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Abstract

Our goal is to forecast the near future given a set of re-

cent observations. We think this ability to forecast, i.e., to

anticipate, is integral for the success of autonomous agents

which need not only passively analyze an observation but

also must react to it in real-time. Importantly, accurate

forecasting hinges upon the chosen scene decomposition.

We think that superior forecasting can be achieved by de-

composing a dynamic scene into individual ‘things’ and

background ‘stuff’. Background ‘stuff’ largely moves be-

cause of camera motion, while foreground ‘things’ move

because of both camera and individual object motion. Fol-

lowing this decomposition, we introduce panoptic segmen-

tation forecasting. Panoptic segmentation forecasting opens

up a middle-ground between existing extremes, which either

forecast instance trajectories or predict the appearance of

future image frames. To address this task we develop a two-

component model: one component learns the dynamics of

the background stuff by anticipating odometry, the other one

anticipates the dynamics of detected things. We establish a

leaderboard for this novel task, and validate a state-of-the-

art model that outperforms available baselines.

1. Introduction

An intelligent agent must anticipate the outcome of its

movement in order to navigate safely [14, 41]. Said dif-

ferently, successful autonomous agents need to understand

the dynamics of their observations and forecast likely future

scenarios in order to successfully operate in an evolving en-

vironment. However, contemporary work in computer vi-

sion largely analyzes observations, i.e., it studies the appar-

ent. For instance, classical semantic segmentation [8, 42]

aims to delineate the observed outline of objects. While un-

derstanding an observation is a first seminal step, it is only

part of our job. Analyzing the currently observed frame

means information is out of date by the time we know the

outcome, regardless of the processing time. It is even more

stale by the time an autonomous agent can perform an ac-

tion. Successful agents therefore need to anticipate the fu-

ture ‘state’ of the observed scene. An important question,
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Figure 1. We study the novel task of ‘panoptic segmentation fore-

casting’ and propose a state-of-the-art method that models the

motion of individual ‘thing’ instances separately while modeling

‘stuff’ as purely a function of estimated camera motion.

however, remains open: what is a suitable ‘state’ represen-

tation for the future of an observed scene?

Panoptic segmentation recently emerged as a rich repre-

sentation of a scene. Panoptic segmentation classifies each

pixel as either belonging to a foreground instance, the union

of which is referred to as ‘things,’ or as a background class,

referred to as ‘stuff’ [23, 5]. This decomposition is useful

for forecasting because we expect different dynamics for

each component: ‘stuff’ moves because of the observer’s

motion, while ‘things’ move because of both observer and

object motion. Use of panoptic segmentation is further un-

derlined by the fact that it separates different instances of

objects, each of which we expect to move individually.

Consequently, we propose to study the novel task of

‘panoptic segmentation forecasting’: given a set of ob-

served frames, the goal is to forecast the panoptic segmen-

tation for a set of unobserved frames (Fig. 1). We also pro-

pose a first approach to forecasting future panoptic segmen-

tations. In contrast to typical semantic forecasting [44, 52],
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we model the motion of individual object instances and the

background separately. This makes instance information

persistent during forecasting, and allows us to understand

the motion of each moving object.

To the best of our knowledge, we are the first to fore-

cast panoptic segmentations for future, unseen frames in

an image sequence. We establish a leaderboard for this

task on the challenging Cityscapes dataset [12] and in-

clude a set of baseline algorithms. Our method for fu-

ture panoptic segmentation relies on a number of innova-

tions (Sec. 3.1), that we ablate to prove their value. Our

method also results in state-of-the-art on previously es-

tablished tasks of future semantic and instance segmen-

tation. Code implementing models and experiments can

be found at https://github.com/nianticlabs/

panoptic-forecasting.

2. Related Work

We briefly review work which analyzes a single, given

frame. We then discuss work which anticipates info about

future, unseen frames. To reduce ambiguity, we avoid use of

the word ‘predict,’ instead using analyze (looking at a cur-

rent image) or anticipate (hypothesizing for a future frame).

2.1. Methods That Analyze

Semantic segmentation: Semantic segmentation has re-

ceived a considerable amount of attention over decades.

The task requires methods to delineate the outline of ob-

jects in a given image, either per instance or per object class

[56, 54, 57]. Recently, deep-net-based methods report state-

of-the-art results [42, 1, 40]. Many architecture improve-

ments like dilated convolutions [72], skip-connections [51],

etc., have been developed for semantic segmentation before

they found use in other tasks. Our work differs as we care

about panoptic segmentation, and we aim to anticipate the

segmentation of future, unseen frames.

