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Abstract—In this paper, we investigate the detection of
interaction in videos between two people, namely, a caregiver
and an infant. We are interested in a particular type of human
interaction known as touch, as touch is a key social and
emotional signal used by caregivers when interacting with their
children. We propose an automatic touch event recognition
method to determine the potential time interval when the
caregiver touches the infant. In addition to label the touch
events, we also classify them into six touch types based on
which body part of infant has been touched. CNN based human
pose estimation and person segmentation are used to analyze
the spatial relationship between the caregivers hands and the
infants. We demonstrate promising results for touch detection
and show great potential of reducing human effort in manually
generating precise touch annotations.
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I. INTRODUCTION

Touch is a key social and emotional signal used by care-

givers when interacting with their children [1], [2], [3], [4],

[5], [6], [7], [8], [9], [10], [11], [12], [13]. Touch is presented

in an enormous amount of caregiver-infant interactions and

its presence has been found to impact infants’ attention,

arousal levels, behavioral, and emotional states [7], [8], [14],

[15], as well as to reduce infants’ stress [2]. Touch may be

specifically helpful to an infant in language development.

Recent work suggests that caregivers do in fact provide

their infants with touches that are informative both about

the beginnings and ends of words in continuous speech

and also about the meanings of words, at least in certain

contexts. Specifically, Abu-Zhaya, Seidl, and Cristia[16]

recorded caregivers interacting with their infants in a book-

reading situation and found that caregiver touch is used in a

way that might be helpful to two crucial language learning

tasks: segmenting the speech stream into words and mapping

words to their referents.

Until recently, the use of touch in mother-infant in-

teractions have employed a micro-genetic approach using

frame-by-frame annotation of touch cues yielding a detailed

examination of maternal touches during different types of

interactions [16]. Not only is annotating these video in-

teractions extremely time consuming, but observers also

have to be trained for several hours before they can begin

annotating the videos. For example, Abu-Zhaya et al. [16]

used ELAN [17] to annotate the touch events. Using their

detailed coding, it could take as much as 15 hours to annotate

a series of 120 touch events in a 5 minute caregiver-infant

interaction. Hence, given the importance of human touch in

infant language development, it would be very beneficial

to have tools that can easily quantify both the quantity

and quality of human touch that infants receive. Having an

automatic system that is capable of detecting touch events

would greatly reduce the amount of time spent on manually

annotating these events. The creation of such an automatic

system may also be helpful for medical teams working with

special populations and caregivers who have children with

special needs.

Touch event is defined as the time when the hands of the

caregiver has physical contact with infant in the context of

our work. Essentially, a touch will occur when the segmented

regions of the hands and the infant overlap. A touch event

is further categorized into one of the six touch types (head,

arm, hand, torso, leg, foot) based on which body part of

infant has been touched. Thus, successfully tracking the

hands of the caregiver and clearly detecting the outline of the

infant are crucial in our touch event detection. In this paper,

we propose an automated method for touch event detection.

The contributions of this paper are:

• The proposed method avoids using expensive precision

touch event annotations as training data, and takes

advantage of training neural network using public avail-

able datasets to produce intermediate results, such as

human pose information, that are used in the subsequent

touch detection step.

• Touch types are also detected based on the position

information of caregiver’s hands and infant body.

• We experimentally show our method reduces the po-

tential work needed for trained analyst to generates

accurate annotations.

II. RELATED WORK

There is a growing need to understand the content of

videos, such as human action recognition. Using automated

methods to analyze video contents are of great interest due

to the high expense and intense labor required to perform

these tasks manually. Video action recognition datasets like

2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)



UCF101 [18], Hollywood2 [19] have enabled improved

performance for these tasks. These datasets [18], [19] consist

of small video clips and each video clip has a label for

type of actions. A considerable amount of literature has

been published on classifying actions in video clips and

assign labels to each video clip [20], [21], [22]. However,

recognizing pairwise human interaction and making frame

level decision is still an open problem.

