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Measurement of the motional heating of a levitated nanoparticle by thermal light
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We report on measurements of the photon-induced heating of silica nanospheres levitated in a vacuum by
a thermal light source formed by a superluminescent diode. Heating of the nanospheres motion along the
three trap axes was measured as a function of gas pressure for two particle sizes and recoil heating was
shown to dominate other heating mechanisms due to relative intensity noise and beam pointing fluctuations.
Heating rates were also compared with the much lower reheating of the same sphere when levitated by
a laser.
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I. INTRODUCTION

Optomechanical interactions are routinely used to cool and
control the motion of mechanical objects including those in
gravitational wave detection [1] and levitated optomechanics
[2]. The effectiveness of such interactions are, however, even-
tually limited by the discrete nature of the light. For example,
fluctuations in the photon number lead to measurement noise
and recoil heating [3–6]. However, the optomechanical effects
of squeezed light, Bose-Einstein condensate of photons [7,8],
or the light of different photon statistics such as the Bose-
Einstein (BE) on levitated systems have not been explored
experimentally yet, although squeezed light sources have now
been proposed for reducing the recoil heating of such oscilla-
tors [9].

Recently, we demonstrated the trapping of nanoparticles
with thermal light from a superluminescent diode (SLD) [10].
The broadband nature of this source allows spectral shaping of
the output profile which can be used to create arbitrary optical
potentials. SLDs have also found applications in cold atoms in
places of lasers with potential use in atomtronics and quantum
simulation [11]. The low temporal coherence time and the BE
photon statistics of such light sources closely resemble that
of a blackbody (BB) source [12–14]. However, unlike a BB
source, a SLD has a high spatial coherence with a well-defined
polarization [15] allowing it to be tightly focused and used
for optical trapping [10]. Moreover, as this light is of thermal
nature, the motional temperature of any object levitated by
such light should, in the absence of other noise, equilibrate to
the temperature of the light source as originally envisioned by
Einstein [16].

We report on the measurement of the heating of a nanome-
chanical oscillator in a high vacuum when levitated using
thermal light obtained from a SLD. In particular, we con-
firm the enhanced heating of the levitated oscillator expected
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from such a source when compared with the same oscillator
levitated by a laser. We also describe the measurement of
the direction-dependent heating along all three translational
axes of the levitated nanoparticle. We compare this with the
heating rates expected from both relative intensity noise and
beam pointing instabilities and confirm that the recoil heating
from thermal photons dominates all other heating mechanisms
present in our optical trap.

II. EXPERIMENT

To measure the heating of the levitated particle by the
thermal light from the SLD and a laser we create an optical
tweezer by focusing either beam using the same high numeri-
cal aperture lens (NA = 0.77) [Fig. 1(a)]. The laser operates at
a wavelength of 1064 nm, while the superluminescent diode is
centered around 1060 nm. We trap a silica nanoparticle using
one of the beams and then transfer it to the other trapping
beam when required [10]. At any time only one beam is used.
The spectral intensity profiles of our SLD and the laser are
shown in Fig. 1(b).

III. THEORETICAL MODEL

The thermal light from the SLD is amplified spontaneous
emission and its photon statistics follow the BE distribution
[14,17]. In a BE distribution [12,18,19] the average and the
variance of the photon number are n̄ = 1

exp [(h̄ω−μc )/kBT ]−1 and

�n2 = n̄ + n̄2, where ω and c are the angular frequency and
the speed of light, kB is the Boltzmann constant, T is the bulk
temperature of the light source, and μc is the chemical poten-
tial or the band gap of the underlying p-n junction. Thermal
light contains many modes with a mode density Md = ω2

π2c3

[18]. The average number of photon emitted in a mode per
second by a SLD of optical gain G(ω) and a p-n junction
of area Apn is G(ω)ApncMd n̄. The output power in a mode is
GApn

π2c2
h̄ω3

exp [(h̄ω−μc )/kBT ]−1 . When G(ω) = 1 and Apn = 1 m2 and
μc = 0, one recovers the usual blackbody spectrum [12,18].
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FIG. 1. (a) A schematic of our experimental setup in which a
particle can be levitated and parametrically cooled using a laser beam
or the light from a superluminescent diode. Different components are
as follows: D is balanced photodiode, M represnets the mirror, BS
the beam splitter, L the lens, PBS is the polarizing beam splitter, and
λ/2 the half wave plate. (b) Normalized spectral intensity profiles
of the superluminescent diode, a single longitudinal mode laser, and
an ideal blackbody source at T = 295 K. The spectral profile of the
SLD is fitted with a Gaussian (black solid line). (c) Relative intensity
noise (RIN) of the SLD and the laser that we use in our experiment.

