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Highlights

• We analyse the Work Saved over Sampling (WSS) evaluation measure.
• We propose to normalise WSS using min-max normalisation.
• Normalised WSS enables citation screening comparisons across different datasets.
• Normalised WSS equals True Negative Rate (TNR).
• We present benchmark results with normalised WSS for 15 citation screening datasets.
• We compare normalised WSS with precision and AUC for evaluating citation screening task.
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Abstract

Citation screening is an essential and time-consuming step of the systematic

literature review process in medicine. Multiple previous studies have proposed

various automation techniques to assist manual annotators in this tedious task.

The most widely used measure for the evaluation of automated citation screening

techniques is Work Saved over Sampling (WSS). In this work, we analyse this

measure and examine its drawbacks. We subsequently propose to normalise

WSS which enables citation screening performance comparisons across different

systematic reviews. We analytically show that normalised WSS is equivalent

∗Corresponding author
Email addresses: wojciech.kusa@tuwien.ac.at (Wojciech Kusa), aldo.lipani@acm.org

(Aldo Lipani), petr.knoth@open.ac.uk (Petr Knoth), allan.hanbury@tuwien.ac.at (Allan
Hanbury)

URL: https://informatics.tuwien.ac.at/people/wojciech-kusa (Wojciech Kusa),
https://www.ucl.ac.uk/civil-environmental-geomatic-engineering/people/dr-aldo-lipani

(Aldo Lipani), https://www.open.ac.uk/people/pk3295 (Petr Knoth),
https://informatics.tuwien.ac.at/people/allan-hanbury (Allan Hanbury)

Preprint submitted to Intelligent Systems with Applications February 7, 2023



to the True Negative Rate (TNR). Finally, we provide benchmark scores for

fifteen systematic review datasets with TNR@95% recall measure and compare

the measure with Precision and AUC.

Keywords: Citation Screening, Study Selection, Evaluation, Work Saved over

Sampling (WSS), Systematic Literature Review (SLR)

1. Introduction

Systematic literature reviews are recall-focused, secondary studies that syn-

thesise all relevant data providing an answer to a specific clinical question.

Since their conclusions are considered as the gold standard in evidence-based

medicine, systematic reviews follow strict criteria. Conducting systematic re-5

views is a slow, repetitive, and time-consuming process that relies primarily on

human labour.

Out of all stages of a systematic literature review process, citation screening

(also known as the selection of primary studies) is estimated to be one of the

most time-consuming steps (Bannach-Brown et al., 2019). It often requires10

screening (tens of) thousands of studies for eligibility with respect to the study

criteria. Traditionally, the process is divided into two stages. In the first stage,

only titles and abstracts are appraised to save time and resources. This is

followed by an appraisal of the full texts of articles, a more detailed and more

time-consuming assessment of all papers included from the first stage (Tsafnat15

et al., 2018).

To this date, many machine learning algorithms have been proposed to au-

tomate citation screening. According to the recent systematic review on this

topic (van Dinter et al., 2021b), there were 25 papers published on automation

of the selection of primary studies. An older systematic review from 2014 found20

in total 44 studies dealing implicitly or explicitly with the problem of citation

screening (O’Mara-Eves et al., 2015). Already several commercial systems offer,

to some degree, automation of the screening process.

All automated citation screening models can be coarsely classified into either
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classification or ranking approaches. Both follow a similar approach and use25

natural language processing to train a supervised model on an annotated sample

of a dataset to determine whether a paper should be included or excluded from

the review. A successful automated citation screening algorithm should miss as

few relevant papers as possible and also save time for the reviewers by removing

irrelevant papers.30

In the field of citation screening, the most commonly used custom evaluation

measure is Work Saved over Sampling at r% recall (WSS@r%). It was intro-

duced by Cohen et al. (2006) as a measure being able to balance between very

high recall and optimal precision. They describe WSS@r% as “the percentage

of papers that meet the original search criteria that the reviewers do not have35

to read (because they have been screened out by the classifier).” It estimates

the human screening workload reduction by using automation tools, assuming

a fixed recall level of r%.

Work Saved over Sampling given a recall set at r%, is defined as follows:

WSS@r% =
TN + FN

N
− (1− r) , (1)

where TN is the number of true negatives (excludes that were correctly re-40

moved), FN is the number of false negatives (includes that were incorrectly

marked as irrelevant documents), and N is the total number of documents.

The choice of recall level is influenced by the domain and characteristics of

the review. Past studies on the automation of citation screening in medicine

typically used 95% recall as the threshold to preserve a satisfactory quality45

of the systematic literature review in medicine (Cohen et al., 2006). In other

technology-assisted review systems, e.g. e-discovery, recall levels might be lower,

and sometimes this choice is influenced by time or money limitations.

