotopical Contact Invariant

This section shall fulfil the first goal of the present thesis. The analytic results

concerning the contact monopole Cλ shall allow the author to define a cohomotopical

contact invariant in a manner that can be roughly outlined in the following way.

Given a top dimensional cell in a CW-complex, if one were to quotient the complex

by all other cells, one obtains a map to a sphere; this is an element of the cohomotopy

of the complex. In the event that the cell not be top dimensional, but, instead, all

the higher dimensional cells attach null-homotopically onto the given cell, one can

still perform the same quotient and obtain an element in the cohomotopy set of the

complex. In the case of a G-CW-complex, a similar story can be told about a G-cell;

here, one needs to be more careful with what is meant by cohomotopy. In any event,

one obtains a map from the G-CW-complex to the Thom space of a vector bundle

over a G-orbit; analogously to how, in the non-equivariant setting, the sphere is the

Thom space of a bundle over the orbit of the trivial group; that is, the point.

To achieve this in the present context, the author shall make use of a funda-

mental construction in the Conley theory; namely, the notion of attractor-repeller

pairs. What has already been said about the contact configuration shall be sum-

marised as saying that the orbit of the contact configuration defines a repeller in

the isolated invariant set defining the Seiberg-Witten Floer spectrum. Well known

results on Conley theory then provide a cofibration involving Conley indices. Due

to the non-degeneracy of the contact configuration, the cofibre map of this cofibra-

tion can be interpreted, in the presence of a choice of U(1)-CW-structure on the

Seiberg-Witten Floer spectrum, exactly as the quotient of all but one special U(1)-

cell defined by the orbit of the contact monopole. This cofibre map shall be declared

the contact invariant.

Lastly, one must take care to stabilize everything so as to make the cofibre

map really an invariant with respect to the spectral cut-off parameter µ and the

metric g. As it turns out, this does not provide any difficulty beyond what was

already encountered in Manolescu (2003), and the proofs shall follow closely what is

said there only with a few extra Conley theoretic inputs concerning the naturality

of attractor-repeller pair cofibrations.

Let Y , λ and g be as in the preceding sections.

Remark 4.1: Notice that Cλ is, by definition, in the global Coulomb slice with
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respect to Aλ; that is, Cλ ∈ W . Moreover, since DAλ
ψλ = 0, it is also true that

Cλ ∈ Ker ℓ. Therefore, for R > 0 sufficiently large, Cλ ∈ B(W µ, R) for all µ > 0.

Henceforth, agree to set R > 0 large enough so that this last inclusion hold.

Remark 4.2: It is worth emphasising that the global Coulomb gauge does not fix a

gauge with respect to the entire gauge group G(Y ) but, rather, with respect to the

normed gauge group G◦(Y ). Hence, there is a circle’s worth of fixed points of XGC
λ,r

in Wk which are gauge equivalent to Cλ.

Definition 4.3: Denote by Uλ ⊂ Wk the circle of configurations gauge equivalent

to Cλ and call it the contact circle.

Definition 4.4: Use J GC
C to denote the tangent space to the U(1)-orbit at C ∈ Wk.

Definition 4.5: Let g̃ denote the metric on Wk defined by assigning to tangent

vectors (a, ψ), (b, φ) ∈ TCWk
∼= Wk the value ℜ

〈
ΠELC
C (a, ψ),ΠELC

C (b, φ)
〉
, where

ΠELC
C is the projection to the enlarged local Coulomb gauge defined in Definition

3.12.

Remark 4.6: The metric g̃ is the one used in many of the technical results of Lidman

& Manolescu (2018a). It is notable because it turns the Seiberg-Witten vector field

XGC in global Coulomb gauge into the g̃-gradient of the CSDλ,r functional restricted

to Wk. In the present situation, it shall be necessary to invoke some of those results

of Lidman & Manolescu (2018a) which make reference to this metric. The g̃ metric

leads to the following definition.

Definition 4.7: Define the local anticircular slice in the global Coulomb gauge at

C ∈ Wk, denoted KAGC
C , as the g̃-orthogonal complement to J GC

C in Wk. Use KAGC
j,C

for its Sobolev completion of regularity j ∈ Z and use ΠAGC
C :Wk → KAGC

C to denote

the g̃-orthogonal projection.

Proposition 4.8: For sufficiently large r > 0, at any C ∈ Uλ, the derivative

ΠAGC
C ◦DC X λ,r ◦ΠELC

C : KAGC
k,C → KAGC

k−1,C

is surjective.

Proof: By gauge equivariance, it suffices to prove the result for C = Cλ. Theorem

2.23 has established that, for sufficiently large r > 0, the map

ΠLC
Cλ
◦DCλ

X : KCλ
→ KXλ,r(Cλ)

is surjective. Hence, the result follows directly from Lidman & Manolescu (2018a),
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Lemma 5.6.1, “(ii) ⇒ (iv)”; cf. Lidman & Manolescu (2018a), Forumulae (97) and

(94). QED

Remark 4.9: Henceforth, fix r > 0 so as to make Proposition 4.8 hold.

Remark 4.10: Bear in mind that the vector space W µ is the direct sum of a real

vector space and a complex vector space, whence comes its U(1)-action. Note that

Uλ →֒ W µ is the U(1)-equivariant embedding of a U(1)-manifold.

Definition 4.11: Let Eµ
λ → Uλ denote the U(1)-equivariant normal bundle of Uλ

as a submanifold of W µ.

Proposition 4.12: For sufficiently large µ > 0, Uλ is a hyperbolic fixed set of the

flow ϕµλ,r in W
µ. In other words, for any C ∈ Uλ, the derivative

DC X µ
λ,r : E

µ
λ |C → Eµ

λ |C

has no eigenvalue with vanishing real part. In particular, Uλ is a non-degenerate

fixed set.

Proof: By Proposition 4.8, Uλ consists of non-degenerate irreducible fixed points of

the flow XGC
λ,r on Wk. Hence, apply the same argument used in the proof of Lidman

& Manolescu (2018a), Proposition 7.3.1, to find that the same remains true when

passing to a finite dimensional approximation provided one choose a sufficiently

large µ. QED

Remark 4.13: Fix µ > 0 large enough so as to make Proposition 4.12 hold.

Remark 4.14: Identify Eµ
λ with a sufficiently small tubular neighbourhood of Uλ

so as to not contain any other fixed points of the flow ϕµλ,r. This is possible due to

the non-degeneracy ensured by Proposition 4.12. Now, as a vector bundle, one can

split Eµ
λ into stable and unstable subbundles as Es,µ

λ ⊕ E
u,µ
λ , where

∀v ∈ Es,µ
λ ,

〈
v,DC X µ

λ,r(v)
〉
≥ m|v|2,

∀v ∈ Eu,µ
λ ,

〈
v,DC X µ

λ,r(v)
〉
≤ −m|v|2

for some constant m > 0. Moreover, this splitting is preserved by DC X µ
λ,r and,

hence, Uλ is an isolated invariant set with index pair (D(Eµ
λ), S(E

u,µ
λ )) where D and

S denote the unit disk and unit sphere bundles.

Definition 4.15: For E a vector G-bundle over a compact Hausdorff space, denote

its G-equivariant Thom space by ΘG(E) := DE/SE.
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Corollary 4.16: The Conley index IU(1)(Uλ, ϕ
µ
λ,r) is U(1)-equivariantly homotopy

equivalent to the U(1)-equivariant Thom space ΘU(1)(E
u,µ
λ ) of the bundle Eu,µ

λ → Uλ.

As a direct consequence, by using a Morse decomposition, one finds that the

contact circle Uλ defines a U(1)-cell in some U(1)-CW-complex decomposition of

the space IU(1)(S
µ
λ,r, ϕ

µ
λ,r). If one were to add a generic perturbation on top of the

canonical perturbation in use, as shall be done in §5, one would find that a possible

choice of U(1)-CW-decomposition would have a one to one correspondence between

its U(1)-cells and the set of fixed points and fixed circles of the Seiberg-Witten

flow. It is preferable, of course, to avoid using such a generic perturbation. In order

to derive a cohomotopical invariant from a given cell, it is necessary to establish

something about the attaching maps of the higher dimensional cells. In particular,

if the given cell be itself top dimensional or, more generally, if one find that all higher

dimensional cells attach null-homotopically onto the given cell, then it follows that

one can quotient all but the given cell in the U(1)-CW-complex and obtain a map to

the quotient of the contact cell by its boundary. This is morally the strategy which

shall be pursued next.

Theorem 4.17: For sufficiently large r > 0 and µ > 0, there are no non-constant

approximate Seiberg-Witten trajectories in the set Sµλ,r which have plus infinity limit

in the contact circle Uλ.

Proof: The author starts with the argument in Step 1 of the proof of Proposition 3

in Manolescu (2003). Suppose the result not hold. Then, there exists an increasing

sequence µn →∞ and a sequence of non-constant trajectories γn : R→ D(W µn, 2R)

satisfying
∂

∂t
γn(t) = −X µn

λ,r(γn(t)), lim
t→∞

γn(t) = Cλ.

Notice that there is a bound
∥∥∥∥
∂

∂t
γn(t)

∥∥∥∥
L2
k−1

≤ ‖ℓγn(t)‖L2
k−1

+ ‖pµcγn(t)‖L2
k−1
≤ KR.

where K > 0 is a constant independent of both n and t. This implies that the set

of functions

{γn : R→ D(Wk−1, 2R)}

is equicontinuous. By use of the Arzelà-Ascoli theorem, one can replace this sequence

by a subsequence which converge to some γ : R → D(Wk−1, 2R) in the compact-

open topology. Now, due to compactness of c, the sequence of operators (1−pµn)c :
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Wk →Wk−1 converges to zero weakly. Given this, observe that

∂

∂t
γn = −(ℓ+ c)γn + (1− pµn)cγn −−−−→

n→∞
− (ℓ + c)γ.

uniformly as functions from compact subsets of R to Wk−1. Hence,

γn(t)− γn(0) =
∫ t

0

∂

∂s
γn(s)ds −−−−→

n→∞
−
∫ t

0

(ℓ+ c)γ(s)ds.

Together, these two last assertions imply that

∂

∂t
γ(t) = −(ℓ+ c)γ(t).

Moreover, observe that γ(t) −−−→
t→∞

Uλ. Therefore, γ is the Coulomb projection of a

Seiberg-Witten trajectory with positive infinity limit gauge equivalent to the con-

tact configuration. By Theorem 2.25, such a trajectory must be constant. Let

Cn := limt→−∞ γn(t). By assumption, these cannot be equal to Cλ. Note also that

limn→∞ Cn = limt→−∞ γ(t) = Cλ. However, Proposition 4.8 combined with Lidman

& Manolescu (2018a), Proposition 7.2.2, guarantee that, for sufficiently large n and

some small neighbourhood N ⊃ Wk of Cλ, there cannot be any solution to X µλ,r = 0

inside of N other than Cλ itself, thereby contradicting convergence of the sequence

{Cn} to Cλ. QED

A few more concepts from Conley theory shall be needed next. In what follows,

suppose that G be a compact Lie group, Γ be a locally compact Hausdorff space

with a continuous G-action and φ : Γ×R→ Γ a continuous and equivariant flow.

Definition 4.18: For a G-invariant subset T ⊂ Γ, define its ω-limit, ω(T ), as the

maximal invariant set of the closure of ϕ(T × [0,∞)). Likewise, define its ω∗-limit,

ω∗(T ), as the maximal invariant set of the closure of ϕ(T × (−∞, 0]).

Definition 4.19: A G-invariant subset A ⊂ S is an attractor when there is a

neighbourhood U ⊂ S of A as a subspace of S such that A = ω(U). Likewise, a

G-invariant subset R ⊂ S of an isolated invariant set S ⊂ Γ is called an repeller

when there is a neighbourhood U ⊂ S of R as a subspace of S such that R = ω∗(U).

Definition 4.20: Given an attractor A ⊂ S in the isolated invariant set S ⊂ Γ, one

defines its complementary repeller, A∗ ⊂ S, as the set {x ∈ S | ω({x}) ∩ A = ∅}.
Given a repeller R ⊂ S, one defines its complementary attractor, R∗ ⊂ S, similarly.

Definition 4.21: An attractor-repeller pair (A,R) of an isolated invariant set S ⊂ Γ

consists of an attractor A and a repeller R in S such that A = R∗, or, equivalently,

R = A∗.
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Definition 4.22: Let (A,R) be an attractor-repeller pair for of an isolated invariant

set S ⊂ Γ. A triple of G-invariant compact sets (L,M,N), N ⊂ M ⊂ L ⊂ Γ, is

called an index triple for (A,R) when (L,M) is an index pair for R, (L,N) is an

index pair for S and (M,N) is an index pair for A.

Theorem 4.23: (Conley 1978, §I.7, albeit non-equivariantly) For any attractor-

repeller pair (A,R) of an isolated invariant set S ⊂ Γ, there exists an index triple

(L,M,N) for it and the induced cofibration,

IG(A, φ)→ IG(S, φ)→ IG(R, φ),

is independent of the choice of (L,M,N) up to G-equivariant homotopy.

Now, one can reinterpret the analytic results concerning the contact circle in

the Conley theoretic language.

Theorem 4.24: The contact circle Uλ ⊂ Sµλ,r is a repeller in Sµλ,r. Hence, there

exists a cofibration

IU(1)(U
∗
λ, ϕ

µ
λ,r)→ IU(1)(S

µ
λ,r, ϕ

µ
λ,r)→ IU(1)(Uλ, ϕ

µ
λ,r).

Proof: Follows from Theorem 4.17 and Theorem 4.23. QED

Definition 4.25: Define the spectral cut-off and metric dependent cohomotopical

contact invariant as the cofibre map

Ψ(λ, g, µ) : IU(1)(S
µ
λ,r, ϕ

µ
λ,r)→ IU(1)(Uλ, ϕ

µ
λ,r)

of Theorem 4.24.

Proposition 4.26: Ψ(λ, g, µ) does not depend on the choice of r > 0.

Proof: Suppose one chose two sufficiently large values for r, call them r0 < r1.

Without loss of generality, assume |r0−r1| to be small. Pick the value of R > 0 large

enough so that it satisfy Theorem 3.28 for both r = r0 and r = r1. Then, D(W µ, 2R)

serves as an isolating neighbourhood for all the isolated invariant sets Sµλ,r under the

parametrised family of flows ϕµλ,r as r varies in [r0, r1]. The continuation properties

of Conley theory then provide a diagram of the form

IU(1)(S
µ
λ,r0

, ϕµλ,r0) −→ IU(1)(Uλ, ϕ
µ
λ,r0

)

y
y

IU(1)(S
µ
λ,r1

, ϕµλ,r1) −→ IU(1)(Uλ, ϕ
µ
λ,r1

)
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which commutes up to homotopy and where the vertical arrows are homotopy equiv-

alences (cf. Conley 1978, §III.3.1 and Kurland 1982 for the non-equivariant case).

QED

Definition 4.27: The metric dependent contact Thom space is the desuspension

T (λ, g) := Σ−W (−µ,0)

Σ∞
U IU(1)(Uλ, ϕ

µ
λ,r) ∈ h̄U(1)SU .

Definition 4.28: The metric dependent cohomotopical contact invariant,

Ψ(λ, g) : SWF(Y, sλ, g)→ T (λ, g).

is the desuspension Σ−W (−µ,0)
Ψ(λ, g, µ) as a morphism in h̄U(1)SU .

Proposition 4.29: Ψ(λ, g) does not depend on the choice of µ > 0.

Proof: This proof shall start by recalling the setup of the first half of the proof

of Theorem 1 of Manolescu (2003). Assume two values for µ be given; call them

0 < µ0 < µ1 and assume both be large enough so as to satisfy Theorem 3.33.

Consider µ ∈ [µ0, µ1]. Denote ϕ̃µλ,r the flow of the vector field −uµ1 · (ℓ + pµcpµ)

on W µ1. It is easy to check that, for any µ ∈ [µ0, µ1], all finite type trajectories

of −(ℓ + pµcpµ) on W µ1 are, in fact, contained in W µ ⊂ W µ1. As a consequence,

notice that the set Sµλ,r ⊂ W µ can be identified with the union of the finite type

trajectories of ϕ̃µλ,r contained in B(W µ1, R). Hence, abuse notation and write Sµλ,r ⊂
W µ1 for all µ ∈ [µ0, µ1]. Moreover, in this description, D(W µ1, 2R) is an isolating

neighbourhood for Sµλ,r for all µ ∈ [µ0, µ1]. By the continuation properties of the

Conley index,

IU(1)(S
µ1, ϕµλ,r) ≃ IU(1)(S

µ0, ϕ̃µλ,r).

Write W µ1 = W µ0 ⊕ W ′, where W ′ is L2-orthogonal to W µ0. Of course, W ′ is

simply the span of the eigenvectors of ℓ with eigenvalues in (−µ1,−µ0] ∪ [µ0, µ1).

Use D ⊂ W ′ to denote a small disk around the origin. Then, if one care to check,

one finds that

D(W µ0, 3R/2)×D ⊂W µ1

is also an isolating neighbourhood for Sµ0

λ,r. Furthermore, with respect to this prod-

uct, one can show that the flow ϕ̃µλ,r is homotopic to a product flow ϕµ0 × f, where
f is the flow on D induced by −ℓ. Notice that

IU(1)({0}, f) =
(
W (−µ1,−µ0]

)+
.
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By the behaviour of the Conley index under product flows, it follows that

IU(1)(S
µ1

λ,r, ϕ
µ1

λ,r) ≃ IU(1)(S
µ0

λ,r, ϕ
µ0

λ,r) ∧
(
W (−µ1,−µ0]

)+
.

Now, focus is turned to the contact circle. Recall the assumption from Remark

4.1 that µ0, µ1 be large enough so that Uλ ⊂ B(W µ0, R) ⊂ B(W µ1, R). As above,

observe that

IU(1)(Uλ, ϕ
µ1

λ,r) ≃ IU(1)(Uλ, ϕ̃
µ0

λ,r).

On the other hand, considering again the product flow ϕµ0

λ,r × f, one finds

IU(1)(Uλ, ϕ
µ1

λ,r) ≃ IU(1)(Uλ, ϕ
µ0

λ,r) ∧
(
W (−µ1,−µ0]

)+
.

This leads to a diagram of the form

IU(1)(S
µ0

λ,r, ϕ
µ0

λ,r) ∧
(
W (−µ1,−µ0]

)+ −→ IU(1)(Uλ, ϕ
µ0

λ,r) ∧
(
W (−µ1,−µ0]

)+

y
y

IU(1)(S
µ1

λ,r, ϕ
µ1

λ,r) −→ IU(1)(Uλ, ϕ
µ1

λ,r)

which, due to the naturality of the attractor-repeller cofibration under continua-

tion, commutes up to homotopy. Desuspending everything as needed provides the

required invariance. QED

Definition 4.30: Define the contact Thom space as the (de)suspension

T (λ) := ΣC
n(Y,sλ)−n(Y,sλ,g)T (λ, g) ∈ h̄U(1)SU .

Definition 4.31: Define the cohomotopical contact invariant of the contact rational

homology sphere (Y, λ),

Ψ(λ) : SWF(Y, sλ)→ T (λ),

to be the (de)suspension ΣC
n(Y,sλ)−n(Y,sλ,g)

Ψ(λ, g) as a morphism of h̄U(1)SU .

Proposition 4.32: Ψ(λ) does not depend on the choice of metric g.

Proof: Again, the proof shall start by recalling what is said by Manolescu (2003)

and then extending the argument to deal with the contact circle. Since the space of

compatible metrics is connected, it suffices to prove the result for nearby metrics, so

consider two such metrics g0, g1 and a smooth path t 7→ gt interpolating them. One

can choose µ > 0 and R > 0 large enough so as to satisfy the usual requirements

for all metrics along the path gt. The author shall use a subscripted t to denote
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the versions of objects constructed with the metric gt; for example, W µ
t denotes the

version of W µ constructed with gt. Notice that, perhaps after increasing µ slightly,

one can assume that µ not be an eigenvalue of ℓt for any t ∈ [0, 1]. As a consequence,

the spaces W µ
t have constant dimension as t varies. This means the spaces W µ

t form

a vector bundle over [0, 1] and, therefore, the vector spaces W µ
t for different values

of t may be identified via a trivialisation of this bundle; hence, use W µ to denote

any of the spaces W µ
t . For different values of t, consider the balls B(W µ, R)t all as

subsets of this same W µ. By assuming the metrics g0, g1 sufficiently close to one

another, one also finds that, for any t1, t2 ∈ [0, 1], B(W µ, R)t1 ⊂ B(W µ, 2R)t2. From

this, it follows that
⋂

t∈[0,1]
D(W µ, 2R)t

is an isolating neighbourhood for (Sµλ,r)t with respect to the flow (ϕµλ,r)t for all

t ∈ [0, 1]. The flow (ϕµλ,r)t varies continuously with t ∈ [0, 1]; hence, by Conley

theory,

IU(1) ((S
µ
λ,r)0, (ϕ

µ
λ,r)0) ≃ IU(1) ((S

µ
λ,r)1, (ϕ

µ
λ,r)1). (∗)

Consider now the contact circle. One easily checks that, under the change of metric,

the contact circle, (Uλ)t, moves smoothly in W µ (it is not fixed under changes of

metric because it depends on the global Coulomb projection). By assuming the

metrics to be sufficiently close, one also sees that

⋂

t∈[0,1]
D((Eµ

λ )t)

is an isolating neighbourhood for all (Uλ)t, where (Eµ
λ)t → (Uλ)t is the gt version of

the tubular neighbourhood introduced in Remark 4.14. Therefore,

IU(1) ((Uλ)0, (ϕ
µ
λ,r)0) ≃ IU(1) ((Uλ)1, (ϕ

µ
λ,r)1),

which is not much to say due to the characterisation of these as Thom spaces in

Corollary 4.16; however, the fact that both this homotopy equivalence and the one

of (∗) come from the same deformation of the flow allows one to use the naturality

of the attractor-repeller cofibration sequence so as to have the following diagram

commute up to homotopy.

IU(1) ((S
µ
λ,r)0, (ϕ

µ
λ,r)0) −→ IU(1) ((Uλ)0, (ϕ

µ
λ,r0

)0)

y
y

IU(1) ((S
µ
λ,r)1, (ϕ

µ
λ,r)1) −→ IU(1) ((Uλ)1, (ϕ

µ
λ,r1

)1).
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Now, the effect of the desuspensions shall be addressed. Consider the subspace

(W (−µ,0))t ⊂ W µ. Note that, despite all the (W µ)t ∼= W µ being identified, the

subspaces (W (−µ,0))t shall still vary with t ∈ [0, 1]. Recall that W is defined as the

direct sum of a real and a complex space; use nµ,t to denote the complex dimension

of this complex summand appearing in (W (−µ,0))t. Notice that nµ,1 − nµ,0 is the

spectral flow of the family of Dirac operators (DAλ
)t defined as the metric gt varies.

One can then check with Proposition 3.67 that

n(Y, sλ, g0)− n(Y, sλ, g1) = nλ,1 − nλ,0.

Without loss of generality, suppose n(Y, sλ, g0) ≤ n(Y, sλ, g1). Together with the

fact that the operator family ∗td : Ω1(Y ) → Ω1(Y ) has zero spectral flow due to

H1(Y ;R) = 0, the above implies that

(W (−µ,0))0 ∼= (W (−µ,0))1 ⊕Cn(Y,sλ,g1)−n(Y,sλ,g0).

The result follows by combining this with the commuting diagram above. QED

Remark 4.33: In the same vein as in Manolescu (2003), the metric invariance can

be strengthened to invariance up to canonical isomorphism, which is to say, in this

context, that the isomorphism does not depend on the path of metrics interpolating

the given two metrics, but the details shall be left out.
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5. Recovery of the Cohomological Invariant

In light of the equivalence, proved by Lidman & Manolescu (2018a), between

the Borel U(1)-equivariant cohomology of the Seiberg-Witten Floer spectrum and

the monopole Floer “from” cohomology, this section shall discuss the relation be-

tween the cohomotopical contact invariant defined in the previous section and the

well known contact invariants in Floer cohomology.

In Kronheimer, Mrowka, Ozsváth & Szabó (2007), §6.3, a distinguished ele-

ment of the monopole Floer cohomology group ĤM∗(Y, sλ), therein denoted ψ̌, is

defined (up to sign) from the datum of a contact structure Ker λ. Here, this class

shall be denoted ψ(λ). In fact, most of the groundwork for the definition of this

invariant was done a decade earlier in Kronheimer & Mrowka (1997), except that the

machinery of monopole Floer homology had not yet been developed. This same in-

variant was studied in Taubes (2009), §4, therein denoted tr, and was shown (Taubes

2009, Proposition 4.3) to be generated by a single generator of the monopole Floer

cochain complex. This generator is essentially the contact configuration, herein de-

noted Cλ, with the caveat that a generic perturbation must be used in that context,

else the monopole Floer cohomology groups cannot be defined.

By work of Taubes (2010a, 2010b, 2010c, 2010d & 2010e), it was estab-

lished that there is a natural equivalence between the monopole Floer cohomology

ĤM∗(Y, sλ) and the embedded contact homology ECH∗(Y, λ; 0) of M. Hutchings (vid.

Hutchings & Taubes 2007). Furthermore, in ECH, there is a very simply defined

contact invariant, which is the class generated by the empty set of Reeb orbits. In

Taubes (2010e), Taubes established that, under his isomorphism, the ECH contact

invariant corresponds to ψ(λ).

There is yet another guise under which ψ(λ) appears. In Kutluhan, Lee &

Taubes (2020a, 2020b, 2020c, 2021a & 2021b), the authors construct isomorphisms

between a variant of the monopole Floer homologies, called the balanced monopole

Floer homologies, and the Heegaard Floer homologies of Ozsváth & Szabó (2004);

in case b1 = 0, these balanced monopole Floer homologies agree with the usual

monopole Floer homologies. In Ozsváth & Szabó (2005), an invariant of contact

structures is defined (up to sign) which lives in the group HF+(−Y, sλ); this is

usually denoted c+(Y, λ). This invariant was identified with the ECH version of the

contact invariant in Colin, Ghiggini & Honda (2012a & 2012b).
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The manner via which the cohomotopical contact invariant Ψ(λ) recovers the

cohomological invariant ψ(λ) is fundamentally rather simple. Returning to the motif

of the collapse of all but a single cell in a CW-complex, one can obtain a class in

the cohomology of that complex by pulling back the generator of the cohomology

of the sphere. In the case of a U(1)-CW-complex, as has been said in the preceding

section, the same construction leads to a map from the complex to the Thom space

of a vector bundle over an orbit space. One then proceeds by understanding the

Borel cohomology of the Thom space as being generated by an equivariant Thom

class and the pullback of this Thom class provides a cohomological invariant.