The motional dynamics of a levitated particle can be de-
scribed by the Langevin equation

d2Rq

dt2
+ γ q dRq

dt
+ ω2

qRq = f q(t ) + f q
n (t )

M
, (1)

where Rq is the displacement along the axis q with q be-
ing the translational axis x, y, or z. f q(t ) is a zero mean
Gaussian process with an autocorrelation 〈 f q(t ) f q(t + τ )〉 =
2MkB(γgTg + γ

q
phT q

ph)δ(τ ) and the total damping rate is γ q =
γg + γ

q
f b + γ

q
ph. The particle has mass M and oscillation fre-

quency ωq. The damping rate due to the gas molecules at
a temperature Tg is γg while γ

q
ph and T q

ph are the damping
rate and temperature of the photon bath [6,16,20]. Due to the
directional nature of photon scattering, γ

q
ph is axis dependent

[20,21]. The damping exerted by the feedback is given by
γ

q
fb. Additional heating effects [22] due to classical intensity

noise and beam pointing fluctuations are captured in f q
n (t ).

Figure 1(c) shows the relative intensity noise (RIN) of our
SLD and laser as a function of frequency. Between 30 kHz and
200 kHz, where we perform our reheating measurements, our
SLD has a RIN between −131 dB/Hz and −135 dB/Hz and
the laser has a RIN between −133 dB/Hz and −136 dB/Hz
[5,14]. The reheating rate of the center-of-mass (CM) motion
due to RIN depends on the trap frequency and the CM tem-
perature of the oscillator while that due to the beam pointing
instabilities depends only on ωq [22]. Overall, the heating rate
due to f q

n (t ) is negligible, as we show below.

The fluctuation in the number of photons that interacts
with the particle leads to CM heating much like the heat-
ing due to the fluctuating force originating from the gas
molecules [16,18]. Energy gained by the particle per pho-
ton scattering event along direction q is δEq = h̄2k2

2M (kq
i +

kq
s )2, where k = ω/c. kq

i = [sin θi cos φi sin θi sin φi cos θi]
and kq

s = [sin θs cos φs sin θs sin φs cos θs] are the projections
of the unit vectors parallel to the incident (ki) and the scattered
(ks) photons on the three translational axes with θi (θs) and
φi (φs) the polar and azimuthal angle of the incident (scat-
tered) photons. The variance of the photon number in a mode
[18] is �N2 = G(ω)ApncMd�n2. The total energy gained
[6,16,18] by the particle of polarizability α and scattering
cross section σs = α2ω4

6πε2
0 c4 due to the fluctuation in the photon

number along q is

dE

dt

∣∣∣∣
q

ph

=
∫ π

0

∫ 2π

0

∫ θmx

0

∫ 2π

0

∫ ∞

ωc

Prσs�N2δEq

�mxAw

dωd�id�s,

≈ γ
q
phkBT, (2)

where Aw is the cross-sectional area of the trapping beam at
the focus, dωq = sin θidφidθi, d�s = sin θsdφsdθs, and Pr =

3
8π

(cos2 θs cos2 φs + sin2 φs) is the spatial distribution of the
scattered photons [21]. �mx = 2π (1 − cos θmx ) is the solid
angle formed by an incident photon with θmx being the largest
angle between the wave vector of an incident photon and the
z axis. We take θmx = 0.43 rad, equivalent to an angle that
a light ray makes at the full width half maximum of the
Gaussian beam when focused using a high NA lens. γ

q
ph =

�q σcI
Mc2

h̄ωc
kBT with �q = [0.12 0.22 0.65], where I is the inten-

sity of the trapping light at the focus. To obtain an approximate
analytical solution to compare with the recoil heating from a
laser we initially set G(ω) constant. Note that the value cal-
culated by numerical simulations performed using the exact
profile G(ω) of the SLD are ≈10% different. The frequency
of the lowest-energy photon in the SLD emission spectrum
is ωc [λc = 2πc/ωc ≈ 1090 nm, see Fig. 1(b)] while σc is
the scattering cross section of the particle at ωc. Note that
Eq. (2) provides the standard recoil heating rates [21] when
the laser variance of �N2 = N̄ is used instead of that of the
SLD, where N̄ is the average number of photons in the laser
beam. For example, for a monochromatic laser of frequency
ω, in the plane-wave case where θmx = 0, Eq. (2) gives the
recoil heating rate as derived by Seberson et al. [21] given in
the x, y, and z directions by [1 2 7] h̄ωσsI