Panoptic segmentation: Recently, panoptic segmenta-

tion [32, 29] has emerged as a generalization of both se-

mantic and instance segmentation. It requires methods to

give both a per-pixel semantic segmentation of an input im-

age while also grouping pixels corresponding to each object

instance. This ‘things’ vs. ‘stuff’ view of the world [23]

comes with its own set of metrics. Performing both tasks

jointly has the benefit of reducing computation [32, 68] and

enables both tasks to help each other [35, 37]. This is sim-

ilar in spirit to multi-task learning [33, 55]. Other works

have relaxed the high labeling demands of panoptic seg-

mentation [36] or improved architectures [49, 9]. Panoptic

segmentation has been extended to videos [30], but, again

in contrast to our work only analyzing frames available at

test time without anticipating future results.

2.2. Methods That Anticipate

Anticipating, or synonymously ‘forecasting,’ has re-

ceived a considerable amount of attention in different com-

munities [61]. Below, we briefly discuss work on forecast-

ing non-semantic information such as object location before

discussing forecasting of semantics and instances.

Forecasting of non-semantic targets: The most common

forecasting techniques operate on trajectories. They track

and anticipate the future position of individual objects, ei-

ther in 2D or 3D [15, 46, 16, 71]. For instance, Hsieh et

al. [26] disentangle position and pose of multiple moving

objects – but only on synthetic data. Like ours, Kosiorek et

al. [34] track instances to forecast their future, but only in

limited experimental scenarios.

Several methods forecast future RGB frames [38, 17,

70]. Due to the high-dimensional space of the forecasts

and due to ambiguity, results can be blurry, despite sig-

nificant recent advances. Uncertainty over future frames

can be modelled, e.g., using latent variables [63, 70]. Re-

lated to our approach, Wu et al. [66] treat foreground and

background separately for RGB forecasting, but they do not

model egomotion. All these methods differ from ours in

output and architecture.

Forecasting semantics: Recently, various methods have

been proposed to estimate semantics for future, unobserved

frames. Luc et al. [44] use a conv net to estimate the future

semantics given as input the current RGB and semantics,

while Nabavi et al. [48] use recurrent models with semantic

maps as input. Chiu et al. [10] further use a teacher net to

provide the supervision signal during training, while Šarić

et al. [52] use learnable deformations to help forecast future

semantics from input RGB frames. However, these methods

do not explicitly consider dynamics of the scene.

While Jin et al. [28] jointly predict flow and future se-

mantics, some works explicitly warp deep features for fu-

ture semantic segmentation [53]. Similarly, Terwilliger et

al. [59] use an LSTM to estimate a flow field to warp the

semantic output from an input frame. However, by warping

in output space – rather than feature space – their model is

limited in its ability to reason about occlusions and depth.

While flow improves the modeling of the dynamic world,

these methods only consider the dynamics at the pixel-level.

Instead, we model dynamics at the object level.

Recent methods [50, 62, 69, 25] estimate future frames

by reasoning about shape, egomotion, and foreground mo-

tion separately. However, none of these methods reason ex-

plicitly about individual instances, while our method yields

a full future panoptic segmentation forecast.

Forecasting future instances: Recent approaches for fore-

casting instance segmentation use a conv net to regress the

deep features corresponding to the future instance segmen-

tation [43] or LSTMs [58]. Couprie et al. [13] use a conv

net to forecast future instance contours together with an
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'Stuff' Forecasting
(3.2.2)

Odometry Anticipation
(3.2.4)

Aggregation (3.2.3)'Things' Forecasting (3.2.1)

Figure 2. Method overview. Given input frames I1,...,T , our method anticipates the panoptic segmentation ST+F of unseen frame IT+F .

Our method decomposes the scene into ‘things’ and ‘stuff’ forecasting. ‘Things’ are found via instance segmentation/tracking on the input

frames, after which we forecast the segmentation mask and depth of each individual instance (Sec. 3.1.1). Next, ‘Stuff’ is modeled by

warping input frame semantics to frame T + F using a 3d rigid-body transformation and then passing the result through a refinement

model (Sec. 3.1.2). Finally, we aggregate the forecasts from ‘things’ and ‘stuff’ into the final panoptic segmentation ST+F (Sec. 3.1.3).

Various components require future odometry ôT+1,...,T+F , which we anticipate using input odometry o1,...,T (Sec. 3.1.4).

instance-wise semantic segmentation to estimate future in-

stance segmentation. Their method only estimates fore-

ground and not background semantics. Several works have

focused on anticipating future pose and location of specific

object types, often people [45, 20]. Ye et al. [70] forecast fu-

ture RGB frames by modeling each foreground object sepa-

rately. Unlike these works, we anticipate both instance seg-

mentation masks for foreground objects and background se-

mantics for future time steps.