Since the classical cohomological contact invariant is the class in monopole

Floer cohomology defined by the cochain consisting only of the generator associated

to the contact monopole, it is not at all surprising that this approach shall work.

However, some complexity emerges in that the author must make use of the appro-

priate sort of generic perturbation in line with what is done in Lidman & Manolescu

(2018a). Therefore, this section shall inevitably assume a certain degree of famil-

iarity on the reader’s part with the technical apparatus of the canonical reference

which is Kronheimer & Mrowka (2007).

The author starts this section by demonstrating that the construction of the

invariant Ψ(λ) is not affected by the addition of a small generic perturbation.

Definition 5.1: By an (abstract) perturbation, one means a gauge equivariant sec-

tion q : C(Y )→ TC(Y ). The Seiberg-Witten vector field perturbed by q is defined as

X λ,r;q := X λ,r + q.

Definition 5.2: Let Cσ(Y, sλ) denote the real blow-up of C(Y, sλ) along the reducibles
with respect to the L2 norm; that is,

Cσ(Y, sλ) := {(A, s, ψ) ∈ A(det sλ)×R≥0 × Γ(Sλ) | ‖ψ‖L2 = 1}.

Use Cσ(Y, sλ)k for the completion in the Sobolev norm L2
k.

Definition 5.3: Noting that G(Y ) acts freely on Cσ(Y, sλ), denote its quotient by

Bσ(Y, sλ) := Cσ(Y, sλ)/G(Y ).

Use Bσ(Y, sλ)k for the quotient

Bσ(Y, sλ)k := Cσ(Y, sλ)k/G(Y )k+1.
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Definition 5.4: Given a perturbation q, one can obtain the G(Y )-equivariant vector
field X σ

λ,r;q on the blow-up Cσ(Y, sλ). Also, this vector field descends to the quotient

Bσ(Y, sλ) to define a vector field [X λ,r;q]
σ.

Recall that one defines the monopole Floer cohomology ĤM∗(Y, sλ) (Kron-

heimer & Mrowka 2007, Definition 22.3.4) as the cohomology of a cochain complex

Ĉ∗ (cf. Kronheimer & Mrowka 2007, Formula (22.2)) whose generators are the fixed

points of the Seiberg-Witten vector field [X λ,r;q]
σ on the space Bσ(Y, sλ)k and whose

differentials are defined by counting Seiberg-Witten trajectories in a suitable way

(cf. Kronheimer & Mrowka 2007, Definition 22.1.3). For this to be well defined, it

is necessary to require non-degeneracy of the fixed points (Definition 2.20; cf. Kro-

nheimer & Mrowka 2007, Definition 12.1.1) and to impose a certain Morse-Smale

condition on the moduli spaces of trajectories between fixed points (Kronheimer

& Mrowka 2007, Definition 14.5.6). This is achieved through a judicious choice of

perturbation called an admissible perturbation (Kronheimer & Mrowka 2007, Defi-

nition 22.1.1), which will cause the perturbed Seiberg-Witten vector field [X λ,r;q]
σ

to satisfy these requirements.

To certify that there be enough perturbations to always achieve the required

transversality, one produces a large Banach space of tame perturbations (Kronheimer

& Mrowka 2007, Definition 11.6.3), which exists according to Kronheimer & Mrowka

(2007), Theorem 11.6.1. Denote such a Banach space by P. Then, according to

Kronheimer & Mrowka (2007), Theorem 15.1.1, there always is some admissible

perturbation in P. However, the proof of this theorem achieves somewhat more

than that. Indeed, it follows from Kronheimer & Mrowka (2007), Proposition 15.1.3,

that there is a sequence qn of admissible perturbations converging to zero; hence,

admissible perturbations may be assumed to have norm as small as desired.

Proposition 5.5: Given a large Banach space of tame perturbations P, there exists
a ball B(P, ε) of radius ε > 0 centred at zero and smooth map

B(P, ε)→ C(Y, sλ)k,

which shall be denoted q 7→ Cλ(q), satisfying Cλ(0) = Cλ and X λ,r(Cλ(q)) = 0.

Proof: This follows from the implicit function theorem of Banach manifolds applied

to the map

C(Y, sλ)k × P → K, (C, q) 7→ X λ,r;q(C),
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where transversality is ensured via Kronheimer & Mrowka (2007), Lemma 12.5.2.

QED

What this proposition is saying, morally, is that, if one make a small enough

perturbation, it is possible to “track” the contact configuration to a nearby config-

uration, which shall still solve the perturbed Seiberg-Witten equations. Next, one

desires to see that this perturbed contact configuration Cλ(q) still satisfies all the

required theorems of §2 provided q be made small enough.

Proposition 5.6: Given a large Banach space of tame perturbations P there exists

some ε > 0 lower than that of Proposition 5.5 such that, for any q ∈ P with norm

less than ε, the monopole Cλ(q) satisfies the same conclusions of Theorem 2.23,

Theorem 2.24 and Theorem 2.25, where Cλ is traded for Cλ(q) and X λ,r is traded

for X λ,r;q.

Proof: Assume the contrary. Then, there is some sequence qn ⊂ P converging

to zero such that each qn violate one of Theorem 2.23, Theorem 2.24 or Theorem

2.25. Now, invoke Kronheimer & Mrowka (2007), Proposition 11.6.4, to produce

a sequence of gauge transformations ui ∈ G(Y ) such that ui · Cλ(qi) converge to a

solution C of

X λ,r(C) = 0.

But then it must be the case that C is gauge equivalent to Cλ, which implies that

Cλ would violate one Theorem 2.23, Theorem 2.24 or Theorem 2.25. QED

The consequence of the last two propositions is that one can repeat the con-

struction of the cohomotopical contact invariant from §4 using the perturbed setup

provided by X λ,r;q and Cλ(q), where q be any sufficiently small admissible pertur-

bation in the Banach space P.

Definition 5.7: Given a perturbation q, denote by SWF(Y, s; q) the version of the

Seiberg-Witten Floer spectrum constructed just as SWF(Y, s) was in §3 but using

the finite dimensional approximations to the perturbed Seiberg-Witten vector field

XGC
λ,r;q := XGC

λ,r +ΠGC
∗ q

instead of XGC
λ,r .

Definition 5.8: Given a perturbation q with norm less than the ε provided by

Proposition 5.6, denote by

Ψ(λ; q) : SWF(Y, sλ; q)→ T (λ; q)
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the version of the cohomotopical invariant constructed just as was done in §4 but

by using X λ,r;q and Cλ(q) instead of X λ,r and Cλ.

Proposition 5.9: (Lidman & Manolescu 2018a, Proposition 6.1.6) There exists a

large Banach space of tame perturbations, P called a large Banach space of very

tame perturbations such that, for any q ∈ P, SWF(Y, sλ; q) is U(1)-equivariantly

stably homotopy equivalent to SWF(Y, sλ).

Proposition 5.10: For P a large Banach space of very tame perturbations just as

in Proposition 5.9, and q ∈ P with norm less than the ε provided by Proposition

5.6, there is a commuting square

SWF(Y, sλ) −→ T (λ)
y

y

SWF(Y, sλ; q) −→ T (λ; q),
where the horizontal arrows are Ψ(λ) and Ψ(λ; q), the left vertical arrow is the one

provided by Proposition 5.9 and the right vertical arrow is a U(1)-equivariant stable

homotopy equivalence.

Proof: The result follows by arguing similarly to Proposition 4.32, where Ψ(λ) was

shown not to depend on the metric, but, instead of interpolating between metrics,

interpolating with tq, t ∈ [0, 1], between the perturbation q and zero and using

Lidman &Manolescu (2018a), Proposition 6.1.2, to ensure the Conley indices remain

unchanged. QED

Definition 5.11: Let Uλ(q) denote the U(1)-orbit of Cλ(q).

Definition 5.12: Given an admissible perturbation q denote by Ĉ∗(q) the cochain

complex defining the monopole Floer cohomology ĤM∗(Y, sλ) (cf. Kronheimer &

Mrowka 2007, Formula (22.2)).

At this point, it is also possible to identify a very simple form for the cohomo-

logical contact invariant. Firstly, notice that there is a class in the cochain complex

Ĉ∗(q) corresponding to the orbit Uλ(q) of the monopole Cλ(q). This class is in fact

a cocycle due to Theorem 2.25.

Proposition 5.13: (Taubes 2009, Proposition 4.3; cf. Taubes 2010d) For sufficiently

large parameter r > 0 and a perturbation q with norm less than the ε provided by

Proposition 5.6, the contact invariant ψ(λ), as defined in Kronheimer, Mrowka,

Ozsváth & Szabó 2007, is, up to sign, the cohomology class of the cocyle Uλ(q) in
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the cochain complex Ĉ∗(q).

Remark 5.14: Henceforth, assume r > 0 to be large enough to make the preceding

hold.

Now, the author begins to recall the setup used in Lidman &Manolescu (2018a)

to equate ĤM∗(Y, sλ) and the Borel cohomology of SWF(Y, sλ). The reader is cau-

tioned that, therein, the letter λ is used for the spectral cut-off parameter, herein

denoted µ. Moreover, because of the author’s attempt to keep the notation as close

to Lidman & Manolescu (2018a) as possible, the present need to emphasize the con-

tact form λ and the parameter r shall, unfortunately, lead to a certain saturation of

decorations on the symbols used.

Definition 5.15: Denote by W σ the real blow-up of W along the reducibles; that

is,

W σ := {(Aλ + a, s, ψ) ∈ A(det sλ)×R≥0 × Γ(Sλ) | d∗a = 0, ‖ψ‖L2 = 1}.

Use (Wk)
σ to denote the L2

k completion.

Definition 5.16: Define the finite dimensional approximation to the perturbed

Seiberg-Witten vector field by

X µ
λ,r;q := uµ ·

(
ℓ+ pµ(c+ΠGC

∗ q)
)
.

Definition 5.17: For a finite dimensional approximation W µ ⊂ Wk, denote the

blow-up along the reducibles by (W µ)σ.

Definition 5.18: The blown-up finite dimensional approximation to the perturbed

Seiberg-Witten vector field, X µ,σλ,r;q, is the vector field on (W µ)σ uniquely determined

by the U(1)-equivariant vector field X µ
λ,r;q.

Definition 5.19: Denote by XAGC,µ,σ
λ,r;q the vector field uniquely determined by X µ,σ

λ,r;q

on the quotient (W µ)σ/U(1).

Remark 5.20: The notation “AGC” here (cf. Definition 4.7) is in agreement with

Lidman & Manolescu (2018a), §6.2.

Using the flow of XAGC,µ,σ
λ,r;q on (W µ)σ/U(1), Lidman & Manolescu (2018a)

proceed to define a Morse complex out of its fixed points and trajectories. For that,

one needs to select a suitable perturbation q to ensure that this vector field be a

Morse-Smale vector field in a sense similar to that of Palis (1969); cf. Melo & Palis

(1982).
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The only difference is that, here, just as in Kronheimer & Mrowka (2007),

special care must be taken with the fact that (W µ)σ is a manifold-with-boundary

and trajectories can converge to or emanate from the boundary. The Morse-Smale

condition in such a scenario is developed in detail in Kronheimer & Mrowka (2007),

§2.4, for the case in which the flow be a gradient flow. In the case at hand, the flow

is not a gradient flow, but, nonetheless, the Morse-Smale condition can be stated as

follows.

Definition 5.21: A smooth flow φ : R × Γ → Γ on a manifold-with-boundary Γ

induced by a vector field v tangent to ∂Γ is said to be a Morse-Smale flow with no

closed trajectories whenever

(i) it has finitely many fixed points all of which are hyperbolic (that is, the deriva-

tive D v has no purely imaginary eigenvalues at that point);

(ii) given any two fixed points x, y for which one of x or y not be in ∂Γ, the stable

manifold of x intersects the unstable manifold of y transversely in Γ;

(iii) given any two fixed points x, y in ∂Γ, the stable manifold of x intersects the

unstable manifold of y transversely in ∂Γ;

(iv) it has no closed trajectories.

Given a Morse-Smale vector field with no closed trajectories, one can define its

Morse complex, in just the same manner as is done in Kronheimer & Mrowka (2007),

§2.4, by generating the abelian group from the fixed points and defining the differ-

entials by counting trajectories. This is detailed in Lidman & Manolescu (2018a),

§2.5. In fact, there is a stronger condition satisfied by the flow of XAGC,µ,σ
λ,r;q , which

Lidman & Manolescu (2018a) call a “quasi-gradient”. However, for the purposes

being pursued here, such details need not concern the reader.

With an eye towards establishing an isomorphism with ĤM∗(Y, sλ), one must

also ensure this perturbation to be admissible in the sense of Kronheimer & Mrowka

(2007). The existence of such a perturbation can only be guaranteed if the spectral

cut-off parameter be chosen in appropriate fashion. For that, recall from Remark

3.21 that there was a condition imposed on the definition of the spectral cut-off

projections pµ : Wk →W µ (vid. Definition 3.22), which consisted of requiring that,

for an unbounded strictly increasing sequence {µi} ⊂ R>0, one have pµi = p̃µi,

where p̃µ :Wk →W µ are the L2-orthogonal projections (vid. Definition 3.19).
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Proposition 5.22: (Lidman & Manolescu 2018a, Propositions 7.4.1, 8.0.1 and

10.0.2) Let P be a large Banach space of very tame perturbations in sense of Propo-

sition 5.9. There exists an integer L > 0 such that, for i ≥ L, there exists an

admissible perturbation q ∈ P for which XAGC,µi,σ
λ,r;q is a Morse-Smale vector field

with no closed trajectories in the sense of Definition 5.21.

Remark 5.23: As was the case with Kronheimer & Mrowka (2007), Theorem 15.1.1,

the proof of this proposition actually establishes something slightly stronger. If the

reader care to check, in fact, the proof establishes that one can require that the

perturbation have norm as small as desired.

Definition 5.24: Given L and q as asserted to exist by Proposition 5.22 and i ≥ L,

use Ĉ∗(µi, q) to denote the Morse complex defined by the vector field XAGC,µi,σ
λ,r;q .

Note that this cochain complex receives a Q-grading instead of a Z-grading defined

according to Lidman & Manolescu (2018a), Formula (231).

Remark 5.25: Likewise, whenever dealing with gradings of Ĉ∗(q) and ĤM∗(Y, sλ),

the author means the Q-grading according to Kronheimer & Mrowka (2007), Defi-

nition 28.3.1.

Given this grading, by compactness of the moduli space of solutions to the

Seiberg-Witten equations (Kronheimer & Mrowka 2007, Theorem 12.1.2), there is

a finite range of gradings of Ĉ∗(q) for which there be classes corresponding to irre-

ducible monopoles.

Definition 5.26: Let Iirred ∈ Q denote the maximum value of |i| for which Ĉi(q)

admit a generator defined by an irreducible monopole.

Proposition 5.27: (Lidman & Manolescu 2018a, Propositions 9.3.1, 13.1.1, 13.1.4

and 13.3.1) For L and q as in Proposition 5.22, there exists a constant N ∈ Q>0

such that N > Iirred and, for any i > L there is a chain homomorphism f : Ĉ∗(q)→
Ĉ∗(µi, q) satisfying the following properties.

(i) For any j ∈ [−N,N ], f induces an isomorphism in homology

Hj(Ĉ∗(q)) ∼= Hj(Ĉ∗(µi, q));

(ii) for any j ∈ [−N,N ], f restricted to degree j is defined by a 1-to-1 correspon-

dence between the generators of Ĉj(q) (that is, monopoles) and the generators

of Ĉj(µi, q) (that is, fixed points of XAGC,µ,σ
λ,r;q ).
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Proposition 5.28: (Lidman & Manolescu 2018a, Formulae (273) and (274)) For q

and L as provided by Proposition 5.22 and i ≥ L, there exists a constant Mi ∈ Q>0

such that, for any j ∈ [−Mi,Mi],

cH̃
j−n(Y,sλ)
U(1) (SWF(Y, sλ; q)) ∼= Hj(Ĉ(µi, q)).

Moreover, as i→∞, so does Mi →∞.

Remark 5.29: The grading of cH̃
j−n(Y,sλ)
U(1) (SWF(Y, sλ; q)) is off by n(Y, sλ) because

of the different conventions being used by the author (vid. Remark 3.71).

Before the author proceed to determine how the contact invariant shall recover

the class ψ(λ), the author should say something about how Proposition 5.28 is

achieved. He also hopes to add some more detail to what is said in Lidman &

Manolescu (2018a), §2.8. For that to be done, a review of some more concepts

from Conley theory is needed. In what follows suppose Γ to be a manifold-with-

boundary and φ : R× Γ→ Γ a smooth flow. Assume further that ∂Γ be preserved

by φ. In Hell (2009), §3.1.2, it is shown to be straightforward to extend the Conley

theory to manifolds-with-boundary, such as Γ, provided that the flow be tangent to

the boundary. The definitions of maximal invariant set and isolated invariant set

(Definition 3.34 and Definition 3.35) are left unchanged. The only point that should

be emphasized is that the notion of neighbourhood is, of course, in the point-set-

topological sense. That is, for S ⊂ Γ to be an isolated invariant subset, one asks for

a compact set U ⊂ Γ such that S = InvU and that S ⊂ intU , where intU is the

union of all opens sets contained in U ; no mention is made of ∂Γ. This means that,

for example, if U ⊂ Γ be a properly embedded manifold, it is perfectly permissible

for S to intersect ∂U ⊂ ∂Γ. This understood, the definitions of index pair (Definition

3.36), attractor-repeller pair (Definition 4.21) and index triple (Definition 4.22) also

remain unchanged; likewise for the existence theorems of index pairs (Theorem 3.37)

and index triples (Theorem 4.23). Moreover, by arguing as in Floer (1987) or Floer

& Zehnder (1988), all of this can be accomplished in the equivariant setting with

little difficulty; hence, assume G to be a compact Lie group acting on Γ and let φ

be G-equivariant. The notion of the Conley index IG(S, φ) is still defined as above;

however, one can also define a version of the Conley index relative to the boundary

of Γ.

Definition 5.30: Let S ⊂ Γ be an isolated invariant set with index pair (M,N).

Define the Conley index relative to the boundary, I∂G(S, φ), as the G-equivariant
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homotopy type of the space M/(N ∪ (M ∩ ∂Γ)).

Concepts of equivariant Conley theory generally remain true for I∂G(S, φ) in

analogous forms to how they hold in the case without boundary; therefore, the

author shall refrain from listing all here.

Definition 5.31: Given an isolated invariant set S ⊂ Γ, by a Morse decomposition

of S, one means a sequence {S0, . . . , Sn} of pairwise disjoint subsets of S where each

Si be an isolated invariant set in Γ and such that, for each x ∈ S \ (⋃i Si), there

exist a pair of indices i < j for which ω(x) ∈ Si and ω∗(x) ∈ Sj (vid. Definition

4.18).

Definition 5.32: Given an isolated invariant set S ⊂ Γ and a Morse decomposition

{S0, . . . , Sn} of S define the associated Morse filtration to be {S≤0, . . . , S≤n} where
S≤0 := S0 and each S≤i is defined successively by

S≤i := {x ∈ S | ω(x) ∈ S≤i−1, ω
∗(x) ∈ Si}.

Remark 5.33: Notice that, for each i, (S≤i−1, Si) is an attractor-repeller pair de-

composition of S≤i.

Now, the author specializes to the case in which the flow be Morse-Smale with

no closed trajectories but he should clarify what that means in the equivariant case.

Definition 5.34: A φ-fixed G-orbit O ⊂ Γ is said to be hyperbolic whenever the

derivative of the vector field ∂
∂tφ(t,−) restrict to the normal bundle of O as a bundle

endomorphism with no purely imaginary eigenvalues.

For hyperbolic fixed orbits, it makes sense to speak of their stable and unstable

manifolds defined in the same manner and seen to be manifolds as in the non-

equivariant case. Note that, in this case, they have the structure of a vector bundle

over the orbit.

Definition 5.35: A G-equivariant smooth flow φ : R × Γ → Γ over a manifold-

with-boundary Γ is said to be a Morse-Smale flow with no closed trajectories when

(i) there are finitely many φ-fixed G-orbits, all of which are hyperbolic;

(ii) given any two φ-fixed G-orbits O1,O2, for which one of O1 or O2 not be in ∂Γ,

the stable manifold of O1 intersects the unstable manifold of O2 transversely

in Γ;

(iii) given any two φ-fixed G-orbits O1,O2, in ∂Γ, the stable manifold of O1 inter-
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sects the unstable manifold of O2 transversely in ∂Γ;

(iv) it has no closed trajectories.

Remark 5.36: Note that, for O ⊂ Γ a hyperbolic φ-fixed G-orbit, the Conley index

IG(O) is of the form (D(V )×O)/(S(V )×O) where V is some G-representation and

D(V ), S(V ) are the unit disk and sphere in a G-invariant inner product. The pair

(D(V )×O, S(V )×O) is what is called a G-cell; cf. May & al. (1996), §I.3 and §X.

Henceforth, add the assumption that φ be a G-equivariant Morse-Smale flow

with no closed trajectories. Then, for any isolated invariant set S, one can obtain a

Morse decomposition {S0, . . . , Sn} where each Si is a φ-fixed G-orbit. In this case,

the induced Morse filtration of IG(S, φ) is simply a G-cell decomposition of S with

a 1-to-1 correspondence between cells and elements of {S0, . . . , Sn}.

At this point, it becomes convenient to introduce the functoriality property of

the Conley index. This theory has been developed by McCord (1986, 1991).

Definition 5.37: Given a pair of G-equivariant flow spaces (Γ1, φ1), (Γ2, φ2), a

G-equivariant mapping f : Γ1 → Γ2 satisfying f(∂Γ1) ⊂ ∂Γ2 is called a flow map

whenever it be equivariant with respect to the flows; that is, for all t ∈ R and

x ∈ Γ1, φ2(t, f(x)) = f(φ1(t, x)).

Proposition 5.38: (McCord 1986, Theorem 2.2) Given a flow map f : (Γ1, φ1) →
(Γ2, φ2) and an isolated invariant set S2 in Γ2 with index pair (M2, N2), it fol-

lows that S1 := f−1(S2) is isolated invariant in Γ1 with index pair (M1, N1) :=

(f−1(M2), f
−1(N2)).

Remark 5.39: While this is proven in the non-equivariant case and without bound-

ary, it is straightforward to extend it to these generalizations. In any event, for the

purposes of the present thesis, in the only occasions in which this shall be used, it

shall be evident that (M1, N1) shall define an index pair without recourse to this

result.

Definition 5.40: Given a flow map f : (Γ1, φ1)→ (Γ2, φ2) and index pairs (M1, N1),

(M2, N2) for isolated invariant sets S1, S2 as in Proposition 5.38, define the induced

maps on the Conley indices

IG(f) : IG(S1, φ1)→ IG(S2, φ2), I∂G(f) : I
∂
G(S1, φ1)→ I∂G(S2, φ2),

respectively, by sending [x] ∈M1/N1 to [f(x)] ∈M2/N2 and [x] ∈M1/(N1 ∪ (M1 ∩
∂Γ1) to [f(x)] ∈M2/(N2 ∪ (M2 ∩ ∂Γ2).
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Specialize now to the case G = U(1).

Definition 5.41: A U(1)-action on Γ is said to be semifree when all U(1)-orbits be

either fixed points or free.

Remark 5.42: The U(1)-action on W µ is semifree as it is of the form Rm ⊕Cn.

Now, suppose (Γ, φ) be a semifree U(1)-equivariant Morse-Smale flow space

with no closed trajectories and ∂Γ = ∅. Denote by Γσ the real blow-up of Γ along

the fixed point set ΓU(1). Then, it is easy to see that the induced U(1)-action on Γσ

is free. It is also easy to see that the flow φ then defines a U(1)-equivariant flow φσ

on Γσ. The isolated invariant set S also lifts to an isolated invariant set Sσ in the

blow-up. Furthermore, It can be checked that the flow of φσ is Morse-Smale with

no closed trajectories. The blow-down map b : Γσ → Γ defines a flow map. Now,

given an index pair (M,N) for S, one can check directly that these define an index

pair (Mσ, Nσ) for Sσ in the blow-up. Hence, without recourse to Proposition 5.38,

it becomes clear that the induced map

I∂U(1)(b) : I
∂
U(1)(S

σ, φσ)→ I∂U(1)(S, φ) = IU(1)(S, φ)

is well defined.

Next, note that, because the action of U(1) is free on Γσ, it follows that the

action of U(1) is free away from the base point on I∂U(1)(S
σ, φσ); hence,

cH̃∗
U(1)(I

∂
U(1)(S

σ, φσ)) ∼= H̃∗(I∂U(1)(S
σ, φσ)/U(1)).

Because of this, it becomes desirable to compute the cohomology of the homotopy

type IU(1)(S
σ, φσ)/U(1) via a Morse complex approach. To understand how that is

done, introduce yet another flow space: Γ̃ := Γσ/U(1) with the flow φ̃ as induced

by φσ. Denote the quotient map by q : Γσ → Γ̃; note that q is a flow map and

that the isolated invariant set Sσ descends via q to an isolated invariant set S̃ on Γ̃.

Therefore, one has a map

I∂U(1)(q) : I
∂
U(1)(S

σ, φσ)→ I∂U(1)(S̃, φ̃) = I∂(S̃, φ̃)

where the U(1)-action on Γ̃ is being taken to be trivial. It is not difficult to see that

this map is nothing more than the quotient map

I∂U(1)(S
σ, φσ)→ I∂U(1)(S

σ, φσ)/U(1).

Now, note that the maps induced by flow maps respect Morse decompositions in the

following sense.
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Proposition 5.43: (McCord 1991, Proposition 3.3) If f : (Γ1, φ1) → (Γ2, φ2) be

a flow map, S ⊂ Γ2 be an isolated invariant set and {S0, . . . , Sn} be a Morse

decomposition for S, then {f−1(S0), . . . , f
−1(Sn)} is a Morse decomposition for

f−1(S).

Remark 5.44: As in the other result of McCord (1986) cited above, this was proven

in the non-equivariant case and without boundary. Again, it is straightforward to

apply McCord’s argument with these generalizations in place; however, in the cases

in which this result shall be used, it shall be clear that it holds in a direct way.

Remark 5.45: Given the assumption that the flow φ on Γ be Morse-Smale without

closed trajectories, then it follows that there is a Morse decomposition {S0, . . . , Sn}
for S in which each Si is simply a φ-fixed hyperbolic U(1)-orbit; by the semifree as-

sumption, this means it is either a point or a free circle. Lifting this to the blow-up,

one gets {Sσ0 , . . . , Sσn}, which is easily seen, directly, to be a Morse decomposition

for Sσ. It is no longer true, however, that each Sσi is a U(1)-orbit; when Si be

a U(1)-fixed point, Sσi may consist of multiple U(1)-orbits and trajectories joining

them. Hence, one can perform further Morse decompositions for each Sσi . Let them

be denoted {Sσi,0, . . . , Sσi,mi
}. Note that, by concatenating them, these Morse decom-

positions define a combined Morse decomposition of Sσ in which each set is indeed

a single φ-fixed hyperbolic U(1)-orbit. Now, one can descend each of these Morse

decompositions to the quotient Γ̃ to obtain Morse decompositions {S̃i,0, . . . , S̃i,mi
}.