10Mc2 , respectively.
We measure the heating rate of the optically trapped

nanoparticles by first cooling [10,23,24] the particle in a high
vacuum (γg < γ

q
ph) and then turning off the feedback cooling

(γfb = 0) allowing it to heat up. The evolution of the particle’s
energy [22,25] is

Eq
cm(t ) = Ė q

bp + Eq
∞γ q

γ q − γ
q
rin

+
(

Eq
i − Ė q

bp + Eq
∞γ q

γ q − γ
q
rin

)
e−t (γ q−γ

q
rin ), (3)

where Eq
i is the initial energy of the particle. The heating

rate due to the beam pointing instability is Ė q
bp and γ

q
rin is
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FIG. 2. Position power spectral densities (PSDs) of a 55 ± 16 nm
radius silica nanosphere levitated using a SLD. The trapping power
at the focus was 130 mW. The top graphs show PSDs at 5 mbar while
the bottoms graphs are the PSDs at 5 × 10−8 mbar when the particle
is parametrically feedback cooled.

associated with RIN (see Appendix ). The equilibrium energy
of the particle, when no other heating mechanism, e.g., RIN is
present, is Eq

∞ = kB(T q
phγ

q
ph + Tgγg)/2γq. The reheating time

is typically very long (1000’s of seconds), and as levitated
particles are extremely sensitive to noise, a prolonged mea-
surement time is generally not feasible. We instead perform
the experiment within the linear regime [5] of the evolution
process, i.e., t � 2π/(γ q − γ

q
rin), where we have the center-

of-mass energy Eq
cm(t ) ≈ Eq

i + Eq
∞γ qt .

IV. RESULTS

Figure 2 shows the position power spectral densities
(PSDs) of a SLD levitated 55 ± 16 nm radius particle at
5 mBar and at 5 × 10−8 mBar when it is parametrically feed-
back cooled. The particle size is obtained from the linewidth
of the position PSD at 5 mBar. The uncertainty in the particle
size arises from the 30% uncertainty in our measurement of
pressure. At the lowest pressure the CM temperatures were
55 mK, 22 mK, and 45 mK along the x (polarization axis),
y (orthogonal to the light field polarization), and z (trap-
ping field propagation direction) axes, respectively. Once the
lowest temperature is reached, the parametric feedback is
switched off and the particle’s dynamics are monitored as a
function of time. After 150 ms, feedback is reactivated and
the particle is again feedback cooled. Parametric feedback
cooling is again switched off allowing the particle to reheat.
This process is repeated 600 times and the averaged results
are shown in Fig. 3(a), where we used T q

cm(t ) = 2Eq
cm(t )/kB.

We determine the energy of the particle using Eq
cm(t ) =

Mω2
q〈q(t )2〉/2. The solid lines in Fig. 3(a) are fits of the form

aq
0 + aq

1t . The derived aq
1 is the sum of the reheating rates

due to the gas molecules and that due to photons. The rate
of increase of Tcm along the y and z axes are approximately
equal and are significantly higher than that along the x axis.

Figure 3(b) represents plots of reheating rates of the parti-
cle as a function of residual gas pressure. As the gas pressure
increases, the directional dependence of the reheating rates
diminishes and eventually becomes negligible at a pressure
of 2 × 10−6 mBar as the heating rate due to the gas molecules
dominates those due to all other sources of heating. We fit a

FIG. 3. (a) The evolution of the center-of-mass temperature of
a r = 55 ± 12 nm radius silica nanoparticle at 4 × 10−7 mbar after
parametric feedback is switched off at time zero. This particle was
levitated using the SLD. Each data point is the average of 600 time
traces. The x axis represents the direction parallel to the light field
polarization direction while the y axis is orthogonal to the light field
polarization direction. The z axis is the propagation direction of the
trapping light beam. Solid lines represent lines of the form a0 + aq

1t ,
where t denotes time, a0 is the offset, and aq

1 is the reheating rate.
(b) Reheating rates as functions of gas pressure. Solid lines represent
aq

ph + a2Pg, where aq
ph is the heating rate due to the recoil of photons

along the axis q, Pg is the gas pressure inside the vacuum chamber,
and a2 is a proportionality constant.

