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a b s t r a c t 

Studies of cortical function in newborn infants in clinical settings are extremely challenging to undertake with 

traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy 

(fNIRS) has become an increasingly common clinical research tool but has significant limitations including a low 

spatial resolution and poor depth specificity. Moreover, the bulky optical fibres required in traditional fNIRS 

approaches present significant mechanical challenges, particularly for the study of vulnerable newborn infants. 

A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has 

recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS mea- 

surements. Driven by the development of this new technology, we have undertaken the first cot-side study of 

newborn infants using wearable HD-DOT in a clinical setting. We use this technology to study functional brain 

connectivity (FC) in newborn infants during sleep and assess the effect of neonatal sleep states, active sleep (AS) 

and quiet sleep (QS), on resting state FC. Our results demonstrate that it is now possible to obtain high-quality 

functional images of the neonatal brain in the clinical setting with few constraints. Our results also suggest that 

sleep states differentially affect FC in the neonatal brain, consistent with prior reports. 
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. Introduction 

The investigation of resting state functional connectivity (RSFC) in

ewborn infants has significantly enriched our understanding of the

ntrinsic functional architecture of the developing brain. RSFC is in-

erred from the synchronized activity of different brain regions at rest,

uch that regions exhibiting higher temporal synchronization can de-

ne RSFC networks ( Damoiseaux et al., 2006 ; Fransson et al., 2007 ).

mong the many neuroimaging techniques, functional magnetic reso-

ance imaging (fMRI) is typically used in these studies. In this, fMRI is

ensitive to the blood-oxygen-level-dependent (BOLD) signal, which is

ssociated with changes in concentration of deoxygenated haemoglobin

nd thus is a proxy for neuronal activity. 

While fMRI offers many advantages, it is poorly suited for newborn

nfants in clinical settings. fMRI studies cannot be performed cot-side
Abbreviations: High-density diffuse optical tomography, (HD-DOT); functional nea

unctional connectivity, (FC); functional magnetic resonance imaging, (fMRI); oxyg

GM); connectome-based independent component analysis, (connICA); electroenceph

ndependent functional connectome components, (ICs). 
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nd require prolonged durations away from clinical units. fMRI also re-

uires subjects to remain motionless for the duration of the recording,

uch that infants often need to be sedated ( Arthurs et al., 2012 ). Seda-

ion has also been shown to impact functional hyperaemia ( Slupe and

irsch, 2018 ). These conditions significantly limit the number and types

f studies that can be performed in newborn infants, particularly for

hose that are vulnerable. 

One area of growing interest in newborn functional brain imaging

esearch is the impact of sleep on the developing brain. The emer-

ence of sleep, sleep wake cycling, and sleep states in early life coin-

ides with the emergence of functional networks in the brain. In new-

orn infants (neonates), sleep is typically divided into two states: active

leep (AS) and quiet sleep (QS). Electroencephalography (EEG) stud-

es have found that these states demonstrate distinct functional con-

ectivity (FC) network dynamics ( Tokariev et al., 2019 ; Wielek et al.,
r infrared spectroscopy, (fNIRS); resting-state functional connectivity, (RSFC); 

enated haemoglobin, (HbO); deoxygenated haemoglobin, (HbR); grey matter, 

alography, (EEG); active sleep, (AS); quiet sleep, (QS); optical density, (OD); 
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019 ; Tokariev et al., 2016 ). Furthermore, abnormalities in sleep state

ynamics and sleep wake cycling during the neonatal period are as-

ociated with altered neurodevelopmental outcomes in older infants

 Shellhaas et al., 2017 ) and children ( Stangenes et al., 2017 ). While EEG

s highly applicable in clinical settings and can allow for long recordings,

EG is limited to cortical electrical activity, and cannot provide infor-

ation on the haemodynamic changes that fMRI is sensitive to. EEG

lso has relatively poor spatial resolution, ( Burle et al., 2015 ) and thus

s limited in its capabilities to extract features of functional networks. 

Functional near-infrared spectroscopy (fNIRS) surmounts many of

hese challenges by allowing for studies of cortical haemodynamic

rain activity in a manner analogous to fMRI, but outside of the tra-

itional brain imaging environment ( Pinti et al., 2020 ). The standard

NIRS method uses arrays of optodes (sources and detectors of near-

nfrared light), sparsely distributed over the scalp to provide measures

f haemodynamics in the underlying tissues. When compared with fMRI,

NIRS demonstrates higher temporal resolution, and has the advan-

age of being able to determine changes in the concentrations of both

xy- and deoxy-haemoglobin. However, the spatial resolution of typical

NIRS systems is on the order of 3 cm, significantly lower than fMRI

 Scholkmann et al., 2014 ). Furthermore, the depth sensitivity of fNIRS

s limited to the superficial cortex, ( Quaresima et al., 2012 ) and typical

rrangements of sources and detectors achieve little (if any) depth infor-

ation, meaning changes in haemoglobin concentrations in the brain

an be difficult to distinguish from those in the extracerebral tissues

 Gagnon et al., 2012 ; Funane et al., 2014 ). Prior fNIRS studies investigat-

ng RSFC in newborn infants have demonstrated regional dependency

nd dynamic changes in interhemispheric FC within the first six months

f life, ( Homae et al., 2010 ) as well as altered FC patterns in preterm

orn neonates at term age ( Fuchino et al., 2013 ; Naoi et al., 2013 ). A

rior study used EEG-informed fNIRS analysis to assess FC across AS and

S in healthy newborns ( Lee et al., 2020 ). However, this study had only

 relatively small number of light sources and detectors available, which

imited both the proportion of the cortex that could be interrogated and

he spatial resolution of the resulting maps of underlying FC. 