3. Panoptic Segmentation Forecasting

We introduce Panoptic Segmentation Forecasting, a new

task which requires to anticipate the panoptic segmenta-

tion for a future, unobserved scene. Different from clas-

sical panoptic segmentation which analyzes an observation,

panoptic segmentation forecasting asks to anticipate what

the panoptic segmentation looks like at a later time.

Formally, given a series of T RGB images I1, . . . , IT of

height H and width W , the task is to anticipate the panoptic

segmentation ST+F that corresponds to an unobserved fu-

ture frame IT+F at a fixed number of timesteps F from the

last observation recorded at time T . Each pixel in ST+F is

assigned a class c ∈ {1, . . . , C} and an instance ID.

3.1. Method

Anticipating the state of a future unobserved scene

requires to understand the dynamics of its components.

‘Things’ like cars, pedestrians, etc. often traverse the world

‘on their own.’ Meanwhile, stationary ‘stuff’ changes po-

sition in the image due to movement of the observer cam-

era. Because of this distinction, we expect the dynamics of

‘things’ and ‘stuff’ to differ. Therefore, we develop a model

comprised of two components, one for the dynamics of de-

tected ‘things’ and one for the rest of the ‘stuff.’

In addition to RGB images, we assume access to cam-

era poses o1, . . . , oT and depth maps d1, . . . , dT for input

frames. Camera poses can come from odometry sensors or

estimates of off-the-shelf visual SLAM methods [6]. We

obtained our depth maps from input stereo pairs [21] (these

could also be estimated from single frames [64]).

An overview of our panoptic segmentation forecasting is

shown in Fig. 2. The method consists of four stages:

1) ‘Things’ forecasting (Sec. 3.1.1): For each instance i,

we extract foreground instance tracks li from the observed

input images I1, . . . , IT . We use these tracks in our model

to anticipate a segmentation mask m̂i
T+F and depth d̂iT+F

for the unobserved future frame at time T + F .

2) ‘Stuff’ forecasting (Sec. 3.1.2): We predict the change

in the background scene as a function of the anticipated

camera motion, producing a background semantic output

m̂B
T+F for the unobserved future frame IT+F .

3) Aggregation (Sec. 3.1.3): We aggregate foreground

‘things’ instance forecasts m̂i
T+F and background scene

forecast m̂B
T+F , producing the final panoptic segmentation

output ST+F for future frame IT+F .

4) Odometry anticipation (Sec. 3.1.4): To better handle

situations where we do not know future odometry, we train

a model to forecast odometry from the input motion history.

3.1.1 ‘Things’ forecasting: The foreground prediction

model, sketched in Fig. 3, first locates the instance locations

li within the input sequence. These tracks are each then in-

dependently processed by an encoder which captures their

motion and appearance history. Encoder outputs are then

used to initialize the decoder, which predicts the appearance

and location of instances for future frames, including depth

d̂iT+F . These are processed using a mask prediction model
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Figure 3. The ‘Things’ forecasting model. This produces instance masks m̂i
T+F for each instance i at target frame T + F . These masks

are obtained from input images I1, . . . , IT via the following procedure: images are used to produce bounding box feature x
i
t and mask

features r
i
t using MaskR-CNN and DeepSort (left). These features are then input into an encoder to capture the instance motion history

(middle). Encoder outputs are used to initialize a decoder, which predicts the features x̂
i
T+F and r̂

i
T+F for target frame T + F (right).

These features are passed through a mask prediction head to produce the final output m̂i
T+F . Here, T = 3 and T + F = 6.

to produce the final instance mask m̂i
T+F .

The output of the foreground prediction model is a set of

estimated binary segmentation masks m̂i
T+F ∈ {0, 1}H×W

representing the per-pixel location for every detected in-

stance i at frame T + F . Formally we obtain the mask via

m̃i
T+F = MaskOut

(
r̂
i
T+F

)
, (1)

m̂i
T+F = Round

(
Resize

(
m̃i

T+F , x̂
i
T+F

))
. (2)

Here, in a first step, MaskOut uses a small convolutional

network (with the same architecture as the mask decoder

of [22]) to obtain fixed-size segmentation mask probabil-

ities m̃i
T+F ∈ [0, 1]28×28 from a mask feature tensor

r̂
i
T+F ∈ R

256×14×14. In a second step, Resize scales

this mask to the size of the predicted bounding box rep-

resented by the bounding box representation vector x̂
i
T+F

using bilinear interpolation while filling all remaining lo-

cations with 0. The bounding box information vector

x̂
i
T+F := [cx, cy, w, h, d,∆cx,∆cy,∆w,∆h,∆d] con-

tains object center coordinates, width, and height, which are

used in Resize, and also an estimate of the object’s distance

from the camera, and the changes of these quantities from

the previous frame, which will be useful later. The output

depth d̂iT+F is also obtained from this vector.