function of the form aq
ph + a2Pg to the reheating rates, where

Pg is the gas pressure, aq
ph is the reheating rate due to the

photon recoil [Eq. (2)], and a2 is the heating rate due to the
gas molecules. We fit one line for the x direction and one for y
and z axes which have similar values. The recoil heating rates
given by the fits are ax

ph = 0.08 ± 0.01 K/s along the x axis
and ay,z

ph = 0.45 ± 0.07 K/s along the y and z axes. From the
fit we retrieve a reheating rate (a2Pg) of 0.018 ± 0.006 K/s
due to the gas molecules at Pg = 5 × 10−8 mBar. This is
consistent with that calculated for a particle of radius 55 nm.
The theoretical photonic recoil heating rates [Eq. (2)] are
0.07 ± 0.05 K/s, 0.15 ± 0.13 K/s 0.44 ± 0.39 K/s along the
x, y, and z axes, respectively. The error bars arise from the
systematic uncertainty in the particle size. The values for the x
and z axes agree within the uncertainty of each measurement,
but the heating rate in the y direction is higher than expected.
To calculate the theoretical values we used a trapping power of
130 mW at the focus and 2π h̄c/μc = 1115 nm (the band gap
of the p-n junction). The relatively good agreement between
the calculated and experimentally derived values for the x and
z axes indicates that the heating rates at low pressures in these
axes are dominated by the recoil of thermal photons. The
reheating rates [22] due to RIN at 5 × 10−8 mBar were cal-
culated to be 4.33 × 10−5 K/s, 2.48 × 10−5 K/s, and 2.81 ×
10−6 K/s along the x, y, and z axes, respectively. These are
about 1.89 × 103, 1.82 × 104, 1.60 × 105 times lower than
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FIG. 4. Reheating rates of a r = 70 ± 20 nm radius silica
nanoparticle. This particle was initially trapped using the SLD beam
and data on the reheating rates (top three data sets) at different gas
pressures were collected. Subsequently, the particle was transferred
to the laser beam and the reheating rates (bottom three data sets)
at different gas pressure were recorded. The trapping laser power at
the focus was 105 mW. Solid black lines represent fits of the form
aq

ph + a2Pg.

ax,y,z
ph found above. Likewise, we find that the heating rates

due to the beam pointing instability are orders of magnitude
smaller than the recoil heating rates.

The axial variation of the heating rate results from the di-
rectional nature of the incoming field and the dipolar radiation
pattern of the scattered field. Although the recoil heating from
a thermal source is significantly larger than that from a laser,
the ratio of these heating rates are only dependent on the
spatial distribution of the incident and the scattered fields. In
the Rayleigh limit, for a laser at 1064 nm, the ratios of these
heating rates were calculated to be [1, 2, 7] for a plane wave
(normalized by the x-axis value) and [1.0, 1.7, 4.6] when
focused using a NA = 0.77 lens [21]. We consider only the
Rayleigh regime in our calculation and obtain the same ratios
as calculated for the laser for plane-wave illumination and
[1.0, 1.81, 5.4] for the focused beam using our simple model.
The measured ratio of the heating rates are [1, 5.6, 5.6]
which, within the uncertainty of our measurements, are con-
sistent with the predictions in the x and z directions, but are
not in agreement for the y axis which indicates that there is
again likely to be some excess heating on this axis.

We now present measurements of heating rates on a larger
(radius r = 70 ± 20 nm) particle levitated either by the SLD
or the laser. To make these measurements the particle was
transferred between the laser and the SLD traps [10]. At
any time only one light beam is used for trapping. For this
larger particle the recoil heating rates are larger than those
of the 55 nm particle as the scattering cross section scales as
r6. The gas damping has a smaller effect as it scales with
radius as r−1. Figure 4 shows plots of the reheating rates
of this larger particle under the SLD and the laser levitation
as a function of the residual gas pressure. Parametric feed-
back cooling along the z axis was not as efficient as for the
55 nm particle and the lowest CM temperature on this axis
was ≈1 K. This meant that the particle was more suscep-
tible to heating from parametric noise along this axis [5].