Previous work [23] in touch event detection uses hand-

crafted features for tracking hand and Grab-Cut [24] seg-

mentation for infant contour generation. Without using any

learning based methods, the method proposed in [23] re-

quires manual input from users: draw rectangles to initialize

hand positions and provides sure foreground and sure back-

ground mask for Grab-Cut segmentation. However, tracker

re-initialization was not addressed which became problem-

atic for longer videos if the track cannot be recovered and

errors can propagate from frame to frame. Later long-term

hand tracking [25] with self-correction capability that can

re-initialize the tracker position by integrating the human

pose [26] and hand detection [27] information improves

hand tracking performance. In this paper, we extend the idea

of using human pose information to refine caregiver’s hands

location. Additionally, we use a robust segmentation method,

Mask-RCNN, to predict the infant segmentation instead of

using graph-based method in [23].

A. Human Pose Estimation

A key step towards understanding people in images and

videos is accurate pose estimation [26]. A good pose estima-

tion system need to be robust to occlusion and invariant to

changes in appearance due to clothing or lighting condition.

Early research focuses on part based models[28], [29],

[30] or pictorial structures [31], [32]. Recent human pose

estimations has shifted from classical methods like graphical

models to deep neural networks. DeepPose [33] is one of

the earliest deep-learning based method to estimate human

poses which uses a convolutional architecture to directly

regress the coordinates of joints. In [34], [26], a structural

heat map is predicted to characterize the probabilities of

joints at different locations through multiple resolutions.

Previous work [25] uses stacked hour glasses [26] to

estimate caregiver’s joints locations and refine hand tracking

results. Common top down approaches [26], [33], [34]

apply single person detector and then estimate pose for

each detection. The top down approaches suffer from early

commitment. If the person detector fails in crowed or due

to occlusion, it is hard to recovery. A bottom up fashion

becomes suitable in our application, since the caregiver and

infant are always interacting with each other, and occlusion

are commonly seen in recorded sequences.

In this paper, we use a bottom up method proposed in

[35] to obtain pose information for caregiver and infant via

a two-branch CNN. The first branch learns joints location

using a multi-stage CNN [36]. The second branch use the

same CNN architecture to learn 2D vector fields, namely

part affinity fields, that encode the location and orientation of

limbs, where limbs refers to joint pairs for human. Predicted

joints are assembled to form full-body pose information for

caregiver and infant using a greedy parsing algorithm [35].

Hand joint points are generated using an additional hand

model described in [37], that the hand model is trained under

multiview.

B. Human Segmentation

Infant segmentation in [23] is obtained using Grab-cut

[24] with a manually defined mask in the first frame. The

mask contains several strokes indicates sure foreground

and sure background, and it is updated every frame using

segmentation results from the previous frame. However, the

Grab-cut based method is sensitive to errors from the mask

and the segmentation error may propagates. In this work,

a deep neural network called Mask R-CNN [38] is used

for infant segmentation. Mask R-CNN extends the object

detector Faster R-CNN [27] by adding a fully convolutional

network parallel to the classification and bounding box

regression networks, and outputs a binary mask to indicate

whether a pixel belongs to a candidate region.

III. METHOD

The proposed touch detection method performs two tasks:

(1) identify a frame is touch or non-touch by checking

whether the hand segments of the caregiver overlap with the

infant segment, (2) classify a detected touch frame into six

different touch type classes based on the spatial relationship

between keypoints on caregivers’ hand and infant body

parts. Hand segment updates are introduced in Section III-A,

infant segmentation is described in Section III-B, and touch

detection decision is described in Section III-C .

A. Hand Location

The pose estimator [35] we used is trained on Microsoft

COCO [39] dataset and a foot dataset [35] with a total of

25 joints. After obtaining wrist and elbow position from the

pose estimator, the hand joints detector [37] is applied by

assuming hand is located at an extend region of forearm

in the same direction, we denote as Icrop ∈ R
w×h×3. The

hand joints detector h(·) maps cropped hand region Icrop to

N joints locations xn associated with a score cn, where N
is 21 in this model. An example of human pose estimation

and hand joints estimation are shown in Figure 1, where

joints information for infant will be used in Section III-B and

Section III-C. We say a hand joint is detected if Equation 1

is equal to one, where �(·) is an indicator function, α and

β are empirically set to be 0.5 and 10, respectively.