Decoder. To anticipate the bounding box information vec-

tor x̂
i
T+F and its appearance r̂

i
T+F , we use a decoder, as

shown on the right-hand-side of Fig. 3. It is comprised pri-

marily of two recurrent networks: a GRU [11] which mod-

els future bounding boxes and a ConvLSTM [67] which

models the future mask features. Intuitively, the GRU and

ConvLSTM update hidden states hi
b,t and hi

m,t, represent-

ing the current location and appearance of instance i, as a

function of the bounding box features x̂t−1 and mask fea-

tures r̂
i
t−1 from the previous time step. These states are

used to predict location and appearance features for the cur-

rent timestep, which are then autoregressively fed into the

model to forecast into the future; this process continues for

F steps until reaching the target time step T + F . More

formally,

hi
b,t = GRUdec([x̂t−1, ot, fmfeat(r̂

i
t−1)], h

i
b,t−1), (3)

x̂
i
t = x̂

i
t−1 + fbbox(h

i
b,t), (4)

hi
m,t = ConvLSTMdec([r̂

i
t−1, fbfeat(h

i
b,t)], h

i
m,t−1), (5)

r̂
i
t = fmask(h

i
m,t), (6)

for t ∈ {T+1, . . . , T+F}, where ot represents the odome-

try at time t, fbbox and fbfeat are multilayer perceptrons, and

fmask and fmfeat are 1× 1 convolutional layers.

Encoder. The decoder uses bounding box hidden state hi
b,T ,

appearance feature hidden state hi
m,T , and estimates of the

bounding box features x̂
i
T and mask appearance features r̂

i
T

for the most recently observed frame IT . We obtain these

quantities from an encoder which processes the motion and

appearance history of instance i. Provided with bounding

box features x
i
t, mask features r

i
t, and odometry ot for in-

put time steps t ∈ {1, . . . , T}, the encoder computes the

aforementioned quantities via

hi
b,t = GRUenc([x

i
t−1, ot−1, fmfeat(r

i
t−1)], h

i
b,t−1), (7)

hi
m,t = ConvLSTMenc([r

i
t−1, fbfeat(h

i
b,t)], h

i
m,t−1). (8)

Intuitively, the bounding box encoder is a GRU which pro-

cesses input bounding box features x
i
t, odometry ot, and

a transformation of mask features r
i
t to produce box state

representation hi
b,T . Additionally, the mask appearance en-

coder is a ConvLSTM which processes input mask features

r
i
t and the representation of the input bounding box features

hi
b,t produced by the bounding box encoder to obtain mask

state representation hi
m,T .

The estimated mask and bounding box feature estimates

for the final input time step T are computed by processing

the final encoder hidden states via

x̂
i
T = fenc,b(h

i
b,T ), and r̂

i
T = fenc,m(h

i
m,T ), (9)
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where fenc,b is a multilayer perceptron and fenc,m is a 1 × 1
convolution. These estimates are necessary because occlu-

sions can prevent access to location and appearance for time

step T for some object instances. In those cases, use of

Eq. (9) is able to fill the void.

Tracking. The encoder operates on estimated instance

tracks/locations li := {ci, (xi
t, r

i
t)|

T
t=1} which consist of ob-

ject class ci, bounding box features x
i
t and mask features

r
i
t for all instances in the input video sequence I1, . . . , IT .

Obtaining these involves two steps: 1) we run MaskR-

CNN [22] on every input frame to find the instances; 2) we

link instances across time using DeepSort [65]. For a given

tracked instance i, we use outputs provided by MaskR-

CNN, including predicted class ci, bounding boxes xi
t, and

mask features r
i
t extracted after the ROIAlign stage. The

distance d within x
i
t refers to the median value of the input

depth map dt at locations corresponding to the estimated

instance segmentation mask found by MaskR-CNN for in-

stance i in input frame t. A given object instance may not

be found in all input frames, either due to the presence of

occlusions or because it has entered or left the scene. In

these cases, we set the inputs to an all zeros tensor.

Note that it is possible for instances to be missed during

the detection phase. We largely observe this to happen for

static objects such as groups of bicycles parked on a side-

walk (for instance, the right side of our prediction in the

fourth row of Fig. 4). One solution is to consider these in-

stances as part of the background forecasting. However, in

our experiments, we found that treating all the missed in-

stances as background degraded our performance because

some instances are actually dynamic. Thus, in this paper,

we choose not to recover these instances.