Like the smaller particle, the reheating rates of this larger
particle also show a directional dependence which reduces
with the increasing gas pressure as heating from gas col-
lisions dominates. For this larger particle, the pressure at
which the gas heating rate exceeds the recoil heating rates
is approximately 7 × 10−6 mBar. This is about three times
higher than that for the 55 nm particle and consistent with
the reheating rates expected from gas damping. From fits to
the SLD data we determine experimental recoil heating rates
of 0.12 ± 0.02 K/s, 0.74 ± 0.07 K/s, 1.03 ± 0.25 K/s along
the x, y, and z directions. From Eq. (2), the theoretical heat-
ing rates are 0.12 ± 0.10 K/s, 0.31 ± 0.26 K/s, and 0.90 ±
0.78 K/s along the x, y, and z axes, respectively. Again the
experimental heating rates are consistent with the theoretical
values along the x and z axes but not in the y axis. Moreover,
these rates are twice as large as those of 55 nm particle and
agree, within the uncertainty, with the values determined by
the spheres radii. The experimental gas heating rate found
from the fit is 0.014 ± 0.004 K/s at 5 × 10−8 mBar. This is
again inline with the damping rate of particles of these size.
The expected heating rates due to the laser are almost an
order of magnitude lower than those due to the SLD. As
evident in Fig. 4, we do not observe any directional laser
heating in our experiment. We fit only one line and retrieve
a small offset of 0.02 ± 0.01 K/s. This is comparable to the
heating rate due to the gas molecules at 5 × 10−8 mBar. In
the Rayleigh approximation [21], the recoil heating rates due
to the laser are dE

dt |xph = 0.018 ± 0.009 K/s, dE
dt |yph = 0.036 ±

.030 K/s dE
dt |zph = 0.124 ± 0.095 K/s. Given we do not mea-

sure any axial dependence in the laser-induced reheating rates,
deviation between the theoretical and experimental values is
not unusual. Discrepancies may also arise from the approx-
imations, e.g., Rayleigh scattering was made [21]. Similar
deviations from the theory were recorded in other experiments
when such a heating rate along one axis was measured using
a laser [5,26].

V. DISCUSSION

If the particle can be held at lower pressures, where gas
heating is not significant and where other sources of heating
are not important, the particle should come to an equilibrium
temperature determined by the thermal light, in this case the
bulk temperature of the SLD [6,16]. Damping of the particle
motion occurs via the Doppler effect. For a thermal light
source at temperature T , the Doppler effect can be repre-
sented by an effective temperature [27] T/(1 + βi,s) with
βi = v.ki/c, βs = v.ks/c and v is the velocity of the particle.
The damping force [6,27] is

F q =
∫ π

0

∫ 2π

0

∫ θmx

0

∫ 2π

0

∫ ∞

ωc

Prσsh̄k
(
Nik

q
i + Nsk

q
s
)

�mxAw

dωd�id�s,

≈ 2Mγ
q
ph vq, (4)

where Ni and Ns are the photon numbers given by
GApncMd

exp [ h̄ω(1+βi )−μc
kBT ]−1

and GApncMd

exp [ h̄ω(1+βs )−μc
kBT ]−1

, respectively. At equilib-

rium the loss and gain in energy must be equal [6], e.g.,
F qvq = dE

dt |qph, where v2
q = kBT q

ph/M. This implies T q
ph = T

2
[6]. That is the motional temperature of the particle thermal-
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izes within a factor of the bulk temperature of the photon
source. The equilibration time 2π/γ z

ph along the z axis for
a 70 nm radius particle is ≈2000 s. To reach equilibrium,
however, other sources of heating such as vibrations and
parametric heating which become more important at higher
temperatures need to be minimized.

VI. CONCLUSIONS

In conclusion, we demonstrated the enhanced recoil heat-
ing of a levitated optomechanical object due to thermal
photons obtained from a superluminescent diode. This heat-
ing process dominates over other sources of heating such
as the relative intensity noise and pointing instabilities. We
measured the photonic heating rates along the all three trap
axes for two sizes of nanoparticles. Future experiments could
seek to measure the equilibrium temperature of a levitated
particle in the photon-dominated regime in a deep trap. Here,
one can consider ion or Paul traps for levitation, which are
significantly deeper than the tweezer trap used here and are
capable of levitating particles in a high vacuum without feed-
back cooling. In this case, the center-of-mass temperature of
such an oscillator should thermalize with the bulk temperature
of the photon source as envisioned by Einstein. Bose-Einstein
condensates of photons [7,8] and thermalized photon gases
[19] which have well-defined thermodynamic temperatures
can potentially be used to control the center-of-mass temper-
ature of such oscillators.