Confidence = �((
∑

n∈[1...N ]

�(cn > α)) > β) (1)
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We extend the tightest bounding box enclosing all hand

joints ten pixels in horizontal and vertical direction, and

use the extended rectangular as the hand bounding box. If

the detected hand is not confident or the pose estimation

does not provide wrist or elbow position, then a feature

based tracking method is enabled to continue updating hand

position. The hand tracker uses color and motion features

as keypoints to track in each frame. Due to the lack of

feature points in small hand bounding boxes, instead of

using SIFT features [40] to detect keypoints, our tracker

uses contour points and Harris corners [41] to preserve

temporal information. Contour points are generated using a

pixel-based skin detection method [42]. Similarly, the final

hand bounding box is the extended rectangular enclosing all

keypoints. The hand tracker is disabled when a confident

hand joints prediction is available. The final hand segment

is obtained by applying skin detection inside the hand

bounding box.

Figure 1. Human pose estimation and hand joints estimation

B. Infant Segmentation

Mask-RCNN [38] is trained on Microsoft COCO [39] and

is used to generate infant segmentation. Infant body parts

may be occluded by caregiver or other objects during their

interaction, and Mask-RCNN tends to exclude the occluded

region, an example is shown in Figure 2(b). However, ex-

cluding occluded region is not consistence with the way we

detect touch event. Thus, we proposed a temporal refinement

to recovery the occluded region. We use the confidence

score of infant joints to assess the confidence of an infant

segmentation by assuming when parts are missing in the

infant segmentation, the confident score of occluded joints

is also low. Equation 1 is used to determine whether a infant

segmentation is confident, where α and β are empirically set

to be 0.3 and 20 respectively, and cn is the confidence score

for a infant joint here. An invalid infant segmentation at t1 is

recovered by using a confident segmentation from previous

frame at t0 as shown in Figure 2(c).

C. Touch Detection

The proposed method makes decision to label a frame

as “touch” or “non-touch” first, and then assigns a touch

type label Li to detected “touch” frame based which

(a) (b) (c)

Figure 2. Infant segmentation temporal refinement, (a) valid infant
segmentation at time t0 (b) occluded segmentation at time t1 (c) infant
segmentation recovered by temporal refinement at time t1.

part of infant body has been touched, where Li ∈
{“head”, “hand”, “torso”, “arm”, “leg”, “foot”} and i is

the index. Whether touch occurs in a given frame is deter-

mined by checking if caregiver’s hand segments, obtained

from Section III-A, overlap with the infant segmentation

from Section III-B.

To classify touch type, we analyze the spatial relationship

between caregiver’s hands and infant body parts. We define

six infant body parts corresponding to six touch type labels,

and each part contains a set of limbs, where limbs are pairs

of adjacent joint points belongs to that part. For example,

left elbow and left wrist are a pair of adjacent joint points,

they form the limb left forearm and belongs to the part

“arm”. We use a straight line connecting from one joint to

another to fit the body limbs, and using a set of points to

represent the fitted line, they are linearly spaced in 0.1 pixel

in horizontal direction. Then for a given frame I , there are

sets Si for i ∈ [1 . . . 6] contains fitted points for each part

respectively to represent infant body parts. We evaluate the

Euclidean distance of joint points of caregiver’s hands to

infant body parts. For each hand point xn, we get a label

zn using Equation 2.

zn = argmin
i

‖xn − xp‖22 , ∀xp ∈ Si (2)

The final touch type is determined as the majority vote of zn,

where n ∈ [1 . . . N ], and N is the total number of caregiver’s

hand points.

IV. EXPERIMENTS

A. Dataset

We evaluate the performance of our method on a testing

set which records the interactions between a caregiver and

an infant in a lab setting. Our testing dataset contains five

2500 frames video sequences and two long video sequences

(more than 9000 frames each). The video sequences were

acquired from different pairs of caregivers and infants at

different times and dates while under the same recording

settings. In these experiments, the caregivers were asked to

interact with the infant as they would normally do during

playtime. The infant was secured in a high chair and the

caregiver sat on a chair facing the infant. The lab where the

experiments were conducted had a green wall as background

and the high chair was also covered by a green blanket. A
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RGB camera and a clip-on wireless microphone were used

to record video and audio data. The videos were recorded

at a resolution of 1280× 720 at 30 fps.