Losses. To train the foreground model, we provide input

location and appearance features, predict their future states,

and regress against their pseudo-ground-truth future states.

More specifically, the losses are computed using the esti-

mated bounding boxes xi
t and instance features rit found by

running instance detection and tracking on future frames.

Note that losses are computed on intermediate predictions

as well, which permits to properly model motion and ap-

pearance of instances across all future time steps. Our fore-

ground model loss is a weighted sum of mean squared error

and L1 losses. See appendix Sec. E.1 for full details.

3.1.2 ‘Stuff’ forecasting: The background ‘stuff’ fore-

casting is tasked with predicting a semantic output m̂B
T+F ∈

{1, . . . , Cstuff}
H×W for every pixel in the target frame T +

F . We assume they correspond to the static part of the

scene, i.e., background changes in the images are caused

solely by camera motion.

We predict the background changes by back-projecting

3D points from the background pixels in frame t given depth

dt and camera intrinsics, transforming with ego-motion ot,

and projecting to frame T + F . This process establishes

pixel correspondences between input frame t and target

frame T + F . After running a pre-trained semantic seg-

mentation model on frame It to get semantic segmentation

mt, we use these correspondences to map the semantic la-

bels from mt, which correspond to “stuff” classes, to pixels

in frame T + F and maintain their projected depth at this

frame. We denote the projected semantic map as m̃B
t and

the projected depth as d̃Bt . However, due to 1) sparsity of

the point clouds, and 2) lack of information in regions which

were previously occluded by foreground objects or were not

previously in-frame, only a subset of pixels in m̃B
t are as-

signed a label. Therefore, we apply a refinement model that

takes in (m̃B
t , d̃

B
t ) from all input frames to complete the se-

mantic segmentation map m̂B
T+F .

Losses. To train the background refinement model, we use

a cross-entropy loss applied at pixels which do not corre-

spond to foreground objects in the target frame. This en-

courages the output of the refinement network to match the

ground truth semantic segmentation at each pixel. We for-

malize this in appendix Sec. E.2.

3.1.3 Aggregation: This step combines foreground in-

stance segmentations m̂i
T+F , classes ci, depths diT+F and

background semantic prediction m̂B
T+F into the final future

panoptic segmentation ST+F . For simplicity, we assume

that all foreground objects are located in front of all back-

ground components. We found this to be valid in most

cases. Thus, to combine the foreground and background,

we ‘paste’ foreground instances in order of decreasing pre-

dicted instance depth on top of the background. This ap-

proach is presented visually in Fig. 2, right, and described

in more detail by Alg. 1 in the appendix.

3.1.4 Egomotion estimation: A large contributor to the

observed motion of a scene is the movement of the record-

ing camera. Properly modeling this movement is critical

for accurate results. Here, we consider two scenarios: 1) an

‘active’ scenario where the model has access to the planned

motion of an autonomous agent; 2) a ‘passive’ scenario in

which the camera is controlled by an external agent and

hence the model is not provided with the future motion.

In the active scenario, we use the speed and yaw rate

of the camera from the dataset, which we process into the

forms required by the foreground and background models.

See appendix Sec. B for more details.

In the passive scenario, we use a GRU to predict the

future camera motion as a function of its past movement.

More formally and as sketched in Fig. 2(left),

ho,t+1=GRUcam (ôt, ho,t) and ôt+1=fcam(ho,t+1), (10)

where fcam is a multilayer perceptron. For input time steps,

i.e., t ∈ {1, . . . , T}, we use known camera motion ot as

model input. For future time steps, i.e., t ∈ {T+1, . . . , T+
F}, we use predicted camera motion ôt as input.
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Short term: ∆t = 3 Mid term: ∆t = 9

All Things Stuff All Things Stuff

PQ SQ RQ PQ SQ RQ PQ SQ RQ PQ SQ RQ PQ SQ RQ PQ SQ RQ

Panoptic Deeplab (Oracle)† 60.3 81.5 72.9 51.1 80.5 63.5 67.0 82.3 79.7 60.3 81.5 72.9 51.1 80.5 63.5 67.0 82.3 79.7

Panoptic Deeplab (Last seen frame) 32.7 71.3 42.7 22.1 68.4 30.8 40.4 73.3 51.4 22.4 68.5 30.4 10.7 65.1 16.0 31.0 71.0 40.9

Flow 41.4 73.4 53.4 30.6 70.6 42.0 49.3 75.4 61.8 25.9 69.5 34.6 13.4 67.1 19.3 35.0 71.3 45.7

Hybrid [59] (bg) and [43] (fg) 43.2 74.1 55.1 35.9 72.4 48.3 48.5 75.3 60.1 29.7 69.1 39.4 19.7 66.8 28.0 37.0 70.8 47.7

Ours 49.0 74.9 63.3 40.1 72.5 54.6 55.5 76.7 69.5 36.3 71.3 47.8 25.9 69.0 36.2 43.9 72.9 56.2

Table 1. Panoptic segmentation forecasting evaluated on the Cityscapes validation set. † has access to the RGB frame at ∆t. Higher

is better for all metrics.