APPENDIX A: PHOTON STATISTICS OF AMPLIFIED
SPONTANEOUS EMISSION

The Bose-Einstein (BE) distribution [28] is given by

P(n) = n̄n

(1 + n̄)n+1
, (A1)

where n̄(ω) = 1/(exp [(h̄ω)/(kBT )] − 1) is the mean photon
number in a mode. The variance of the photon number of
a general BE distribution is given by �n2 = n̄ + n̄2. For
a p-n junction, the average photon number in a mode is
modified by the inclusion of a chemical potential μc or
the band gap of the underlying p-n junction, i.e., n̄(ω) =

1/(exp [(h̄ω − μc)/(kBT )] − 1) [12]. For the blackbody radi-
ation and similarly for the emission from a biased p-n junction
[12], the degeneracy factor of a mode is given by ω2

π2c3 . As
a result, the mean photon number and the variance of our
thermal source (SLD) per meter cube per hertz [18] before
amplification are nth = ω2

π2c3 n̄ and �n2
th = ω2

π2c3 �n2. From a
p-n junction photons are emitted via a surface area of Apn.
Moreover, in a SLD the output of a p-n junction is amplified
using a single pass waveguide amplifier with a gain profile
G(ω). Thus the overall mean photon number and the variance
in time �t are G(ω)c�tApnnth and G(ω)c�tApn�n2

th. Explic-
itly, the variance and the mean photon number per second per
meter square are

N (ω) = G(ω)cApnnth

= G(ω)Apnω
2

π2c2

1

exp [(h̄ω − μc)/kBT ] − 1
, (A2)

�N2(ω) = G(ω)cApn�n2
th

= G(ω)Apnω
2

π2c2

exp [(h̄ω − μc)/kBT ]

[exp [(h̄ω − μc)/kBT ] − 1]2
. (A3)

APPENDIX B: OUTPUT POWER
OF A SUPERLUMINESCENT DIODE

The output power from a SLD with an effective surface
area Apn can be expressed as

P =
∫ ∞

ωc

N (ω)h̄ωdω

=
∫ ∞

ωc

G(ω)cApnnthh̄ωdω

=
∫ ∞

ωc

h̄ω3

π2c2

ApnG(ω)dω

exp[(h̄ω − μc)/kBT ] − 1
. (B1)

Even for a well behaved G(ω), e.g., the Gaussian-
Lorentzian profile, Eq. (B1) does not have a closed from
solution. For finding a closed form solution, we expand the
denominator into a series taking into consideration the fact
(h̄ω − μc) � kBT and then perform integration assuming
G(ω) is constant

P =
∫ ∞

ωc

h̄ω3

π2c2

ApnG(ω)dω

exp [(h̄ω − μc)/kBT ] − 1

= ApnG
∫ ∞

ωc

h̄ω3

π2c2
[exp [−(h̄ω − μc)/kBT ] + exp [−2(h̄ω − μc)/kBT ] + exp [−3(h̄ω − μc)/kBT ] + · · · ]dω

≈ ApnGkBT ω3
c

π2c2

[
exp [−(h̄ω − μc)/kBT ] + 1

2
exp [−2(h̄ω − μc)/kBT ] + 1

3
exp [−3(h̄ω − μc)/kBT ] + · · ·

]

≈ ApnGkBT ω3
c

π2c2
exp [−(h̄ω − μc)/kBT ], (B2)

where in the third line we kept terms with ω3
c given

ω3
c � ω2

c � ωc. In the last line we made the approxima-
tion exp [−(h̄ω − μc)/(kBT )] � exp [−2(h̄ω − μc)/(kBT )].

From the manufacturer’s specifications, we find the overall
gain is ≈30 dB while from our measurement [see Fig. 1(b), the
main text] we know 2πc/ωc ≈ 1090 nm. The manufacturer
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does not provide any information about the chemical potential
(band gap of the the p-n junction) and the area of the p-n
junction. On the manufacturer’s website (Innolume, GmBH)
we find that they detect light up to about 1115 nm, although
the intensity is about five orders of magnitude weaker than
that at the peak. Based on this we use hc/μc = 1115 nm in
our calculation. Finally, to ensure that we obtain the mea-
sured power of P ≈ 130 mW at the trapping location, we take
Apn = 2.2μm × 2.2μm. Through the numerical integration

of Eq. (B1) using the measured Gaussian profile, we obtain
P = 134 mW.

