Modelling the inflation of an elastic membrane with a load

Ge Shi!, Azadeh Shariati'!, Jialei Shi', Nicolas Herzig?, Sara-Adela Abad!* and Helge A. Wurdemann'

Abstract— One way to achieve large deformations and elon-
gation in soft material robots involves the creation of structures
made of a number of inflatable elastic membranes. Physical
interactions between the inflated membranes or with their
environment can lead to shape changes resulting in forces
being exerted to the environment. In this paper, we present
an analytical model to describe the inflation of a circular
elastic membrane, which is constrained by a load, based on
finite deformation theory. Our model will allow to understand
the deformation, volume change and the height of the mem-
brane. Our model can predict the height-pressure trend of the
deformed membrane shape. Experimental validation includes
the investigation of the membrane inflation under load, open-
loop force control involving an inflated membrane, and the
inflation of a stack of three actuators. The height-pressure
model results lay within the experimental data and predicted
the non-linear trend well. The model can be used for open-loop
force control within a +15% error. Also, we present the results
for a manipulator made of a series of inflated membranes under
load conditions.

I. INTRODUCTION

Soft material robots offer a number of advantages in-
cluding their flexibility, adaptability, and safe interaction,
compared to traditional robots made of rigid materials [1].
The soft material that these robots are made of allow the
systems to undergo large deformations, e.g., bending motions
or elongation. Some soft actuators, such as the actuator
presented by Connolly or the STIFF-FLOP actuator, can
achieve elongations of around 100%, and 70%, respectively
[2], [3]. In order to increase the level of deformation, some
researchers have investigated to create soft manipulators
made of thin membranes [4]. Inflating a structure composed
of a series of thin membranes will the lead to a desired
motion. For instance, Herzig et al. developed a highly
extensible actuator joint based on the inflation of circular
elastic membranes [5]. The hyperelastic balloon membranes
demonstrate an overall extensibility of 179%. In addition,
such a manipulator is capable of bearing weights of more
than twenty times its own weight. Other soft actuators
include the one proposed by Lee et al.. Here, a pneumatic
3-axis micro-actuator has been built based on balloons. The
actuator was used as a haptic display to provide tactile
information [6]. In fact, the inflation of a circular elastic
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membrane is also adopted to produce haptic stimuli in
many applications [7]-[9]. One example has been proposed
by Shi er al. adopting the inflation of a circular elastic
membrane to produce haptic stimuli in prostheses. Their
proposed system is purely mechanical driven, where the
compression force is transmitted from an ellipsoid fingertip
to the feedback actuator when the finger physically interacts
with the environment [10].

Extensive research on the inflation of hyperelastic mem-
branes has been explored. Treloar, for the first time, char-
acterised the inflation of a rubber sheet [11]. The theory
of non-linear membranes has been presented by Green and
Adkins [12]. Adkins and Rivlin introduced the large defor-
mation theory to calculate the deformation arising in the
inflation of a flat circular membrane [13]. Yang and Feng
simplified the problem of large axisymmetric deformations
of non-linear elastic membranes [14]. In their approach, a
set of second-order ordinary differential equations (ODE)
were developed compared to the Adkin and Rivlin model,
which was a large set of equations [13], [14]. Feng and
Yang studied the mechanical and geometrical behaviour of
an inflated spherical non-linear membrane compressed with
two flat plates, considering the thermodynamic property of
the compressible fluid that filled the membrane [15]. Feng
and Huang analysed the behaviour of an inflated membrane
undergoing compression with a rigid surface in which the
contact was not axisymmetric [16].

Recent models include the inflation of different pre-shaped
membranes such as sphere and torus, contact of the mem-
brane with various contact shapes and different stiffness of
the shapes [17]-[21]. For instance, Yang et al. analytically
investigated the behaviour of inflat

ed circular membranes with large deformation in con-

tact with various interfaces of the concave, convex, upper
hemisphere and lower hemispheres. The analytical solution
was validated with experimental results [21]. Bourmel et
al. studied the membrane inflated and compressed with
compressible fluid experimentally and numerically. The rela-
tionship between the change in shape and the applied force
is explained by their analytical model [17].
Overall, interactions between a number of elastic membranes
or membranes and their environment become interesting for
the design and application of soft robotic manipulators. Of
particular interest would be the relationship between their
deformation, internal pressure and forces, that inflated elastic
membranes are able to exert. Here, an analytical model based
on finite deformation theory could be helpful to model the
membrane inflation under load predicting the deformed shape
of the membrane and inflation height.