This paper examines WSS and investigates its properties and terms with

their influence on the final score. Similarly to the Discounted Cumulative Gain50

(DCG) metric (Järvelin & Kekäläinen, 2002), we propose to normalise the WSS

in order to be able to compare the scores between multiple models and datasets.
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This representation preserves all the features of the WSS and simultaneously

removes some constants from the equation. Furthermore, we show that the

normalised WSS is equivalent to the True Negative Rate (TNR) also known55

as specificity. Using the derived equation, we calculate and provide benchmark

scores for fifteen systematic review datasets with the TNR@95% recall measure.

Finally, we recommend using TNR at r% recall as the evaluation measure for

technology-assisted reviews. However, before starting, we introduce the notation

used.60

1.1. Notation

The basic symbols and sets used in this paper are given in the following

table.

I set of relevant documents that should be included in the review, includes

E set of irrelevant documents that should be excluded in the review, excludes

|I| number of includes

|E| number of excludes

N total number of documents |I|+ |E|

TP number of true positives, i.e., includes classified correctly

TN number of true negatives, i.e., excludes classified correctly

FP number of false positives, i.e., excludes classified incorrectly

FN number of false negatives, i.e., includes classified incorrectly

r% a recall value of r%

nr% rank of a document for which the recall level of r% is achieved

X@r% evaluation measure X calculated at a fixed recall value of r%

2. Related Work

WSS was previously used in multiple studies to evaluate the effectiveness65

of a supervised machine learning system for citation screening (Matwin et al.,

2010; Howard et al., 2016; Scells et al., 2019; Kontonatsios et al., 2020; Kusa

et al., 2022). It was also used as one of evaluation measures for the Technology

Assisted Review shared task at CLEF by Kanoulas et al. (2017, 2018).
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O’Mara-Eves et al. (2015) mention that there is a subjective component for70

metrics like Fβ-score and WSS. Evaluators determine thresholds and parame-

ters, making it difficult to compare across studies. It is also not always trans-

parent or justified how the thresholds/weights are chosen. Cohen (2008) in their

later study abandoned WSS in favour of Area Under the ROC Curve (AUC)

as they argue that the former metric fails to capture different recall-precision75

trade-offs in different reviews. On the other hand, Cormack & Grossman (2017)

mention that cumulative measures like area under the cumulative recall curve

and average precision yield very little insight into the actual or hypothetical

effectiveness of the models.

Norman (2020) notices that despite WSS being relatively easy to interpret80

in the context of automation of systematic reviews, it is also strongly influenced

by random effects and tends to have a large variance. Recall versus effort plots

using the knee method (Cormack & Grossman, 2016) can be used as a more

generalised extension of the WSS metric, plotting the scores over the full range

of values of recall.85

Previous studies suggested that the drawback of WSS is that its maximum

value depends on the ratio of included to excluded samples (van Dinter et al.,

2021a; Kusa et al., 2022). They showed that for a perfectly balanced dataset

the maximum value of WSS@95% is 0.45. At the same time, when the number

of relevant documents is lower (as it is very common in the case of systematic90

reviews), the maximum value of WSS is higher. For instance, when the total

number of relevant documents is 5% of all the documents, then the maximum

value of WSS@95% is 0.90.

Evaluation of models using active learning was conducted with different mea-

sures that account for labelled and unlabelled samples. Burden, utility and cov-95

erage were introduced for evaluating active learning models in the context of

citation screening (Wallace et al., 2010; Miwa et al., 2014). Burden represents

the fraction of positive instances annotated manually by reviewers, whereas util-

ity is a weighted sum of recall and (1-burden) using a β parameter, similar to

Fβ-measure. Coverage indicates the ratio of positive instances in the data pool100
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annotated during active learning.

3. Analysis of the Work Saved over Sampling Measure

In this section, we first present an example of the evaluation of automated

citation screening with WSS. Later, we examine WSS properties and its terms

and their influence on the final score.105

3.1. Citation screening example

Let us assume an example systematic review with a citation list containing

the total number of documents N = 2000. Out of them, only 200 are relevant

to the systematic review study and should be included in the final review (also

known as includes, I). The remaining 1800 documents are irrelevant to the110

review topic and should be excluded (also known as excludes, E). In a manual

screening scenario, annotators need to screen all 2000 documents to select only

the 200 relevant ones.

Fixing the level of recall also assumes that the number of true positives and

false negatives is static. A recall of 95% is achieved when the model correctly115

predicts 190 relevant documents (TP ). The remaining 10 includes are treated as

false negatives (FN). In practice, different models vary from each other by how

many excludes they can screen out automatically (i.e., good models maximise

the number of E classified as true negatives (TN) while minimising the number

of false positives (FP )). The WSS measure can be applied both to ranking120

(where the rank of r% relevant documents is used) and classification (where

we a posteriori assume that the model used a specific prediction threshold to

achieve the recall level of r%.)