Last Seen Image Oracle Flow Hybrid Ours

Figure 4. Mid-term panoptic segmentation forecasts on Cityscapes. Compared to Hybrid, our approach produces more well-defined

silhouettes for instance classes (see the cars in the 1st row or the pedestrians in the 4th row), and handles instances with large motion much

better Hybrid – the car in the 2nd row is not predicted to have moved sufficiently; the cyclist in the 3rd row is not predicted at all. Since

Flow does not model instance-level trajectory, the ‘things’ are no longer intact in the forecasts.

4. Evaluation

We establish the first results for the task of panoptic

segmentation forecasting by comparing our developed ap-

proach to several baselines. We also provide ablations to

demonstrate the importance of our modeling decisions. We

additionally evaluate on the tasks of semantic segmentation

forecasting and instance segmentation forecasting to com-

pare our method to prior work on established tasks.

Data: To evaluate panoptic segmentation forecasting, we

need a dataset which contains both semantic and instance

information as well as entire video sequences that lead up

to the annotated frames. Cityscapes [12] fulfills these re-

quirements and has been used in prior work for semantic

and instance forecasting. This dataset consists of 5000 se-

quences of 30 frames each, spanning approximately 1.8 sec-

onds. The data were recorded from a car driving in urban

scenarios, and semantic and instance annotations are pro-

vided for the 20th frame in each sequence. Following stan-

dard practice for prior work in forecasting segmentations

[44, 43, 59, 53], all experiments presented here are run on

the validation data; a limited set of evaluations on test data

are presented in appendix Sec. G.

To match prior work [44, 43, 53], we use every third

frame as input and evaluate two different scenarios: short-

term forecasting looks 3 frames (∼0.18s) and medium-term

forecasting looks 9 frames (∼0.53s) into the future. All

metrics are computed on the 20th frame of the sequence.

We use an input length of T = 3. We hence use frames 11,

14, and 17 as input for short-term experiments and frames

5, 8, and 11 as input for medium-term experiments.

4.1. Panoptic Segmentation Forecasting

Metrics. We compare all approaches using metrics intro-

duced in prior work [32] on panoptic segmentation. These

metrics require to first compute matches between predicted

segments and ground truth segments. A match between a

predicted segment and a ground truth segment of the same

class is a true positive if their intersection over union (IoU)

is larger than 0.5. Using these matches, three metrics are

considered: segmentation quality (SQ), which is the average

IoU of true positive matched segments, recognition quality

(RQ), which is the F1 score computed over matches, and

panoptic quality (PQ), which is the product of SQ and RQ.

All of these metrics are computed per class and then aver-

aged to compute the final score.

Baselines. To compare our approach against baselines on

the novel task of panoptic segmentation forecasting, we use:
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∆t = 3 ∆t = 9

PQ SQ RQ PQ SQ RQ

Ours 49.0 74.9 63.3 36.3 71.3 47.8

1) w/ Hybrid bg [59] 45.0 74.1 57.9 32.4 70.1 42.9

2) w/ Hybrid fg [43] 47.3 74.8 60.7 33.4 70.4 43.9

3) w/ linear instance motion 40.2 73.7 52.1 27.9 70.1 36.6

4) fg w/o odometry 48.8 75.1 62.8 35.3 71.1 46.5

5) w/ ORB-SLAM odometry 48.6 75.0 62.5 36.1 71.3 47.5

6) w/ SGM depth 48.8 75.2 62.8 36.1 71.4 47.3

7) w/ monocular depth 47.5 74.8 61.0 34.8 70.9 45.8

w/ ground truth future odometry 49.4 75.2 63.5 39.4 72.1 51.6

Table 2. Validating our design choices using Cityscapes. Higher

is better for all metrics. All approaches use predicted future odom-

etry unless otherwise specified.

Panoptic Deeplab (Oracle): we apply the Panoptic Deeplab

model [9] to analyze the target frame. This represents an

upper bound on performance, as it has direct access to fu-

ture information.

Panoptic Deeplab (Last seen frame): we apply the same

Panoptic Deeplab model to the most recently observed

frame. This represents a model that assumes no camera or

instance motion.