These Morse decompositions consist of hyperbolic fixed points of the flow φ̃ and,

it is standard to compute the cohomology of I∂(S̃, φ̃) by building a Morse complex

generated by {S̃i,j} with differentials defined by a careful count of trajectories as

defined in Kronheimer & Mrowka (2007), §2.4. The fact that this complex computes

the claimed cohomology is the content of Floer (1989), albeit not for the Conley in-

dices with boundary as is the case here, but Floer’s proof can be generalized to this

case as is argued in Lidman & Manolescu (2018a), §2.8. Let this cochain complex

be denoted by C∗. Now, if n denote the codimension of the submanifold ΓU(1) in Γ,

it follows that, for any i ∈ {0, . . . , n− 2},

cH̃i
U(1)(IU(1)(S, φ)) ∼= cH̃i

U(1)(I
∂
U(1)(S

σ, φσ)) ∼= Hi(C∗),

cf. Kronheimer & Mrowka (2007), §2.6.

Remark 5.46: If one care to check (vid. Lidman & Manolescu 2018a, Formula

(272)), this is how the proof of Proposition 5.28 above is obtained; here, Γ is the
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flow space W µi with the flow φ being that of the vector field −X µi

λ,r;q. Note that,

the codimension of the U(1)-fixed point set can be made as large as desired simply

by increasing the spectral cut-off parameter µi. Therefore, the isomorphism above

can be obtained between arbitrarily large degrees as is claimed.

Bearing this discussion in mind, it becomes possible to determine how the

contact invariant comes into picture.

Definition 5.47: Suppose a G-equivariant (reduced) cohomology theory h∗G be

given. By a G-equivariant Thom class, one means, for a G-vector bundle V → X ,

a class θG(V ) ∈ h∗G(ΘG(V )), where ΘG(V ) denotes the Thom space, subject to the

requirement that, given the inclusion of any G-orbit i : O → X , the restriction

i∗θG(V ) generate h∗G(ΘG(i
∗V )) as a free h∗G(O+)-module, where O+ denotes the

orbit space O with a disjoint base point added.

Remark 5.48: Specialising this definition to when G act trivially on the base space

X , the only type of orbit is i : G/G → X , so the requirement is that i∗θG(V )

generate h∗G(ΘG(V |p)) as a free h∗G(S
0)-module.

Remark 5.49: In the other extreme, specialising to when G act freely on X , the

only type of orbit is i : G/1 → X , so the requirement is that θG(V ) generate

h∗G(ΘG(V )) as a free h∗G(X+)-module.

Remark 5.50: It is not at all certain if, given a bundle, such an equivariant Thom

class exists, or even if the prerequisite that h∗G(ΘG(i
∗V )) be a free h∗G((G/H)+)-

module with a single generator is satisfied. In the event that it exist, one shall say

that V is h∗G-orientable.

Remark 5.51: Note that, for G = U(1) acting on X ∼= U(1) freely, there always

exists a Thom class for any U(1)-bundle E → X

Lemma 5.52: Suppose (Γ, φ) to be a semifree U(1)-equivariant Morse-Smale flow

space with no closed trajectories such that ∂Γ = ∅. Suppose S ⊂ Γ to be an isolated

invariant set admitting a Morse decomposition {S0, . . . , Sn} in which each Si be a

hyperbolic φ-fixed U(1)-orbit. Suppose that the last set, Sn, be a free U(1)-orbit

whose unstable manifold be of dimension strictly less than the codimension of the

fixed point set ΓU(1) ⊂ Γ. Consider the associated Morse filtration {S≤0, . . . , S≤n}.
Denote by

p : IU(1)(S, φ)→ IU(1)(Sn, φ)
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the cofibre map of the attractor-repeller pair cofibration

IU(1)(S≤n−1, φ)→ IU(1)(S, φ)→ IU(1)(Sn, φ)

associated to the last level of the Morse filtration. Denote by E → Sn the unstable

normal bundle of Sn in Γ. Let

Γσ, Γ̃, {mi | i = 0, . . . , n}, {S̃i,j | i = 0, . . . , n; j = 0, . . . , mi}, C∗

be as defined in Remark 5.45. Then, it follows that the following are true.

(i) mn = 0;

(ii) the associated generator Sn,0 of the cochain complex C∗ is a cocycle;

(iii) the cohomology class [Sn,0] of this cocyle corresponds to ±p∗(θU(1)(E)) under

the isomorphism

cH̃dimE
U(1) (IU(1)(S, φ)) ∼= HdimE(C∗),

described in Remark 5.45.

Proof: For the first assertion, note that the assumption that Sn be U(1)-free means

that it lifts to a single U(1)-free orbit, Sσn , in Γσ. Hence, the Morse decomposition

of Sσn must consist of a single entry {Sσn,0}.

The second assertion is true because S̃n,0 is the descent to the quotient of

the free U(1)-orbit Sσn,0 which, in turn, comes, via the blow-up, from Sn. But, by

assumption, Sn is the last entry of a Morse decomposition; therefore, there cannot be

any trajectories coming into it. Hence, by Kronheimer & Mrowka (2007), Definition

2.4.4, this class is a cocycle, as the differential map of the cochain complex is defined

by counting trajectories coming into the generator.

For the last assertion, consider firstly the combined Morse decomposition on

Γ̃ for S̃ given by the sets {S̃i,j}. Denote the resulting Morse filtration by {S̃≤(i,j)}.
Associated to the last level of the filtration, is the attractor-repeller pair cofibration

I∂(S̃≤(n−1,mn−1), φ̃)→ I∂(S̃, φ̃)→ I∂(S̃n,0, φ̃).

Denote the cofibre map of this sequence by

p̃ : I∂(S̃, φ̃)→ I∂(S̃n,0, φ̃).

Also, as S̃n,0 is a hyperbolic fixed point of φ̃, denote by Ẽ → S̃n,0 its unstable normal

bundle in Γ̃; this is simply a bundle over a point. It is therefore evident that p̃∗θ(Ẽ)

56



is, up to a sign, precisely the class of the cocycle S̃n,0 under the isomorphism

H̃dim Ẽ(I∂(S̃, φ̃)) ∼= Hdim Ẽ(C∗).

Now, consider the corresponding Morse decomposition {Sσi,j} of Sσ and denote by

{Sσ≤(i,j)} the associated Morse filtration. As above, for the cofibre map of the last

level of this filtration, write

pσ : I∂U(1)(S
σ, φσ)→ I∂U(1)(S

σ
n,0, φ

σ).

Let Eσ → Sσn,0 be the the unstable normal bundle of Sσn,0 in Γσ; this bundle is

cH̃U(1)-orientable by Remark 5.51. If q : Γσ → Γ̃ denote the quotient map, then one

obtains a map between Conley indices

I∂U(1)(q) : I
∂
U(1)(S

σ, φσ)→ I∂U(1)(S
σ, φσ)/U(1) ∼= I∂(S̃, φ̃).

Now, because this map preserves Morse decompositions (Proposition 5.43), there is

a commuting diagram of the form

I∂U(1)(S
σ, φσ) −→ I∂U(1)(S

σ
n,0, φ

σ)

y
y

I∂(S̃, φ̃) −→ I∂(S̃n,0, φ̃).

where the horizontal maps are pσ and p̃ respectively, and the vertical maps are

induced by I∂U(1)(q). Hence, it is not difficult to see that, under the isomorphism

cH̃dimE
U(1) (I∂U(1)(S

σ, φσ)) ∼= H̃dimE(I∂(S̃, φ̃)),

induced by I∂U(1)(q), the class p̃∗(θ(Ẽ)) corresponds to ±(pσ)∗(θU(1)(E
σ)). Finally,

reintroduce b : Γσ → Γ to denote the blow-down map. One then has a commuting

diagram of the form

I∂U(1)(S
σ, φσ) −→ I∂U(1)(S

σ
n,0, φ

σ)

y
y

IU(1)(S, φ) −→ IU(1)(Sn, φ),

where the horizontal maps are, respectively, pσ and p and the vertical maps are

induced by I∂U(1)(b). Hence, it is not difficult to see that, under the isomorphism

cH̃dimE
U(1) (IU(1)(S, φ)) ∼= cH̃dimE

U(1) (I∂U(1)(S
σ, φσ))

induced by I∂U(1)(b), the class (pσ)∗(θ(Eσ)) gets sent to ±p∗θ(E). QED
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Definition 5.53: Use θλ ∈ cH̃∗
U(1)(T (λ)) to denote the desuspension of the Thom

class θU(1)(E
u,µ
λ ) suitably suspended or desuspended according to Definition 4.31,

where Eu,µ
λ → Uλ is the unstable bundle of Uλ in W µ. Likewise, in the generically

perturbed case, one defines a Thom class θλ(q) ∈ cH̃∗
U(1)(T (λ; q)).

Remark 5.54: Of course, this is only defined up to sign which shall be consis-

tent with the familiar sign ambiguity of the contact invariant in monopole Floer

cohomology (cf. Lin, Ruberman & Saveliev 2018).

Theorem 5.55: The cohomological contact invariant is recovered by the cohomo-

topical invariant via

±ψ(λ) = Ψ(λ)∗(θλ).

Proof: Let L and q be as in Proposition 5.22. Let i > L and assume also that

the norm of q be less than the ε of Proposition 5.10; this is permitted according to

Remark 5.23. Then, according to Proposition 5.10 and Proposition 5.13 it suffices

to prove that, under the isomorphisms of Proposition 5.28 and Proposition 5.27 one

of the cohomology classes

±Ψ(λ; q)∗(θλ(q)),

corresponds to the class in Morse cohomology expressed by the generator Uλ(q) of

the complex Ĉ∗(µi, q).

Now, recalling from Remark 5.46 how Proposition 5.28 is proven in Lidman &

Manolescu (2018a), it becomes clear that Lemma 5.52 can be applied in the case at

hand with Γ =W µi, φ the flow of the vector field −X µi

λ,r;q and the isolated invariant

set S = Sµi

λ,r;q defined just as in Definition 3.32 but using the generically perturbed

Seiberg-Witten vector field. The Morse decomposition {S0, . . . , Sn} is chosen to be

any one whose entries consist of single hyperbolic φ-fixed U(1)-orbits while requiring

that the last entry, Sn, be Uλ(q). This is permitted because, according to Proposition

5.6, Uλ(q) is a repeller. QED

Given Theorem 5.55, the author intends to use the newly constructed invariant

to deduce results about ψ(λ) in contexts in which it has proven difficult to do so

while relying solely on the machinery of monopole Floer homology, Heegaard Floer

homology and embedded contact homology. Note that it is not clear, at the moment,

if there is any case in which Ψ(λ) may hold any more information than ψ(λ) does.

The key advantage of Ψ(λ) that the author wishes to emphasise is that it does not
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require a generic perturbation for its definition. This shall be exploited in the next

section.
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6. Finite Coverings

In Lidman & Manolescu (2018b), the authors studied the Seiberg-Witten Floer

spectrum in the presence of a finite regular covering. The key to their results was

the observation that the spectrum of the manifold upstairs in the covering acquires

an action of the deck transformation group G and, upon taking appropriate fixed

points of this action, one obtains the downstairs spectrum. A Smith-type inequality

is then derived through actual application of Smith theory.

In this section, the author’s goal is to formulate the contact invariant in this

same scenario of a finite regular covering. This shall involve studying the attractor-

repeller pair cofibration used to define the contact invariant in the G-equivariant

setting. In doing so, one encounters no real difficulty and it is straightforward to

obtain a G-equivariant cohomotopical contact invariant.

Consider a finite group G and a rational homology sphere Y equipped with a

free G-action. Use π : Y → Y/G to denote the quotient map. Agree to fix a metric g

on Y/G and use, on Y , the induced G-invariant metric π∗g. Suppose λ be a contact

form on Y/G so that π∗λ be a G-equivariant contact form on Y . Notice that the

canonical SpinC structure defined by λ on Y/G naturally lifts to Y as the canonical

SpinC structure defined by π∗λ; that is, π∗sλ = sπ∗λ. Likewise, the connexion Aπ∗λ

on det sπ∗λ is the lift π∗Aλ of the connexion Aλ on det sλ. Denote by W the global

Coulomb slice with respect to Aπ∗λ on Y and by W ′ the global Coulomb slice with

respect to Aλ on Y/G.

It is difficult to study this scenario in the classical setting of monopole Floer

homology due to the need for generic perturbations in order to achieve the required

Morse-Smale condition of Morse theory. Indeed, there is no guarantee that a suffi-

ciently generic perturbation chosen for Y in order to satisfy the conditions for the

construction of the group ĤM∗(Y, π∗s) can be made G-equivariant so that it de-

fine a valid perturbation for the construction of ĤM∗(Y/G, s). As a consequence,

the behaviour of the monopole Floer homology groups under coverings has proven

elusive to study via the classical Morse theoretic approach. As the construction

of the SWF spectrum avoids the addition of a generic perturbation, one can say

something significant using this machinery. The author starts by recalling the main

observations of Lidman & Manolescu (2018b).

Remark 6.1: Note that G acts linearly on the Coulomb sliceW . Moreover, the quo-
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tient map π : Y → Y/G induces an inclusion W ′ →֒ W which identifies W ′ with the

fixed point space WG. This inclusion is not, however, an isometry in the L2-norm.

Nonetheless, the L2 ball B(W ′, R′) is identified with the L2 ball B(W, |G|R′)G ⊂W ,

which allows one to construct the Sobolev norm onW so as to have it be G-invariant.

As a consequence, in the Sobolev completions, one still has W ′
k = WG

k .

Remark 6.2: The Fredholm operator ℓ on Y is G-equivariant. Hence, its restric-

tion to WG agrees with the analogous operator defined on Y/G. Therefore, use ℓ to

denote both these operators. Furthermore, note that (W ′)µ = (W µ)G. The map c

is also G-equivariant, so a finite-type Seiberg-Witten trajectory in W ′
k is the same

thing as a G-fixed finite-type Seiberg-Witten trajectory in Wk. The same identifica-

tion can be made between the Seiberg-Witten trajectories in the finite dimensional

approximations.

Use R > 0 to denote the constant provided by Theorem 3.28 for the case of

the manifold Y and R′ > 0 to denote this constant for the quotient manifold Y/G.

By perhaps increasing R or R′, one can ensure that R′ = R/|G|. This means that

R will also satisfy the conclusions of Theorem 3.28 for Y/G.

Next, recall from Remark 3.30 that the choice of bump functions uµ for Y

was made so as to have it constant on the spheres centred at zero in the Sobolev

norm; therefore, the uµ are automatically G-invariant. Therefore, their restrictions

to (W µ)G can be used to define the bump functions required for Y/G. With these

conditions, the finite dimensional Seiberg-Witten flow ϕµπ∗λ,r of Y is G-equivariant

and restricts to (W µ)G as the finite dimensional Seiberg-Witten flow of Y/G. Now,

if the reader agree to fix µ > 0 large enough so as to have Theorem 3.33 hold for both

Y and Y/G, then, it follows that the isolated invariant set Sµπ∗λ,r is G-invariant and

its G-fixed subset, (Sµπ∗λ,r)
G, is precisely the isolated invariant set used to define the

SWF spectrum of Y/G. Moreover, since the G-action is linear on W µ, the isolating

neighbourhood D(W µ, 2R) of Sµπ∗λ,r is G-invariant and D(W µ, R)G = D((W µ)G, R)

serves as an isolating neighbourhood for the construction of the SWF spectrum on

Y/G.

A few more notions from equivariant stable homotopy theory shall be required.

In what follows, use H to denote an arbitrary compact Lie group. As before, the

reader is directed to May & al. (1996) for further details.

Theorem 6.3: Given a closed normal subgroup K ⊂ H , there exists a functor,
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called the geometric fixed points functor, from H-spectra indexed over a universe V
to (H/K)-spectra indexed over the universe VK ,

ΦK : HSV → (H/K)SVK ,

satisfying the properties that

(i) ΦKΣ∞
V X
∼= Σ∞

VKX
K ,

(ii) ΦKE ∧ ΦKF ∼= ΦK(E ∧ F ).

Proof: Vid. May & al. (1996), §XVI.3. QED

Remark 6.4: Since the author is simply dealing with suspension spectra, these two

properties suffice in understanding the geometric fixed points of the spectra at hand.

In particular, note that, for an H-space X and an H-representation V , it follows

that

ΦKΣ−VΣ∞
V X = Σ−V K

Σ∞
VKX

K .

Definition 6.5: An H-universe is called complete if one can find, for any finite

dimensional H-representation V , a sub-representation in V isomorphic to V .

Remark 6.6: For G the group of deck transformations of the covering π : Y →
Y/G, notice that the universe W defined by the Coulomb gauge of Y is naturally

a G × U(1)-universe and its G-fixed point space, WG, is the U(1)-universe defined

by the Coulomb gauge of Y/G. Let U ′ denote a complete U(1) × G-universe. By

intertwining with change of universe functors defined by an isometry W → U ′, as

was done in Definition 3.61, one can consider the functor Σ−W (−µ,0)
as an endofunctor

of the category h̄(U(1)×G)SU ′
.

Definition 6.7: Define the metric dependent G-equivariant Seiberg-Witten Floer

spectrum as

SWFG(Y, π
∗sλ, π

∗g) := Σ−W (−µ,0)

Σ∞
U ′ IU(1)×G(S

µ
π∗λ,r, ϕ

µ
π∗λ,r) ∈ h̄(U(1)×G)SU ′.

Remark 6.8: The author believes it to be possible to (de)suspend away the metric

dependence in an analogous fashion to the non-equivariant case; however, it seems

the details are somewhat subtle, so he chose not to pursue that goal in this thesis.

This would involve considering a localization of the representation ring RO(U(1)×
G), equivariant spectral flow and equivariant eta invariants.
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Theorem 6.9: (Lidman & Manolescu 2018b) The Seiberg-Witten Floer spectra for

Y and Y/G are related by

ΦG SWFG(Y, π
∗s, π∗g) = SWF(Y/G, s, g).

Proof: Although the statement in Lidman & Manolescu (2018b) is made in terms

of U(1) × G-spaces instead of spectra, the properties of the geometric fixed points

functor mentioned above make clear that this is the correct statement for spectra.

QED

Now, the contact invariant construction shall be considered in this setting. If

necessary, increase R, µ and the parameter r used in the Seiberg-Witten equations

so that Remark 4.1, Proposition 4.8 and Theorem 4.17 be satisfied for both Y and

Y/G.

Notice that the upstairs contact circle, Uπ∗λ ⊂ (W µ)G ⊂ W µ, is naturally

identified with the downstairs contact circle, Uλ. Beware, however, that the dual

attractors to Uπ∗λ in Sµπ∗λ,r and in (Sµπ∗λ,r)
G are, of course, not the same.

Definition 6.10: Let

TG(π∗λ, g) := ΣW
(−µ,0)

Σ∞
U ′ IU(1)×G(Uπ∗λ, ϕ

µ
π∗λ,r) ∈ h̄(U(1)×G)SU ′

denote the Thom space appearing in the codomain of the cohomotopical contact

invariant but now seen as a (U(1)×G)-spectrum (cf. Definition 4.27).

The attractor-repeller cofibration

IU(1)×G ((Uπ∗λ)
∗, ϕµπ∗λ,r)→ IU(1)×G (Sµπ∗λ,r, ϕ

µ
π∗λ,r)→ IU(1)×G (Uπ∗λ, ϕ

µ
π∗λ,r)

can be formed G-equivariantly as well. This is done by constructing a (U(1)× G)-
invariant index triple (L,M,N) according to Theorem 4.23. The consequence is

that the contact invariant gains a G-equivariant version.

Definition 6.11: Define the G-equivariant metric dependent contact invariant as

the map

ΨG(π
∗λ, π∗g) : SWFG(Y, π

∗λ, π∗g)→ TG(π∗λ, π∗g)

given by desuspending the above cofibre map by the (U(1) × G)-representation

W (−µ,0).

Theorem 6.12: The cohomotopical contact invariants of (Y, π∗λ) and (Y/G, λ) are

related by

ΦGΨG(π
∗λ, π∗g) = Ψ(λ, g).
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Proof: If (L,M,N) be a U(1)×G-invariant index triple for Sµπ∗λ,r, then the triple of

fixed point sets (LG,MG, NG) is a U(1)-invariant index triple for (Sµπ∗λ,r)
G = Sµλ,r.

The result follows at once. QED

The extra data available due to the G-action allows one to define a G-equivari-

ant (or (U(1)×G)-equivariant) version of the monopole Floer cohomologies via the

G-equivariant cohomology of the SWF spectrum since the spectrum has naturally

acquired a G-action. There are three choices of equivariant cohomology theory which

spring to mind in this context: Borel cohomology, equivariant K-theory and Bredon

cohomology. In the present thesis, the author shall mainly pursue the use of Borel

cohomology as that turned out to be the most readily applicable. A few minor

remarks shall be made about Bredon cohomology as well, but no deep results have

followed from that.
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7. Borel Cohomology

This section shall deal with the Borel G-equivariant cohomology of the spec-

trum SWFG and consider the resulting equivariant contact class. Despite the spec-

trum SWFG being a U(1) × G-spectrum, in the interests of simplicity, the author

shall ignore the U(1)-action and only consider cohomologies equivariant with respect

to the G-action. Application of Borel cohomology to the cohomotopical contact in-

variant leads to a G-equivariant cohomological contact invariant ψG, which, as shall

be seen, holds information about both the upstairs and downstairs contact struc-

tures of the covering. Verily, if one know the value of ψG, one can recover the value

of both cohomological contact invariants of the covering.

Ideally, what one really wishes is to infer something about the upstairs contact

invariant from knowledge about the downstairs contact invariant; the new equivari-

ant contact invariant, therefore, may seem not to be leading in that direction. How-

ever, Borel cohomology, under appropriate circumstances, enjoys the very powerful

property that the cohomology of the fixed points of a G-space conditions significantly

the Borel cohomology of the whole space; this is the content of the localization theo-

rem. As a consequence of localization, one sometimes can determine the equivariant

contact invariant from knowledge of the downstairs contact invariant. And, as the

equivariant contact invariant recovers the non-equivariant upstairs contact invariant,

this allows one to infer the upstairs contact invariant starting only from knowledge

of the downstairs contact invariant.

The applicability of localization, however, is limited to scenarios where one

know precisely what the SWFG spectrum is. This happens, for instance, in the

event that there be a unique solution to the Seiberg-Witten equations, which implies

that SWFG is an equivariant sphere spectrum. Nonetheless, such manifolds are

sufficiently abundant that the results derived say something quite non-trivial. A

special case of interest shall be that of elliptic manifolds, where a very general

theorem may be stated which aids greatly in determining whether the lift of a tight

contact structure remains tight or becomes overtwisted.

For further simplicity, the author shall avoid the language of G-spectra and

work instead at the level of G-spaces as much as possible in this section. This is

similar to what is done in Lidman & Manolescu (2018b). The main reason being

that the appropriate form of the localization theorem is more difficult to describe
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for spectra as questions about the various forms of fixed points functors come into

play.

Let Y , G, π, g and λ be as in the previous section.

Definition 7.1: Define the G-equivariant Borel metric dependent monopole Floer

cohomology as

cH̃M∗
G(Y, π

∗s, π∗g;R) := cH̃∗
G(SWFG(Y, π

∗s, π∗g);R)

where R is some commutative ring, which will be left implicit in the notation hence-

forth.

Remark 7.2: In order to make the best out of Borel cohomology, it is best to focus

on the case G = Z/pZ for a prime p. In this case, the coefficient ring R shall be

chosen to be Z/pZ. For the remainder of this section, these choices shall be implicit

lest the notation become overloaded.

Remark 7.3: Since SWFG(Y, π
∗s, π∗g) depends on g only up to suspension by G-

representations, it follows that cH̃M∗
G(Y, π

∗s, π∗g) depends on g only up to shifts in

grading, which, although cosmetically unpleasant, is not a major issue in practice.

Definition 7.4: Given a G-representation V and a ring R, one says that V is

G-equivariantly R-orientable if the vector bundle VG := (V × EG)/G over BG be

R-orientable. In which case, one writes eG(V ) ∈ cH̃∗
G(S

0;R) for its Euler class.

Remark 7.5: Since the author is using coefficients R = Z/pZ for the group G =

Z/pZ and p is a prime, it follows that all G-representations are G-equivariantly R-

orientable. In the case p = 2, all vector bundles are R-orientable anyway. Otherwise,

if p be an odd prime, then any non-trivial representation of G is complex and,

therefore, the vector bundle defined over BG shall also be complex and therefore

orientable over any field. So, in any event, an equivariant Euler class always exists

for the purposes being pursued here.

Remark 7.6: Note that, due to the Thom isomorphism, for an orientable G-

representation V , the ring cH̃∗
G(V

+) is isomorphic to cH̃∗
G(S

0) with its grading

shifted by dimV . Moreover, under this isomorphism, notice that the Thom class

θG(VG) of the bundle VG → BG gets sent to 1 ∈ H̃0
G(S

0). In other words, one can

think of θG(VG) as a G-equivariant fundamental class of the G-manifold V +.

Theorem 7.7: (Localization Theorem) Let Γ be a finite G-CW-complex and S ⊂
H̃∗(BG;Z/pZ) consist of those elements which be Euler classes of G-representations
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having no trivial summand. The inclusion of fixed points ΓG →֒ Γ induces an iso-

morphism between cohomologies localized with respect to S,

S−1cH̃∗
G(Γ;Z/pZ)

∼−→S−1cH̃∗
G(Γ

G;Z/pZ).

Proof: Vid. tom Dieck 1987, Theorem 3.13. QED

Example 7.8: Consider the inclusion of fixed points

(V +)G →֒ V +

of a G-representation sphere coming from a G-representation V potentially having

V G 6= 0. In this example, assume p > 2. Firstly, recall that, in this case, the

cohomology of BG is the ring

cH̃∗
G(S

0) = (Z/pZ)[u, v]/(v2)

where deg u = 2, deg v = 1. It is worth paying close attention to this ring. In the

following diagram, the top row indicates the abelian subgroups at each degree, the

middle row indicates the generator with the corresponding degree and the bottom

row indicates the numerical value of the degree.

· · · 0 0 Z/pZ Z/pZ Z/pZ Z/pZ Z/pZ · · ·
〈1〉 〈v〉 〈u〉 〈uv〉 〈u2〉

(−2) (−1) (0) (1) (2) (3) (4).