3.2. The (1− r) term

The (1− r) term was introduced to measure the advantage of a model when125

compared to the work saved with respect to a simple random sampling. A recall

level of 95% is on average achieved when 95% of a dataset is randomly sampled,

and this provides a 5% saving for reviewers. With the (1−r) term, the WSS@r%
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score above 0 means that a model performs better than the random sampling.

If the WSS score is below 0, the model performs worse than random.130

We argue that the (1 − r) term does not impact the WSS score as it was

originally assumed, as it is just a constant value that is being subtracted from

all scores from the same level r% of recall. In particular, for r = 0.95, this

term will always subtract 0.05 from the final WSS score, which can be seen as

redundant if we want to compare multiple results.135

3.3. The FN term

WSS at a specific r% recall assumes that exactly (1−r)% of documents that

should be included will be misclassified. For a specific r% recall, the number of

False Negatives (FN) is always equal to b|I|·(1−r)c, where with b·c we indicate

the floor operator. This means that the FN term will also be a constant for140

every model for the same dataset. Consequently, for a fixed level of recall, true

positives (TP ) are equal to r · |I|.

Furthermore, the usage of the FN term in the WSS formula complicates its

understanding. In the numerator (which should be maximised since the formula

measures work saved), there is a sum of true negatives (a factor that should be145

maximised) and false negatives (a factor which should instead be minimised).

A single evaluation measure should not maximise the sum of correct and wrong

decisions simultaneously.

3.4. The maximum and minimum WSS value

For every dataset, we can calculate the maximum and minimum values of

the WSS score as follows:

max(WSS@r%) =
|E|+ b|I| · (1− r)c

N
− (1− r), (2)

min(WSS@r%) =
0 + b|I| · (1− r)c

N
− (1− r). (3)

The maximum value of WSS is achieved when at least r% of included docu-150

ments are presented first, before any irrelevant document (or in the classifica-

tion nomenclature TN = |E|). On the other hand, the minimum WSS value is
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obtained when all excluded documents are ranked before at least one relevant

document (TN = 0).

The absolute maximum and minimum values of WSS depend on the dataset,

and its excludes/includes ratio. max(WSS) approaches 0 in datasets signifi-

cantly imbalanced towards the positive class (includes):

lim
|E|→0

max(WSS@r%) = lim
|E|→0

|E|+ |I| · (1− r)
|E|+ |I|

− (1− r) = 0. (4)

On the other hand, as the ratio of irrelevant to relevant documents (|E|/|I|)

gets higher, the maximum achievable score by WSS also gets higher (impact of

includes in both nominator and denominator gets smaller, and the final score

depends more on the excludes). Therefore, max(WSS) approaches r in datasets

heavily imbalanced towards the negative class (excludes):

lim
|I|→0

max(WSS@r%) = lim
|I|→0

|E|+ |I| · (1− r)
|E|+ |I|

− (1− r) = r. (5)

Similar considerations can be applied to min(WSS), and its upper and lower155

bound also depends on the excludes/includes ratio. Moreover, min(WSS) will

not be negative only in the case when the dataset contains only documents

that should be included (|E| = 0). These properties of maximum and minimum

values of WSS mean that this measure does not fulfil the zero and maximum

Axiom #3 proposed by Busin & Mizzaro (2013).160

3.5. Evaluation with Cross-Validation

Most of the automated citation screening models require some seed of man-

ually labelled documents to train the machine learning model, which can rank

or predict the category of remaining documents. This assumes preparation of

the training set, i.e., manually annotating documents for their eligibility. In165

previous work, evaluation was usually done using stratified 5 × 2-fold cross-

validation that splits the dataset into two equally sized subsets with an even

distribution of label classes which are subsequently used to train and test the

model (Matwin et al., 2010; Cohen, 2011; Howard et al., 2016; Kontonatsios

et al., 2020; van Dinter et al., 2021a; Kusa et al., 2022). The actual work saved170
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would be measured on the second half of the initial dataset. Effectively, in the

example dataset and when using 5× 2-fold cross-validation, there would be to-

tal of |N | = 1000 documents for the evaluation with WSS, out of which 100

includes I and 900 excludes E .

This approach implies another practical consideration with the (1− r) term175

in the WSS measure. If in the dataset the total number of includes I is small,

such that for a specific level of recall r, (1 − r)% of relevant items would be

fewer than one document (i.e., |I| · (1 − r) < 1), the number of false negatives

will be equal to 0 for all recalls ≥ r. Thus, the following equation holds:

WSS@r% = WSS@100%− (1− r). (6)

This means that even when comparing WSS scores for different levels of recall180

r, they will differ only by the constant (1 − r) term, and it does not depend

on the total number of documents N . For WSS@95%, the equation above is

true for all datasets where the total number of relevant documents used in the

evaluation is fewer than 20 (|I| < 20). Moreover, when a common practice of

using stratified 5× 2-fold cross-validation is applied to evaluating a model, and185

one only calculates the scores on half of the dataset, this, in practice, means

that the total size of includes in the dataset for which this equation holds is

twice as high (40 relevant examples in the case of r = 95%).