Diffuse optical tomography (DOT) is an evolution of fNIRS that per-

its the production of three-dimensional images of the optical proper-

ies of a target object ( White and Culver, 2010 ). Measurements with a

ange of source-detector separations (known as channels) and spatially-

verlapping sensitivity distributions are essential to DOT approaches

 White and Culver, 2010 ). This necessitates detector technology with a

ery high dynamic range, and denser arrangements of source and detec-

or optodes than are possible with standard fNIRS devices. In neonatal

rain research in clinical settings, DOT studies have revealed RSFC net-

orks in the visual cortex, ( White et al., 2012 ). RSFC networks in the

uditory cortex, ( Ferradal et al., 2016 ) high-amplitude, biphasic pat-

ern of changes concurrent with electrographic seizures, ( Singh et al.,

014 ) and changes in interhemispheric FC following perinatal stroke

 Chalia et al., 2019 ) 

The concept of high-density diffuse optical tomography (HD-DOT)

akes this concept one step further. In HD-DOT, an array of sources

nd detectors is employed that is dense enough to provide a contin-

ous distribution of both short source-detector separation ( ∼10 mm)

hannels and longer separation channels (spanning the 10–40 mm

ange) ( White and Culver, 2010 ). This approach has been shown to sig-

ificantly improve the disentanglement of extracerebral and cerebral

aemodynamics in adults, ( Funane et al., 2014 ) and has the capacity

o yield cortical activation maps that approach the resolution of fMRI

 Eggebrecht et al., 2014 ). Only one previous study has employed HD-

OT to study newborn infants in clinical settings ( Liao et al., 2012 ).

owever, the technology used in that study, like most HD-DOT sys-

ems, required a large numbers of optical fibre bundles, compounding

he mechanical challenge associated with studying newborn infant pop-

lations. 

Recently, our group demonstrated a new generation of wearable HD-

OT systems. These modular, lightweight technologies allow for wide
2 
ortical coverage without sacrificing wearability, allowing for functional

rain mapping to be undertaken outside of the traditional brain imaging

nvironment ( Vidal-Rosas et al., 2021 ). We have demonstrated the fea-

ibility of using wearable HD-DOT approaches for retinotopic mapping

f the adult visual cortex ( Vidal-Rosas et al., 2021 ) and social stimuli

esponse mapping in the infant ( Frijia et al., 2021 ) 

In the present study, we aimed to demonstrate that wearable HD-

OT can be adapted for use in newborn infants in clinical settings for

ot-side studies of functional brain activity. As a secondary aim, we

ought to demonstrate that this technology could be used to study fea-

ures of FC during sleep and between neonatal sleep states. 

. Methods 

.1. Subjects 

Healthy term-age neonates (born at ≥ 37 weeks of gestation) were

ecruited from the postnatal ward of The Rosie Hospital (Cambridge Uni-

ersity Hospitals NHS Foundation Trust). This study was approved by

he National Research Ethics Service Committee East of England (REC

eference 15/LO/0358), and written informed consent was obtained

rom parents for neonates to participate. A total of 45 neonates were

ecruited. Datasets from 17 neonates were excluded during data pro-

essing due to insufficient duration of motion artifact-free data segments

described below) for subsequent FC analysis. HD-DOT data was anal-

sed from the remaining 28 subjects (mean gestational age = 40 + 0

eeks (range: 38 + 2 – 42 + 1); mean weight at birth = 3522 g (range:

890 – 4205 g); mean age at time of study = 3 days (range: 1–11 days).

emographic details of the subjects are summarized in Table 1 . 

.2. Data collection 

Cot-side data recording was performed on 45 neonates on the post-

atal ward of The Rosie Hospital. To promote sleep, a feed and wrap

pproach was used. As a full-sleep cycle in the neonatal period typically

asts for up to an hour, ( Scher, 2008 ) and we aimed to perform data

ecording sessions for one full hour. However, in certain cases of pa-

ients needing immediate clinical procedures or waking up before the

nd of the full hour, the study was ended early. If the infant was content

o sleep for more than an hour, the infant was left undisturbed. Imag-

ng session durations were on average 63.88 min (range: 34.60–144.77

in), Table 1 . The HD-DOT system (cap, tiles, hub, cabling, and laptop,

escribed below) and supporting equipment fit on a small trolley which

as wheeled to the postnatal ward for studies. The setup also included

ideo recording of behaviour for sleep and sleep state assessment as

hown in Fig. 1 . A summary of the data collection, pre-processing, and

nalysis pipeline is shown in Fig. 2 . 

.3. Wearable HD-DOT system 

We employed a wearable HD-DOT system known as LUMO ( Gow-

rlabs Ltd, UK ) ( Vidal-Rosas et al., 2021 ; Frijia et al., 2021 ). The sys-

em consists of multiple independent modules (or “tiles ”, Fig. 1 ) that

ogether create a dense network of sources and detectors, while still al-

owing the system to conform to the scalp. Each hexagonal sensor tile is

quipped with 3 dual-wavelength LED sources (at 735, 850 nm) and 4

hotodiode detectors. Each module weighs ∼6 g and measures 29 mm

cross at the widest point. Within-tile measurements are obtained with

ource-detector separations of approximately 10 mm and 20 mm. Cross-

ile measurements are acquired for all separations within an array but

nly channels up to ∼45 mm separation are expected to yield accept-

ble signal quality. The modules are located into a chain of “docks ” that

re clipped into a flexible head cap. The docks provide power and data

ransfer, and can be positioned anywhere within the cap. The dock chain

onnects via a single flexible cable to a “hub ”, which itself connects via

SB to a laptop. As shown in Fig. 3 , a disposable rubber “light-guide ”
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Table 1 

Subject demographics. 

Subject Number GA at birth (weeks) Age (days) Weight (g) Recording Duration (min) Sleep States Present (state and duration in min) 

1 40 + 2 1 4035 52.02 QS = 3.13 

2 40 + 4 1 3580 63.03 QS = 10.45 

3 40 + 5 3 2890 46.08 QS = 18.37 

4 41 + 5 8 3950 34.60 AS = 10.5 

5 40 + 2 4 3885 144.77 QS = 29.42; AS = 20.88 

6 41 + 5 2 3830 34.92 QS = 3.35 

7 39 + 2 1 3385 60.72 QS = 5.02 

8 41 + 1 4 4205 63.34 QS = 3.35; AS = 4.18 

9 38 + 5 2 3530 71.18 QS = 3.28 

10 39 + 3 6 3075 79.19 QS = 28.33; AS = 3.32 

11 39 + 2 4 3275 50.04 AS = 4.30 

12 40 + 3 4 3085 69.69 QS = 12.03; AS = 3.67 

13 40 + 3 2 3840 61.32 QS = 3.52 

14 41 + 0 4 4165 35.05 QS = 17.48; AS 3.97 

15 39 + 5 5 2940 60.83 QS = 5.08 

16 40 + 4 2 3275 64.11 QS = 6.62 

17 39 + 0 5 3780 41.20 QS = 16.2 

18 42 + 1 2 4150 69.25 QS = 4.23 

19 39 + 0 1 3970 61.40 AS = 4.93 

20 38 + 2 1 3170 75.27 QS = 3.37 

21 39 + 6 1 3155 64.56 AS = 9.77 

22 39 + 1 1 3570 72.88 QS = 9.45 

23 41 + 0 2 3115 68.83 AS = 3.15 

24 39 + 2 4 2910 64.99 QS = 10.6; AS = 6.57 

25 39 + 4 1 3240 70.15 QS = 3.01; 