Now, because p > 2 is an odd prime, all representations of G are complex and

therefore define orientable bundles over BG. It follows from the Thom isomorphism

that

cH̃∗
G(V

+) ∼= cH̃∗−dimV
G (S0)

and likewise for (V +)G. Hence, before localization, the inclusion of fixed points

(V +)G →֒ V + induces a map

cH̃∗−dimV
G (S0)→ cH̃∗−dimV G

G (S0)

which, in the notation above, is depicted as

· · · 0 0 · · · 0 Z/pZ · · ·
↓ ↓ ↓ ↓

· · · 0 Z/pZ · · · Z/pZ Z/pZ · · · ,
where all the Z/pZ → Z/pZ maps are isomorphisms. Now, consider the effect of

localization. The set S with respect to which one must perform localization is the
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set {un | n > 0}; this can be seen from looking at the representation theory of G.

The localized Borel cohomology therefore is

S−1cH̃∗
G(S

0) = (Z/pZ)[u, u−1, v]/(v2).

Schematically,

· · · Z/pZ Z/pZ Z/pZ Z/pZ Z/pZ Z/pZ Z/pZ · · ·
〈u−1〉 〈u−1v〉 〈1〉 〈v〉 〈u〉 〈uv〉 〈u2〉
(−2) (−1) (0) (1) (2) (3) (4).

After localization, the map induced by the inclusion of fixed points takes the form

· · · Z/pZ Z/pZ · · · Z/pZ Z/pZ · · ·
↓ ↓ ↓ ↓

· · · Z/pZ Z/pZ · · · Z/pZ Z/pZ · · · ,
where all maps are isomorphisms.

Example 7.9: Now, consider the same scenario but with p = 2. In this case, recall

that the cohomology of BG is the ring

cH̃∗
G(S

0) = (Z/2Z)[u]

where deg u = 1. In particular, as an abelian group, this is the same as in the case

p > 2; only the ring structures differ. Again, draw the same sort of diagram as

before.

· · · 0 0 Z/2Z Z/2Z Z/2Z Z/2Z Z/2Z · · ·
〈1〉 〈u〉 〈u2〉 〈u3〉 〈u4〉

(−2) (−1) (0) (1) (2) (3) (4).

Unlike in the p > 2 case, here, there are non-trivial real representations of G which

define non-orientable bundles over BG. No matter; in this case, the coefficient

ring being used for cohomology theories is Z/2Z, and all vector bundles are Z/2Z-

orientable. Hence, again by the Thom isomorphism,

cH̃∗
G(V

+) ∼= cH̃∗−dimV
G (S0)

and likewise for (V +)G. As before, the inclusion of fixed points (V +)G →֒ V + induces

a map

cH̃∗−dimV
G (S0)→ cH̃∗−dimV G

G (S0)

which one depicts as

· · · 0 0 · · · 0 Z/2Z · · ·
↓ ↓ ↓ ↓

· · · 0 Z/2Z · · · Z/2Z Z/2Z · · · ,
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where all the Z/2Z → Z/2Z maps are 1 7→ 1. Localization, in this case, is with

respect to the set S = {un | n > 0}. Therefore,

S−1cH̃∗
G(S

0) = (Z/2Z)[u, u−1].

Schematically,

· · · Z/2Z Z/2Z Z/2Z Z/2Z Z/2Z Z/2Z Z/2Z · · ·
〈u−2〉 〈u−1〉 〈1〉 〈u〉 〈u2〉 〈u3〉 〈u4〉
(−2) (−1) (0) (1) (2) (3) (4).

The end result is effectively the same as in the p > 2 case; the map induced by the

inclusion of fixed points is

· · · Z/2Z Z/2Z · · · Z/2Z Z/2Z · · ·
↓ ↓ ↓ ↓

· · · Z/2Z Z/2Z · · · Z/2Z Z/2Z · · · ,
where all maps are isomorphisms.

Remark 7.10: Recall the unstable normal bundle Eu,µ
π∗λ → Uπ∗λ from Remark 4.14.

As was seen earlier, the G-equivariant Conley index of Uπ∗λ is the Thom space of

this bundle,

IG(Uπ∗λ, ϕ
µ
π∗λ,r) = ΘG(E

u,µ
π∗λ).

Let e →֒ Eµ
λ denote a fibre of the bundle. Note that e is a G-representation and

decompose it as eG ⊕ f where f is a G-representation with trivial fixed points,

fG = 0. Next, consider the unstable normal bundle Eu,µ
λ → Uλ. The Conley index

is again computed as

I(Uλ, ϕ
µ
λ,r) = Θ(Eu,µ

λ ).

One can ensure that the unstable normal bundles be related as

Eu,µ
λ = (Eu,µ

π∗λ)
G.

Hence, the Conley indices of Uλ in (W µ)G and of Uπ∗λ in W µ are related by

IG(Uπ∗λ, ϕ
µ
π∗λ,r) = I(Uλ, ϕ

µ
λ,r) ∧ f+.

Since I(Uλ, ϕ
µ
λ,r) is G-trivial, one has that

cH̃∗
G(I(Uλ, ϕ

µ
λ,r))

∼= H̃∗(I(Uλ, ϕ
µ
λ,r)) ⊗

Z/pZ
cH̃∗

G(S
0)

and, similarly,

cH̃∗
G(I(Uλ, ϕ

µ
λ,r) ∧ f+) ∼= H̃∗(I(Uλ, ϕ

µ
λ,r)) ⊗

Z/pZ
cH̃∗

G(f
+).
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Remark 7.11: Next, consider a non-equivariant Thom class

θ(Eµ
λ ) ∈ H̃dimeG

(I(Uλ, ϕ
µ
λ,r))

for the bundle Eu,µ
λ → Uλ. Bearing in mind the isomorphisms outlined in the

previous remark, define a class

θG(E
u,µ
π∗λ) := θ(Eu,µ

λ )⊗ θG(fG) ∈ H̃∗(Θ(Eu,µ
λ ))⊗Z/pZ cH̃∗

G(f
+) ∼= cH̃∗

G(ΘG(E
u,µ
π∗λ)).

It is easy to verify that the class θG(E
u,µ
π∗λ) serves as a G-equivariant Thom class for

the G-bundle Eu,µ
π∗λ → Uπ∗λ.

Remark 7.12: Due to the difficulties of working with localization in the context

of spectra, the author decided to proceed with certain arguments applied prior to

desuspension. For that end, it becomes useful to define contact invariants dependent

on the sufficiently large spectral cut-off parameter. In what follows, let µ > 0 again

be large enough to satisfy what is said in Theorem 3.33 and Proposition 4.12.

Definition 7.13: Let the cohomological contact invariant in finite dimensional ap-

proximation be the class

ψ(λ, g, µ) ∈ H̃∗(I(Sµλ,r, ϕ
µ
λ,r))

given as the pullback of θ(Eu,µ
λ ) via the cofibre map

I(Sµλ,r, ϕ
µ
λ,r)→ Θ(Eu,µ

λ ).

Definition 7.14: Let the equivariant cohomological contact invariant in finite di-

mensional approximation be the class

ψG(π
∗λ, π∗g, µ) ∈ cH̃∗

G(IG(S
µ
π∗λ,r, ϕ

µ
π∗λ,r))

given as the pullback of θG(E
u,µ
π∗λ) via the cofibre map

IG(S
µ
π∗λ,r, ϕ

µ
π∗λ,r)→ ΘG(E

u,µ
π∗λ).

Proposition 7.15: Under the map induced by inclusion of fixed points

cH̃∗
G(IG(S

µ
π∗λ,r, ϕ

µ
π∗λ,r))→ cH̃∗

G(I(S
µ
λ,r, ϕ

µ
λ,r))

∼= H̃∗(I(Sµλ,r, ϕ
µ
λ,r))⊗ cH̃∗

G(S
0)

the class ψG(π
∗λ, π∗g, µ) gets sent to ψ(λ, g, µ)⊗ eG(f).
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Proof: Consider the commuting diagram

cH̃∗
G(IG(S

µ
π∗λ,r, ϕ

µ
π∗λ,r)) ←− cH̃∗

G(ΘG(E
u,µ
π∗λ))

y
y

cH̃∗
G(I(S

µ
λ,r, ϕ

µ
λ,r)) ←− cH̃∗

G(Θ(Eu,µ
λ )),

where the horizontal arrows come from the cofibre maps and the vertical from the

inclusion of fixed points. By the isomorphisms discussed in Remark 7.10, one can

rewrite the right vertical map as

H̃∗(Θ(Eu,µ
λ ))⊗ cH̃∗

G(f
+)→ H̃∗(Θ(Eu,µ

λ ))⊗ cH̃∗
G(S

0).

Moreover, with respect to these tensor products, this map is simply id⊗ i∗ where i

is the inclusion of fixed points i : S0 →֒ f+. But note that i∗θG(fG) is, by definition,

the Euler class eG(f). The result then follows by commutativity of the diagram.

QED

Proposition 7.16: If ψG(π
∗λ, π∗g, µ) = 0, then ψ(λ, g, µ) = 0.

Proof: Since the representation f has no trivial summand, the Euler class eG(f) is

never zero. The result then follows immediately from Proposition 7.15. QED

One can now desuspend appropriately to obtain a result that is not dependent

on the spectral cut-off µ.

Definition 7.17: Define the metric dependent equivariant cohomological contact

invariant

ψG(π
∗λ, π∗g) ∈ cH̃M∗

G(Y, π
∗sλ, π

∗g)

as the desuspension of the class ψG(π
∗λ, π∗g, µ) by the G-representation W (−µ,0).

Theorem 7.18: If ψG(π
∗λ, π∗g) = 0, then ψ(λ, g) = 0.

Proof: Follows directly from Proposition 7.16 after desuspension. QED

Remark 7.19: Recall that there is a natural transformation cH̃∗
G → H̃∗ induced

by the inclusion of the fibre of the Borel construction. That is, if Γ be a G-space,

{p}×Γ →֒ ΓG := (EG×Γ)/G. In the present context, this translates to a forgetful

map

cH̃M∗
G(Y, π

∗sλ, π
∗g)→ H̃M∗(Y, π∗sλ, π

∗g).

Theorem 7.20: Under the map

cH̃M∗
G(Y, π

∗sλ, π
∗g)→ H̃M∗(Y, π∗sλ, π

∗g),

the class ψG(π
∗λ, π∗g) gets sent to ψ(π∗λ, π∗g).
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Proof: This follows simply from the fact that the equivariant Thom class

θG(E
u,µ
π∗λ) ∈ cH̃∗

G(IG(Uπ∗λ))

is sent to a non-equivariant Thom class for the bundle Eu,µ
π∗λ → Uπ∗λ via the map

cH̃∗
G(IG(Uπ∗λ))→ H̃∗(I(Uπ∗λ)).

QED

Corollary 7.21: If the equivariant contact invariant ψG(π
∗λ, π∗g) vanish, then the

non-equivariant contact invariants of both Y and Y/G shall also vanish,

ψ(π∗λ, π∗g) = 0, ψ(λ, g) = 0.

Proof: Corollary of Theorem 7.18 and Theorem 7.20. QED

In order to seek computable examples, the author shall make use of the fol-

lowing definition first used in the work of Lin & Lipnowski (2022).

Definition 7.22: By saying that Y is a minimal L-space, one means that the

perturbed Seiberg-Witten equations admit no irreducible solutions for some pertur-

bation of arbitrarily small norm.

Example 7.23: Perhaps the best known examples of minimal L-spaces are the

elliptic manifolds due to their metrics of positive scalar curvature (cf. Kronheimer

& Mrowka (2007), §22.7).

Example 7.24: Another well known example of a minimal L-space is the Hantzsche-

Wendt manifold, that is, the unique flat rational homology 3-sphere (cf. Kronheimer

& Mrowka (2007), §37.4).

Example 7.25: By recent work of Lin (2020), it is known that all rational homology

3-spheres which have sol geometry are minimal L-spaces.

Example 7.26: According to the surprising work of Lin & Lipnowski (2022), it

is known that certain well known hyperbolic rational homology 3-spheres are also

minimal L-spaces.

Remark 7.27: Assume that X be a minimal L-space. In this case, it is easy to see

that

SWF(X, s, g) = Σ−W (−µ,0)

S

where S ∈ SR∞ is the sphere spectrum (cf. Manolescu 2003, §10, example about

the Poincaré homology sphere). Likewise, supposing Y to be a minimal L-space
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upon which G freely act, it is just as easy to see that

SWFG(Y, π
∗s, π∗g) = Σ−W (−µ,0)

SG,

where SG ∈ GSU ′ is the G-equivariant sphere spectrum for the universe U ′ seen as

a complete G-universe; this is because, there being a unique solution to the Seiberg-

Witten equations, G can only act trivially on it and, therefore, the action on the

Conley index will come entirely from the linear action on W µ.

Remark 7.28: In order to apply the localization theorem, it is easiest to work at

the level of spaces instead of spectra and consider the inclusion of fixed points (cf.

Theorem 6.9)

I(Sµλ,r, ϕ
µ
λ,r)→ IG(S

µ
π∗λ,r, ϕ

µ
π∗λ,r).

This is simply the inclusion of fixed points of a G-representation sphere, exactly as

was studied in Example 7.8 and Example 7.9. The crux of the matter is to deduce

what this says about the contact invariants at play. The first observation is the

following.

Proposition 7.29: Let S ⊂ H∗(BG;Z/pZ) be the set of Euler classes of G-

representations having no trivial summands. The map

S−1cH̃∗
G(IG(S

µ
π∗λ,r, ϕ

µ
π∗λ,r))→ S−1cH̃∗

G(I(S
µ
λ,r, ϕ

µ
λ,r))

on localized Borel cohomology induced by the inclusion of fixed points maps ψG(π
∗λ,

π∗g, µ) to ψ(λ, g, µ) ⊗ eG(f), where these classes are being seen now as classes in

localized Borel cohomology.

Proof: Follows from Proposition 7.15 after localizing. QED

Theorem 7.30: Suppose π : Y → Y/G be a regular p-fold covering of minimal

L-spaces where p be prime and let λ be a contact form on Y/G. It follows that

ψG(π
∗λ, π∗g) = 0 if and only if ψ(λ, g) = 0.

Proof: It suffices to work with the invariants ψG(π
∗λ, π∗g, µ) and ψ(λ, g, µ) depen-

dent on the spectral cut-off parameter as ψG(π
∗λ, π∗g) and ψ(λ, g) are just grading-

shifted versions of those. The localization theorem asserts that

S−1cH̃∗
G(IG(S

µ
π∗λ,r, ϕ

µ
π∗λ,r))→ S−1cH̃∗

G(I(S
µ
λ,r, ϕ

µ
λ,r))

is an isomorphism. Since IG(S
µ
π∗λ,r, ϕ

µ
π∗λ,r) is a G-representation sphere, its Borel co-

homology is a free one-dimensional cH̃∗
G(S

0)-module; hence, ψG(π
∗λ, π∗g, µ) cannot
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be a torsion element (with respect to the cH̃∗
G(S

0)-module structure) of

cH̃∗
G(IG(S

µ
π∗λ,r, ϕ

µ
π∗λ,r)).

The result then follows from Proposition 7.29 and, again, the observation that

eG(f) 6= 0 since fG = 0. QED

Theorem 7.31: Suppose π : Y → Y/G be a regular p-fold covering of minimal

L-spaces where p be prime and let λ be a contact form on Y/G. If the contact

invariant ψ(λ) with Z/pZ coefficients on Y/G vanish, the contact invariant ψ(π∗λ)

with Z/pZ coefficients on Y shall also vanish.

Proof: Noting, again, that it suffices to work with the analogous invariants depen-

dent on the metric and the spectral cut-off parameter, combine Theorem 7.30 and

Theorem 7.20. QED

Definition 7.32: For a rational homology 3-sphere Y with SpinC structure s, the

Frøyshov invariant, h(Y, s), is defined as follows. Recall firstly that, as a Z[U ]-

module, ĤM∗(Y, s) splits as a rank one free summand and a torsion summand.

Let h(Y, s) be minus one half of the minimal degree, with respect to the absolute

Q-grading, in which the free summand be non-zero.

Remark 7.33: There is another well known invariant extracted from the Q-grading

of a Floer theory; in this case, from the Heegaard Floer theory. This one is de-

noted d(Y, s) and was first defined by Ozsváth & Szabó (2003) in a similar fashion

but referencing HF+
∗ (Y, s) instead of ĤM∗(Y, s). According to the corpus that has

equated Heegaard Floer homology, monopole Floer cohomology and embedded con-

tact homology, the invariants h and d, in fact, hold the same information but, for

historical reasons, they are related by −2d(Y, s) = h(Y, s). This is achieved via the

isomorphisms that preserve the absolute grading of the Floer theories by hyperplane

fields (vid. Cristofaro-Gardiner 2013, Ramos 2018) and the observation that the Q-

grading, in each case, is recovered through Gompf’s d3 invariant of the hyperplane

fields, perhaps plus one half depending on one’s conventions. The advantage of

working with the Ozsváth-Szabó invariant is that it is readily computable for many

important classes of manifolds.

Theorem 7.34: Suppose π : Y → Y/G be a regular p-fold covering of minimal

L-spaces where p be prime and let λ be a contact form on Y/G. If ψ(λ) 6= 0 and

deg ψ(π∗λ) = −2h(Y, π∗sλ), it follows that ψ(π∗λ) 6= 0.
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Proof: As before, work with the metric and spectral cut-off dependent versions.

Then, ψ(λ, g, µ) 6= 0 implies ψG(π
∗λ, π∗g, µ) 6= 0 by localization. Meanwhile, the

map

cH̃∗
G(IG(S

µ
π∗λ,r, ϕ

µ
λ,r))→ H̃∗(I(Sµπ∗λ,r, ϕ

µ
λ,r)),

which occurs in Theorem 7.20, can be written in terms of each degree as

· · · 0 Z/pZ Z/pZ · · ·
↓ ↓ ↓ · · ·

· · · 0 Z/pZ 0 · · · ,
where the central map Z/pZ → Z/pZ is an isomorphism. Hence, the invariant

ψ(π∗λ, π∗g, µ) is non-zero precisely when

H̃degψ(π∗λ,π∗g,µ)(I(Sµπ∗λ,r, ϕ
µ
λ,r)) = Z/pZ.

Or, equivalently, after desuspensions,

H̃Mdegψ(π∗λ)(Y, π∗s) = Z/pZ.

Now, to relate this to the Frøyshov invariant, recall that, for an L-space, the

value of −2h(Y, π∗sλ) is the grading of the only degree in which H̃M∗(Y, π∗sλ) is

non-trivial. QED

Remark 7.35: Note that deg ψ(π∗λ) = −2h(Y, π∗sλ) is also an obvious necessary

condition for ψ(π∗λ) 6= 0. Therefore, the above theorem can be seen as strengthening

this to a necessary and sufficient condition.

Theorem 7.36: Suppose π : Y → Y/G be a regular p-fold covering of minimal

L-spaces where p be prime and let λ be a contact form on Y/G. If degψ(π∗λ) <

−2h(Y, π∗sλ), then ψ(λ) = 0.

Proof: Note degψG(π
∗λ, π∗g) = degψ(π∗λ, π∗g), so, if degψ(π∗λ) < −2h(Y, π∗sλ),

then ψG(π
∗λ, π∗g) = 0 because cH̃M

degψG(π∗λ,π∗g)
G (Y, π∗sλ, π∗g) = 0. The result now

follows from Theorem 7.18. QED

Remark 7.37: Recall that the grading of the contact invariant is given simply by

the 3-dimensional obstruction theoretic invariant of hyperplane fields as

degψ(λ) = d3(Ker λ) +
1

2
.

The reader can find a precise definition of d3, originally due to Gompf (1998), in

the following section, which shall de dedicated to understanding its behaviour under

coverings.
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Theorem 7.38: (Matkovič 2018; Ghiggini 2008; Ghiggini, Lisca & Stipsicz 2006;

Wu 2006) The tight contact structures on a small Seifert fibred L-space all have

non-vanishing contact invariant and no pair of non-isotopic tight contact structures

share the same SpinC structure.

Remark 7.39: Elliptic manifolds are small Seifert fibred L-spaces, and this theorem

allows one to state a stronger version of the above results.

Corollary 7.40: Suppose π : Y → Y/G be a regular p-fold covering of elliptic

manifolds where p be prime and let λ be a tight contact form on Y/G. It follows

that π∗λ is tight if and only if d3(π
∗λ) + 1

2 = −2h(Y, π∗sλ).

Remark 7.41: One can avoid computing the Frøyshov invariant here if one know

precisely the list of tight contact structures on Y together with their corresponding

SpinC structures and d3 invariants. In that event, it suffices for one to compute

π∗sλ and d3(π
∗Kerλ) and compare with the entries of that list. If there be a

match, π∗λ must be tight, if not, π∗λ must be overtwisted. This may be useful in

some cases where computing Frøyshov invariants is difficult and the classification of

tight contact structures is known by other methods, but it should be noted that, in

many cases of interest, the calculations required to classify tight contact structures

on small Seifert fibred L-spaces require comprehensive knowledge of the Frøyshov

invariants (cf. Matkovič 2018). In summary, this can be phrased as follows.

Corollary 7.42: Suppose π : Y → Y/G be a regular p-fold covering of elliptic

manifolds where p be prime and let λ be a tight contact form on Y/G. It follows

that π∗λ is isotopic to a given tight contact structure – and therefore is also tight –

if and only if it is homotopic to said tight contact structure.

Use YHW to denote the Hantzsche-Wendt manifold, that is, the unique rational

homology 3-sphere with Euclidean geometry. A curious fact about YHW is that there

are cyclic self-coverings YHW → YHW of any odd degree (vid. Chelnokov & Mednykh

2020). As YHW is also known to be a minimal L-space, one could hope to apply the

above methods here. Unfortunately, this fails because these self-coverings are never

regular due to the first homology of YHW having even order whilst the coverings odd

order.

The case of the rational homology spheres admitting Sol geometry may be

one where the methods developed here can work. The problem, however, lies in

the limited knowledge available about the contact topology of such manifolds; there
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is no known classification of the isotopy classes of tight contact structures. Hence,

before being able to apply Theorem 7.34 in this case, one would have to produce tight

contact structures and develop a way to compute the respective Frøyshov invariants.

The author intends to pursue that route in later work.

A similar story can be told of the few hyperbolic manifolds known to be mini-

mal L-spaces; although the methods above make non-trivial statements about lifting

tight contact structures, one hardly has the ability to apply them due to lack of infor-

mation about the contact topology of those manifolds. One case where the methods

developed here can be applied is the double covering of the hyperbolic manifold

m007(3, 1) by m036(−3, 2), where the notation being used is that of the Hodgeson-

Weeks census of small volume closed hyperbolic 3-manifolds from the well known

SnapPy software of Culler, Dunfield, Goerner & Weeks. That both these manifolds

are minimal L-spaces is the consequence of the work of Lin & Lipnowski (2022),

Theorem 1.

This leaves the elliptic manifolds currently as the best place in which to seek to

perform concrete computations. In the next few sections, the author shall proceed to

develop certain topological techniques which shall be required for these calculations.

The goal shall be to apply Corollary 7.42 to find certain tight contact structures

which lift to tight contact structures by showing simply that the lift have the same

homotopy theoretic invariants as a known tight contact structure. In order to do

that, one must address the problem of computing the obstruction theoretic invariants

of the lifted contact structure. There are two obstruction theoretic invariants: the

SpinC structure and the d3 invariant of Gompf. Lifting either of them provides a

challenge of its own that must be overcome. The next two sections shall deal with

these two problems.
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8. The d3 invariant and Finite Coverings

Consider the following problem. Say λ be a contact form on a rational ho-

mology 3-sphere Y/G regularly and finitely covered by π : Y → Y/G. Given the

value of d3(Kerλ) is it possible to say something about the value of d3(π
∗Ker λ)?

This problem was studied by Khuzam (2012) via use of the G-signature theorem. In

summary, one can solve the problem by seeking an almost complex 4-manifold-with-

boundary having the contact manifold (Y, π∗λ) as its almost complex boundary and

extending the G-action into its interior. The action need not remain free inside the

4-manifold-with-boundary; it need only have a properly embedded closed surface as

its G-fixed points. Having such an equivariant almost complex filling, one can infer

the lifting behaviour of the d3 invariant of the contact form λ.

Producing such a 4-manifold-with-boundary is typically a difficult task. The

goal of this section is to describe a method that the author devised by use of Kirby

calculus to construct such a filling. The method consists, in essence, of the following.

One starts with a Kirby diagram of Y/G, which also defines a 4-dimensional 2-

handlebody having Y/G as its boundary. Then, one removes a set of 2-handles

judiciously so that the resulting handlebody evidently have a branched covering

with branching locus a properly embedded surface with boundary at the curves

along which the removed 2-handles were originally attached. Next, one computes

this branched covering, and proceeds to equivariantly attach 2-handles in the hope

that, in the quotient, these 2-handles be precisely the 2-handles that were removed

initially. This procedure is not always easy to carry out, but, in simple cases such as

when Y/G be a surgery on a knot, it can be readily done. One must also be careful

with the almost complex structure on the filling. To achieve that, one considers

Legendrian Kirby diagrams for the contact manifold (Y/G, λ).

As an application of the method, the author shall calculate the d3 invariant

of the lift of a tight contact structure of the (−8)-surgery on the left-handed trefoil

via a double covering. This is an example of a prism manifold, therefore elliptic, so

one can apply the results of the preceding section to try and determine if the lifted

contact structure remains tight. Recall that, for the lift to be tight, one needs the lift

to have an appropriate pair of d3 invariant and SpinC structure. It shall be shown

that it does indeed have the appropriate d3 invariant, whereas, understanding the

behaviour of the SpinC structures under coverings is the content of the next section.
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To begin, the author shall recall the relevant definitions and the standard

results that shall be needed. Let Y , G, π, g and λ be as in the previous section.

Definition 8.1: A contact 3-manifold (Y, λ) is called the almost complex boundary

of an almost complex 4-manifold-with-boundary (M,J) if ∂M = Y and Ker λ =

TY ∩ JTY .

Definition 8.2: (Gompf 1998) Given a contact structure Ker λ on a rational ho-

mology 3-sphere Y , the d3 invariant is defined as follows. Choose some almost com-

plex 4-manifold-with-boundary (M,J) such that Y be its almost complex boundary.

Then, define

d3(Ker λ) :=
1

4

(
c1(M,J)2 − 2χ(M)− 3σ(M)

)

where the notation c2 ∈ Q, for a class c ∈ H2(X ;Z), is defined in Definition 3.65.

Remark 8.3: The author shall sometimes write d3(λ) instead of d3(Ker λ) as that

is more convenient in the present context.

Remark 8.4: Gompf originally called this invariant θ and the factor of 1/4 was

not present in his definition. There is another convention sometimes found in the

literature, particularly in the context of Heegaard Floer theory, wherein the value

of d3 has 1/2 added to what was defined above. The appeal of doing so is that the

grading of the contact invariant becomes d3 instead of d3 + 1/2.