The contribution of this paper lies in the presented an-
alytical model describing the inflation of a circular elastic
membrane, which is constrained by a load, based on finite
deformation theory (see Fig. 1). Our model will allow
us to understand the deformation, volume change and the
height of the membrane. To validate our model, experi-
mental results include the analysis of the inflation process
of membranes with different dimensions under load. The
experimentally validated model could benefit soft robotics
and haptic systems made of membrane actuators, such as
membrane inflation, the force controlling and the stack of
actuators design.

This paper will be structured as follows: the introduction
of the analytical model is presented in Section II. Section III
introduces the experimental protocol, setup and results. The
experiments contain validation, the control application of
the model and the inflation of a stack of three actuators.
Section IV discusses the results and compares the compu-
tational and experimental results. Conclusions are presented
in Section. V.

II. ANALYTICAL MODEL OF AN ELASTIC MEMBRANE

The assumption for the analytical model include:

e The circular elastic membrane is axisymmetric in
the undeformed and deformed conditions. The shear
stresses are zero from the profile view.

o The thickness of the ellipsoid membrane A, is small
relative to the radius (i.e., (i;)/(ro) < 1). Therefore, the
change of thickness during deformation is considered
negligible.

o The pressure under the contact region is evenly dis-
tributed and equal to the pressure inside the membrane.

The flat circular elastic membrane with a radius rq is inflated
quasi-statically by a pressure pg. The load M exerts force F,
on the membrane and vertically constrains the inflation to a
height hg as shown in Fig. 1. In Fig. 1(a), a circular elastic
membrane (in blue colour) with radius rg is constrained on its
edge. A rigid flat load with a smooth surface is located on top
of the membrane. In Fig. 1(b), by applying an air pressure pg
into the membrane, the elastic membrane is inflated and the
load is lifted vertically to the height hy. The contact region
between the load and the elastic membrane is flat, but the
non-contact area of the membrane is able to inflate freely.
The elastic membrane, in its undeformed status, is fitted into
the cylindrical coordinates (x,0,y) to describe the shape of
the membrane. The origin of the coordinate frame is located
in the centroid of the membrane. Cylindrical coordinates
(p,0,1n) are used to mathematically describe the inflated
membrane. As the membrane is axisymmetric along the n
and y axes, the profile view of the undeformed membrane
and inflated membrane is fitted into a Cartesian coordinate
frame about (x,y) and (p,n). xr denotes the value of x of
the boundary between the contact and free inflation regions.

1) Potential energy function: The Mooney-Rivlin ap-
proach is applied to model the incompressible elastic material
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Fig. 1: Overview of an elastic membrane (blue line) being
inflated and indented with a load in Cartesian coordinates.
(a) The elastic membrane is fixed on the edge with a load
M exerting a force on the top. (b) The elastic membrane is
inflated with pressure pg. The membrane inflates to height
hg, which is limited by the load. The enlarged view of the
membrane shows the thickness of the membrane 4, and the
infinitesimal arc length ds and dS of a segment.

of the membrane with the potential strain-energy function W,
which is defined by (1).

W=Ci(l —3)+C (I —3), Q)

with C; and C, defined as the material constants. The
principal strain invariants /; and I, related to the principal
stretch ratios, A, Ay, respectively, and defined as in (2).
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2) Free-inflation region: Along the axisymmetric elastic
membranes, the infinitesimal arc length of the undeformed
membrane is defined as ds lying on the horizontal axis x
in the Cartesian coordinate frame as Fig. 1(a) shows. The

inflated arc length is dS shown in Fig. 1(b) and defined in (3).
ds =dx, 3)
dS = (dp>+dn?)'/?.

In this paper, variables with subscripts 1 and 2 represent
the meridian and circumferential direction, respectively. The



primes in the equations are the derivatives of the horizontal
position x.