26 40 + 5 2 3270 67.80 QS = 18.15; 

27 39 + 0 11 4160 60.65 QS = 7.25 

28 38 + 3 3 3185 75.30 QS = 11.163 
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A  
ontaining seven short plastic optical fibres couples light through the

ock to and from the scalp. 

.4. Neonatal HD-DOT Cap design 

To form a complete cap, the LUMO dock chain was integrated into a

eonatal EasyCap (Easycap GmbH, Germany). The EasyCap consists of a

exible cap made of elastane with a Velcro chin strap, and is commonly

sed for EEG studies ( Fig. 3 ). This design was found to provide good

ptical coupling and efficient fitting ( < 5 min). When compared to our

rior study in 6-month-old infants that used LUMO with a more rigid cap

ade of neoprene and Velcro strapping, we found that newborn infants

ere generally more tolerant of the EasyCap material. Newborn infants

lso have more variable head shapes, which the more flexible material

f the EasyCap material could better accommodate. The EasyCap has

lso been used in previous fNIRS studies with infants ( Bulgarelli et al.,

020 ; Bulgarelli et al., 2019 ). Two caps were made to accommodate

ariable head circumferences (between 33.5 and 36 cm). 

For this study, we designed a layout of 12 tiles and docks cover-

ng the frontal and parietal cortices. These 12 tiles provide 36 source

ocations, 48 detector locations and a total of 1728 channels per wave-

ength. Approximately 400 channels per hemisphere were expected to

rovide a source-detector separation below 45 mm and thus provide vi-

ble signals. Optode locations and the associated channels are illustrated

n Fig. 4 . This array design represents the equivalent of 84 optical fibres.

he frame rate of this device was 10 Hz. 

.5. Cap positioning and spatial registration 

The infant’s head circumference was measured around the crown,

nd this distance was used to determine the correct cap size. The cap

as placed on the infant’s head and adjusted such that the front lip of the

ap came down just over the eyebrows and the tiles were located over

ost of the frontal and parietal cortices. The cap design, positioning,

nd fit are shown in Figs. 1 –4 a . 

For spatial registration of optode locations, we employed a three-

imensional structured illumination scanning approach as in our prior

tudy of 4-7 month old infants ( Frijia et al., 2021 ). For each participant,
3 
e acquired a three-dimensional model of the head surface using the

rueDepth camera functionality of an X-series iPhone (Apple, Inc., CA,

SA) and the app ScandyPro ( Scandy LLC, USA ), which together allow

caled, 3D point clouds to be acquired and exported in a readily ac-

essible format. As the inevitable movement of the infant, even during

leep, makes acquiring a continuous 360-degree scan nearly impossi-

le, we acquired several depth-resolved ‘snapshot’ scans from different

ngles for each participant while the cap was in place. Each snapshot

can lasted approximately 1–8 s and was repeated if the baby moved

uring acquisition. The viewing angle of each snapshot was chosen to

nsure at least three LUMO tiles and one cranial landmark were in the

rame in each case and together the snapshots would cover both arrays,

he nasion, inion, pre-auricular points and the vertex (Cz). The resulting

ultiple partial point clouds (see example shown in Fig. 4 b ) were then

egistered to one another using the software package CloudCompare

 www.danielgm.net/cc ), which uses equivalent point pairs that are man-

ally identified across different partial scans to rigidly transform those

artial point clouds to produce a complete model ( Fig. 4 c ). To identify

he exact location of sources and detectors, each tile was tagged with a

pecially designed fluorescent coloured triangular marker ( Fig. 4 a and

 ), the points of which were positioned directly above the sources of

ach tile. Because the tile and docks are of known dimensions, identify-

ng the locations of the points of each triangle ( Fig. 4 c) provides suffi-

ient information to determine the location of each optode location on

he scalp without approximation. The location of subject-specific cranial

andmarks (nasion, inion, pre-auricular points, Cz) and the position of

ach source and detector on the scalp could then be determined from the

ompleted point cloud. A multi-layer neonatal tetrahedral head model

as selected from a database of models ( Collins-Jones et al., 2021 ). The

ead model was then registered to the space of each infant based on the

ffine transform between the cranial landmarks positions of the infant

nd the head model ( Fig. 4 e ). 

.6. Sleep state assessment 

The video recordings of infants were reviewed offline to classify the

eriods during which each infant was in one of two possible sleep states,

S or QS, for comparison of differences in FC between these two states

http://www.danielgm.net/cc
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Fig. 1. Functional Imaging of the Newborn Brain Cot-side . Newborn infants were imaged cot-side in their mother’s rooms in the maternity ward of the Rosie Hospital. 

All study materials fit on to a trolley that could be wheeled to the room. The HD-DOT cap was placed on the infant’s head once they were asleep. The cap connects to 

a small control unit (‘hub’), which transmits collected data to a laptop. A video camera was positioned above the infant for video recording of sleep state behaviours. 

Set up of all elements of this system took approximately 15 min. 
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s demonstrated in our prior study ( Lee et al., 2020 ). Standard crite-

ia for classifying neonatal sleep states based on behaviour was used

 Scher, 2008 ; Dereymaeker et al., 2017 ; Hakamada et al., 1981 ). Video

egments were classified as AS if the infant demonstrated a combination

f two or more of the following behaviours: rapid eye movements, fa-

ial twitches, increased variability of respiration rates (visually assessed

y chest movements), and frequent large body movements. Video seg-

ents were classified as QS if the infant demonstrated decreased vari-

bility in respiration rates, minimal facial movement, and minimal body

ovement except for occasional startle reflexes. Of note, given that the

nfant moves during AS, more motion artifact was observed during AS

han QS. Example videos of the behavioural features of each state can

e found in the Supplementary Material . 