Now, consider again the case of finite coverings. The following result of

Khuzam summarizes what can be said by means of the G-signature theorem about

the lifting behaviour of d3.

Theorem 8.5: (Khuzam 2012, Theorem 2) Suppose π : Y → Y/G be an m-fold

regular cyclic covering. Let λ be a contact form on Y/G and π∗λ its lift to Y .

Suppose further that one have Π :M →M/G an m-fold cyclic branched covering of

almost complex 4-manifolds-with-boundary where the branching locus be a closed

surface S ⊂ M satisfying S ∩ ∂M = ∅ and where (Y, π∗λ) be the almost complex

boundary of M . Then, the d3 invariants of λ and π∗λ are related by

d3(π
∗λ) = md3(λ) +

3

4
mσ(M/G)− 3

4
σ(M)− 3

4

m−1∑

k=1

(S · S) csc2(γk/2),

where γk denotes the angle of rotation given by the action of the element k ∈ Z/mZ

on the normal planes to the surface S when X be equipped with a Z/mZ-invariant

metric. In fact, this metric can always be chosen so that γk = 2πk/m.
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Remark 8.6: In the present thesis, the author follows the convention that the lens

space L(p, 1) is the one given by (−p)-surgery on the unknot in S3.

Example 8.7: In Khuzam (2012), the only example studied is that of the universal

covering S3 → L(p, 1) of the lens space L(p, 1). As a first example here, the author

shall extend that to the lens covering L(p, 1) → L(mp, 1). One can construct the

branched covering Π : M → M/G as follows. Let M be the disk bundle over S2 of

Euler class −p so that ∂M = L(p, 1). Note, G := Z/mZ acts on M by rotating the

disk fibres. The action is free away from the zero section, which is fixed; therefore,

S :=MG ∼= S2. The manifold M/G is no other than the disk bundle of Euler class

−mp over S2, so its boundary is L(mp, 1). Both M and M/G have almost complex

structures coming from their disk bundle structures and Π is pseudoholomorphic

with respect to these. Clearly, this is precisely the scenario of Theorem 8.5 and

it becomes possible to compute d3(π
∗λ) from the value of d3(λ). The lens space

L(mp, 1) admits precisely mp − 1 tight contact forms λ1, . . . , λmp−1 (vid. Honda

1999 or Giroux 2000) satisfying

d3(λk) =
1

4

(
−mp− 1 + 4k − 4k2

mp

)
.

Noting that S · S = −p, one computes

d3(π
∗λk)

=
m

4

(
−mp− 1 + 4k − 4k2

mp

)
+

3

4
m(−1)− 3

4
(−1)− 3

4

m−1∑

j=1

(−p) csc2(jπ/m)

=−m+ km− k2

p
+

3

4
− p

4

=
1

4

(
−p+ 3 + 4m(k − 1)− 4k2

p

)
,

where the author used the well known identity
∑m−1

j=1 csc2(jπ/m) = (m2 − 1)/3, cf.

Cauchy (1821), Note VIII. Comparing this with the possible values of the d3 invari-

ants for the tight contact structures on L(p, 1), one easily sees that the only values

of k for which d3(π
∗λk) matches the value of the d3 invariant of some tight contact

structure on L(p, 1) are k = 1 and k = mp − 1. These are the universally tight

contact structures of L(mp, 1) and, in any event, one knows that they lift to the

universally tight contact structures on L(p, 1), so there is nothing interesting hap-

pening in this family of examples; that is, all virtually overtwisted contact structures

immediately lift to overtwisted contact structures.
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Remark 8.8: As the reader may have foreseen, finding the equivariant almost

complex filling of the contact G-manifold (Y, π∗λ) in order to apply Theorem 8.5, is

not typically an easy task. The remainder of this section, shall introduce a method

for producing examples of such fillings by use of Kirby calculus. The rationale is the

following. Firstly, one constructs a branched covering of 4-manifolds-with-boundary

where the branching locus is allowed to intersect the boundary; secondly, a set of 2-

handles is equivariantly glued in order to cap off the branching locus thereby making

the boundary freely acted by the deck transformations.

Remark 8.9: Such matters shall require working with knot diagrams. The author

prefers to draw what are called grid diagrams. These are knot diagrams where only

vertical and horizontal lines occur, and apparent corners should be understood as

being arcs with of a very small radius. This style of diagram has the advantage of

bringing isotopies and Reidemeister moves more evidently into the realm of combi-

natorics. The following figure shows the example of the left-handed trefoil as a grid

diagram.

Figure 8.10

Remark 8.11: Now, follows a series of standard definitions and propositions which

shall be needed in pursuing the goal of the remainder of this section.

Definition 8.12: By a Legendrian knot or link in a contact 3-manifold (Y, λ), one

means a knot or link everywhere tangent to the contact structure Ker λ.

Remark 8.13: It is standard to represent Legendrian knots in S3 = (R3)+, with

its standard contact form λ = dz + xdy, via their front projection diagrams. Those

are the knot diagrams one obtains when projecting a knot to the yz-plane. This

leads to a diagram that possesses no tangencies parallel to the y-axis but may have

cusps pointing in directions parallel to the z-axis and whose transverse crossings

must always have the strand passing underneath be the one for which the slope

dz/dy be highest. Conversely, any such diagram where all crossings be transverse
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is the front projection of a Legendrian knot. The grid knot diagrams, which the

author favours, can readily be used to represent front projection diagrams if the

following convention be agreed: the y-axis is understood to point in the southeast

direction and the z-axis in the northeast direction. Here, the corners of the curve

pointing in the southwest and northeast directions are understood to be smoothed

as before whereas those pointing in the northwest and southeast are understood

to be cusps. Note that the diagram in Figure 8.10 can be reinterpreted as a front

projection diagram as it satisfies the required conditions. The following figure shows

another inequivalent example of a Legendrian left-handed trefoil. When the author

desire for the reader to interpret a particular diagram as Legendrian, he shall make

it clear from the context; otherwise, the diagrams are to be understood simply as

representing smooth links.

Figure 8.14

Definition 8.15: The contact framing of a Legendrian knot K in (Y, λ) is the

framing induced by the contact structure Ker λ.

Definition 8.16: The Thurston-Bennequin invariant, tb(K) ∈ Z, of a Legendrian

knot K ⊂ S3 is the value of the contact framing relative to the 0-framing; that is,

relative to the framing induced by a Seifert surface.

Proposition 8.17: For a Legendrian knot K ⊂ S3, if w(K) denote its writhe and

c(K) denote the number of cusps in one of its front projection diagrams, then

tb(K) = w(K)− 1

2
c(K).

Proof: Vid. e.g. Geiges (2008), Proposition 3.5.9. QED

Example 8.18: The Legendrian left-handed trefoil K in Figure 8.14 has tb(K) =

−7.

Definition 8.19: The rotation number, r(K), of an oriented Legendrian knot in S3

is the degree of the map f : S1 → S1 defined as follows. Take some parametrization

γ : S1 → S3 of K. Let Σ ⊂ S3 denote a Seifert surface for K. Trivialize the
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standard contact structure of S3 over Σ yielding a bundle isomorphic to Σ × R2.

Since K is Legendrian, the derivative γ′ together with this trivialization defines a

map S1 → R2 \ {0}. Given a deformation retraction R2 \ {0} → S1, this defines

the desired map f : S1 → S1.

Definition 8.20: For an oriented Legendrian knot K ⊂ S3, denote, respectively, by

c+(K) and c−(K) the number upwardly and downwardly oriented cusps of a front

projection diagram of K. In a Legendrian grid diagram of the sort being used by

the author, c+(K) is the number of corners which start by pointing east and finish

by pointing north as one traverses it along the orientation of K, while c−(K) is the

number of corners which start by pointing south and finish by pointing west.

Proposition 8.21: For an oriented Legendrian knot K ⊂ S3, the rotation number

can be computed by

r(K) =
1

2
(c−(K)− c+(K)) .

Proof: Vid. e.g. Geiges (2008), Proposition 3.5.19. QED

Example 8.22: The Legendrian left-handed trefoil K in Figure 8.14 has r(K) = 0.

Definition 8.23: A 3-manifold Y given as surgery on a Legendrian link in S3 where

the framing of a link component K is precisely the contact framing minus 1 is called

a Legendrian surgery.

A Legendrian surgery naturally inherits a tight contact structure from S3.

Moreover, the 4-manifold-with-boundary obtained from the corresponding Kirby

diagram has a natural complex structure; indeed, it is a Stein surface. For a reference,

vid. Gompf (1998). This means that d3 invariants can be read off this Kirby diagram

as follows.

Proposition 8.24: (Gompf 1998) Let (Y, λ) be a contact rational homology 3-

sphere given as Legendrian surgery on a Legendrian link
⊔n
i=1Ki in S

3. Use L to

denote the linking matrix of the link and σ(L) its signature as a symmetric bilinear

form. Then,

d3(λ) =
1

4




n∑

i,j=1

r(Ki)(L
−1)ijr(Kj)− 2(n+ 1)− 3σ(L)


 .

Remark 8.25: Let (X, λ) be a contact rational homology 3-sphere. Suppose one

have a Kirby diagram for an almost complex 4-manifold-with-boundary (N, J) con-

sisting entirely of 2-handles with its almost complex boundary being ∂(N, J) =
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(X, λ). Label the 2-handles of N as {hi | i ∈ I} and their respective attaching

knots in S3 as {Ki | i ∈ I}. Now, consider a subset of these 2-handles, denote it

{hi | i ∈ I ′}, and remove them from the Kirby diagram. This yields another almost

complex 4-manifold-with-boundary, call it (N ′, J ′), having as its 2-handles the set

{hi | i ∈ I \ I ′}; denote its almost complex boundary by (X ′, λ′) := ∂(N ′, J ′).

Consider the link L := ⊔i∈I′Ki as a link in X ′. Fix some pseudoholomorphic

curve S ′ ⊂ N ′ with ∂S ′ = L and intS ′ ⊂ intN ′. Now, the p-fold branched

covering of N ′ with branching locus S′ exists precisely when the homology class

[S ′] ∈ H2(N
′, ∂N ′;Z) be divisible by p. Assume that this be indeed the case. Then,

in fact, the branched cover, call itM ′, can be made to come with an almost complex

structure and the covering map Π′ : M ′ → N ′ can be made to respect the almost

complex structures. Write Y ′ := ∂M ′; this is a contact manifold. The restriction

to the boundaries gives a branched covering of 3-manifolds π′ : Y ′ → X ′ having

branching locus the link L ⊂ X ′. Required now is the concept of equivariant handle

attachment.

Definition 8.26: Consider a 2-handle h as a copy of D2 × D2 to be attached

along S1 × D2. Regard D2 × D2 as having the action of G := Z/pZ defined by

e2πi/p · (z1, z2) := (z1, e
2πi/pz2). This action defines a g-fold branched covering D2×

D2 → D2 ×D2 with branching locus the core disk D2 × {0}. Think of this as the

G-2-handle. When one be in possession of a G-4-manifold-with-boundaryM with a

G-fixed surface S having intS ⊂ intM and ∂S ⊂ ∂M , define the equivariant handle

attachment of h along a component K of ∂S to be the G-4-manifold-with-boundary

M ∪ϕ h given by gluing h to M via an equivariant framing ϕ of K; that is, an

equivariant diffeomorphism onto its image ϕ : S1×D2 →M such that its image be

a tubular neighbourhood of K.

Remark 8.27: Notice that the resulting manifold M ∪ϕ h has one of the boundary

components of the G-fixed surface S capped by the G-fixed core disk of h. Hence,

M ∪ϕ h has one less G-fixed circle on its boundary compared to M .

Remark 8.28: Returning now to the context of Remark 8.25, one desires to equivari-

antly attach 2-handles to the manifold M ′ in order to convert the branched covering

of 3-manifolds π : Y ′ → X ′ to a genuine covering π : Y → X , where X be the

3-manifold with which one has started. Whether this is possible or not is a matter

about the framings of the handles {hi | i ∈ I ′} which were initially removed from N
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resulting in the manifold N ′. Consider a fixed i ∈ I ′. Now, equivariantly attach a 2-

handle h̃i along the knot (Π′)−1(Ki) with framing determined by an integer mi ∈ Z.

One hopes to be able to choose mi so that the corresponding quotient handle h̃i/G

have the same framing as the handle hi of N ; thereby allowing one to identify them.

The main issue is that determining the behaviour of framings under the quotient

turns out to be a subtle matter.

Instead of considering this general case, simplify the scenario as follows. Con-

sider instead a manifold N as above but consisting of a single 2-handle h attached

along a knot K ⊂ S3 with framing n. Then, one forms N ′ by removing h to obtain,

of course, the disk D4. The manifold M ′, therefore, is a familiar sort of manifold;

it is the branched covering of D4 branched over the Seifert surface of K with its

interior pushed into the interior of D4. In this case, it is an easy matter to determine

the behaviour of framings under the quotient. If one equivariantly attach a 2-handle

h̃ to M ′ along (Π′)−1(K) with framing m, the framing of the quotient handle h̃/G

shall be mp. Hence, for the procedure to work, one needed n to be a multiple of p.

The process of computing branched coverings in Kirby calculus is outlined in

Gompf & Stipsicz (1999), §6.3. In general, it can be a difficult procedure where

one obtains a Kirby diagram for the complement of a tubular neighbourhood of the

branching surface, computes the genuine covering of the resulting manifold and then

glues handles to fill in the hole left by the removal of the branching surface. There

is a simpler approach, discussed in Rolfsen (2003), which has the disadvantage of

requiring blow-ups to be performed. By a blow-up the author means the formation

of the connected sum with a copy of CP2 or CP2. In the case of CP2, almost

complex complex structures can be naturally carried to the blow-up; in the case of

CP2, this is not the case. Hence, for the purposes being pursued in this section,

one may only perform blow-ups of the type where one takes the connected sum with

a copy CP2. The procedure is as follows. Starting with the Kirby diagram of N

consisting of a single 2-handle h attached along a knot K, perform a sequence of

blow-ups in order to untie K without changing the framing n of the handle h. Now,

the branched covering that one needs to compute is simply branched over a disk

since K has become the unknot. This is a significantly easier task than the general

case.
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−8

−→

−8

−1

Figure 8.29

Consider now a concrete example in which to apply this procedure. Start

with the manifold X given as (−8)-surgery on the left handed trefoil knot K. This

manifold admits a double covering, which is the one that shall be studied here. One

can perform a single blow-up to untie K as depicted in Figure 8.29. Hence, the

manifold N shall be the 2-handlebody defined by the right hand side Kirby diagram

of Figure 8.29. After a series of isotopies, one can achieve the form on the left hand

side of the following figure.

−8

−1

−→
−8

−1

Figure 8.30

After another isotopy, one obtains the diagram in right hand side of Figure

8.30. What one desires to do now is to remove the (−8)-framed handle in order

to form the manifold N ′ as depicted in the left hand side of the following figure.

Once that be done, one can read off the double branched covering branched over

the obvious Seifert disk for the knot K. The resulting manifold, M ′, is depicted on

the right hand side of the following figure. The more lightly stroked curve indicates

the handle which has been removed, which is, therefore, also the boundary of the

branching locus.
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−1

K

2 : 1
←−−−−−

+1 +1

Π−1(K)

Figure 8.31

Remark 8.32: Notice that the framings behave under the branched covering in

such a manner that the blackboard framing be preserved irrespective of the change

in the writhes. This is why the (−1)-framed handle lifts to a pair of (+1)-framed

handles.

Next, one equivariantly attaches a 2-handle along (Π′)−1(K) in order to cap

off the branching surface S leading to the branched covering of 4-manifolds-with-

boundary seen in the following figure where the branching locus no longer intersects

the boundary.

−8

−1

2 : 1
←−−−−−

+1 +1

−4

Figure 8.33

Proposition 8.34: The manifold X defined by (−8)-surgery on the left handed

trefoil admits a contact form λ which lifts via a double covering Y → X to a

contact form π∗λ having d3(π
∗λ) = 1/4.

Proof: Define N and M to be the 4-manifolds-with-boundary on the left and right

hand side of Figure 8.33 respectively. Here, the branching locus no longer intersects

the boundaries X = ∂N and Y := ∂M ; therefore, one can apply Theorem 8.5 but
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only to the subset – and this subset may be proper – of the contact structures

on X which occur as almost complex boundaries of N . The author shall focus

on a particular contact structure. Let λ be the contact structure on X defined

as the Legendrian surgery according to the Legendrian representative of K seen in

Figure 8.14. Recall, from Example 8.18, that the Thurston-Bennequin invariant of

this Legendrian knot is −7; hence, the Legendrian surgery is indeed the topological

(−8)-surgery. Since, in defining the 4-manifold-with-boundary N , only a (−1)-blow-
up was performed, this contact structure is still an almost complex boundary of N .

From Example 8.22, one knows that the rotation number is 0. With these data, one

applies Proposition 8.24 to find that

d3(π
∗λ) =

1

4
(0− 4 + 3) = −1

4
.

Now, using Theorem 8.5, one computes

d3(π
∗λ)

=− 1

2
+

3

4


+2σ

(
−8 0

0 −1

)
− σ



−4 0 0

0 1 −2
0 −2 1


−

2∑

k=1

(−4) csc2 (πk/m)




=
1

4
,

where the matrices are read off from Figure 8.33. QED

Proposition 8.35: The manifold X defined by (−8)-surgery on the left handed

trefoil is the prism manifold having Seifert fibration (S2; (1,−1), (3, 2), (2, 1), (2, 1)).

Proof: The left-handed trefoil is a torus knot; hence, one can establish the Seifert

invariants of X from a well known theorem of Moser (1971). QED

Corollary 8.36: The double cover Y of X is the lens space L(12, 7).

Proof: One can compute coverings directly from the Seifert invariants. The Seifert

manifold (S2; (1,−1), (3, 2), (2, 1), (2, 1)) has a horizontal double covering (meaning

it lifts Seifert fibres to Seifert fibres 1-to-1) with invariants

(S2; (1,−1), (1,−1), (3, 2), (3, 2), (1, 1), (1, 1))

and this is one of the Seifert structures on the lens space L(12, 7). QED

Remark 8.37: The lens space L(12, 7) can be obtained as surgery on a chain

of three unknots with framings respectively −2, −4 and −2. According to the

classification of tight contact structures on lens spaces due, independently, to Honda
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(1999) and Giroux (2000), the manifold Y has precisely 3 isotopy classes of tight

contact structures. Each of these contact structures comes from Legendrian surgery

on the three possible Legendrian stabilizations of this chain of unknots having the

appropriate Thurston-Bennequin invariants. The three Legendrian surgery diagrams

are depicted in the following figure.

Figure 8.38

Proposition 8.39: The three tight contact structures on Y = L(12, 7) depicted in

Figure 8.38 have d3 invariants, respectively, equal to −1/12, 1/4 and −1/12.

Proof: Compute using Proposition 8.24. QED

Remark 8.40: In light of Proposition 8.34, the contact structure depicted in the

middle of Figure 8.38 is the one that shall receive special attention as its d3 invariant

matches that of the lift of the tight contact structure on X via the double cover.

In order to apply Corollary 7.42 and see that these two contact structure are one

and the same, what remains to be shown is whether the SpinC structures also agree.

This problem shall be studied in the next section.
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9. The Spin-C Structure and Finite Coverings

This section shall deal with a fairly elementary problem but one that turns

out to be quite difficult to solve in practice. The problem is that of lifting SpinC

structures across finite coverings. There are various methods which one might try

to use in approaching this problem. For instance, in the case of Seifert manifolds,

there is a certain canonical SpinC structure defined by the Seifert fibration. This

canonical SpinC structure is pulled back naturally via coverings and, therefore, it

suffices to have a good description of it upstairs and downstairs in the covering

in order to understand how every other SpinC structure lifts. This is so because

the set of SpinC structures on a manifold Y is a H2(Y ;Z)-torsor, and, under the

map induced by a covering, this torsor structure is preserved; hence, it suffices to

understand the induced map in the second cohomology together with how one single

SpinC structure lifts in order to deduce the action on every other. Another approach

is to use contact topology. Suppose one know of a certain universally tight contact

structure λ on Y , then, its lift must always be universally tight via any covering.

If there not be many of these upstairs, this reveals information about what the lift

of the SpinC structure associated with λ is. This strategy is particularly useful in

the case of lens spaces. Another method is to turn to Spin structures. To any Spin

structure is associated a SpinC structure in a natural way. Hence, it is suffices to

know how a Spin structure lifts via a covering to deduce how the SpinC structures

lift as well.

This last approach shall be the one pursued in the present section. Spin

structures can be studied with the aid of the Kirby calculus and this fits well into the

picture of lifting d3 invariants of the preceding section. Indeed, Gompf & Stipsicz

(1999) describe not only how to express Spin structures on a 3-manifold given by

a Kirby diagram by ascribing extra decorations to it, but also how this description

changes under Kirby moves. The main feat of the current section is to describe the

manner in which this description of Spin structures behaves under finite coverings.

The double covering of the (−8)-surgery on the left-handed trefoil considered

in the previous section shall continue to furnish examples in this section. By the end,

it shall be established that the tight contact structure whose lift was postulated to

be tight indeed has its SpinC structure lift to the correct one, so that the theorems

concerning the equivariant contact invariant assert that the lift be tight.
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Definition 9.1: Let M be an n-manifold with n ≥ 3 and use Mk to denote the

k-skeleton of M in some cellular decomposition of M . By a Spin structure on M

one means a trivialization of TM |M1 which extend to TM |M2 .

According to Gompf & Stipsicz (1999), Spin structures can be understood in

terms of Kirby calculus in a rather convenient fashion which shall be recalled next.

Consider a 3-manifold Y given as the boundary of a 2-handlebody M . Denote by

{Ki ⊂ S3 | i ∈ I} the set of knots onto which the 2-handles of M are attached and

by {hi | i ∈ I} the corresponding 2-handles.

Definition 9.2: Given a Spin structure S on Y , define the class w2(M,S) ∈
H2(M,Y ;Z/2Z) as the obstruction to extending S from Y to M .

Remark 9.3: By standard obstruction theory, this class can be characterized in

terms of the its evaluations on each of the classes [Di, ∂Di] ∈ H2(M,Y ;Z/2Z)

associated to the cocores {Di} of the 2-handles {hi}. One can ask whether S
extends across hi to a Spin structure on hi ∼= D2 × D2. It follows that w2(M,S)
evaluates on the class [Di, ∂Di] as 0 when S extends across hi and as 1 when it does

not.

Definition 9.4: An element w of H2(M,Y ;Z/2Z) is called characteristic when it

gets mapped to the second Stiefel-Whitney class w2(M) ∈ H2(M ;Z/2Z) via the

map H2(M,Y ;Z/2Z)→ H2(M ;Z/2Z).

For each i, suppose Fi ⊂ M to be a closed surface constructed by taking a

Seifert surface for the knot in S3 along which the 2-handle hi was attached, pushing

the interior of this Seifert surface into the interior of D4 and capping it by gluing it

to the core disk of the handle hi. Orient the closed surface Fi in a manner compatible

to the orientation of the knot along which hi was attached. Notice that the classes

[Fi] span H2(M ;Z) as a Z-module.

Proposition 9.5: A class w ∈ H2(M,Y ;Z/2Z) is characteristic if and only if, for

all i ∈ I,

w([Di, ∂Di]) = [Fi] · [Fi] mod 2.

Proof: Follows from Wu’s formula. Vid. Gompf & Stipsicz (1999), Exercise 5.7.3.

QED

Proposition 9.6: (Gompf & Stipsicz 1999) The class w2(M,S) ∈ H2(M,Y ;Z/2Z)

completely characterizes the Spin structure S on Y . Conversely, given any charac-
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teristic element w ∈ H2(M,Y ;Z/2Z) there is some Spin structure S on Y such that

w2(M,S) = w.

Remark 9.7: In a Kirby diagram, the author shall denote a Spin structure S by

writing a 0 or a 1 following the framing coefficient separated from it by a comma

next to each 2-handle. This signifies the value of the evaluation of w2(Y,S) on the

class in H2(M,Y ;Z/2Z) corresponding to the respective 2-handle. The following

figure shows this notation in the main example from the preceding section.

−8,0

Figure 9.8

Remark 9.9: It is then possible to keep track of the Spin structure during the

performance of Kirby moves. The rule when performing a handle slide of hi over

hj , where the respective components of w2(M,S) be ni and nj , is that nj changes
precisely when ni = 1, whereas ni always stays unchanged. For a blow-up, the

component of w2(M,S) associated to the newly attached (±1)-framed 2-handle is

always 1. The next figure illustrates the result of both these operations.

−8,0

−1,1

Figure 9.10

The matter is now to consider how a Spin structure lifts via a finite covering in

the Kirby calculus setting. As in the previous section, the procedure shall be carried

out in two parts. Firstly, one performs a branched covering over a 4-manifold-with-

boundary obtained by judiciously removing 2-handles and then one equivariantly
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glues 2-handles in the branched covering to cap the branching locus. In the first

part, one needs to take care of how a Spin structure behaves near the free 2-handles;

in the second part, one needs to take care of how it behaves near the non-free

2-handles.

Consider a 3-manifold X , the boundary of a 4-manifold-with-boundary N hav-

ing only a 0-handle and a set of 2-handles {hi | i ∈ I}. Let S be a Spin structure on

X . Denote by {Ki ⊂ S3} the set of attaching knots of the 2-handles and by {Di}
the cocores. Given a subset of 2-handles {hi | i ∈ I ′}, denote by N ′ the 4-manifold-

with-boundary given by removing this set of 2-handles from N ; denote by X ′ its

boundary. Now, assume that there exist the p-fold branched covering Π′ :M ′ → N ′

branched at a Seifert surface S′ for the link L :=
⊔
i∈I′ Ki with its interior pushed

into the interior of D4. Let Y ′ := ∂M ′ and π′ : Y ′ → X ′ be the restriction of Π′.

For each 2-handle hi of N
′, the lift (Π′)−1(hi) consists of p 2-handles of M ′ freely

permuted by the deck transformations.

Proposition 9.11: For each handle h in (Π′)−1(hi) with cocore D,

w2(Y
′, (π′)∗S)([D, ∂D]) = w2(X

′,S)([Di, ∂Di]).

Proof: Recall that w2(X
′,S)([Di, ∂Di]) is characterized by whether the Spin struc-

ture S extends to the whole interior of the 2-handle hi. That extension existing, the

lifted Spin structure (π′)∗S shall also extend over each of the preimage 2-handles

h of hi. Conversely, should the extension not exist downstairs, it cannot extend

upstairs over any h either. QED

Example 9.12: The next figure exemplifies Proposition 9.11 in the already famil-

iar setting of the branched double cover over the left-handed trefoil K from the

preceding section (cf. Figure 8.31).