The principal stretch ratios A; and A, are defined as the
ratio between the undeformed lengths and the deformed
lengths of an infinitesimal arc segment of the membrane.
A and A, are formulated in (4).

ds
M= = (o @ ()2,
) “)
B =2
X

The equilibrium equations for the free inflation region of the
membrane in both meridian tangential and normal direction
are described by (5).

dy 1
dp +p(T1 ) =0, )
k1T + k2T = po,
where P is the pressure acting on the membrane. The stress
resultants 7; of each membrane segment are given by (6).
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where /; is the membrane thickness. The principal curvature
ki and k, is determined in (8).
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In the inflation region of the membrane, the variable ® is

defined as @ = % dzx By substituting (4), (7) and (8) into (5),
it is possible to obtain (9) as a function of (41,4, ®):
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The above set of equations applies to the inflation while
xr<x<rop (named as the inflated state). The height of the
inflation membrane yields in (10).

hy =1 = / (A2 —p"))dx.
xr

The volume within the membrane in the inflated state are
described by (11).

(10)
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3) Contact region: As shown in Fig. 1(b), the load with
the rigid flat surface flattens the inflated membrane where
in contact with the inflated membrane. The geometry of
the flattened membrane within the contact region (0<x<xr)
yields in (12).

!

n' =0, (x<xr). (12)

Hence, the principal stretch in the contact region is in (13).
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Assuming no friction between the contact surfaces of the
load and the membrane, the membrane is able to stretch
freely during the inflation. The equilibrium states of the
contact region are equivalent to the free inflation region.
Substituting (7), (8) and (13) into (5), the system of equations
(A1, 42, @) governing in the contact region results in (14).
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During the inflation, the force on the contact area acting on
the load is calculated in (15).

F = Acpo = mai-po, (15)
where A, is the contact area and pg the applied pressure in
the inflated membrane.

4) Boundary conditions: The boundary conditions for the
inflation with the load are formulated in (16).
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Hence, with a pressure po and force F, exerted on the
membrane, the ideal contact area between the load and the
membrane can be calculated as in (17).
F,
Ao = 2. (17)
Po
Due to the contact area being a circular shape, the radius of

the contact area as well as the contact boundary xr is given
in (18).
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5) Numerical solution procedure: The procedure of solv-
ing the set of ordinary differential equations describing the
inflation of a circular elastic membrane with a load is present
in Fig. 2. Firstly, the threshold of the minimum pressure p,,in
is calculated, where the load and the elastic membrane are
in full contact with the entire surface of the membrane, i.e.,
this surface has the radius ry, to lift the load with a height,
which is calculated by (19).
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After the pressure pg passes through the minimum pressure
threshold, the membrane is inflated in the free inflation
region. The contact boundary between the elastic membrane
and the load is assumed as xr. Given the initial condition
A=A = A at x =0, we apply the bisection method to
find Ay, so that the boundary conditions are satisfied, which
is A,Z(l-nﬂa,,-on) =1 at x = ryp. The force acting on the load
is calculated by 15 and compared with the exerted force by
the load to determine the equilibrium static states between
the membrane and the load. If the force from the membrane
is not equal to the force exerted by the load, the contact
boundary xr is re-assumed and then repeated the previous
calculation until the results satisfy all the restrictions and
conditions shown in (16)-(17). The ordinary differential
equations are solved using the Runge Kutta method in Matlab
2022 with a tolerance of 1072%: the solution is usually
obtained in less than 20 iterations.

III. EXPERIMENTS: VALIDATION AND APPLICATION OF
THE ANALYTICAL MODEL

A. Experiment 1: Validation of the analytical model

Protocol: Experiment 1 is designed to validate the ana-
lytical model, analysing the relationship between the height
of the inflated membrane (called inflation height), applied
pressure, and acting force on the load. The circular elastic
membrane was fabricated with two radii of I0mm and 15 mm
and constrained on its edges to a test platform. Two loads
of 50g and 100g were placed on the load bearing that
is in full contact with the elastic membrane. The exerted
force by the load is equal to the gravity of load itself
in this configuration. By applying air pressure from 0 to
15kPa to the membrane, the height of the inflated membrane
was measured by an Aurora electromagnetic sensor. Each
inflation trial was repeated for five times, and the average of
the trials was reported.

Experimental setup: The test platform for Experiment 1
is shown in Fig. 3(a). The circular elastic membrane is made
from Ecoflex 00-50 (Smooth-on, Inc.) with the thickness of
h; = 2mm. It was constrained on a 3D printed platform
(Formlab 3B, Though 2000). The hyperelastic property of
Ecoflex 00-50 is determined by the strain-stress curve from
a uniaxial tensile test, where the constants of the Mooney-
Rivlin model are C; = 8045Pa and C, = 5015Pa. An air
inlet located underneath ensures the inflation and deflation
process. A rigid plate with a load is placed on top of the
membrane. Two rods constrain the plate motion only in
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Fig. 2: Flow chart of calculations for solving the set of ordi-
nary differential equations (9)-(14) for an elastic membrane
inflation with a load.

the vertical direction. An electromagnetic position sensor
(NDI Aurora) is attached to the load tracking the inflation
height. The pressure applied on the elastic membrane is
controlled by a proportional pressure regulator (Camozzi
K8P) to regulate and monitor the pressure. Pressurised air
is supplied by a compressor (HYUNDAI Model HY5508).