Flow: Warp the panoptic segmentation analyzed at the last

observed frame using optical flow [27] computed from the

last two observed frames.

Hybrid Semantic/Instance Forecasting: We fuse predictions

made by a semantic segmentation forecasting model [59]

and an instance segmentation forecasting model [43] to cre-

ate a panoptic segmentation for the target frame.

Results. The results for all models on the panoptic seg-

mentation forecasting task are presented in Tab. 1. We out-

perform all non-oracle approaches on the PQ, SQ, and RQ

metrics for both short-term and mid-term settings. The im-

provements to PQ and RQ show that our model better cap-

tures the motion of all scene components, including static

background ‘stuff’ regions and dynamic ‘things.’ In ad-

dition, the improvements to SQ imply that the per-pixel

quality of true positive matches are not degraded. The

Flow model performs worse than either Hybrid or our ap-

proach, which demonstrates that a simple linear extrapola-

tion of per-pixel input motion is not sufficient to capture the

scene and object movement. The fact that the gap between

ours and Hybrid on ‘things’ PQ grows between the short-

and mid-term settings shows the strength of our foreground

model (Sec. 3.1.1) on anticipating object motion at longer

time spans. Fig. 4 compares results to baselines. Our ap-

proach produces better defined object silhouettes and han-

dles large motion better than the baselines.

Ablations. Tab. 2 shows results for ablation experi-

ments which analyze the impact of our modeling choices:

1) w/Hybrid bg uses our foreground model, but replaces our

background model with the one from [59]; 2) w/Hybrid fg

uses our background model, but replaces our foreground

model with the one from [43]; 3) w/linear instance mo-

Short term: ∆t = 3 Mid term: ∆t = 9

Accuracy (mIoU) All MO All MO

Oracle 80.6 81.7 80.6 81.7

Copy last 59.1 55.0 42.4 33.4

3Dconv-F2F [10] 57.0 / 40.8 /

Dil10-S2S [44] 59.4 55.3 47.8 40.8

LSTM S2S [48] 60.1 / / /

Bayesian S2S [4] 65.1 / 51.2 /

DeformF2F [52] 65.5 63.8 53.6 49.9

LSTM M2M [59] 67.1 65.1 51.5 46.3

F2MF [53] 69.6 67.7 57.9 54.6

Ours 67.6 60.8 58.1 52.1

Table 3. Semantic forecasting results on the Cityscapes valida-

tion dataset. Baseline numbers, besides oracle and copy last, are

from [53]. Higher is better for all metrics. Our model exploits

stereo and odometry, which are provided by typical autonomous

vehicle setups and are included in Cityscapes.

tion replaces the foreground forecasting model with a sim-

ple model assuming linear instance motion and no mask ap-

pearance change; 4) fg w/o odometry does not use odometry

as input to the foreground model; 5) w/ ORB-SLAM odome-

try uses input odometry obtained from [6]; 6) w/ SGM depth

uses depths obtained from SGM [24] provided by [12] as in-

put to the model; and 7) w/ monocular depth uses a monoc-

ular depth prediction model [19], finetuned on Cityscapes,

to obtain input depth. Ablations 1) and 2) show that our

improved model performance is due to the strength of both

our foreground and background components. Ablation 3)

shows that joint modeling of instance motion and appear-

ance mask is key to success. 4) shows that odometry inputs

help the model predict foreground locations better, and 5)

demonstrates our method works well with odometry com-

puted directly from input images. 6) and 7) suggest that our

approach benefits from more accurate depth prediction, but

it also works well with depth inputs obtained using single-

frame methods.

4.2. Semantic Segmentation Forecasting

For a comprehensive comparison, we also assess our ap-

proach on the task of semantic segmentation forecasting.

This task asks to anticipate the correct semantic class per

pixel for the target frame. Unlike the panoptic segmenta-

tion evaluation, this task doesn’t care about instances, i.e.,

good performance only depends on the ability to anticipate

the correct semantic class for each pixel. We obtain seman-

tic segmentation outputs from our model by discarding in-

stance information and only retaining the semantics.

Metrics. Future semantic segmentation is evaluated using

intersection over union (IoU) of predictions compared to the

ground truth, which are computed per class and averaged

over classes. We additionally present an IoU score which is

computed by averaging over ‘things’ classes only (MO).