−1,1

K

2 : 1
←−−−−−

+1,1 +1,1

Π−1(K)

Figure 9.13
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Now, one needs to understand what happens to the non-free 2-handles. Pro-

ceeding as in Remark 8.28, one equivariantly attaches a 2-handle h̃i along (Π
′)−1(Ki)

for each i ∈ I ′ in order to cap the branching locus thereby defining the manifolds

M := M ′ ∪⋃i∈I′ h̃i and N := M/G. Let mi denote the framing coefficient of the

equivariant handle h̃i. As before, one hopes to be able to choose mi so that the

original manifold Y be ∂N . Assume that this be the case. The question then be-

comes: given the value of w2(X,S)([Di, ∂Di]) for an i ∈ I ′, what is the value of

w2(Y, π
∗S)([D̃i, ∂D̃i]) where D̃i denotes the cocore of h̃i?

Proposition 9.14: For each i ∈ I ′, if it be case that w2(X,S)([Di, ∂Di]) = 1 then

it follows w2(Y, π
∗S)([D̃i, ∂̃Di]) = 1. Conversely, if w2(X,S)([Di, ∂Di]) = 0, then

w2(Y, π
∗S)([D̃i, ∂D̃i]) is 1 if the covering multiplicity p be even and 0 otherwise.

Proof: Firstly, consider the 2-handle D2×D2 having the Spin structure S0 defined

along D2×S1 which does not extend across D2×D2. Consider the p-fold branched

coverD2×D2 → D2×D2 given by rotating the secondD2 factor and keeping the first

one fixed. One can trivialize the bundle T(D2×D2)|D2×S1 by splitting it asR3⊕TS1.

It is clear now that this trivialization is pulled back to itself along the restriction of

the covering toD2×S1. This means that the Spin structure S0 is pulled back to itself

and the lift also does not extend across D2×D2. Secondly, consider instead the Spin

structure S which extend across D2×D2. Then, to understand the lifting behaviour,

make use of the other Spin structure already considered, that is S0, which does not

extend across the covering. The obstruction class to a homotopy between S and S0
can be seen as a non-trivial class in the cohomology H1(S1; π1(SO(4))) ∼= π1(SO(4)).

One now easily sees that, under the p-fold covering, this class in π1(SO(4)) gets

traversed p times. Since π1(SO(4)) is the cyclic group in two elements, the result

follows. QED

Example 9.15: The next figure continues the line of examples coming from the

(−8)-surgery on the left-handed trefoil and shows the perhaps slightly unexpected

behaviour in this case: the Spin structure does extend across the (−8)-framed handle

downstairs but, upstairs, its lift does not extend across the lifted 2-handle because

the cover is a double cover.
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−8,0

−1,1

2 : 1
←−−−−−

1,1 1,1

−4,1

Figure 9.16

Proposition 9.17: Let X be the (−8)-surgery on the left-handed trefoil. Let S be

the Spin structure on X as defined by the Kirby diagram in Figure 9.8. Let Y be

the lens space L(12, 7). Denote by π : Y → X the double covering. Let M be the

standard linearly plumbed 4-manifold-with-boundary whose boundary is L(12, 7).

Then, the Spin structure π∗S on Y is the one for which w2(M,π∗S) = 0.

Proof: Start from the right hand side of Figure 9.16, and compute

1,1 1,1

−4,1
−→

−4,1

−3,1

y

−2,1

2,1
2,1

←−

−2,1

−1,1

1,1 1,1

Here, the first step blew down of one of the +1-framed unknots; the second step
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blew up twice by +1-framed unknots, and the third step blew down the −1-framed

unknot.

Now, if one pay careful attention at the signs of the crossings on the last

diagram, one sees that one can perform a handle slide of any one of the 2-framed

handles over the (−2)-framed handle in order to obtain a linear chain of unknots.

Thence, it is a straightforward matter to perform blow-ups and blow-downs to reach

the standard plumbing diagram of the lens space L(12, 7). The procedure is outlined

in the following diagrams.

−2,0

2,1 2,1 −2,0

−4,0

−2,0

ց ր

1,1

−1,0

−4,0

−1,0

1,1

QED

Proposition 9.18: A SpinC structure on a 3-manifold Y consists of precisely the

same data as a complex trivialization of TY ⊕ R over the 2-skeleton of Y which

extend across its 3-skeleton.

Proof: Follows from obstruction theory. Cf. Gompf & Stipsicz (1999), Remark

5.6.9(a), for the case of Spin structures. Also vid. Gompf (1998). QED

Remark 9.19: From this characterization of SpinC structures on Y , it is easy to

see that a Spin structure S defines a SpinC structure by taking the trivialization of

TY |Y2 defined by S and picking the trivial complex structure on TY |Y2 ⊕R. One

can then check that this trivialization extends to TY |Y3.

Definition 9.20: Given a Spin structure S, denote its induced SpinC structure by

SC.

Proposition 9.21: (Gompf 1998, Theorem 4.12) Let (Y, λ) be a contact 3-manifold
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given as Legendrian surgery on a Legendrian link L :=
⊔
i∈I Ki in S3. Let M be

the 4-manifold-with-boundary defined by the same Kirby diagram. Suppose S be a

Spin structure on Y and use L′ =
⊔
i∈I′ Ki ⊂ L to denote the sublink of L consisting

of those components Ki for which w2(Y,S)([Di, ∂Di]) 6= 0, where Di denotes the

cocore of the handle attached along Ki. Recall that the author uses sλ to denote

the SpinC structure defined by the contact form λ. Then, the difference class

sλ − SC ∈ H2(Y ;Z)

of SpinC structures is determined by the restriction to Y of a class ρ ∈ H2(M ;Z)

defined by its evaluations on the classes [Fi] ∈ H2(M ;Z), according to the formula

(sλ − SC)([Fi]) =
1

2


r(Ki) +

∑

j∈I′
[Fi] · [Fj]


 .

Example 9.22: In the case of the Spin 3-manifold X defined by Figure 9.8 and

studied in Proposition 9.17, consider the SpinC structure sλ defined by the contact

structure Ker λ produced by Legendrian surgery on the Legendrian left-trefoil de-

picted in Figure 8.14, that is, having Thurston-Bennequin invariant −7 and rotation

number zero. Computing using Proposition 9.21, one readily finds that s−SC = 0.

Remark 9.23: Using Proposition 9.21 and the Kirby calculus techniques developed

above, one can compute the lift of a SpinC-structure s via a finite covering by

computing the lift of a Spin structure S and then computing the lift of the second

cohomology class s− SC.

Theorem 9.24: Consider the manifold X given by (−8)-surgery on the left-handed

trefoil with tight contact structure Ker λ given by Legendrian surgery according to

Figure 8.14. The lift of Ker λ via the double cover π : Y → X is the tight contact

structure λ̃ on Y ∼= L(12, 7) given by Legendrian surgery on the middle diagram of

Figure 8.38.

Proof: By Remark 8.40, d3(π
∗λ) = d3(λ̃). Meanwhile, Proposition 9.17 and Exam-

ple 9.22 combine to assert that the SpinC structures also match; that is, π∗sλ ∼= sλ̃.

Since the d3 invariant and the SpinC structure completely characterize the homotopy

class of a hyperplane field, π∗λ and λ̃ are homotopic. Now, according to Corollary

7.42, this is a sufficient condition for π∗λ and λ̃ to be isotopic. QED

Remark 9.25: To the best of the author’s knowledge, there is no other way to

obtain this result short of working in coordinates, which would probably prove itself

to be untenable.
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10. Bredon Cohomology

In this short section, the author shall apply the cohomotopical contact invari-

ant to a different cohomology theory. The G-equivariant cohomology theory that

shall be used is the RO(G)-graded Bredon cohomology with coefficients in the Burn-

side Mackey functor A(G) (vid. May & al. 1996, Chapter X). Bredon cohomology

is the equivariant analogue of ordinary cohomology and is what is required for the

formulation of equivariant obstruction theory.

This cohomology theory shall be denoted herein by H∗
G(−; A(G)). The main

reason to consider Bredon cohomology is its elegant behaviour with respect to pass-

ing to fixed points, which allows one to extend certain results obtained with Borel

cohomology to more general coverings. The results derived herein are mostly of

theoretical interest due to the difficulty in performing concrete computations with

Bredon cohomology. Indeed, the Bredon cohomology of a point is known only for a

select few finite groups and not even for all cyclic groups.

Definition 10.1: Define theG-equivariant Bredon metric dependent Monopole Floer

cohomology as

H̃M∗
G(Y, π

∗sλ, π
∗g) := H∗

G( SWFG(Y, π
∗sλ, π

∗g); A(G))).

Remark 10.2: Note that the grading of H̃M∗
G is over the representation ring RO(G).

As a consequence, the dependence of H̃M∗
G on the metric g is only up to a shift of

the grading; this is not entirely obvious, but shall not be proved in this thesis.

Let e →֒ Eu,µ
λ denote a fibre of the unstable normal bundle Eu,µ

λ → Uπ∗λ.

Then, e is naturally a representation of G. Since Uπ∗λ is a connected trivial G-

manifold, it follows that there exists a G-equivariant Thom class for the G-vector

bundle Eu,µ
λ (vid. May & al. 1996, §XVI.9 or Lewis Jr., May & Steinberger 1986,

§III.6). Denote this class by

θπ∗λ,G ∈ H
e

G(TG(π∗λ, π∗g)).

Notice that the grading in which this class lives may not be in Z.

Definition 10.3: Define the metric dependent G-equivariant Bredon cohomological

contact invariant as

ψG(π
∗λ, π∗g) := ΨG(π

∗λ, π∗g)∗(θπ∗λ,G) ∈ H̃M
e

G(Y, π
∗sλ, π

∗g)).
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Next, the author shall consider how to recover the downstairs contact invariant.

Definition 10.4: For an element α ∈ RO(G) and a G-space X , denote the natural

map

Hα
G(X ; A(G))→ HdimαG

(XG;Z)

by x 7→ xG where the cohomology theory on the right is ordinary (i.e. Eilenberg-

MacLane) cohomology, which is given by applying the functor ΦG to the representing

map Σ∞X → ΣαHA(G) where HA(G) denotes the Eilenberg-MacLane G-spectrum

which represents the cohomology theory H∗
G(−; A(G)).

Theorem 10.5: ψ(λ, g) = (ψG(π
∗λ, π∗g))G.

Proof: Consider the commuting diagram

H̃M
e

G(Y, π
∗sλ, π∗g) ←− H

e

G(T (π∗λ, π∗g))
y

y

H̃MdimeG

(Y/G, sλ, g) ←− HdimeG

(T (λ, g))

where the vertical arrows are the natural restrictions to fixed points discussed above

and the horizontal arrows are the pullbacks by ΨG(π
∗λ, π∗g) and Ψ(λ, g) respec-

tively. The result follows immediately after noting that, under the right vertical

map, the Thom class θπ∗λ,G gets sent to the Thom class θλ (cf. Costenoble & Waner

1992, Theorem C). QED

Definition 10.6: For an element α ∈ RO(G), denote the natural map

H̃Mα
G(Y, π

∗sλ, π
∗g)→ H̃Mdimα(Y, π∗sλ, π

∗g).

given by passage to the subgroup 1 ⊂ G by x 7→ x|1 (vid. Costenoble & Waner

2016, §1.10.1).

Theorem 10.7: ψG(π
∗λ, π∗g)|1 = ψ(π∗λ, π∗g).

Proof: This is immediate from the chain level description of passage to subgroups.

QED

Corollary 10.8: If ψG(π
∗sλ, π∗g) = 0 then both ψ(π∗λ, π∗g) = 0 and ψ(λ, g) = 0.
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11. Non-Degeneracy

This section shall present the author’s original proof for Theorem 2.23; that

is, the theorem which asserted that the contact monopole Cλ is non-degenerate

for sufficiently large r > 0. As the author said in the beginning of the present

thesis, unbeknownst to him, this result was originally proven in Taubes (2007).

The proof presented here is in fact significantly different and uses a simpler sort of

argument. The idea is to reformulate the linearized Seiberg-Witten equations as a

pair of coupled Dirac equations for the connexion and the spinor and square them

to obtain Laplace equations, which then, when the parameter r > 0 be made large,

shall not admit any solutions. It shall prove necessary to rewrite the Seiberg-Witten

equations in the language of strictly pseudoconvex CR-geometry — an analogue of

sorts, in odd dimensions, to almost Kähler geometry.

As in §2, let Y be an oriented 3-manifold, λ ∈ Ω1(Y ) a contact form, ξ := Ker λ

and g a metric such that λ ∧ dλ = Volg. Fix a complex structure J : ξ → ξ so as to

have g(−,−) = dλ(−, J−). Use R ∈ Γ(TY ) to denote the Reeb field defined with

respect to g. Extend J to a map TY → TY by setting JR = 0.

Remark 11.1: Notice that

ΛkC(ξ
∗ ×C) ∼=

⊕

p+q=k

Λp,qξ∗.

Moreover, one has T∗Y ⊗C = 〈λ〉C ⊕ Λ1,0ξ∗ ⊕ Λ0,1ξ∗, whence it follows that

ΛkC(T
∗Y ⊗C) ∼=


 ⊕

p+q=k

Λp,qξ∗


⊕


λ ∧

⊕

p+q=k−1

Λp,qξ∗


 .

Remark 11.2: Note that, since dimC Λ1,0ξ = 1, it is trivially true that

[ΓΛ1,0ξ,ΓΛ1,0ξ] ⊂ ΓΛ1,0ξ.

This is a formal integrability condition that may not hold in higher dimensions;

when it does, (Y, ξ, J) is called a Cauchy-Riemann, or CR, manifold. If, further, as

is the case here, one has ξ = Ker λ for λ a contact form with dλ(−, J−) positive

definite on ξ, the tuple (Y, ξ, J, λ) is called a strictly pseudoconvex CR-manifold.

Now, recall the definition of the spinor bundle Sλ and the Clifford multipli-

cation map cℓ : TY → EndC(Sλ) from Definition 2.1. Here, the author shall be

considering the extension of the map cℓ to the complexification TY ⊗ C by im-

posing C-linearity. Meanwhile, by precomposing with the duality map ω 7→ ω∗ one

100



obtains a map T∗Y ⊗C→ EndC(Sλ), which shall still be denoted cℓ. It is important

to note that this last map is therefore C-anti linear, because the duality ω 7→ ω∗ is

C-antilinear. As a consequence of this convention, note that the difference of Dirac

operators is given by

(DAc+a −DAc
)ψ = −a · ψ.

The Clifford multiplication map can then be extended further to all complex k-forms

according to the rule

cℓ(ω ∧ η) := 1

2
[cℓ(ω), cℓ(η)].

The resulting map Λ∗
C
T∗Y ⊗C→ EndC(Sλ) shall also be denoted cℓ.

Definition 11.3: Define the Cauchy-Riemann operators

∂ : ΓΛp,qξ∗ → ΓΛp+1,qξ∗, ∂ : ΓΛp,qξ∗ → ΓΛp,q+1ξ∗

by composing the exterior derivative d : ΓΛp,qξ∗ → ΓΛp+q+1
C

(T∗Y ⊗ C) with the

appropriate projection according to the direct sum decomposition in Remark 11.1.

Remark 11.4: The exterior derivative decomposes as

d = ∂ + ∂+λ ∧ LR .

Remark 11.5: The goal shall be now to express the Dirac operator in terms of

the Cauchy-Riemann operators. For that end, it shall prove necessary to work in a

connexion on Y other than the one of Levi-Civita.

Definition 11.6: The Tanaka-Webster connexion is the connexion on TY defined

so as to have the covariant derivative satisfy

∇TW λ = 0, ∇TW g = 0, ∇TW J = 0,

TTW|ξ = dλ⊗R, TTW(R) = −1
2
J ◦ (LR J),

where TTW ∈ Ω2(Y ; TY ) ∼= Ω1(Y ; End(TY )) signifies the torsion of the Tanaka-

Webster connexion.

Remark 11.7: Recall that a connexion on TY together with a connexion on det sλ

precisely define a connexion on Sλ. Given a connexion A on det sλ, use TW×A to

denote the induced connexion on Sλ.

Definition 11.8: By the Tanaka-Webster-Dirac operator, one means DTW
A : ΓSλ →

ΓSλ defined as the composite

ΓSλ
∇TW×A−−−−−→ Γ(T∗Y ⊗ Sλ) cℓ−→ΓSλ.
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Remark 11.9: On a CR-manifold, there is a notion of Chern connexion defined

formally in the same manner as for a complex manifold using the operator ∂ defined

above. Let Ac denote the Chern connexion on det sλ.

Proposition 11.10: (Petit 2005) For α ∈ ΓΛ0,qξ∗, one has

D
TW
Ac

α =
√
2(∂+ ∂

∗
)α + i(−1)q+1∇TW(α)(R).

Proposition 11.11: (Petit 2005, Proposition 3.4) The Tanaka-Webster-Dirac and

the Levi-Civita-Dirac operators are related by

D
TW
A −DA =

1

4
cℓ(λ ∧ dλ) = −1

4
.

Now, consider a Seiberg-Witten configuration (A,ψ) ∈ C(Y, sλ). Write the

spinor as ψ = r−1/2(α + β) where α ∈ ΓΛ0,0ξ∗ and β ∈ ΓΛ0,1ξ∗. Likewise, consider

the connexion A = Ac+2a by writing a = −fλ+ i√
2
(η+η) where f ∈ Λ0,0ξ∗, ℜf = 0

and η ∈ ΓΛ0,1ξ∗. The goal shall be to write the Seiberg-Witten equations in terms

of α, β, f, η and the operators ∂, ∂. The Dirac equation can easily be translated

using the above facts.

Corollary 11.12: The Dirac equation DAc+aψ = 0 is equivalent to the equations

√
2 ∂

∗
β − i(∇TW α)(R) +

(
1

4
+ if

)
α− iη∗(β) = 0

√
2 ∂ α + i(∇TW β)(R) +

(
1

4
− if

)
β + iηα = 0.

The curvature equation requires more careful consideration. It is in line to

understand how the Hodge operator interacts with the present structure. Use ∗ :

Λ∗
C
T∗Y ⊗ C → Λ∗

C
T∗Y to denote the C-anti linear Hodge operator; that is, its

defining property is that ∗〈α, β〉 = α ∧ ∗β.

Definition 11.13: Let ∗ξ : ξ∗i,j → ξ∗n−i,n−j, (where, in the present case, n = 1) be

the C-anti linear Hodge operator on the bundle ξ∗ ⊗ C defined by the Hermitian

inner product induced by dλ and J .

Remark 11.14: The formal adjoints of the Cauchy-Riemann operators are given

by

∂∗ = −∗ξ∂∗ξ, ∂
∗
= −∗ξ ∂ ∗ξ.

Remark 11.15: The Hodge operator of Y restricts as

∗ : Λi,jξ∗ → λ ∧ Λn−i,n−jξ∗,

where, in the present case, n = 1, and is given by δ 7→ λ ∧ ∗ξδ.
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Remark 11.16: Since dλ ∈ ΓΛ1,1ξ∗ is the orientation form of ξ, it follows ∗λ = 1
2dλ.

Remark 11.17: ∗ξ acts on Λ1,0ξ∗ ⊕ Λ0,1ξ∗ as α 7→ −Jα.

Proposition 11.18: The Seiberg-Witten curvature equation (vid. Definition 2.13)

is equivalent to the equations

√
2 ∂ f + i∇TW η(R)− i√

2
∗(F 0,1

Ac
− F 0,1

Aλ
) +mη + iαβ = 0

1√
2

(
∂
∗
η − ∂∗η

)
− 〈∗(FAc

− FAλ
), λ〉+ f +

i

2

(
|α|2 − |β|2

)
= 0

Proof: Consider the term

∗da = ∗d
(
−fλ+

i√
2
(η + η)

)
.

The first term can be expanded as

∗d(−fλ) = −∗(−λ ∧ df + fdλ)

= i(∂ f − ∂f)− fλ.
Whilst the second term can be computed as

∗d
(

i√
2
(η + η)

)
=
−i√
2
∗d(η + η)

=
−i√
2
∗
(
(∂ + ∂)(η + η) + λ ∧ LR(η + η)

)

=
1√
2

(
−λ ∧ (∂

∗
η − ∂∗η)−∇TW(η − η)(R) + imη − imη)

)

where m : Y → C is certain a function dependent on the torsion of the Tanaka-

Webster connexion, which shall be described now. Firstly, note that TTW(R) =

−1
2J LR J is self-adjoint and anticommutes with J . As a consequence, one checks

that

LR(η + η) = ∇TW(η + η)(R) + TTW(R)(η + η)

where TTW(R) is acting on T∗Y by precomposition. Moreover, another consequence

of TTW(R) anticommuting with J is that it maps ξ∗0,1 to ξ∗1,0 and vice versa; so, due

to these bundles being one complex dimensional, one sees that ∗ξTTW(R)(η) is given

by a complex valued function multiplying η; hence, define m so as to have

mη = iTTW(R)(η).

Now, consider the quadratic term

rτ(ψ) =

(
1
2
(|α|2 − |β|2) αβ∗

αβ 1
2(|β|2 − |α|2)

)
∈ End(Λ0,0ξ∗ ⊕ Λ0,1ξ∗).
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By working directly with Definition 2.1, one shows that, under the isomorphism

iT∗Y ∼= isu(Sλ), this becomes

rτ(ψ) = − i
2
λ(|α|2 − |β|2)− 1√

2
(αβ − αβ).

QED

Proposition 11.19: The local Coulomb gauge condition (vid. Definition 2.17) is

equivalent to the equation

−i∇TW(F )(R) +
1√
2
(∂

∗
H + ∂∗H)− 1

2
(A∗(α) +B∗(β)− α∗(A)− β∗(B)) = 0,

where (F,H,A,B) is a tangent vector at (f, η, α, β).

Proof: Consider the coexterior derivative term

−d∗
(
−Fλ +

i√
2
(H +H)

)
= 0.

The first term reduces to

−d∗(−Fλ) = ∗d∗(−Fλ) = −LR F = −∇TW(F )(R),

and the second to

−d∗
(

i√
2
(H +H)

)
=

i√
2
∗d
(
λ ∧ ∗ξ(H +H)

)

=
i√
2
∗
(
−λ ∧ (∂ + ∂)∗ξ(H +H)

)

=
i√
2

(
∗ξ(∂ + ∂)∗ξ(H +H)

)

=
−i√
2

(
(∂∗ + ∂

∗
)(H +H)

)

.

QED

Corollary 11.20: The linearization of the Seiberg-Witten equations at (f, η, α, β)

in the local Coulomb gauge is given by

√
2 ∂

∗
H − i∇TW(F )(R) + F − iB∗(β) + iα∗A = 0

√
2 ∂ F + i∇TW(H)(R) +mH + iAβ + iαB = 0

√
2 ∂

∗
B − i∇TW(A)(R) + A

(
1

4
+ if

)
+ iαF − iH∗(β)− iη∗(B) = 0

√
2 ∂ A + i∇TW(B)(R) +B

(
1

4
− if

)
− iβF + iAη + iαH = 0,

where (F,H,A,B) is a tangent vector at (f, η, α, β).
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Remark 11.21: The key observation to make is that these are a pair of Dirac

equations.

Theorem 11.22: For sufficiently large r, the map

ΠLC
Cλ

DCλ
X λ,r : KCλ

→ KCλ

is an isomorphism.

Proof: Note that this map is Fredholm and has index zero; therefore, it suffices to

prove that its kernel vanishes. For that end, what one must do is to input Cλ as

(f, η, α, β) into the equations of Corollary 11.20 and solve for (F,H,A,B) showing

that the only solution is zero. Observe that, since the spinor part of the contact

configuration is given by α = r1/2 and β = 0, Corollary 11.12 implies ir1/2η = 0

and (14 + if)r = 0; hence, the connexion part of the contact configuration is given

by η = 0 and f = i
4
. Plugging these into Corollary 11.20 yields
√
2 ∂ F + i∇TW(H)(R) +mH + ir1/2B = 0
√
2 ∂

∗
H − i∇TW(F )(R) + F + ir1/2A = 0

√
2 ∂ A + i∇TW(B)(R) +

1

2
B + ir1/2H = 0

√
2 ∂

∗
B − i∇TW(A)(R) + ir1/2F = 0.

With respect to the connexion a := Ac +
i
4λ, one can conveniently pack most terms

together into Dirac operators as

Da(F +H) + L(F +H) + ir1/2(A+B) = 0

Da(A+B) + ir1/2(H + F ) = 0,

where L(F + H) := −1
2H + mH + F . Applying the Dirac operator to the first

equation and substituting in the second gives

D2
a(F +H) +Da ◦ L(F +H) + r(F +H) = 0.

Notice that the elliptic second-order differential operatorD2
a
+Da◦L+r has the same

symbol as the Laplacian. As a consequence, choosing r sufficiently large ensures that

it be an isomorphism between appropriate Sobolev spaces. To see why this is, think

of this operator as an elliptic operator with parameter where the parameter is r

taking values on the ray (0,∞) ⊂ C (vid. Shubin (2000), §9); elliptic theory then

implies that, for large r, the resulting operator is invertible. As a consequence, F

and H must be zero, and, then, A and B must be zero as well. QED

Remark 11.23: Hereby the author concludes the proof of Theorem 11.22.
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12. Uniqueness of Trajectories

This section shall deal with the proof of Theorem 2.25, where it was claimed

that there are no non-trivial Seiberg-Witten trajectories with positive infinity limit

the contact configuration. A very similar assertion is made by Taubes (2009), Propo-

sition 5.15. The key difference is that Taubes deals with the case of a non-torsion

det sλ, which is not the case here. The fact that det sλ is non-torsion in Taubes

(2009), Proposition 5.15, also causes its conclusion to be somewhat weaker than

what is proved here. Another minor difference is that, in the present thesis, the

author must not assume that the negative infinity limit of the trajectory be non-

degenerate. These differences require only significant modifications to the final part

of the proof; therefore, the proof presented here shall be very similar to what one

can find in Taubes (2009) and other works of Taubes that have drawn significantly

from it. However, Taubes’ proof is difficult to follow for someone who has not read

Taubes (2007) and Taubes (2009) in their entirety; therefore, the author felt that it

was necessary to include all the details here for the sake of completeness.

The overall strategy shall consist of the following. On the one hand, it shall be

shown that only the contact configuration and its gauge equivalent configurations

have the property that the spinor component be bounded away from zero in a

certain way. On the other, it shall be shown that the trajectory necessarily satisfies

the same sort of bound on its spinor component for all time. As a consequence,

both endpoints shall have to be gauge equivalent.

