UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Structure–Function Analysis in Macular Drusen With Mesopic and Scotopic Microperimetry

Montesano, G; Ometto, G; Higgins, BE; Iester, C; Balaskas, K; Tufail, A; Chakravarthy, U; ... Crabb, DP; + view all (2020) Structure–Function Analysis in Macular Drusen With Mesopic and Scotopic Microperimetry. Translational Vision Science and Technology , 9 (13) pp. 1-14. 10.1167/TVST.9.13.43. Green open access

[thumbnail of Structure-Function Analysis in Macular Drusen With Mesopic and Scotopic Microperimetry.pdf]
Preview
PDF
Structure-Function Analysis in Macular Drusen With Mesopic and Scotopic Microperimetry.pdf - Other

Download (1MB) | Preview

Abstract

PURPOSE: To investigate the structure–function relationship in eyes with drusen with mesopic and scotopic microperimetry. METHODS: We analyzed structural and functional data from 43 eyes with drusen. Functional data were acquired with mesopic and scotopic two-color (red and cyan) microperimetry. Normative values were calculated using data from 56 healthy eyes. Structural measurements were green autofluorescence and dense macular optical coherence tomography scans. The latter were used to calculate the retinal pigment epithelium elevation (RPE-E) and the photoreceptor reflectivity ratio (PRR). The pointwise structure–function relationship was measured with linear mixed models having the log-transformed structural parameters as predictors and the sensitivity loss (SL, deviation from normal) as the response variable. RESULTS: In the univariable analysis, the structural predictors were all significantly correlated (P < 0.05) with the SL in the mesopic and scotopic tests. In a multivariable model, mesopic microperimetry yielded the best structure–function relationship. All predictors were significant (P < 0.05), but the predictive power was weak (best R2 = 0.09). The relationship was improved when analyzing locations with abnormal RPE-E (best R2 = 0.18). CONCLUSIONS: Mesopic microperimetry shows better structure–function relationship compared to scotopic microperimetry; the relationship is weak, likely due to the early functional damage and the small number of tested locations affected by drusen. The relationship is stronger when locations with drusen are isolated for the mesopic and scotopic cyan test. TRANSLATIONAL RELEVANCE: These results could be useful to devise integrated structure–function methods to detect disease progression in intermediate age-related macular degeneration.

Type: Article
Title: Structure–Function Analysis in Macular Drusen With Mesopic and Scotopic Microperimetry
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1167/TVST.9.13.43
Publisher version: https://doi.org/10.1167/tvst.9.13.43
Language: English
Additional information: © 2020 The Author. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).
Keywords: age-related macular degeneration, drusen, microperimetry, optical coherence tomography, structure–function, Humans, Macular Degeneration, Retina, Retinal Drusen, Tomography, Optical Coherence, Visual Field Tests
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology
URI: https://discovery.ucl.ac.uk/id/eprint/10165123
Downloads since deposit
15Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item