Baselines. We compare to a number of recent works which

forecast semantic segmentations. Many of these approaches
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Short term: ∆t = 3 Mid term: ∆t = 9

AP AP50 AP AP50

Oracle 34.6 57.4 34.6 57.4

Last seen frame 8.9 21.3 1.7 6.6

F2F [43] 19.4 39.9 7.7 19.4

Ours 17.8 38.4 10.0 22.3

Table 4. Instance segmentation forecasting on the Cityscapes

validation dataset. Higher is better for all metrics.

anticipate the features of a future scene [44, 48, 4, 52, 10,

53]. LSTM M2M [59] anticipates the optical flow between

the most recent frame and the target with a warping func-

tion transforming input semantics. Different from these,

we decompose the prediction into feature predictions for

each individual instance as well as a transformation of back-

ground semantics before combining. Additionally, these ap-

proaches do not use depth inputs and all except Bayesian

S2S [4] do not use egomotion as input.

Results. The results for this task are given in Tab. 3. We

outperform most models on standard IoU as well as MO

IoU. Unlike all other baselines, our model is able to produce

instance-level predictions for moving object classes, which

is a more challenging objective.

4.3. Instance Segmentation Forecasting

We also evaluate on instance segmentation forecast-

ing, which only focuses on the ‘things’ classes within

Cityscapes. Future instance segmentation can be obtained

from our model by disregarding all pixels corresponding to

‘stuff’ classes from the panoptic forecasting output.

Metrics. Instance segmentation is evaluated using two met-

rics [12]: 1) Average Precision (AP) first averages over a

number of overlapping thresholds required for matches to

count as true positives and is then averaged across classes;

2) AP50 is the average precision computed using an overlap

threshold of 0.5 which is then averaged across classes.

Baselines. There is very little prior work on instance seg-

mentation forecasting. We compare to Luc et al. [43], who

train a model to predict the features of the entire future

scene using a convolutional model and obtain final instances

by running these predicted features through the prediction

heads of MaskR-CNN. Instead, our approach predicts an in-

dividual set of features for each instance found in the scene.

Results. Tab. 4 presents the results. We outperform prior

work in the mid-term setting. This indicates that model-

ing trajectory of individual instances has a higher potential

on forecasting tasks. Since we use the same model cre-

ated by Luc et al. [43] as the ‘foreground’ component of

the Hybrid baseline (Sec. 4.1), Fig. 4 shows visual compar-

isons between these approaches. Again, our method gives

higher-detailed instance contours and models objects with

larger motion more accurately. Moreover, in some cases,

F2F “deletes” some instances from the scene (such as the

cyclist in row 3).

Figure 5. Failure cases. Left: the cyclist highlighted in white was

missed by instance detection. Right: mispredicted odometry leads

to misalignment between the forecast and the target image (the

outlines of objects in the target image are shown in white).

4.4. Introspection

Why does our approach anticipate higher-fidelity in-

stances than prior approaches? Many of these works at-

tempt to predict future scenes by anticipating what a fixed-

size feature tensor for the entire image will look like – this is

true for both semantic segmentation forecasting [44, 10, 53]

and instance segmentation forecasting [43]. Note, this con-

flates camera motion, which objects are present in a scene,

how these objects move, and how the appearance of ob-

jects and background components change as a function of

the scene motion. This increases the complexity of the

prediction. Instead, our method decomposes these com-

ponents into individual parts: the foreground model an-

ticipates how each object moves and how its appearance

changes as a function of this motion; the background model

captures how static scene components appear when the

camera moves; and the odometry model anticipates likely

future motion based on past input. Modeling each of these

separately simplifies individual prediction. Additionally,

we predict separate features for every individual instance,

so its size scales with the number of instances present in a

scene, while past approaches [43] use a fixed size represen-

tation regardless of the complexity of the scene.

The performance of our approach is hampered in some

cases by failures in instance detection and tracking (exam-

ples in Fig. 5). At the moment, our model cannot properly

recover from situations where the input is noisy. That be-

ing said, our approach immediately benefits from improve-

ments in the areas of instance detection and tracking, which

are very active fields of research [2, 3].

5. Conclusions
We introduced the novel task ‘panoptic segmentation

forecasting.’ It requires to anticipate a per-pixel instance-

level segmentation of ‘stuff’ and ‘things’ for an unobserved

future frame given as input a sequence of past frames. To

solve this task, we developed a model which anticipates tra-

jectory and appearance of ‘things’ and by reprojecting input

semantics for ‘stuff.’ We demonstrated that the method out-

performs compelling baselines on panoptic, semantic and

instance segmentation forecasting.
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[49] L. Porzi, S. Rota Bulò, A. Colovic, and P. Kontschieder.

Seamless scene segmentation. In CVPR, 2019.

[50] X. Qi, Z. Liu, Q. Chen, and J. Jia. 3D motion decomposition

for RGBD future dynamic scene synthesis. In CVPR, 2019.

[51] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-

lutional networks for biomedical image segmentation. In

International Conference on Medical image computing and

computer-assisted intervention, 2015.
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