.7. HD-DOT data pre-processing 

In an initial assessment of the data, channels were discarded based

n their coefficient of variation (rejected if mean of intensity/standard

eviation of intensity ≤ 12). This coefficient of variation threshold was

hosen based on the threshold used in our prior study using this HD-

OT system in adults ( Vidal-Rosas et al., 2021 ) and the foundational

SFC study using HD-DOT in adults ( White et al., 2009 ). Data segments

ith motion artifact were then excluded based on the channel-wise data

sing the hmrMotionArtifact function in the fNIRS data analysis toolbox

omer2 ( Huppert et al., 2009 ). Any change in measured optical density
4 
OD) occurring within any 0.5 s period that was greater than 0.5 OD, or

reater than 10 times the standard deviation of the entire time-course

as considered to be motion artifact (parameters selected based on prior

ublications ( Lee et al., 2020 ; Vidal-Rosas et al., 2021 )). To minimize

ny potential impact of motion artifact on the surrounding data periods,

0 seconds of data before the start and after the end of each segment

dentified as motion artifact were also excluded. 

Previously reported infant RSFC fNIRS studies have used a range

f data recording durations for analysis: Bulgarelli et al (2019, 2020)

mployed a minimum of 100 seconds of resting state data comprised

f individual segments at least 5 seconds in duration that were con-

atenated ( Bulgarelli et al., 2020 ; Bulgarelli et al., 2019 ). Both Lee and

lanco et al (2020) and White et al (2012) used a minimum of 2 min

f data ( Lee et al., 2020 , White et al., 2012 ). Wang et al (2017) used

raph theory metrics to determine that FC could be accurately and stably

chieved after 7.0 min fNIRS imaging duration at high network thresh-

lds, whereas the necessary scanning time minimum was 2.5 min at low

etwork thresholds ( Wang et al., 2017 ) Blanco et al (2021) reported us-

ng ∼9 min of data ( Blanco et al., 2021 ). 

Given this great variability, we chose to use 3 min of motion artifact-

ree data as our minimum. Thus, optical intensity data segments that

ere at least 3 min in length were extracted, and using the correspond-

ng video, each segment was classified as AS or QS. From raw optical

ntensity data segments, changes in OD were calculated using the hm-

Intensity2OD algorithm implemented in Homer2. 36 Motion artifact
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Fig. 2. Project outline . Summary of methods for data collection, data preprocessing, and higher-level functional connectivity analyses. AS (active sleep); QS (quiet 

sleep); HbO (oxygenated haemoglobin); HbR (deoxygenated haemoglobin); GM (grey matter). 

Fig. 3. (a) LUMO tile with source and detector positions indicated. ( b) Positioning of docks into which the hexagonal tiles are located. The light-guide piece contains 

seven short optical fibres with length 4.5 mm. ( c) Custom-designed neonatal HD-DOT cap containing 12 LUMO tiles. The 12 tiles and dock chain are integrated into 

an EasyCap. Front and back views of the cap are shown. ( d) Photographs of the cap on three newborn infants during cot-side data recording with tiles visible over 

the frontal and parietal cortices. 

5 
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Fig. 4. (a) A photograph of a newborn infant in their cot wearing the HD-DOT system. (b) Three snapshot point cloud images of an infant. (c) The complete model for 

that infant, created from multiple point cloud images with cranial landmarks (green points) and sources marker locations (magenta points). ( d) A 2D representation 

of the full 12 tile array showing channels with source–detector separation of approximately ≤ 60mm in the 3D space. ( e) The source positions (red points) and 

detector positions (blue points) shown on the shown on the scalp surface of the multi-layer neonatal tetrahedral head model registered to the subject’s space. 
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G  
orrection was not used here as the effects of these techniques on tem-

oral correlation are not well understood and have the potential to pro-

uce spurious network measures ( Di Lorenzo et al., 2019 ). Instead, a

ore conservative approach of selecting only motion artifact-free data

as implemented. In the case of infants that had more than one seg-

ent of the same sleep state (i.e. in the case of two segments of clean

ata at least 3 min in duration separated by a period of motion arti-

act), these segments were converted to OD and then concatenated, as

tudies suggests that concatenating RSFC time series of the same brain

tate (here, AS or QS) yields high reliability ( Cho et al., 2021 ). The out-

ome was that 11 subjects had clean data segments classified as AS, and

3 subjects had data segments classified as QS, with 5 subjects yield-

ng segments for both states ( Table 1 ). The average time series of all

hort channels, which are primarily sensitive to scalp haemodynamics

 Gregg 2010 ; Saager and Berger, 2008 ), were then regressed, as per-

ormed previously ( Sato et al., 2016 ). Temporal filtering was then ap-

lied using a regression model ( Caballero-Gaudes and Reynolds, 2017 ).

ine and cosine functions for frequencies above 0.08 Hz were included

n the model to remove the contribution of physiological noise sources

e.g. respiration and cardiac pulsation), and up to 9th order Legendre

olynomials (depending on dataset duration) were included to account

or fluctuations at very low frequencies. The order was calculated as

 = 1 + floor(length of data in seconds/150), where the shortest data

egment was 181 seconds and the longest was 1153 seconds. 