Results: Fig. 3(b) shows the model results of the
deformation of the I5mm-radius membrane bearing a
constant load of 100g with the internal air pressure ranging
from 2kPa to 10kPa. As the pressure increases, the height
increases non-linearly, decreasing the contact boundary
xr marked by red dots in Fig. 3(b). The stiffness of the
membrane increases with increasing inflation and pressure
as well. The boundary of the membrane converges at 15 mm
in line with the clamped membrane during the experiments.

The experimental results in Fig. 3(c) illustrate the
relationship between the pressure po and inflation height
ho for two radii of (10mm and 15mm) under two loads
(100g and 200g), respectively. The solid and dashed lines
represent the results from the analytical model. The blue
scatter represents the experimental results of the 15mm
membrane and the red scatters the results of the 10mm
membrane during inflation. Overall, the curves show a
non-linear behaviour. For the 100g load, the threshold of
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Fig. 3: (a) Setup for the validation of the inflation of a circular elastic membrane with a load (Experiment 1). The elastic
membrane is clamped to its rigid parts with an air inlet being inserted from the bottom. A Aurora position sensor is mounted
to the rods tracking the inflation height. The enlarged view shows the membrane deformation when inflated by 2kPa and
10kPa with a load of 100g. (b) Deformation results from the analytical model of the 15mm radius membrane calculated
using 10. The membrane was inflated by a range of 2kPa to 10kPa with a 100g load constraining the inflation process.
The red points represent the contact boundary xr. (c) Inflation height against pressure values from experimental and model
results of two membranes (rp = 10mm and rp = 15mm) with 100g and 200g loads acting on the membrane.

minimum pressure pp, to achieve membrane inflation is
2.98kPa for the 10mm membrane and 1.41kPa for the
15mm membrane. For the 200g load, pi, is 5.34kPa and
2.56kPa for the 10mm and 15 mm membranes, respectively.
As shown in Fig. 3, the non-linearity between the pressure
and inflation height increases when the load increases or
the radius decreases. Overall, the model results lay in with
the experiment results and validated the analytical model.

B. Experiment 2: Open-loop force control.

Protocol: After the validation in Experiment 1, the ap-
plication of our model as a control method is the focus of
Experiment 2. Fig. 4(a) shows the open-loop diagram of the
control system. The desired g is sent to the linear rail driving
the contact plate to a desired position, where the distance
between the contact plate and the base of the membrane
is hg. The desired force F,, and desired /g are inputs to the
controller. The controller computes the predicted pressure pg
and sends the corresponding pressure values to the regulator
controlling the pressure pg at the desired level. Then, the
force F exerted to the contact plate to the inflated membrane
is recorded by a sensor.

The elastic membrane with a 15mm radius was selected
in Experiment 2. The inflated membrane was in contact with
the rigid contact plate, as shown in Fig. 4(b). The contact
plate, which is attached to a force sensor, is moved in a range
between iy = Smm to 15 mm. Two force values were chosen
to be maintained by the rigid plate, which are F;, = I N and
2N. The results are reported in Fig. 5.

Experimental setup: A workbench was built for Experi-
ment 2, which contains a linear rail (Zaber X LSM100A) and
a 6-axis force sensor (IIT FT17). The elastic membrane was
clamped on a 3D-printed platform with an air inlet inserted
at the bottom. The pressure was controlled by a proportional

pressure regulator (Camozzi K8P) with an air compressor
(HYUNDAI Model HY5508) providing pneumatic pressure.