The author shall use the symbol ∇A to denote the SpinC covariant derivative

on Sλ induced by the connexion A on det sλ. This is to say that Clifford multi-

plication is covariantly constant for ∇A. It shall also be necessary to work with

covariant derivatives defined on each of the summands Sλ ∼= Λ0,0ξ∗ ⊕ Λ0,1ξ∗. Both

these derivatives shall be denoted by the same symbol as

∇′
A : Γ(Λ0,kξ∗)→ Γ(Λ0,kξ∗ ⊗ T∗Y )

and shall be defined by projecting ∇A to the respective summand of Sλ. This can

be conveniently expressed in terms of Clifford multiplication by the formula

∇′
A =

1

2

(
1 + i(−1)k cℓ(λ)

)
∇A.

Hence, the difference to ∇A is given by

∇A −∇′
A = i(−1)k cℓ(∇LCλ),
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where ∇LC denotes the Levi-Civita connexion.

Henceforth, the author shall deal with Seiberg-Witten trajectories. Suppose

γ : R→ C to be a finite type trajectory satisfying

d

dt
γ(t) = −X λ,r (γ(t)).

Assume that both limits limt→±∞ γ(t) be well defined in the L2
5 topology. Note

that, by Sobolev embedding, the limits are also well defined in C2. The author shall

not yet be assuming that the positive time limit be the contact configuration Cλ;

that assumption shall be added later. Write γ(t) = (A(t), ψ(t)) ∈ C(Y, sλ) for its

connexion and spinor components respectively. Write A(t) := Aλ(t) + a(t) where

a(t) is a purely imaginary 1-form on Y . Decompose the spinor as ψ(t) = (α(t), β(t))

according to the direct sum Sλ = Λ0,0ξ∗ ⊕ Λ0,1ξ∗.

Remark 12.1: In what follows, a sequence of bounds on various quantities shall

be established. These shall involve constants Kn and bundle endomorphisms En

labelled by n the number of the lemma in which they appear. These quantities may

depend on the metric of Y and the contact form λ, but they shall not depend on

the particular solution (A,ψ) to the Seiberg-Witten equations nor shall they shall

not depend on the value of the parameter r > 0.

Lemma 12.2: The spinor ψ satisfies the second order equation

− ∂2

∂t2
ψ +∇∗

A∇Aψ − cℓ
(
1

2
∗FAλ

+ rτ(ψ)− ir

2
λ

)
ψ +

s

4
ψ = 0,

where s : Y → R denotes the scalar curvature of Y .

Proof: The Dirac equation
∂

∂t
ψ = −DAψ

implies the second order equation

∂2

∂t2
ψ = − ∂

∂t
DAψ = −DA

∂

∂t
ψ − cℓ

(
∂

∂t
A

)
ψ = D2

Aψ − cℓ
(
∂

∂t
A

)
ψ.

Now, apply the the well known Weitzenböck formula (cf. Nicolaescu 2000, (1.3.11)),

D∗
ADAψ = ∇∗

A∇Aψ −
1

2
cℓ(∗FA)ψ +

s

4
ψ,

to find that

− ∂2

∂t2
ψ +∇∗

A∇Aψ − cℓ
(
∂

∂t
A+

1

2
∗FA

)
ψ +

s

4
ψ = 0.

The result then follows by applying the curvature component of the Seiberg-Witten

trajectory equations. QED
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Lemma 12.3: The norm squared of the spinor ψ satisfies the second order equation

−1
2

∂2

∂t2
|ψ|2 + 1

2
d∗d|ψ|2 +

∣∣∣∣
∂

∂t
ψ

∣∣∣∣
2

+ |∇Aψ|2 +
r

2

(
|ψ|4 − ℜ 〈i cℓ(λ)ψ, ψ〉

)

+ℜ 〈cℓ(FAλ
)ψ, ψ〉+ s|ψ|2 = 0

where the inner product is the pointwise inner product of the Hermitian bundle Sλ.

Proof: Follows by taking the pointwise inner product with ψ of both sides in the

equation asserted by Lemma 12.2. QED

Lemma 12.4: There is a constant K12.4 > 0 such that

−1
2

∂2

∂t2
|ψ|2 + 1

2
d∗d |ψ|2 + r

2
|ψ|2 (|ψ|2 − 1) ≤ −

∣∣∣∣
∂

∂t
ψ

∣∣∣∣
2

− |∇Aψ|2 +K12.4 |ψ|2 .

Proof: Define the constant to be

K12.4 := max

{
sup
Y
|FAλ
| , sup

Y
|s|
}
.

The equation of Lemma 12.3 implies that

−1
2
|ψ|2 + 1

2
d∗d |ψ|2 + r

2
|ψ|2 (|ψ|2 − 1) +

∣∣∣∣
∂

∂t
ψ

∣∣∣∣
2

+ |∇Aψ|2 ≤ (|FAλ
|+ |s|) |ψ|2

≤ K12.4 |ψ|2 .

QED

Lemma 12.5: There is a constant K12.5 > 0 such that

|α|2 + |β|2 ≤ 1 +K12.5r
−1.

Proof: This is analogous to the first statement of Taubes (2009), Lemma 5.1. Start

by setting the constant to be

K12.5 := K12.4

Consider the function u : R × Y → R defined as u := |ψ|2 − 1 − K12.5r
−1. The

following differential inequality is implied by Lemma 12.4.

−1
2

∂2

∂t2
u+

1

2
d∗du+ r|ψ|2u ≤ 0.

Consequently, the function u cannot admit a positive local maximum anywhere in

R × Y . Consider now two cases. Firstly, suppose that the trajectory be constant;

that is, that ψ be constant in the parameter t. Because Y is compact, not admitting a

positive local maximum implies that u ≤ 0 everywhere in Y . Secondly, suppose that

the trajectory not be constant. Here, the limits limt→±∞ ψ are constant trajectories
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as in the previous case, which implies that the limits limt→±∞ u are everywhere

non-positive on Y . Since u does not admit positive local maxima, it follows that

u ≤ 0 everywhere on R× Y . In other words,

|α|2 + |β|2 = |ψ|2 ≤ 1 +K12.5r
−1.

QED

Lemma 12.6: The norm squared of the component α of the spinor ψ satisfies the

second order equation

−1
2

∂2

∂t2
|α|2 + 1

2
d∗d|α|2 +

∣∣∣∣
∂

∂t
α

∣∣∣∣
2

+ |∇Aα|2 −
r

2
(1− |α|2 − |β|2)|α|2

+E12.6(α, β) + E′
12.6(α,∇′

Aβ) + E′′
12.6(α, α) = 0.

For bilinear forms E12.6, E
′
12.6 and E′′

12.6 dependent only on Y , λ and the metric g.

Proof: This is analogous to the first equation in Taubes (2009), (5-9). The proof is

similar to Lemma 12.3 but the author feels that certain points are worth clarifying

here. Start with the equation of Lemma 12.2 and take the pointwise inner product

of both sides with α.

−ℜ
〈
∂2

∂t2
ψ, α

〉
+ ℜ 〈∇∗

A∇Aψ, α〉 − ℜ
〈
1

2
cℓ(FAλ

)ψ, α

〉

+ℜ 〈r cℓ(τ(ψ))ψ, α〉 − ℜ
〈r
2
cℓ(iλ)ψ, α

〉
+
s

4
|α|2 = 0. (∗)

Now, consider each term in turn. For the first term, one notes

ℜ
〈
∂2

∂t2
ψ, α

〉
= ℜ

〈
∂2

∂t2
α, α

〉
=

1

2

∂2

∂t2
|α|2 −

∣∣∣∣
∂

∂t
α

∣∣∣∣
2

.

For the second term of (∗), consider the following.

d∗d|α|2 = d∗dℜ 〈ψ, α〉 = ℜ 〈∇∗
A∇Aψ, α〉 − 2ℜ 〈∇Aψ,∇Aα〉+ ℜ 〈ψ,∇∗

A∇Aα〉

= 2ℜ 〈∇∗
A∇Aψ, α〉 − 2ℜ 〈∇Aψ,∇Aα〉 − ℜ 〈α,∇∗

A∇Aβ〉+ ℜ 〈β,∇∗
A∇Aα〉

Meanwhile, one also has

0 = d∗dℜ 〈α, β〉 = ℜ 〈∇∗
A∇Aα, β〉 − 2ℜ 〈∇Aα,∇Aβ〉+ ℜ 〈α,∇∗

A∇Aβ〉 .

Combining the two yields

d∗d |α|2 = 2ℜ 〈∇∗
A∇Aψ, α〉 − 2 |∇Aα|2 − 2ℜ 〈α,∇∗

A∇Aβ〉 .

To understand this last term in more detail, recall the relation between the covariant

derivatives ∇A and ∇′
A from above. One readily finds

∇∗
A∇Aβ = (∇′

A − i cℓ(∇LCλ))
∗ ◦ (∇′

A − i cℓ(∇LCλ)) β

= (∇′
A)

∗∇′
Aβ + f1(∇′

Aβ) + f2(β),
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where f1 and f2 are two bundle endomorphisms of Sλ dependent on λ, ∇LC and

∇∗
LC∇LCλ but certainly not on r. When one take the pointwise inner product of

this equation with α, one shall note that the term involving second derivatives of β

vanishes.

ℜ 〈∇∗
A∇Aβ, α〉 = ℜ 〈f1(∇′

Aβ), α〉+ ℜ 〈f2(β), α〉 .

Applying this to the above formula for d∗d |α|2, one finds

ℜ 〈∇∗
A∇Aψ, α〉 =

1

2
d∗d |α|2 + |∇Aα|2 + f3(α, β) + f4(α,∇′

Aβ)

for two bilinear forms f3 and f4 on Sλ independent of r. Next, the third term of (∗)
can be simply written as

−
〈
1

2
cℓ(FAλ

)ψ, α

〉
= f5(α, β) + f6(α, α),

where f5 and f6 are two bilinear forms on Sλ independent of r. For the fourth term

of (∗), start by considering the endomorphism ψ⊗ψ∗− 1
2 |ψ|2id of Sλ. According to

the direct sum Sλ ∼= Λ0,0ξ∗ ⊕ Λ0,1ξ∗, one writes this endomorphism as a matrix(
1
2(|α|2 − |β|2) αβ∗

αβ 1
2(|β|2 − |α|2)

)
,

where β∗ here denotes the dual section to β of the dual bundle Λ1,0ξ. Since cℓ(τ(ψ))

is defined to be this endomorphism, it follows that

ℜ 〈r cℓ(τ(ψ))ψ, α〉 = r

2

(
|α|4 + |α|2 |β|2

)
.

Meanwhile, the fifth term of (∗) can be resolved as

−ℜ
〈r
2
cℓ(iλ)ψ, α

〉
= −r

2
|α|2 .

At last, for the sixth term of (∗), one can write

s

4
|α|2 = f7(α, α)

for f7 a bilinear form on Sλ independent of r. The result is then proven by declaring

E12.6 := f3 + f5, E′
12.6 := f4, E′′

12.6 := f6 + f7.

QED

Lemma 12.7: The squared norm of the component β of the spinor ψ satisfies the

second order equation

−1
2

∂2

∂t2
|β|2 + 1

2
d∗d|β|2 +

∣∣∣∣
∂

∂t
β

∣∣∣∣
2

+ |∇Aβ|2 +
r

2
(1 + |α|2 + |β|2)|β|2

+E12.7(α, β) + E′
12.7(∇′

Aα, β) + E′′
12.7(β, β) = 0.

For bilinear forms E12.7, E
′
12.7 and E′′

12.7 on Sλ dependent only on Y , λ and the

metric g.
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Proof: The proof is analogous to that of Lemma 12.6. QED

Lemma 12.8: There exists a constant K12.8 > 0 such that, for any K > K12.8, the

function

v : R× Y → R, v := 1− |α|2 + r−1K

satisfy the differential inequality

−1
2

∂2

∂t2
v + d∗dv +

r

2
|α|2 v ≥

∣∣∣∣
∂

∂t
α

∣∣∣∣
2

+ |∇Aα|2 +
r

2
|α|2 |β|2 +

(
K −K12.8

2

)
|α|2

− |β|2 − |∇′
Aβ|

2
.

Proof: Since the bilinear forms E12.6, E
′
12.6 and E′′

12.6, from Lemma 12.6 are all

independent of t, one can take their supremum norms and define the desired constant

to be

K12.8 := max
{
|E12.6|2 , |E′

12.6|
}
+ 2 |E′′

12.6| .

To see that this constant satisfies the stated result, start with the following differ-

ential equation for the function v implied by Lemma 12.6.

− 1

2

∂2

∂t2
v + d∗dv +

r

2
|α|2 v −

∣∣∣∣
∂

∂t
α

∣∣∣∣
2

− |∇Aα|2 −
r

2
|α|2 |β|2 − K −K12.8

2
|α|2

=
K12.8

2
|α|2 + E12.6(α, β) + E′

12.6(α,∇′
Aβ) + E′′

12.6(α, α).

Now, using the supremum norms, bound the right hand side as follows.

≥
(
K12.8

2
− |E′′

12.6|
)
|α|2 − |E12.6| |α| |β| − |E′

12.6| |α| |∇′
Aβ| .

By applying the arithmetic-geometric mean inequality twice, one then finds

≥− |E12.6|2
K12.8 − 2 |E′′

12.6|
|β|2 − |E′

12.6|2
K12.8 − 2 |E′′

12.6|
|∇′

Aβ|
2

≥−
max

{
|E12.6|2 , |E′

12.6|2
}

K12.8 − 2 |E′′
12.6|

(
|β|2 + |∇′

Aβ|
2
)

=− |β|2 − |∇′
Aβ|

2
.

QED

Lemma 12.9: There exist constants r12.9 > 0 and K12.9 > 0 such that, for all

r > r12.9, the component β of the spinor satisfy

−1
2

∂2

∂t2
|β|2 + 1

2
d∗d |β|2 + r

2
|α|2 |β|2 ≤ − |∇Aβ|2 −

∣∣∣∣
∂

∂t
β

∣∣∣∣
2

− r

2
|β|4 − r

4
|β|2

+
K12.9

r

(
|α|2 + |∇′

Aα|
2
)
.
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Proof: Start off by defining the desired constants as

r12.9 := 4 |E12.7| , K12.9 := max
r>r12.9



rmax

{
|E12.7|2 , |E′

12.7|2
}

r
2 − 2E′′

12.7


 .

Now, assuming r > r12.9, consider the equation asserted by Lemma 12.7. By bound-

ing with the supremum norms the terms involving the bilinear forms, one can state

that

− 1

2

∂2

∂t2
|β|2 + 1

2
d∗d |β|2 +

∣∣∣∣
∂

∂t
β

∣∣∣∣
2

+ |∇Aβ|2 +
r

2
|α|2 |β|2 + r

2
|β|4 + r

4
|β|4

≤− r

4
|β|2 + |E12.7| |α| |β|+ |E′

12.7| |∇′
Aα| |β|+ |E′′

12.7| |β|2 .

Now, apply the arithmetic-geometric mean inequality twice to assert

≤−
(r
4
− |E′′

12.7|
)
|β|2 + |E12.7| |α| |β|+ |E′

12.7| |∇′
Aα| |β|

≤
(
|E12.7|2

r
2
− 2 |E′′

12.7|

)
|α|2 +

(
|E′

12.7|2
r
2
− 2 |E′′

12.7|

)
|∇′

Aα|
2

≤K12.9

r

(
|α|2 + |∇′

Aα|
2
)
.

QED

Lemma 12.10: There are constants K12.10 > 0 and r12.10 > 0 such that for any

r > r12.10 the following inequality hold.

|β|2 ≤ K12.10

(
r−1(1− |α|2) + r−2

)
.

Proof: This is analogous to the second statement of Taubes (2009), Lemma 5.1.

The details in this case are as follows. Start by declaring the constants to be

r12.10 := max
{
K12.9, 2

√
K12.9

}
K12.10 := K12.9(K12.8 + 2).

Define the following functions.

u : R× Y → R, u := 1− |α|2 + K12.8 + 2

r

w : R× Y → R, w := |β|2 −
(
K12.9

r

)
u.

Combine Lemma 12.8 and Lemma 12.9 to assert a differential inequality for w of

the form

− 1

2

∂2

∂t2
w +

1

2
d∗dw + r |α|2w

≤− |∇Aβ|2 −
∣∣∣∣
∂

∂β

∣∣∣∣
2

− r

2
|β|4 − r

4
|β|2 + K12.9

r

(
|α|2 + |∇′

Aα|2
)

+
K12.9

r

(
−
∣∣∣∣
∂

∂t
α

∣∣∣∣
2

− |∇Aα|2 −
r

2
|α|2 |β|2 − |α|2 + |β|2 + |∇′

Aβ|
2

)
.
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Neglecting some of the negative terms, one finds

≤− |∇Aβ|2 −
r

4
|β|2 + K12.9

r

(
|α|2 + |∇′

Aα|
2
)

+
K12.9

r

(
− |∇Aα|2 − |α|2 + |β|2 + |∇′

Aβ|
2
)
.

Notice the key cancellation of the terms involving |α|2.

= − |∇Aβ|2 −
r

4
|β|2 + K12.9

r
|∇′

Aα|
2
+
K12.9

r

(
− |∇Aα|2 + |β|2 + |∇′

Aβ|
2
)
.

Since |∇′
A|α ≤ |∇Aα| and |∇′

Aβ| ≤ |∇Aβ|, one finds

≤ −
(
1− K12.9

r

)
|∇Aβ|2 −

(
r

4
− K12.9

r

)
|β|2 .

From the definition of r12.10, it follows that both of these terms are negative. There-

fore, the following differential inequality has been established.

−1
2

∂2

∂t2
w +

1

2
d∗dw +

r

2
|α|2 w ≤ 0. (∗)

This implies that the function w cannot admit a positive local maximum anywhere

in R×Y . Consider two cases. Firstly, suppose that the trajectory be constant; that

is, that α and β be constant in the parameter t. Because Y is compact, it follows

that w ≤ 0 everywhere in Y . Secondly, suppose that the trajectory not be constant;

that is, α and β may depend on the parameter t. Here, the limits limt→±∞(α, β)

define constant trajectories as in the previous case; hence, the limits limt→±∞ w

are everywhere non-positive, and, combined with the fact that w does not admit

positive local maxima, this implies that w ≤ 0 everywhere in R × Y . Expanding

the definition of w, one finds

|β|2 ≤ K12.9r
−1(1 + |α|2) + r−2K12.9(K12.8 + 2) ≤ K12.10

(
r−1(1 + |α|2) + r−2

)
.

QED

The next goal is to derive a similar sort of bound for the curvature FA and the

derivative ∂
∂tA. It shall prove advantageous to work with objects over R× Y rather

than time dependent objects over Y . For that end, introduce d̂ and ∗̂ to denote,

respectively, the exterior derivative and the Hodge operator over R×Y . The SpinC

structure sλ over Y also defines a SpinC structure over R × Y , which shall be

denoted ŝλ and shall be described next. Let π : R × Y → Y be the projection.

The spinor bundles of ŝλ are both defined as Ŝ±λ := π∗Sλ. Meanwhile, the Clifford

multiplication map ĉℓ : T(R× Y )→ EndC(Ŝ+λ ⊕ Ŝ−λ ) is defined by requiring

ĉℓ

(
∂

∂t

)
=

(
0 −id
id 0

)
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and, for v ∈ TY , requiring

ĉℓ(v) =

(
0 − cℓ(v)∗

cℓ(v) 0

)
.

The time dependent connexion A over det sλ also defines a connexion on the

bundle det ŝλ; denote this connexion by Â and note that it is characterized by

requiring its induced covariant derivative to be

∇Â := dt⊗ ∂

∂t
+∇A.

Hence, one sees that its curvature is given by

FÂ = dt ∧ ∂

∂t
A+ FA.

One can then define the pair of Dirac operators

D±
Â
: ΓŜ±λ → ΓŜ∓λ , D±

Â
= ĉℓ ◦ ∇Â.

Next, let Λ±T∗(R× Y ) ⊂ Λ2T∗(R× Y ) denote the ±1-eigenbundle of ∗̂, and
introduce the quadratic map

τ̂ : Ŝ+λ → iΛ+T∗(R× Y ),

defined by requiring

ĉℓ(τ̂(φ)) = φ⊗ φ∗ − 1

2
〈φ, φ〉 id ∈ EndC(Ŝ+λ ).

That this uniquely defines τ̂ is a standard fact; vid. e.g. Kronheimer & Mrowka

(2007), §1.1.

Proposition 12.11: The four dimensional connexion Â and the spinor ψ seen as a

spinor over R× Y obey the four-dimensional Seiberg-Witten equations

1

2

(
F+

Â
− F+

Âλ

)
− rτ̂(ψ) + irdλ = 0, D+

Â
ψ = 0.

Proof: This is standard; vid. e.g. Kronheimer & Mrowka (2007), §4.3. QED

The bounds on the curvature shall be obtained in two steps. Firstly, one

can read off a bound for the self-dual part, F+

Â
, by simply using the Seiberg-Witten

equations as noted in the next lemma. Secondly, one must work considerably harder

to obtain a bound on the anti-self-dual part, F−
Â
.

114



Lemma 12.12: There exist constants r12.12 > 0 and K12.12 > 0 such that, for

r > r12.12,

|F+

Â
| ≤ rK12.12.

Proof: By the four-dimensional Seiberg-Witten equations (Proposition 12.11), one

has

|F+

Â
| ≤ 2r |τ̂(ψ)|+ |F+

Âλ

|+ 2r |dλ| .

Hence, the result follows by applying Lemma 12.5. QED

The strategy to obtain the bound on the anti-self-dual part of the curvature

shall start by seeking a second order differential inequality in a manner similar to

what was done for the spinor.

Lemma 12.13: The anti-self-dual part of the curvature satisfies the following second

order equation.

∇∗
L̂C
∇

L̂C
F−
Â
+ E12.13(F

−
Â
) = −Π−

(
2r∗̂d̂d̂∗τ̂ (ψ)

)
,

where E12.13 is some bundle endomorphism of iΛ−T∗(R× Y ) independent of r and
the t coordinate function; Π− : Λ2T∗(R×Y )→ Λ−T∗(R×Y ) denotes the projection
with respect to the splitting Λ2T∗(R × Y ) ∼= Λ+T∗(R × Y ) ⊕ Λ−T∗(R × Y ), and
∇

L̂C
denotes the Levi-Civita connexion of R× Y .

Proof: By the second Bianchi identity and the fact that τ̂(ψ) is self-dual, one has

Π−d̂∗d̂F−
Â

= −Π−d̂∗d̂F+

Â
= −Π−

(
∗̂d̂d̂∗τ̂(ψ)

)
, (∗)

Also note that

Π−d̂∗d̂F−
Â

= (d̂∗d̂ + d̂d̂∗)F−
Â
.

The well known Weitzenböck formula relating the connexion Laplacian and the

Beltrami Laplacian provides a bundle homomorphism E12.13 depending solely on

the curvature of R× Y such that

Π−d̂∗d̂F−
Â

= ∇∗
L̂C
∇

L̂C
F−
Â
+ E12.13(F

−
Â
).

Combining this with (∗) and the four-dimensional Seiberg-Witten curvature equa-

tion (Proposition 12.11) finishes the proof. QED

In order to make use of this equation, it is necessary to understand what the

right-hand side says. For that end, the next two lemmata consider the quadratic

map τ̂ in more detail.
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Lemma 12.14: The differential 2-form τ̂ (ψ) may be alternatively described as

τ̂ (ψ)(v, w) =
1

8

〈
ψ, [ĉℓ(v), ĉℓ(w)]ψ

〉
.

Proof: The proof shall be omitted as it is a tedious but straightforward calculation

using the generators and relations of the Clifford algebra of C4. Cf. Nicolaescu

(2000), Example 1.3.3 and Exercise 1.3.2. QED

Remark 12.15: Recall that D+

Â
ψ = 0.

Lemma 12.16: The following holds.

d̂∗τ̂ (ψ) =
i

4
ℑ
〈
∇Âψ, ψ

〉
.

Proof: Let I : ΛkT∗(R × Y ) ⊗ T∗(R × Y ) → Λk−1T∗(R × Y ) be the trace map

induced by the metric. Hence, one can express adjoint of the exterior the derivative

as

d∗τ̂ (ψ) = I ◦ ∇
L̂C
τ(ψ).

Next, use the expression of τ̂ (ψ) given by Lemma 12.14 to assert

8
(
∇

L̂C
τ̂(ψ)

)
(u, v)(w)

=
〈
(∇Âψ)(w), [ĉℓ(u), ĉℓ(v)]ψ

〉
+
〈
ψ, [ĉℓ(u), ĉℓ(v)](∇Âψ)(w)

〉
.

Fix an orthonormal basis {e1, . . . , e4} of T(R×Y ) at a point p in order to compute

the trace. Using the assumption that D+

Â
ψ = 0, one computes

8
(
I ◦ ∇

L̂C
τ̂(ψ)

)
(v)|p

=

4∑

i=1

(〈
(∇Âψ)(ei), [ĉℓ(ei), ĉℓ(v)]ψ

〉
+
〈
ψ, [ĉℓ(ei), ĉℓ(v)](∇Âψ)(ei)

〉)

=

4∑

i=1

〈
(∇Âψ)(ei), 2(ĉℓ(ei)ĉℓ(v) + 〈v, ei〉)ψ

〉

−
4∑

i=1

〈
ψ, 2(ĉℓ(v)ĉℓ(ei) + 〈ei, v〉)(∇Âψ)(ei)

〉

=−
4∑

i=1

〈
ĉℓ(ei)(∇Âψ)(ei), 2ĉℓ(v)ψ

〉
+ 2

〈
∇Âψ, ψ

〉

−
〈
ψ, 2ĉℓ(v)(D+

Â
ψ)
〉
− 2

〈
ψ,∇Âψ

〉

=−
〈
D+

Â
ψ, 2ĉℓ(v)ψ

〉
+ 2

〈
∇Âψ, ψ

〉
− 2

〈
ψ,∇Âψ

〉

=2
〈
∇Âψ, ψ

〉
− 2

〈
ψ,∇Âψ

〉

.

QED
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Lemma 12.17: There exists a constant K12.17 > 0 such that

1

2
d̂∗d̂|F−

Â
|+ r

4
|ψ|2 |F−

Â
| ≤ K12.17

(
|F−
Â
|+ r

(∣∣∇Âψ
∣∣2 + |ψ|2

))
.

Proof: Use d̂Â to denote the exterior covariant derivative on Ŝλ induced by ∇Â.
Then, one has that

d̂2
Â
=

1

2
FÂ + f1,

where f1 is some End(Ŝλ)-valued 2-form dependent only on the curvature of Y .