The precise labels for each video in the testing set are

annotated by trained analyst, and this information is used

as groundtruth for our evaluation. The testing set contains

25, 043 out of 31, 374 non-touch frames. The type of touch

occured are listed in Table I.

Table I
TOUCH TYPES OCCURRENCES

Labels Head Hand Torso Arm Leg Foot
frames 403 472 367 168 3346 1575

B. Evaluation Metrics

Precision and recall are used to assess the performance of

the automated touch detection method. Our method aims to

narrow down the potential touch time intervals and provide

less frames for trained analyst to annotate compared to

original video sequences. Thus, recall of this method is more

important than precision. Another metric reduced amount in

numbe of frames is used to show how much work is reduced

for trained analyst when annotating only the potential touch

frames after using automated touch detection compared

to annotating the entire sequence. In other words, trained

analyst could skip annotating predicted non-touch frames

(FN +TN ), because they were less likely to contain touch

frames.

ReducedAmount =
FN + TN

TP + FP + FN + TN
(3)

For touch type detection, we use a confusion matrix to

evaluate the quality of our detection results.

C. Experiment Results

The touch/non-touch detection results are showed in Ta-

ble II. The proposed automatic touch detector successfully

captured 99.19% of touch frames with a precision score

of 48.13%. Reduced amount in table II shows the trained

analyst could skip 58.41% number of frames, which is a

great reduction compared to annotating every frame. The

proposed method outperforms previous work [23] by having

less missed touches, higher precision in predicted touches

and less frames needed for trained analyst to annotate.

The confusion matrix in Figure 3 illustrates the perfor-

mance of touch type detection. We observed that “Head”

class and “Foot” class have higher scores compare to other

classes. Considering those two classes are located in the

top and bottom part of an infant segmentation respectively,

they are less likely to be confused with other body parts.

Taking “Torso” class for an example, 77% of “Torso” class

are predicted correctly with 12% are classified as neighbor

class “Arm” and 9% are labeled as “Leg”. Because infant

body part torso are spatially close to legs and arms.

Figure 3. Confusion matrix of touch type labels

With 48.13% of precision for touch detection results, the

proposed method still detected more false alarm than true

touches. This was mainly due to the lack of precise hand

contour detection for some frames in the video and difficulty

in dealing with occlusions due to the camera viewing angle.

In addition, without the third dimension information, it is

difficult to distinguish from a true touch to fake touch illus-

trate in Figure 4(a) and Figure 4(b). Furthermore, we feel

these challenging potential touch frames require a second

look from trained analyst. From our results, the reduced

amount is larger for videos sequences where the caregiver is

well separated from the infant when they are not interacting

(Figure 4(c)) than those caregiver and infant pairs that are

in close-proximity (Figure 4(d)) for entire sequences.

(a) (b)

(c) (d)

Figure 4. Examples frames from testing set, (a) true touch (b) false touch
(c) well-separated (d) close-proximity

V. CONCLUSION

We proposed an automatic touch event detection system

that detects and tracks the caregiver’s hands, detects the

location of the infant and then defines a “touch” to occur

whenever the caregiver’s hand contours overlap with the

infants contour. The touch type label is assigned to predicted
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Table II
TOUCH INTERACTION DETECTION RESULTS FROM OUR DATASET

Total Frames Method Recall Precision Reduced Amount

Testing sequences 31,374
[23] 72.03% 24.66% 41.07%

Proposed 99.19% 48.13% 58.41%

touch frames based on the spatial relationship between

caregiver’s hands and infant body parts. The proposed

method avoids using expensive precise touch annotations

for training. Instead it takes advantage of CNN models that

are trained on large public datasets to produce intermediate

results needed to identify touches. The proposed method

allows trained analyst skip annotating 58.41% of frames and

still be able to capture more than 99% true touch frames.
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