Results: Fig. 5 shows the experimental and analytical
results for five trials running for 120 seconds. Each trial
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Fig. 4: (a) Open-loop control diagram for the implementation
of our analytical model. (b) Setup for Experiment 2. The
elastic membrane is fixed on the workbench with an air inlet
at the bottom. A FT-17Force sensor with the contact plate
opposing the membrane is mounted to a linear rail. The force
sensor can sense the force that the pressurised membrane
exerts to the rigid plate. The enlarged views show the inflated
elastic membranes with the force sensor and contact plate
when the measured distances Ay are Smm and 15mm.
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Fig. 5: Experimental and computational results for the open-loop control of the membrane inflation with a 15mm radius and
2mm thickness (Experiment 2). (a) Results of five trials running 120 seconds. As the movement of the contact plate with
the force sensor changes in the distance sy from Smm to 15mm, the predicted pressure pgy regarding the hy was applied on
the membrane resulting in the force F measured by the force sensor to maintain at a constant force value (1N to 2N). (b)
Non-linear force on the contact plate versus displacement of five trails.

contains two stages: the unloading (contact plate moving
away from the membrane from Smm to 15mm) and loading
stage (contact plate approaching the membrane from 15mm
to Smm). According to the measured distance hg, the
pressure po was calculated based on the interpolation
results from the model. This values is then applied to the
membrane in the experiment resulting in the force acting
on the contact plate. The non-linear behaviour of increasing
and decreasing the pressure pg is synchronised with the
change of displacement hg. During the test, the fluctuation
of the applied pressure results in an unstable force output.
The pressure fluctuation is similar for the 1 N and 2N trials.
However, it can be observed that the fluctuation is slightly
more intensive for the 2N trial. This might be due to the
sensitivity of the membrane increasing when a larger load
of pressure level is applied to the membrane.

The relationship between the membrane displacement
versus the acting force is shown in Fig. 5(b) for five
repetitions. The acting force for the 1N and 2N trial is
within +£15% error. In Fig. 5(b), the maximum error for
the 1N trial is at around 15mm displacement, exceeding an
average of 14.3% for the 1IN trial. For the 2N condition,
the maximum error points are at 7.5mm displacement,
equivalent to a relative average error of 12.2%. In addition,
the hysteresis has a value of 12.84% at 12.4 mm displacement
and 22.47% at 13.1 mm displacement corresponding for the
IN condition and 2N condition, respectively.

C. Experiment 3: Application of the analytical model with
a stack of actuators

Protocol: To investigate the application of our analytical
model to the application of soft robotic systems made of
inflatable membranes such as presented in [5], a stack of

three actuators, driven by the inflation of circular elastic
membranes, was built. All actuators have a 15mm radius
membrane and were placed vertically on top of each other.
Applying the same pressure ranging from OkPa to 15kPa,
the total inflation height (Ah) for a 200 g load was measured
and is compared with the results of the analytical model
calculating the total inflation height (Ah = ho1 + hoa + ho3).

Experimental setup: Fig. 6(a) presents the experimental
setup for the stack test. Three actuators are stacked vertically
with three rods constraining the one-directional movement.
The circular elastic membranes, which are made of Ecoflex
50-00, have a 15mm radius and 2mm thickness. The actu-
ators were mounted on a 3D-printed rigid case to ensure
a one-directional movement. An electromagnetic position
sensor (NDI Aurora) was attached to the load to track the
inflated height of the load. The pressure of each actuator
was controlled by a proportional pressure regulator (Camozzi
K8P), and an air compressor (HYUNDAI Model HY5508)
provided the pneumatic power.

Results: Fig. 6(b) shows the results of the inflation height
ho of a single membrane, which is calculated by the ana-
Iytical model with varied load (force) from ON to 4N and
pressure po from OkPa to 15kPa. The interpolation of the
calculated results shows a non-linear surface. As the pressure
increases, the inflation height increases in a non-linear way.
The increase of the membrane load or acting force results
in the non-linear decrease of the height as well. With the
regressed model, the inflation height can be calculated with
pressure and force as inputs.

In order to calculate the inflation of the stack, loads for
each actuator were calculated. The measured weight of the
actuator and rigid case is 20g. Hence, the load of the top
actuator is 200g, 220g for the middle and 240g for the
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Fig. 6: (a) Three actuators with a 15mm radius membrane are stacked vertically. A load is placed at the top. Rods ensure
the stack movement in vertical direction only. The enlarged view shows the stack when actuated by 15kPa pressure. (b)
The interpolation results from the analytical model with inflation height hg, pressure pg and acting force F. (c) Inflation
height Ak against applied pressure pg for the experimental and model results for the stack of three actuators being inflated

by pressure values between OkPa to 15kPa.

bottom actuator, respectively. Fig. 6(c) shows the relationship
of the inflation height versus the pressure applied to three
actuators of five trials. The threshold for the minimum
pressure pp;, of inflation is 3.23kPa for the top actuator.
The bottom two actuators remain undeformed here. As the
pressure increases, the inflation height of the load increases
non-linearly, reaching 51.23mm inflation height. For the
pressure range of OkPa to 10kPa, the experimental and
model results show an agreement with trend of the non-linear
behaviour. As the pressure increases further, the deviation
between the model results and the experimental increases.