.8. Image reconstruction 

Images were reconstructed from the acquired data using a lin-

ar approach described previously ( Arridge, 1999 , Arridge and Schot-

and, 2009 ) The forward problem was modelled using the diffusion ap-

roximation ( Arridge, 1999 ) The Jacobian matrix was calculated using

oast ++ ( Schweiger and Arridge, 2014 ) via the finite element method.

he optical properties of the tissue layers of the model at the wave-

engths of interest were linearly interpolated from literature values for
6 
ach tissue ( Bevilacqua et al., 1999 ). The Jacobian was calculated in a

ne regular grid with size 30 × 30 × 30 voxels and projected into a multi-

ayer neonatal tetrahedral head mesh for each infant ( Schweiger and Ar-

idge, 2003 ). The neonatal head model used in this study was selected

rom a neonatal head model database ( Collins-Jones et al., 2021 ) whose

ead circumference was nearest to 34 cm, the average head circum-

erence for this dataset. To determine the optical properties for each

issue at each wavelength, a regression was fit linearly to the values for

he absorption and reduced scattering coefficients from three studies

 Bevilacqua et al., 1999 , Strangman et al., 2003 , Ferradal, 2014 ). The

alues in the table below were taken was the values of the regression

ines for each tissue at 735 and 850 nm. The optical properties associated

ith the tissue layers of this head model are presented in Supplemen-

ary Table 1 . The changes in absorption coefficient were calculated via

nversion of the forward model using zeroth-order Tikhonov regular-

zation. The recovered images of the changes in absorption coefficient

t the two wavelengths were then converted to images of changes in

bO and HbR concentrations ( Cope, 1991 ). For visualization and fur-

her analysis, these haemoglobin images were then mapped from the

etrahedral volume mesh to the GM surface mesh of the head model. 

A sensitivity map of the channel layout was then calculated in the

M space by finding a sensitivity mask for each subject. To create a

ensitivity mask for each subject, we set a threshold of 5% of the max-

mum value of the normalized Jacobian such that nodes exhibiting a

ensitivity above this value were set equal to 1 in a binary mask. All

essions’ binarized masks were then summed to compute a group-level

ask, such that if all subjects’ masks were sensitive to a given node, the

ode value was 28. All nodes which had a value of 21 (75% of subjects)

r above were included in the final group-level mask. 

.9. Parcellation of the cortical surface 

Computing HbO and HbR FC matrices based on tens of thousands of

M surface mesh nodes is highly computationally expensive. To reduce
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Fig. 5. Cortical Parcellation to Reduce Data Dimensionality . The GM surface mesh of the neonatal head model was parcellated according to the M-CRIB parcellation 

scheme. This was combined with the binary sensitivity mask of the 12-module array to produce an image of the cortical parcels that our system was sensitive to. 
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ata dimensionality, a cortical parcellation approach was used. This ap-

roach also provides the benefit of indicating which nodes correspond

o which anatomical brain regions. In this approach, the GM surface

esh is divided into parcels and the HbO and HbR values for all nodes

ithin each parcel are averaged to produce a single HbO and HbR value

or each parcel at each time point. 

Employing the approach detailed by Blesa et al. (2021) the M-CRIB

tlas was used to parcellate the brain of the neonatal head model. The

-CRIB atlas was chosen as compared to other atlases as it is based on

oth anatomical and functional information. The M-CRIB atlas consists

f 10 neonatal subjects whose MRI volumes have undergone manual

euroanatomical labelling ( Alexander et al., 2019 ). Using the develop-

ng Human Connectome Project processing pipeline ( Makropoulos et al.,

018 ; Makropoulos et al., 2014 ), the T 2 -weighted intensity images of all

0 atlas individuals included in the M-CRIB 2.0 release were processed

o obtain a brain mask and tissue segmentations. These brain masks

nd segmentations were used to perform histogram matching between

he T 2 -weighted volumes of each M-CRIB atlas and the database-chosen

odel. Each of the M-CRIB T 2 -weighted volumes were then non-linearly

egistered to the T 2 -weighted volume of the database-chosen model us-

ng the SyN function of the ANTS toolbox; ( Avants et al., 2008 ) this

ransform was used to register the manual labels of each M-CRIB vol-

me to the space of the multi-layer neonatal tetrahedral head mesh.

hese registered labels were then merged using a joint label fusion ap-

roach as detailed by Wang et al. (2013) . The output of this process was

 parcellation of 84 regions of interest within the space of the neonatal

ead model. 

The group-level sensitivity mask was then applied to the GM sur-

ace mesh of the parcellated head model, producing a map of parcels

hat the array was sensitive to ( Fig. 5 ). Parcels were included if the

rray was sensitive to at least 50% of the GM surface mesh nodes be-

onging to that parcel (as determined by the GM sensitivity mask, see

bove) and across at least 75% of the subjects (21/28 subjects, 75%).

nce the sensitivity profile of the system was applied to the parcellated

ortex, 18 parcels remained within the field-of-view of our experiment

 Fig. 5 ). These parcels corresponded to the following regions: caudal

iddle frontal gyrus, inferior parietal gyrus, pars opercularis, post cen-

ral gyrus, precentral gyrus, rostral middle frontal gyrus, superior frontal

yrus, superior parietal gyrus, and supramarginal gyrus (for right and
7 
eft, n = 18 total). This parcellation was applied to each subject’s data

o produce FC matrices of size 18 × 18. Group-level FC matrices were

roduced by averaging all subjects’ parcel-space FC matrices. 

.10. Functional connectivity analyses 

.10.1. Seed based correlation 

As an initial validation that FC was present in this dataset and that

hysiologically meaningful FC maps could be demonstrated, a seed-

ased correlation analysis was employed. This analysis used the longest

ata segment for each subject, regardless of sleep state (i.e. if a subject

ad both AS and QS data segments, whichever segment was longer in

uration was included). Hereafter, these data segments are referred to

s ‘all subject data’. In the GM mesh space, seed regions of 3.5 mm

adius for the left and right hemispheres were selected for the pre-

rontal, motor, and parietal regions based on previously published re-

orts ( Ferradal et al., 2016 ; Doria et al., 2010 ; Smyser et al., 2010 ) and

he anatomical locations of these regions on the GM surface mesh (e.g.

n the centre of the prefrontal gyrus/motor cortex). Within this seed

egion, the average of all nodes’ HbO and HbR signals was calculated,

nd this averaged signal was the ‘seed’ signal. Then, a robust Pearson’s

orrelation coefficient ( Santosa et al., 2017 ) was calculated between

ach seed signal and the signal of every other node in the GM surface

esh that fell within the GM sensitivity mask. Robust correlation was

erformed to minimize the impact of outlier timepoints for correlation

nalysis ( Santosa et al., 2017 ). Individual correlation values were nor-

alized by Fisher’s Z transformation before averaging across subjects.

 -transformed maps were converted to t-statistics and thresholded with

DR correction to 0.005. 