APPENDIX C: HEATING DUE TO SCATTERING
OF THERMAL PHOTONS

The gain in energy as specified in the main article is given
[6,21]

dE

dt

∣∣∣∣
q

ph

=
∫ π

0

∫ 2π

0

∫ θmx

0

∫ 2π

0

∫ ∞

ωc

Prσs�NδEq

�mxAw

dωd�id�s

= ApnG

2MAw�mx

∫ π

0

∫ 2π

0

∫ θmx

0

∫ 2π

0

∫ ∞

ωc

Prσs
ω2 �n2

π2c2
h̄2k2

(
kq

i + kq
s

)2
dωd�id�s

= ApnG

2MAw�mx

∫ π

0

∫ 2π

0

∫ θmx

0

∫ 2π

0

∫ ∞

ωc

Prσs
ω2

π2c2

[ 1

exp [(h̄ω − μc)/kBT ] − 1
+ 1

[exp [(h̄ω − μc)/kBT ] − 1]2

]

× h̄2k2
(
kq

i + kq
s

)2
dωd�id�s

≈ γ
q
phkBT, (C1)

where, as in Eq. (B2), we expanded the exponentials in the
third line and then performed integration and kept the high-
est order in ωc, here ω8

c . Moreover, as in the main text, we

have γ
q
ph = �q σcI

Mc2
h̄ωc
kBT , where I = ApnG exp [(μc−h̄ωc )/kBT ]kBT ω3

c

Awπ2c2 .
For θmx we used 0.43 rad. This is equivalent to an angle that
a light ray makes at the full width half maximum of the
Gaussian beam when focused using a high NA lens. From
this expression we calculate heating rates due to recoil for
the 55 nm particle in the x, y, and z axes as 8 × 10−2 K/s,
4.5 × 10−1 K/s, and 4.5 × 10−1 K/s.

APPENDIX D: HEATING DUE TO RELATIVE
INTENSITY NOISE

The reheating rate due to the fluctuation in the intensity of
the trapping light [22] is given by

dE

dt

∣∣∣∣
q

RIN

= ω2
q

4
SRIN(ωq/π )Eq

i , (D1)

where ωq is the trap frequency along the axis q, SRIN is
the spectral density of the relative intensity noise (RIN),
Eq

i = 1
2 kBT q

i is the initial energy of the particle before the
parametric feedback is switched of,f and T q

i is the initial
temperature. Since we measure heating rates at different
pressure settings [see Figs. 3(a) and 4 in the main text],
T q

i , and thus Eq
i , depend on the pressure. At all pressure

settings for which data were shown in Fig. 3(a), we have
T q

i < 100 mK along all axes. In the frequency range 35 kHz to
200 kHz, our SLD has [see Fig. 1(c), main text] has a relative
intensity noise SRIN =−135 dB Hz−1 which corresponds to
SRIN(ωq/π ) = 10−13.5 Hz−1. For the r = 55 ± 16 nm particle
in the main text, the trap frequencies in each direction are
ωx/2π = 71 kHz, ωy/2π = 85 kHz, and ωz/2π = 20 kHz.
At the lowest pressure of 5 × 10−8 mBar (Fig. 3(b), main
text), the temperatures are T x

i = 55 mK, T y
i = 22 mK and

T z
i = 45 mK. We calculate dE

dt |xRIN = 4.33 × 10−5 K/s,

dE
dt |yRIN = 2.48 × 10−5 K/s and dE

dt |zRIN = 2.81 × 10−6 K/s.
For the 55 ± 16 nm particle (see the main text), these rates
are about 103–105 times smaller than the heating rates due to
thermal recoil.

APPENDIX E: HEATING DUE TO THE BEAM
POINTING FLUCTUATIONS

The CM heating rate due to beam pointing instabilities
from the light source and optical components was determined
for atoms trapped in far off-resonant optical traps [22]. We
used this expression, and measurement of the angular beam
pointing instability of the SLD, just before the final focusing
lens to estimate the displacement noise of the focused tweezer
beam. The heating rate due to beam pointing instability is not
dependent on the initial energy of the oscillator and is given
by

dE

dt

∣∣∣∣
q

bp

= π

2
Mω4

qSq
bp(ωq), (E1)

where Sq
bp(ωq) is the one-sided position spectral density aris-

ing from the fluctuation of the trapping beam’s position and
the other variables are defined above. We measure the pointing
stability of the SLD beam in the focal plane using a quadrant
photo diode which has the bandwidth required to measure
fluctuations at twice the highest trap frequencies. The power
spectral density associated with these beam fluctuations along
each axis are determined by monitoring the difference signal
in the horizontal (x axis) and vertical directions (y axis). To
calibrate the difference signal from the quadrant photodiode
we mount it on a translation stage and translate the diode
along the x axis to record the difference signal as a function
of displacement. For small displacements shown this is linear
with a constant slope of Cbp m/V for each axis. For the x axis,
this constant is 1.17 × 10−4 m/V and a similar value of x is
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FIG. 5. Power spectral density associated with the SLD beam
pointing instability along the x axis.