Hence, Lemma 12.16 implies that

∗̂d̂d̂∗τ̂ (ψ) = 1

8
FÂ |ψ|

2 + f2(∇Aψ,∇Aψ) + f3(ψ, ψ),

where f2, f3 : Ŝλ ⊗ Ŝλ → Λ2T∗(R× Y ) are bundle homomorphisms dependent only

on the metric of Y and the inner product of Sλ. Now, incorporating this into the

equation of Lemma 12.13, yields an equation of the form

∇∗
L̂C
∇

L̂C
F−
Â
+
r

4
F−
Â
|ψ|2 = −E12.13(F

−
Â
) + f4(∇Aψ,∇Aψ) + f5(ψ, ψ),

where f4 and f5 are again bundle homomorphisms dependent only on the metric of

Y , and the inner product of Sλ. The result then follows by taking the inner product

of both sides with F−
Â
, dividing by |F−

Â
| and neglecting a variety of positive terms

from the left hand side in order to obtain the claimed inequality. QED

Lemma 12.18: There exist constants K12.18 > 0, and r12.18 > 0 such that, for

r > r12.18, the function

q : R× Y → R, q := |F−
Â
|+ r

4
K12.17(|ψ|2 − 1)−K12.18

satisfy the second order inequality

1

2
d̂∗d̂q +

r

4
|ψ|2 q ≤ K12.17|F−

Â
|

Proof: Define the constants to be

K12.18 := (1 +K12.17)
2, r12.18 := 1.

Combining Lemma 12.17 with Lemma 12.4, one finds that
1

2
d̂∗d̂q +

r

4
|ψ|2 q ≤K12.17

(
|F−
Â
|+ r

(∣∣∇Âψ
∣∣2 + |ψ|2

))

− rK12.17

∣∣∇Âψ
∣∣2 + rK2

12.4 |ψ|2 − rK12.18

≤K12.17

(
|F−
Â
|+ r(1 +K12.17) |ψ|2

)
− rK12.18.

Invoke Lemma 12.5 to bound |ψ|2 and assert that

≤K12.17

(
|F−
Â
|+ r(1 +K12.18)(1 +K12.5r

−1)
)
− rK12.18

≤K12.17|F−
Â
|.

QED
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Given just this differential inequality, it is not possible to directly obtain the

pointwise bounds desired. It shall also be needed to obtain an L2 bound for the

curvature as shall be described next.

Lemma 12.19:

∫

R×Y
∗̂
(∣∣∣∣

∂

∂t
A

∣∣∣∣
2

+

∣∣∣∣
1

2
∗(FA − FAλ

) + rτ(ψ)− ir

2
λ

∣∣∣∣
2

+ 2r

∣∣∣∣
∂

∂t
ψ

∣∣∣∣
2

+ 2r |DAψ|2
)

=CSDλ,r

(
lim

t→−∞
(A,ψ)

)
− CSDλ,r

(
lim

t→+∞
(A,ψ)

)
.

Proof: Follows from the well known fact that the Seiberg-Witten equations are the

equations of the downward gradient flow of the Chern-Simons-Dirac functional (vid.

Kronheimer & Mrowka 2007, §4.3). In the present context, with the canonical per-

turbations at use, it is easy to check that the flow induced by X λ,r is the downward

gradient flow of CSDλ,r. QED

In view of this last lemma, the goal shall be to bound the value of the Chern-

Simons-Dirac functional for the end points of the trajectory. This shall be done by

bounding all of its terms in turn; cf. Definition 3.24.

Lemma 12.20: There exist constants K12.20 > 0 and r12.20 > 0 such that, for any

r > r12.20, ∣∣∣∣
∫

Y

λ ∧ lim
t→±∞

(FA)

∣∣∣∣ ≤ rK12.20.

Proof: Since the limit configurations limt→±∞ γ satisfy the three dimensional Sei-

berg-Witten equations, one has
∣∣∣∣ lim
t→±∞

FA

∣∣∣∣ ≤ |FAλ
|+ 2r

∣∣∣∣τ
(

lim
t→±∞

ψ

)∣∣∣∣ + r

The result then follows by applying Lemma 12.5 to bound the term involving the

spinor and integrating. QED

Lemma 12.21: There exists a constant K12.21 > 0 such that
∣∣∣∣
∫

Y

lim
t→±∞

(a ∧ da)

∣∣∣∣ ≤ K12.21r
2.

Proof: Without loss of generality, suppose the limit to be t→ +∞. Let B = Aλ+b

be a connexion on det sλ which be gauge equivalent to limt→∞A and also satisfy

d∗b = 0. Likewise, let φ = limt→∞ ψ and write η := −2∗τ(φ) + i∗λ. By the

three-dimensional Seiberg-Witten equations, one sees that b satisfies

db = rη, d∗b = 0.
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Since the operator d + d∗ is elliptic, the following standard elliptic estimate holds

(vid. Nicolaescu 2000, Theorem 1.2.18 (v)).

‖b− Pb‖
L2
1
≤ K ‖rη‖

L2
0
,

where P denotes the projection onto the kernel of d : Ω1(Y ) ∩ Ker d∗ → Ω2(Y ).

Recall also that b1(Y ) = 0; hence, by the Hodge theorem, Pb is a harmonic 1-form,

which must vanish. Meanwhile, by Lemma 12.5, one can bound the norm of η to

assert

‖b‖
L2
1
≤ K ′r

for some constant K ′ > 0. This last inequality then implies that
∣∣∣∣
∫

Y

b ∧ db

∣∣∣∣ ≤ K ′′r2.

Setting K12.21 := K ′′, the stated result follows from the fact that the Chern-Simons

functional is gauge invariant when b1(Y ) = 0 (cf. Kronheimer & Mrowka 2007,

Lemma 4.1.3). QED

Lemma 12.22: There exists a constant K12.22 > 0 such that

CSDλ,r

(
lim

t→±∞
(A,ψ)

)
≤ K12.22r

2.

Proof: Vid. Definition 3.24; cf. Lemma 12.20 and Lemma 12.21. QED

Lemma 12.23: There exist constants K12.23 > 0 and r12.23 > 0 such that, for

r > r12.23 and any t ∈ R,

∫

[t,t+1]×Y
∗̂
(∣∣∣∣

∂

∂t
A

∣∣∣∣
2

+ |FA|2
)
≤ K12.23r

2.

Proof: Combining Lemma 12.19 with Lemma 12.22 and ignoring a few positive

terms on the left hand side, one asserts that

∫

R×Y
∗̂
(∣∣∣∣

∂

∂t
A

∣∣∣∣
2

+

∣∣∣∣
1

2
∗(FA − FAλ

) + rτ(ψ)− ir

2
λ

∣∣∣∣
2
)
≤ K12.22r

2.

Meanwhile, using the triangle inequality, the arithmetic-geometric mean inequality

and Lemma 12.5, one finds that there exists a constant K > 0 such that, for r >

r12.23 := 1, ∣∣∣∣
1

2
∗(FA − FAλ

) + rτ(ψ)− ir

2
λ

∣∣∣∣
2

≥ 1

8
|FA|2 −Kr2.

The result then follows by combining these two inequalities and setting K12.23 :=

8max{K,K12.22}. QED
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Lemma 12.24: There exist constants K12.24 > 0 and r12.24 > 0 such that, for

r > r12.24,

|F−
Â
| ≤ K12.24r.

Proof: Let p be any point of R × Y . Recall the function q from Lemma 12.18.

The goal shall be to establish a bound on q and thence derive the bound on |F−
Â
|.

Assume firstly that q(p) ≥ 0. Use Gp to denote the Green’s function with pole at

p of the operator d̂∗d̂ acting on Ω0(R × Y ). Use distp : R × Y → R to denote the

function whose value at x is the geodesic distance between p and x. Note that there

exists some constant C0 > 0, independent of p, such that,

0 ≤ Gp ≤ C0dist
−2
p ,

∣∣∣d̂Gp

∣∣∣ ≤ C0dist
−3
p .

Let ρ > 0 be some number smaller than the injectivity radius of Y and small enough

so that q be positive on a ball of radius ρ centred at p. Let χ : [0,∞)→ [0, 1] denote

some smooth monotonic function satisfying χ|[0,ρ/4] = 1 and χ|[ρ/2,∞) = 0; one must

make sure to use the same function χ for all p. Then, set χp : R × Y → R to be

χp := χ ◦ distp. Let t0 ∈ R be such that the t coordinate of the point p be t0 + 1/2.

Use I to denote the interval [t0, t0 + 1]. Now, multiply both sides of the inequality

asserted in Lemma 12.18 by χpGp and integrate to find that

1

2

∫

I×Y
∗̂χpGpd̂

∗d̂q ≤ K12.17

∫

I×Y
∗̂χpGp|F−

Â
| −
∫

I×Y
∗̂χpGp

r

4
|ψ|2 q. (∗)

Consider firstly the left-hand side of this inequality. Integration by parts and two

applications of the Cauchy-Schwarz inequality yield

1

2
q(p) +

1

2

∫

I×Y
∗̂
〈
d̂χp, d̂Gp

〉
q +

1

2

∫

I×Y
∗̂d̂∗d̂χpGpq.

≥1
2
q(p)− C1

(∫

I×Y
∗̂q2
) 1

2

,

where C1 > 0 is a constant dependent only on C0, ρ and the L2
2 norm of χp. Since χ

was chosen to be the same for all p, the constant C1 may also be chosen independently

of p. Next, consider the first term on the right-hand side of (∗). By applying the

Cauchy-Schwarz inequality and Lemma 12.23, one finds

K12.17

∫

I×Y
∗̂χpGp|F−

Â
| ≤ K12.17C2

(∫

I×Y
|F−
Â
|2
) 1

2

≤ rK12.17C2

√
K12.23,

where C2 > 0 is again a constant dependent only on C0, ρ and ‖χp‖L2
2
. Now, consider

the second term on the right-hand side of (∗). Note that, by the assumptions made
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above, one has q > 0 everywhere on the support of χp; hence,

−
∫

I×Y
∗̂χpGp

r

4
|ψ|2 q ≤ 0.

At last, notice that by virtue of Lemma 12.23 and Lemma 12.5, one can bound the

L2 norm of q as (∫

I×Y
∗̂q2
) 1

2

≤ rC4,

for some constant C4 depending only on K12.23 and K12.5. Incorporating all that

has been said so far into (∗) reveals

q(p) ≤ rC5.

where C5 := max{C1, K12.17C2

√
K12.23, C4}. Recall that, initially, it was assumed

that q(p) ≥ 0; however, in the event that q(p) ≤ 0, one of course also has q(p) ≤ rC5.

Therefore, by expanding the definition of q (vid. Lemma 12.18), one finds

|F−
Â
| ≤ rC5 +K12.18 + rK12.4(1− |ψ|2).

The result is herefore proven if one apply Lemma 12.5 and set the constants to be

r12.24 := 1, K12.24 := max{C5, K12.4, K12.18}.

QED

Lemma 12.25: There is a constant K12.25 > 0 such that
∣∣∣∣
∂

∂t
A

∣∣∣∣ + |FA| ≤ K12.25r.

Proof: Recall that ∣∣∣∣
∂

∂t
A

∣∣∣∣
2

+ |FA|2 = |F+

Â
|2 + |F−

Â
|2.

Hence, the result follows directly by combining Lemma 12.12 and Lemma 12.24.

QED

Henceforth, add the assumption that

lim
t→+∞

γ = Cλ.

The goal shall be bound |α|2 away from zero in the same manner as is the case for

Cλ but for the entirety of the trajectory.

For that end, start by introducing the symplectic form ω := e2t(dt ∧ λ + ∗λ),
on R × Y and fixing some almost complex structure J compatible with ω. Also

fix a non-decreasing C∞ function σ : [0,∞) → [0, 1] satisfying σ|[0,1/2] = 0 and

σ|[1,∞) = 1. Use σ′ to denote its derivative. Assume further that σ′ : R→ [0, 3].

121



Definition 12.26: Given δ > 0, denote σδ : R× Y → [0, 1] the function

(t, y) 7→ σ
(
δ−1

(
1− |α|2

))
.

Definition 12.27: Given δ > 0, denote σ′δ : R× Y → [0, 1] the function

(t, y) 7→ σ′
(
δ−1

(
1− |α|2

))
.

In what follows, recall the covariant derivative, which was used earlier,

∇′
A :=

1

2
(1 + i cℓ(λ))∇A

defined on the summand Λ0,0T∗Y of the spinor bundle Sλ This induces a covariant

derivative on the trivial complex line bundle over R× Y defined by

∇′
Â
:= dt⊗ ∂

∂t
+∇′

A.

This covariant derivative can then be extended to a covariant exterior derivative on

complex differential forms, which shall be denoted

d̂Â : Ωk(R× Y )⊗C→ Ωk+1(R× Y )⊗C.

Definition 12.28: Given δ > 0, define a 2-form ℘δ ∈ Ω2(R× Y ) by the formula

℘δ :=
1

δ
σ′δ · d̂Âα ∧ d̂Âα+ σδ · FÂ.

Remark 12.29: Notice that the form ℘δ is closed.

Lemma 12.30: For all δ ∈ (0, δ2.24), there exists sδ ∈ R, such that, the 2-form ℘δ

vanishes identically on [sδ,∞)× Y ⊂ R× Y .

Proof: By Theorem 2.24 and the fact that limt→∞ γ = Cλ in the C0 topology, it

follows that there exists sδ ∈ R such that, for t > sδ, |ψ(t)| ≥ 1 − δ2.24. Since the

function σ is supported on [1/2,∞), the claimed result follows. QED

Lemma 12.31: For r > r2.24 and δ ∈ (0, δ2.24), ω∧℘δ is integrable over all of R×Y .

Proof: Notice that there is some K > 0, which may well depend on r, A or ψ here,

such that, for sufficiently negative s < 0, |ω∧℘δ| restricted to (−∞, s) is no greater

than Kes. This is a consequence of the fact that the limit limt→−∞ γ(t) is well

defined in the Sobolev norm L2
5 and, therefore, also in C2 by Sobolev embedding.

Together with Lemma 12.30, this implies integrability. QED
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Lemma 12.32: Provided r > r2.24 and δ ∈ (0, δ2.24), it follows
∫
R×Y ω ∧ ℘δ = 0.

Proof: Note that ω is exact and ℘δ is closed and integrate by parts. QED

Introduce the notation

∂Â : Ωi,j(R× Y )→ Ωi+1,j(R× Y ), ∂Â : Ωi,j(R× Y ),→ Ωi,j+1(R× Y ),

for the covariant Cauchy-Riemann operators associated to the connexion Â and the

almost complex structure J . It can be verified that, for η ∈ Ω0,0(R× Y ), they take

the form

∂Âη :=
1

2

(
d̂Âη + ie−2t∗̂(ω ∧ d̂Âη)

)
, ∂Â η :=

1

2

(
d̂Âη − ie−2t∗̂(ω ∧ d̂Âη)

)
.

Lemma 12.33: Vanishing of the integral in Lemma 12.32 amounts to saying

∫

R×Y
∗̂e2t

(
δ−1σ′δ

(
|∂Âα|2 − | ∂Â α|2

)
+ rσδ

(
1− |α|2 + |β|2

))
= 0.

Proof: Can be checked directly by expanding with the expressions given above

for ∂Â and ∂Â acting on 0-forms and by using the four-dimensional Seiberg-Witten

curvature equation (Proposition 12.11). QED

Lemma 12.34: (cf. Taubes 2009, Lemma 5.13) For a given δ ∈ (0, δ2.24), there exist

r12.34 > 0 and K12.34 > 0 such that, for all r > r12.34,

| ∂Â α| ≤ K12.34.

Proof: It is well known (cf. Nicolaescu 2000, §1.4.3), that, in terms of the notation

above, the Dirac equation,

D+

Â
ψ = 0,

takes the more familiar form

∂Â α+ ∂
∗
Â β = f1(ψ),

where f1 is some bundle homomorphism independent of r. Hence, a bound on ∂Â α

of the variety required follows from a bound on ∂
∂t
β, ∇Aβ and |ψ|. The bound on

|ψ| was already provided by Lemma 12.5. The rest of the proof shall concern itself

with the other two bounds.

Let r12.34 be large enough so that the injectivity radius of Y be strictly larger

than (r12.34)
−1/2 and so that the bundle Λ0,2T∗(R × Y ) be trivial when restricted
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to any ball of radius (r12.34)
−1/2 in R × Y . Then, let r > r12.34, and fix a point

p ∈ R × Y . Introduce φp,r to denote the Gaussian chart centred at p rescaled so

that the ball of radius 1 of R4 be mapped to the geodesic ball of radius r−1/2.

Now, let β̃ : B(R4, 1)→ C denote the pullback of β via this chart seen as a complex

valued function by trivialising the bundle Λ0,2T∗(R×Y ) on this chart via the parallel

transport map of the connexion Â. One can check that Lemma 12.2 implies a certain

second order equation for β̃ of the form

∆β̃ +
4∑

j=1

fj+1
∂

∂xj
β̃ + f6β̃ + r−1f7 = 0,

where f2, . . . , f7 are complex valued functions with norms bounded above by some

constant K1 > 0 independent of r and the point p. Recall Lemma 12.10; it implies

that, for some constant K2 ≥ K1, also independent of r and p, that |β| ≤ Kr−1/2.

Standard elliptic theory then provides a bound of the form
∣∣∣∣
∂

∂x j
β̃(0)

∣∣∣∣ ≤ K3r
−1/2

where K3 ≥ K2 is some potentially larger constant independent of r and p. Since

the chart at hand was scaled so that the ball of radius 1 be mapped to the geodesic

ball of radius r−1/2, and Λ0,2T∗(R× Y ) was trivialized by the parallel transport of

the connexion Â, whose curvature satisfies the bound of Lemma 12.25, if the reader

care to check, it follows that, for some constant K4 ≥ K3 independent of r and p,
∣∣∣∣
∂

∂t
β

∣∣∣∣+ |∇Aβ| ≤ K4.

QED

The next few results needed shall require mention of a variant of the vortex

equations on R4 = C2. These are defined next. In what follows, use ω0 to denote

the standard symplectic form on R4.

Definition 12.35: Consider a pair (a0, α0), where a0 ∈ iΩ1(R4) and α0 ∈ Ω0,0(R4).

Then, (a0, α0) satisfy the vortex equations with bound K > 0 when

∂ α0 = 0, |α0| ≤ 1, d+a =
1

2
(1− |α0|2)ω0, |d−a| ≤ K.

Lemma 12.36: (Taubes 2009, Lemma 5.14) For any K > 0 and δ ∈ (0, 1), there

exist R12.36 > 2 and K12.36 > 1 such that, for any vortex (a0, α0) with bound K, if

one use V to denote the volume of the set

{
x ∈ B(R4, R12.36) (1− |α0(x)|2) > δ

}

124



and V ′ denote the volume of the set

{
x ∈ B(R4, 1

2
R12.36) δ > (1− |α0|2) ≥ 1

2
δ
}
,

then it follows that V ′ ≤ K12.36V .

Remark 12.37: The proof shall be omitted, because, unlike other results above,

this one is exactly as stated in Taubes (2009) and its proof therein is self contained.

Remark 12.38: The ability to apply this lemma in the present context comes from

the following.

Lemma 12.39: There exists K12.39 > 0 such that, for any R ≥ 1 and ε > 0, there

exists r12.39 > 0 such that, for all p ∈ R × Y and r > r12.39, it follows that there

exists a vortex (a0, α0) bounded by K12.39 and a gauge transformation u such that

‖(a0, (α0, 0))− (φp,r,R)
∗u · (a, (α, β))‖

C0(D(R4,R)) < ε,

where φp,r,R denotes the rescaled Gaussian chart centred at p so that the geodesic

ball of radius Rr−1/2 be mapped to the ball of radius R of R4.

Proof: According to Taubes (2009), the proof is an adaptation of a similar statement

made in Taubes (1996). The idea is as follows. Assume the contrary. Then, for any

K12.39 > 0, there exists R ≥ 1, ε > 0, an increasing unbounded sequence {rn},
a sequence of points pn ∈ R × Y and a sequence of Seiberg-Witten trajectories

(Aλ + an, (αn, βn)) with parameter r = rn such that, if one define (ãn, (α̃n, β̃n)) to

mean the pullback of (an, (αn, βn)) via the chart φpn,rn,R seen as functions of the ball

of radius R ofR4, then (ãn, (α̃n, β̃n)) do not lie in a ball of radius ε around any vortex

bounded by K12.39 in the C0(D(R4, R)) norm. Now, the Seiberg-Witten equations

imply that, after redefining (ãn, (α̃n, β̃n)) by applying some gauge transformation

un, these functions obey elliptic equations of the form

d+ãn = f1(ψ̃n, ψ̃n) + f2, d∗ãn = 0, ∂ α̃n + ∂
∗
β̃n = f3(ãn, ψ̃n),

for certain polynomial functions f1, f2 and f3. On the other hand, by using Lemma

12.5, Lemma 12.10, Lemma 12.25 and standard elliptic theory arguments, one can

conclude that there must be a subsequence uniformly convergent on the disk of

radius R. Let the limit of this convergent subsequence be denoted (ã∞, (α̃∞, β̃∞)).

The point now is that, by Lemma 12.10, one can see further that β∞ = 0. Hence, if

one care to check, it follows, by examining carefully the terms f1, f2 and f3, that the
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equations above reduce to the vortex equations in the limit n→∞. Consequently,

(a∞, α∞) satisfies the vortex equations. But then note that, if K12.39 be large

enough relative to the constant K12.25 provided by Lemma 12.25, (a∞, α∞) is a

vortex bounded by K12.39, which is a contradiction. QED

Set the following notation

Ωδ :=

∫

R×Y
∗̂e2tσδ, Ω′

δ :=

∫

R×Y
∗̂e2tσ′δ.

Lemma 12.40: (cf. Taubes 2009, Lemma 5.17) Given δ ∈ (0, δ2.24), there exist

r12.40 > 0 and K12.40 > 0 such that, for all r > r12.40,

Ω′
δ ≤ K12.40Ωδ.

Proof: The analogous statement in Taubes (2009) lacks a proof as it is claimed to

be similar to a previous lemma; therefore, the author shall furnish the details here.

Firstly, notice that the function σδ is non-zero only at points where (1 − |α|2) ≥ δ;

meanwhile, σ′δ is non-zero only at points where δ ≥ (1 − |α|2) ≥ 1
2δ. Now, If g be

the product metric of R×Y consider instead the metric e2tg. Since the set of points

where (1− |α|2) ≥ δ has t coordinate bounded above, the volume of this set in the

metric e2tg is, in fact, finite. Hence, note that, in order to prove the claimed result,

it suffices to bound the volume of points where δ ≥ (1−|α|2) ≥ 1
2
δ by some constant

times the volume of the set of points where (1− |α|2) ≥ δ; both volumes being with

respect to the metric e2tg. For the rest of this proof, the metric at use shall be e2tg

whenever the author talk of volumes or geodesy. For brevity, use R := R12.36 to

denote the constant from Lemma 12.36. Consider a set Λ of disjoint geodesic balls

in Y centred at points p where δ ≥ (1−|α(p)|2) ≥ 1
2δ and all having radius 1

4Rr
−1/2.

Due to compactness of Y , one can also assume Λ to be maximal with respect to

inclusion. For each ball B ∈ Λ, let B′′ ⊃ B′ ⊃ B denote the concentric geodesic

balls having radii Rr−1/2 and 1
2Rr

−1/2 respectively. Now, suppose that some point

p ∈ R × Y at which δ ≥ (1 − |α(p)|2) ≥ 1
2
δ not be in the set

⋃
B∈ΛB

′. Then,

if r be sufficiently large compared to R, say larger than some r12.40 > 0, the ball

of radius 1
4Rr

−1/2 centred at p would not intersect any of the balls in the set Λ;

so, if this were the case, Λ could not be maximal. Therefore,
⋃
B∈ΛB

′ covers the

set of points where δ ≥ (1 − |α|2) ≥ 1
2δ. Moreover, perhaps after an increase to

r12.40 > 0, Riemannian geometry provides an upper bound for the maximal number

n such that there be a set of balls {Bi} ⊂ Λ satisfying B′′
1 ∩ · · · ∩ B′′

n 6= ∅; this
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upper bound is independent of δ and r except that one must ensure r > r12.40. The

consequence of all of this is that it suffices to provide the desired sort of bound for

each of the balls B. For that end, given a ball B ∈ Λ, denote by VB the volume of

the subset of B′′ where δ ≥ (1−|α(p)|2) ≥ 1
2
δ; likewise, denote by V ′

B the volume of

the subset of B′ where (1−|α|2) ≥ δ. Now, apply Lemma 12.36 in combination with

Lemma 12.39 in order to obtain a constant K12.40 > 0 independent of B, satisfying

V ′
B ≤ K12.40VB. QED

Lemma 12.41: Given δ ∈ (0, δ2.24), there exists r12.41 such that for all r > r12.41,

Ωδ = 0.

Proof: To start, let r12.41 = max{r12.40, r12.34}. Recall that Lemma 12.33 asserted

that ∫

R×Y
∗̂e2t

(
δ−1σ′δ

(
|∂Âα|2 − | ∂Â α|2

)
+ rσδ

(
1− |α|2 + |β|2

))
= 0.

Neglecting some positive terms yields the inequality
∫

R×Y
∗̂e2t

(
−δ−1σ′δ| ∂Â α|2 + rσδ(1− |α|2)

)
≤ 0.

Focusing on the second term of the integrand, note that, at a point where σδ 6= 0,

it is necessarily the case that (1− |α|2) ≥ δ; hence,
∫

R×Y
∗̂e2t

(
−δ−1σ′δ| ∂Â α|2 + rσδδ

)
≤ 0.

By applying Lemma 12.40 and Lemma 12.34, one finds

(−K12.40K
2
12.34δ

−1 + rδ)Ωδ ≤ 0.

But Ωδ ≥ 0. Hence, perhaps after increasing r12.41, it follows that, for r > r12.41,

Ωδ = 0. QED

Theorem 12.42: Given δ ∈ (0, δ2.24), for all r > r12.41, it follows that, pointwise

on all of R× Y ,

1− |α|2 ≤ δ.

Proof: Ωδ is the integral of e2tσδ, which is non-negative and strictly positive wher-

ever (1− |α|2) > δ. QED

Corollary 12.43: C = limt→−∞ γ is gauge equivalent to Cλ.

Proof: C is a solution to the Seiberg-Witten equations on Y . Its Λ0,0ξ∗ component

is limt→−∞ α. Therefore, it also satisfies the bound in Theorem 12.42. Theorem

2.24 then guarantees that C must be gauge equivalent to Cλ. QED
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Corollary 12.44: γ is the constant trajectory at Cλ.

Proof: Assume the contrary. Because the Seiberg-Witten vector field X λ,r is minus

the gradient of the functional CSDλ,r, the value of CSDλ,r never increases along

the trajectory γ. Moreover, the contact configuration Cλ is a non-degenerate fixed

point of the downward gradient flow of CSDλ,r by Theorem 11.22, which means

that the value of CSDλ,r certainly decreases along γ for sufficiently large time as

one approaches Cλ. But since both endpoints of γ are gauge equivalent and b1 = 0,

the values of CSDλ,r are the same for gauge equivalent configurations. This cannot

be. QED

Remark 12.45: Hereby, the author concludes the proof of Theorem 2.25.
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