.10.2. Cortical parcel connectivity analysis 

In order to further investigate the presence of FC in this dataset, we

nalysed the temporal correlations of the continuous HbO and HbR sig-

als for four different types of connectivity ( Imai et al., 2014 ). For each

nfant’s parcellated data, we calculated the correlation coefficients (r)

etween the HbO and HbR values of each of the 18 parcels. There were

18 × 18)/2 = 162 parcel pairs and 162 r values were collected for

ach infant. Each r value was converted to a z-score by Fisher’s Z trans-

ormation, and Z scores were averaged together to produce a single FC
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alue. Connectivity was categorized into the 4 following types: (i) short-

ange connectivity (26 pairs), (ii) contralateral transverse (interhemi-

pheric) connectivity (30 pairs), (iii) ipsilateral-longitudinal connectiv-

ty (27 pairs), and (iv) control (70 pairs). Short range connectivity (i)

as defined as parcels that were immediately anatomically adjacent to

ne another. Interhemispheric connectivity (ii) was defined as the con-

ections between parcels that were contralaterally homologous (sym-

etric across the midline), or contralaterally homologous and one par-

el over (i.e., left motor cortex and right motor cortex, left motor cor-

ex and right somatosensory cortex). Ipsilateral-longitudinal connectiv-

ty (iii) was defined as connections in which each parcel in the pair was

ore than three parcels away from one another, which mainly com-

rised fronto-parietal connections. Control connectivity (iv) consisted

f connections other than those of (i), (ii), and (iii). Overall connectiv-

ty was defined as all possible parcel pairings. The strength of each type

f connectivity was evaluated by averaging the Z scores within the de-

ned connectivity for each infant. Then, we obtained an averaged value

f the Z scores for each type of connectivity for each group. Each of

he four types of connectivity were statistically compared between one

nother and between sleep states using an independent t-test. 

.10.3. Connectome-based independent component analysis (connICA) 

We assessed for the presence of specific FC networks us-

ng connectome-based independent component analysis (connICA),

 Amico et al., 2017 ) a data-driven methodology based on independent

omponent analysis. connICA can be used to extract group-level inde-

endent FC patterns from a set of individual FC matrices. This approach

as chosen because it relies on the FC matrices of subject datasets, rather

han time series, thereby overcoming the limitation of having differ-

nt durations of data segments across subjects. In this approach, the

pper triangle of the symmetric FC matrices of HbO and HbR is first

ectorized for each subject. These vectors were concatenated in rows

o form a group-level FC matrix of dimensions [11 AS subjects + 23

S subjects] x [18 parcel pairs x 2 Hb chromophores]. The integration

f the information on FC provided by HbO and HbR was done under

he premise that similar FC patterns should be observed across chro-

ophores ( Ferradal et al., 2016 ; Mesquita et al., 2010 ; Homae et al.,
ig. 6. Group-level FC matrices . Parcels are organized according to their anatomical 

ight (RH) hemispheres for HbO (left) and HbR (right). Dashed yellow squares and 

omologous frontal regions. Blue arrows indicate off diagonal effects and strong cor

somatosensory cortex parcel). 

8 
011 ). Next, the FastICA algorithm ( Hyvärinen and Oja, 2000 ) was ap-

lied to this group-level matrix to obtain a set of latent group-level inde-

endent functional connectome components (ICs), and their correspond-

ng weights in each infant. From this analysis 12 ICs were extracted, a

umber that is equal to the number of principal components necessary

o explain 65% of the group data variance. The criteria for ICA model

rder selection are explained in detail in Appendix 1 . Each IC has an

ssociated set of 34 weights: 11 for AS subjects and 23 for QS subjects.

ndependent t-tests were used to compare the contributions of AS and

S weights to a given IC and its associated spatial map. 

. Results 

.1. Group-level functional connectivity matrices 

Fig. 6 presents the group-level FC matrices for HbO and HbR with

arcels ordered according to their anatomical location on the cortex,

rdered from most anterior to most posterior. High correlation values

ear the diagonal indicate that anatomically adjacent parcels are most

trongly correlated with one another (blue arrows). Correlation between

ontralateral homologous regions for parcels within the frontal cortex

re also evident (dashed yellow boxes and arrows). 

.2. Seed based correlation 

Fig. 7 presents the seed-based correlation maps for seeds in the left

nd right motor cortex, parietal cortex, and frontal cortex. Motor cortex

aps show expected correlation down the length of the motor cortex

utside and areas of the somatosensory cortex. Significant correlation is

lso seen on the motor cortex contralateral to the seed region. These ef-

ects are slightly more evident for the left seed than for the right and for

bO than for HbR. Parietal cortex maps show correlation in the parietal

ortex surrounding the seed region, as well as in the contralateral pari-

tal cortex. Notably, strong correlation is also seen in the frontal cortex,

articularly for the right parietal seed, suggestive of fronto-parietal net-

orks. Frontal cortex maps show the strongest correlation in the region

mmediately surrounding the seed region, as well as the contralateral

quivalent portion of the frontal cortex. Correlation decreases radially
location (from most anterior to most posterior) and divided into left (LH) and 

yellow arrows indicate apparent functional connectivity between contralateral 

relations between anatomically adjacent regions. M (motor cortex parcel); SS 
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Fig. 7. Seed based correlation analysis . Seed based correlation maps for all subjects generated from seeds in the left and right motor cortex (top two rows), parietal 

cortex (middle two rows), and frontal cortex (bottom two rows) in the nodal space for HbO (left two columns) and HbR (right two columns). The seed region is 

displayed as a black point. Brighter yellow colours indicate more significant correlations between nodes and the seed region. Features of FC (correlation between 

contralateral brain regions, fronto-parietal correlations) are evident in these maps. Colorbar is thresholded in grey to the t-stat value corresponding to an FDR 

correction of 0.005. 
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n the cortex moving away from the frontal cortex towards more pos-

erior regions, until reaching the parietal cortex, in which correlation

ncreases, again supporting the presence of fronto-parietal networks.

ltogether, these seed-based correlation maps appear to demonstrate

hysiologically meaningful FC patterns and the presence of expected FC

etworks. 