recorded in the y axis. To estimate the position fluctuation
of the tightly focused trapping beam we assume that the
predominant fluctuations are due to angular beam pointing
instabilities. We convert the measurement of displacement
to an angular beam pointing fluctuation given by CbpV/D,
where D is the distance from the last optical element before
it is focused by the high NA lens. Finally, to determine the
beam displacement at the beam focus we perform ray tracing
calculations through the lens to find the focal displacement in
the image plane for different input angles. This displacement
is linear for small angular deviations of the beam and given by
dx
dθ

= 1.3 × 10−3 m/rad. From the measurement of the beam
pointing fluctuations we subsequently determine the position
fluctuations at the focus by taking the PSD of the expression

CbpV/D dx
dθ

where V is the difference signal from each axis of
the quadrant photodiode for D = 2 m.

Figure 5 is the plot of the fluctuations in the difference
signal on the quadrant photodiode converted to position spec-
tral density at the laser beam focus given by Sq

bp. At low
frequencies up to approximately 10 kHz the PSD has a 1/ f 2

rolloff as shown by the fit, which is consistent with the
displacement of mechanical components above resonance.
These measurements and the rolloff are also consistent
with relative measurements of position fluctuations made on
the the advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO) laser system [29]. At the higher frequen-
cies where our trap frequencies reside, the PSD is dominated
by the RIN and the shot noise of the quadrant detector. The
beam pointing stability cannot be directly measured, but we
extrapolate the 1/ f 2 dependence measured at low frequencies
up to 10 kHz to estimate the pointing stability. To estimate
the heating due to beam pointing fluctuations we extrapolate
the 1/ f 2 fit due to beam pointing stability to calculate Sq

bp

at the x, y, and z trap frequencies given by 2.3 × 10−30,
1.8 × 10−31, and 1.3 × 10−31. We calculate the heating rates
due to the beam pointing instability using Eq. (E1) as dE

dt |xbp =
1 × 10−3 K/s, dE

dt |ybp = 2 × 10−3, and dE
dt |zbp = 1 × 10−4 K/s

along the x, y, and z axes, respectively, which are more
than two orders of magnitude smaller than the recoil heating
rates.

APPENDIX F: EVOLUTION TOWARDS
THE EQUILIBRIUM

With the feedback is of,f i.e., γfb = 0, we have γ q = γ
q
ph +

γg (see the main text). In this case, the rate of change of energy
[22,25]

d〈Eq〉
dt

= −γ q〈Eq〉 + γ qEq
∞ + Ė q

rin + Ė q
bp

= −γ q〈Eq〉 + γ qEq
∞ + ω2

q

4
Srin(ωq/π )〈Eq〉 + π

2
Mω4

qSq
bp(ωq)

= −γ q〈Eq〉 + γ qEq
∞ + γ

q
rin〈Eq〉 + π

2
Mω4

qSq
bp(ωq)

Eq(t ) =
π
2 Mω4

qSq
bp(ωq) + Eq

∞γ q

γ q − γ
q
rin

+
[

Eq
i −

π
2 Mω4

qSq
bp(ωq) + Eq

∞γ q

γ q − γ
q
rin

]
exp

[ − t
(
γ q − γ

q
rin

)]

≈
π
2 Mω4

qSq
bp(ωq) + Eq

∞γ q

γ q − γ
q
rin

+
[

Eq
i −

π
2 Mω4

qSq
bp(ωq) + Eq

∞γ q

γ q − γ
q
rin

][
1 − t

(
γ q − γ

q
rin

)]

= Eq
i +

[
Eq

i

(
γ

q
rin − γ q

) + π

2
Mω4

qSq
bp(ωq) + γ qEq

∞

]
t, (F1)

where γ
q
rin = ω2

q

4 Srin(ωq/π ) and Eq
∞ = kBT q

∞/2 = kB(T q
phγ

q
ph +

Tgγg)/2γq with T q
∞ = (T q

phγ
q
ph + Tgγg)/γq as defined in the

main text. In arriving at Eq. (F1), we expanded the exponential
when t is small. In our case, γ

q
rin and γ q are comparable (see

above). Moreover, Eq
i � Eq

∞ and π
2 Mω4

qSq
bp(ωq) � γ qEq

∞,

consequently, as in the main text, we can write

Eq(t )q ≈ Eq
i + γ qEq

∞t,

T (t )q = T q
i + γ qT q

∞t . (F2)
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