IV. DISCUSSIONS

Looking at the results for Experiment 1, the model
shows an agreement with the experimental results. As the
load of the membrane increases, the non-linearity of the
inflation height versus the applied pressure becomes notable.
Especially at the beginning of the inflation, the membrane
is relatively soft and able to resist the load. As the pressure
increases, the inflated membrane becomes stiffer, and the
effect of the load compression is less significant, which
results in the rapid height increase when the pressure is
increased. Due to the fact that the membrane material is
hyperelastic, the membrane expands in a non-linear way
with increasing pressure values as shown in Fig. 3(b).

Experiment 2 then demonstrates the versatility of the
analytical model. In order to control the membrane inflation
in real time, an regressed relationship between the inflation
height and pressure was applied. The results show the model
can predict the force acting on the object by the membrane
inflation for the 1N and 2N trial with the error being below
14.3% and 12.2%, respectively. However, the hysteresis
increases with larger loading and pressure level since the
non-linear elasticity of the membrane becomes notable as
the pressure increases.

For Experiment 3, a three dimensional interpolation in
Fig. 6(b) was applied to calculate the inflation of the stack
of actuators. The rate of the non-linearity of the inflation
height and pressure (Fig. 6(c)) are similar for the model and
experimental results. It can be observed that the deviation
proportionally increases as the pressure increases. Manifold
reasons might be the cause for this discrepancy. Firstly,
friction exists in many kinetic contacts, such as the contact
between elastic membranes and rigid components and
actuators with rods. Despite the contacts being lubricated
by synthetic oil, the friction between actuators becomes
significant at a high loading level. The increase of friction
results in less membrane releasing the contact and being
able to inflate freely. In addition, the adhesive contact
between the membrane and rigid case might strengthen in
varied conditions.

As mentioned in the beginning of the paper, a number
of assumptions for the analytical model have been made.
Firstly, a potential change in the membrane’s thickness was
not considered during the calculation since the thickness
of the membrane is significantly smaller than the radius
ro of the membrane. Hence, one limitation might occur if
the membrane thickness would be increased. In addition,
the assumption of the smooth contact between the elastic
membrane and the load surface is notable. In this paper,
the contacts between the elastic membrane and load in
every experiment were lubricated by synthetic oil and
reduced the friction and adhesive contact significantly. The
lack of lubrication might cause a deviation between the
experimental and model results.

V. CONCLUSION

This paper presents and validates an analytical model
based on the finite deformation theory to model the inflation



of a circular elastic membrane with a constant load, as well
as validates the model based on the experimental results.
This model is capable of calculating the non-linear increase
of the inflation height against pressure, and the results
are in line with the experimental data(Fig. 3(c)). In our
approach, the boundary conditions of the ODEs are varied to
adapt to different cases. By setting up the dimension of the
membrane(ry, i, ), material property(Cy,C3), desired force(F)
and pressure(py), the inflation can be solved with the results
of inflation height(hg) and deformed shape as illustrated in
Fig. 3(b) and (c). In experiment 2, the interpolation of the
model results can be applied to a control strategy to maintain
a constant force level on a moving object. In experiment 3, a
stack of three actuators, which are actuated by the inflation
of the circular elastic membrane, was built, and the model
can predict the trend of the stack inflation.

Our analytical model can predict the inflated membrane
with a constant load. Hence, by designing the membrane
actuators for soft robotics and haptic systems with different
dimensions with different materials, the model can predict
the deformation of the membrane at varying loading levels
and optimise the design to replicate the height-pressure
curve. The deformation theory for the elastic membrane is
not limited to the soft robotic and haptic systems and has
the potential ability to model in manifold cases.

In the future, we aim to simplify the complexity of
the ODEs and calculation algorithm, which is capable of
real-time control cases with deformed membrane output.
Furthermore, rather than vertical inflation, contact between
the membrane and the object at different angle need to
be investigated. And the fiction in the contact needs to be
considered to increase the model’s accuracy.
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