.3. Cortical parcel connectivity analysis 

Fig. 8 presents the results of comparing connectivity strength when

arcel pairs are classified into different connectivity types: short range,

nterhemispheric, longitudinal ipsilateral, or control. Considering all

ubjects, and as expected, short-range connections were significantly

tronger than interhemispheric, longitudinal ipsilateral, and control
9 
onnections for HbO and HbR ( p < 0.005). Interhemispheric connec-

ions were also stronger than ipsilateral longitudinal and control for

bO (p < 0.005), and control only for HbR ( p < 0.005). Consid-

ring subjects who had QS data, short-range connections were sig-

ificantly stronger for all other types of connections for HbO and

bR ( p < 0.005). No significant differences were found for connec-

ions during AS ( p = 0.0250–0.9597 for HbO; p = 0.0589–0.9129 for

bR). No significant differences were found when connection types

ere compared between sleep states for any types of connections

 p = 0.1470–0.9997 for HbO, p = 0.2093–0.6484 for HbR). The find-

ng of higher FC values for interhemispheric connections than con-

rol connections supports the finding of the seed-based correlation

nalysis of significant FC between contralateral homotopic brain re-

ions. 
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Fig. 8. Cortical Parcel Connectivity. Robust correlation values and Z -scores were calculated between all parcel pairs. Parcel pairs were then divided into groups 

according to type of connection: short-range, contralateral transverse/interhemispheric, ipsilateral longitudinal, or control. These are displayed below the box plots, 

grey circles represent parcels, dashed lines represent connections between parcels. Top row, HbO; bottom row, HbR. First column, all subjects’ data, defined as the 

longest data segment for each subject independent of sleep state; second column, AS data segments; third column, QS data segments. FC, defined here as the averaged 

Z-score values for each type of connection, are plotted as open circles. FC was strongest for short-range and interhemispheric connections and weakest for ipsilateral 

longitudinal and control connections. ∗ p < 0.05, ∗ ∗ p < 0.005. 
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.4. Connectivity-based independent component analysis (connICA) 

Further evidence of the presence of FC, as well as modulation of

C resulting from variations in sleep state, was demonstrated by con-

ICA ( Fig. 9 ). As described above in the methods, the output of the

onnICA analysis is a set of ICs for the selected PCA threshold. Each IC

orresponds to a spatial map demonstrating connections between nodes,

here each node corresponds to the centre of a particular cortical par-

el. Therefore, a connection between nodes represents a connection be-

ween two cortical parcels. In this analysis, 7 ICs were identified, each

ith an associated spatial map comprised of nodes and connections be-

ween nodes. The 7 spatial maps were visually evaluated to determine

hether the spatial map demonstrated features of FC, i.e., that that re-

embled previously demonstrated FC networks or physiologically plau-

ible connections within the brain. Of the 7, 5 demonstrated features

hat resembled previously demonstrated FC networks or physiologically

lausible connections within the brain. These 5 are presented in Fig. 9 ,

he remaining 2 maps not suggestive of any physiological patterns are

resented in Supplementary Fig. 2 . 

The spatial map of one IC suggested FC patterns of interhemispheric

onnectivity ( Fig. 9 a ) Weights for AS subjects in this network were

ignificantly higher than weights for QS subjects, suggesting that this

etwork is more present during AS than QS. Of note, this finding of

tronger interhemispheric connectivity during AS is consistent with our
10 
rior study of differences between AS and QS in neonates using fNIRS

 Lee et al., 2020 ). Among the other four selected ICs, notable FC patterns

ncluded frontal connectivity ( Fig. 9 b ), right hemisphere intrahemi-

pheric connectivity ( Fig. 9 c ), left hemisphere intrahemispheric connec-

ivity ( Fig. 9 d ), and short-range local connectivity ( Fig. 9 e ). For these

patial maps, no significant differences were observed in the weights of

S and QS ( p = 0.114–0.862). 

. Discussion 

To our knowledge this is the first study to employ wearable HD-DOT

n the newborn infant for cot-side neuroimaging. We adapted a pre-

iously demonstrated HD-DOT technology to the neonatal population

hrough the development of a newborn-friendly headgear that allowed

or long recording durations. We used this system to perform cot-side

tudies of functional brain activity during sleep and compare FC dynam-

cs across newborn infant sleep states, AS and QS. Our findings demon-

trate the feasibility of performing studies in newborn infants in clinical

ettings using wearable HD-DOT, and particularly to characterize task

ree, or resting-state (here, sleep) FC networks in the brain. 

The fibreless, modular, and portable design of the system employed

n this study enabled the application of a large number of sources and

etectors to the head with minimal preparation or disturbance to new-

orn infants. All of our study equipment could be easily transported on a
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Fig. 9. Results of connICA analysis . Five spatial maps demonstrating patterns suggestive of FC were identified. These patterns include interhemispheric connectivity, 

frontal connectivity, right hemisphere intrahemispheric connectivity, left hemisphere intrahemispheric connectivity, and short-range local connectivity. Each node 

in the spatial map corresponds to the centre of a particular cortical parcel, and connections between nodes represent functional connections between parcels. The 

spatial map in a) represents a FC pattern formed by interhemispheric edges showing a higher prominence during AS than QS ( p = 0.0053). 
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rolley such that the infant could remain in a naturalistic setting in their

ot next to their mother during the study. The total time from the trolley

ntering the mother’s room on the postnatal ward to the beginning of a

ecording was approximately 15 min. The system was well tolerated by

he infants, and for long durations, with the maximum study duration

asting over two hours. These considerations are particularly important

or vulnerable newborn infants, such as premature infants in intensive

are, for whom bulky optical fibres or transport out of the intensive care

nit is not feasible. 

This study also represents the first application of a cortical parcella-

ion scheme to 3D reconstructed HD-DOT data for newborn infants. This

as performed to reduce the dimensionality of the data (from thou-

ands of GM surface mesh nodes to 18 cortical parcels) to facilitate

C matrix generation and FC analyses. Cortical parcellation schemes

ave been previously used in fMRI studies of adults ( Lewis et al., 2022 ;

ordon et al., 2016 ; Schaefer et al., 2018 ) and infants ( Shi et al., 2018 ;

enchel et al., 2020 ; Alexander et al., 2017 ) for similar purposes. 

