UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Signal Design and Machine Learning Assisted Nonlinearity Compensation for Coherent Optical Fibre Communication Links

Dzieciol, Hubert; (2023) Signal Design and Machine Learning Assisted Nonlinearity Compensation for Coherent Optical Fibre Communication Links. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of PhD_Thesis_final.pdf]
Preview
Text
PhD_Thesis_final.pdf - Accepted Version

Download (9MB) | Preview

Abstract

This thesis investigates low-complexity digital signal processing (DSP) for signal design and nonlinearity compensation strategies to improve the performance of single-mode optical fibre links over different distance scales. The performance of a novel ML-assisted inverse regular perturbation technique that mitigates fibre nonlinearities was investigated numerically with a dual-polarization 64 quadrature amplitude modulation (QAM) link over 800 km distance. The model outperformed the heuristically-optimised digital backpropagation approach with <5 steps per span and mitigated the gain expansion issue, which limits the accuracy of an untrained model when the balance between the nonlinear and linear components becomes considerable. For short reach links, the phase noise due to low-cost, high-linewidth lasers is a more significant channel impairment. A novel constellation optimisation algorithm was, therefore, proposed to design modulation formats that are robust against both additive white Gaussian noise (AWGN) and the residual laser phase noise (i.e., after carrier phase estimation). Subsequently, these constellations were numerically validated in the context of a 400ZR standard system, and achieved up to 1.2 dB gains in comparison with the modulation formats which were optimised only for the AWGN channel. The thesis concludes by examining a joint strategy to modulate and demodulate signals in a partially-coherent AWGN (PCAWGN) channel. With a low-complexity PCAWGN demapper, 8- to 64-ary modulation formats were designed and validated through numerical simulations. The bit-wise achievable information rates (AIR) and post forward error correction (FEC) bit error rates (BER) of the designed constellations were numerically validated with: the theoretically optimum, Euclidean (conventional), and low-complexity PCAWGN demappers. The resulting constellations demonstrated post-FEC BER shaping gains of up to 2.59 dB and 2.19 dB versus uniform 64 QAM and 64-ary constellations shaped for the purely AWGN channel model, respectively. The described geometric shaping strategies can be used to either relax linewidth and/or carrier phase estimator requirements, or to increase signal-to-noise ratio (SNR) tolerance of a system in the presence of residual phase noise.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Signal Design and Machine Learning Assisted Nonlinearity Compensation for Coherent Optical Fibre Communication Links
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2023. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10165513
Downloads since deposit
150Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item