Our infant-friendly registration method enabled us to obtain the

hree-dimensional position of tiles relative to the cranial landmarks us-

ng the TrueDepth functionality of an X-series iPhone. Note that other

evices, including the structure.io scanner (https://structure.io), are

vailable to perform similar structured-illumination scanning. 

Our FC analyses considering all subject data demonstrated strong ev-

dence of FC networks present in our dataset. Group-level FC matrices

emonstrated features of stronger correlation between anatomically ad-

acent regions, and stronger correlations between contralateral frontal

egions. The seed-based correlation analyses revealed the expected ho-
11 
otopic correlation along the length of the motor cortices for the motor

eeds. The expected fronto-parietal FC was also observed in the frontal

eed and parietal seed correlations. Our connICA analysis produced 7 IC

patial maps, 5 of which were consistent with known patterns of FC and

nown FC networks (intrahemispheric connectivity, interhemispheric

onnectivity, short-range connectivity, and frontal connectivity). 

Our sleep state analyses comparing FC network features across AS

nd QS demonstrated stronger interhemispheric connections during

S relative to QS, and stronger local, short-range connections during

S relative to AS. This was first demonstrated in our cortical con-

ectivity analysis, in which QS had significant differences between

he strength of short-range connections and all other types of connec-

ions (interhemispheric, longitudinal ipsilateral, control, all connectiv-

ty) ( Fig. 8 ). This predominance of short-range connectivity was not

bserved for AS. Similarly, our connICA analysis revealed a spatial

ap with interhemispheric connections that more strongly represented

uring AS than QS ( Fig. 9 , p = 0.0053). These findings are consis-

ent with our prior study using fNIRS in which network-based statis-

ics and connICA analyses demonstrated stronger interhemispheric con-

ections during AS than QS ( Lee et al., 2020 ). In full-term neonates,

ore than half of sleep time is spent in AS ( Mirmiran et al., 2003 ).

nimal studies demonstrate that cerebral blood flow and oxygen de-

ivery is relatively higher in AS compared to QS, ( Morrison et al.,

005 ) and that cerebral metabolic rate of oxygen consumption is

s high in AS as during wakefulness ( Silvani et al., 2006 ). Along-

ide this evidence, the increased strength of interhemispheric con-

ections during AS observed in this study suggest that AS may be
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unctionally important in early development for interhemispheric con-

ections. 

The ability to study FC in neonates at the cot-side has the potential

o become a valuable clinical tool to assess cerebral function and devel-

pment in vulnerable neonatal patients. This is of clinical importance as

he incidence of neurodisability remains unchanged despite advances in

eonatal care and improvements in survival rates ( Costeloe et al., 2012 ).

owever, a number of issues must be addressed to yield more robust

atatypes. Even with wearable technologies, it remains difficult to cap-

ure a continuous recording of sufficient length that is motion artifact-

ree in neonates. This was one of the main limitations of this work. It is

ven more challenging if limited to a specific sleep state, and greater still

f there are segments of sleep states that are not easily identifiable as AS

r QS. As a result of these requirements, the durations of remaining data

ill inevitably be shorter than is desirable. Previous fNIRS RSFC stud-

es reported using durations as short as 2 min on neonates ( Lee et al.,

020 ; White et al., 2012 ), or 100 s in infants ( Bulgarelli et al., 2020 ;

ulgarelli et al., 2019 ). Wang et al. (2017) reported that 1-min record-

ng segments are enough to obtain FC maps with as high an accuracy

s 10 min segments Wang et al., 2017 . Our opinion remains, however,

hat longer data segments are critical, and the conservative nature of

ur data selection reflects this position. 

Another limitation of the current study is that the durations of AS

nd QS segments extracted for our FC analyses were significantly dif-

erent. This was almost certainly due to the fact that AS, by definition,

ill involve more frequent subject motion (see Supplementary Mate-

ial videos) ( Scher, 2008 ), which complicates the extraction of motion-

rtifact free segments of sufficient duration. While various motion arti-

act correction approaches are available, their impact on RSFC data in

nfants are not well known, and therefore we decided to take the most

onservative approach of only selecting motion artifact-free segments.

ur parameters for motion detection using hmrMortionArtifact were also

ore strict than previous publications. Even with these conservative de-

isions, we retained 62.2% (28/45) of subjects, which is consistent with

he average reported 60% retention rate in most infant fNIRS studies

 Lloyd-Fox et al., 2010 ). 

The acquired HD-DOT signal contains representing brain activ-

ty as well as processes related to systemic physiological changes

 Kirilina et al., 2012 ). It is important to consider that the effects of RSFC

nd sleep on the brain cannot be easily disentangled from physiologi-

al noise in the signal, and that shifting between sleep and wake itself

esults in large and widespread physiological changes that can affect

SFC, even after global signal regression ( Soon et al., 2021 ). 

Studies of premature newborn infants in intensive care using an

dapted version of this system are currently ongoing. Complications re-

ated to prematurity, such as white matter injury ( Smyser et al., 2013 )

emorrhagic parenchymal infarction ( Arichi et al., 2014 ), and expo-

ure to stress and painful procedures ( Smith et al., 2011 ) may affect

C development. Although sleep is the predominant behavioral state in

he neonate, the busy environment of the NICU can disrupt sleep or-

anization in both preterm and sick term neonates ( Scher et al., 1992 ;

cher et al., 2002 ). Future directions also include greater investigation

n the effects of motion artifact correction and short separation regres-

ion on infant RSFC data. We employed short separation regression by

emoving the average of all short separation channels, yet validation of

his approach in newborn infants, who have smaller heads and shorter

calp-to-brain distances than adults, is clearly needed. 

In conclusion, we have demonstrated the feasibility of using a wear-

ble HD-DOT system for cot-side functional neuroimaging of the new-

orn brain in clinical settings. The system is well-tolerated, adaptable,

nd easy to apply for long recording durations. We used this system

o capture basic features of FC in newborn infants during sleep, and

emonstrated differences in FC across newborn sleep states, AS and QS.

his work also represents the first study to apply a cortical parcellation

cheme for data dimensionality reduction in infant fNIRS data analysis.

iven the developments demonstrated here, we believe there is great
12 
otential for wearable HD-DOT to become integrated into the clinical

etting for studies of brain function in neonatal populations. 
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