From our analysis of 23 commonly used benchmark datasets (Kusa et al.,

2022), five have less than 40 includes in total (three of these datasets have even190

less than 20 includes). This means that there is no difference if one evaluates

the same model at 95% or 100% recall, as these two scores will always only differ

by 0.05 for the dataset considered.

4. The Normalised WSS

As it was done in the case of the DCG metric (Järvelin & Kekäläinen, 2002),

we propose to normalise the WSS metric. As for the nDCG, the normalised WSS

will allow for comparison across multiple models and benchmark systematic

9



review datasets. The approach is presented below:

nWSS@r% =
WSS@r%−min(WSS@r%)

max(WSS@r%)−min(WSS@r%)
(7)

With the assumptions from the previous section, we further formulate the equa-

tion as:

nWSS@r% =
(TN + b|I| · (1− r)c)/N −����(1− r) − b|I| · (1− r)c/N +���

�(1− r)
(|E|+ b|I| · (1− r)c)/N −����(1− r) − b|I| · (1− r)c/N +��

��(1− r)

=
(TN + b|I| · (1− r)c)/��N − b|I| · (1− r)c/��N
(|E|+ b|I| · (1− r)c)/��N − b|I| · (1− r)c/��N

=
TN +((((

((b|I| · (1− r)c −(((((
(b|I| · (1− r)c

|E|+(((((
(b|I| · (1− r)c −(((((

(b|I| · (1− r)c

=
TN

|E|
(8)

Applying this normalization makes all the constant terms of WSS (FN and195

(1 − r)) cancel themselves. The nWSS score for every dataset is always in the

range [0, 1]. An ideal score is achieved when all the excluded documents are

classified as true negatives, and then the nWSS is equal to 1. Conversely, when

all the documents that should be excluded are classified incorrectly, TN = 0

and thus nWSS = 0.200

In the case of a recall threshold at 95%, the nWSS equation is:

nWSS@95% =
TN@95%

|E|
, (9)

meaning that we only need to estimate the number of true negatives produced

by a ranking/classification model when it achieves 95% recall.

Furthermore, as |E| is equal to all the negatives that should be excluded,

i.e., |E| = TN + FP , this allows us to produce another version of the nWSS:

nWSS =
TN

TN + FP
, (10)

which is equal to the True Negative Rate (TNR), also known as specificity. This

means that nWSS@r% is equal to specificity at a recall rate of r% (S@r%).

nWSS@r% = TNR@r% =
TN@r%

|E|
, (11)
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4.1. Alternative demonstration for rank-based evaluation205

Here we propose an alternative demonstration that uses rank-based evalu-

ation terms. We assume that nr% is the rank of the document in the ordered

dataset, which is the last manually screened document in order to achieve r%

of recall. TN + FN is thus equal to N − nr%, and we can then re-write the

WSS equations as follows:

WSS@r% =
TN + FN

N
− (1− r) =

N − nr%
N

− (1− r). (12)

In this equation, both N and r are fixed, and the only model and dataset-

dependent parameter is nr%. The minimum value of WSS is when the rank

is the lowest possible (only (1 − r) of relevant documents were still not seen):

nr% = N − (1− r) · |I|. The maximum value of WSS is when the rank is equal

to r% of relevant documents: nr% = r · |I|. We can then write the minimum as:

min(WSS@r%) =
N − (N − (1− r) · |I|)

N
− (1− r)

min(WSS@r%) =
(1− r) · |I|

N
− (1− r), (13)

and the maximum as:

max(WSS@r%) =
N − r · |I|

N
− (1− r)

max(WSS@r%) =
(|E|+ |I|)− r · |I|

N
− (1− r)

max(WSS@r%) =
|E|+ (1− r) · |I|

N
− (1− r). (14)

We can then write the formula for normalised WSS@r% using document
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ranking terms:

nWSS@r% =
N−nr%

N −����(1− r) − (1−r)·|I|
N +���

�(1− r)
|E|+(1−r)·|I|

N −����(1− r) − (1−r)·|I|
N +���

�(1− r)

nWSS@r% =

N−nr%

�N
− (1−r)·|I|

�N
|E|+(1−r)·|I|
�N

− (1−r)·|I|
�N

nWSS@r% =
N − nr% − (1− r) · |I|

|E|+���
���(1− r) · |I| −���

���(1− r) · |I|

nWSS@r% =
N − nr% − (1− r) · |I|

|E|

nWSS@r% =
|E|+ r · |I| − nr%

|E|
. (15)

Equation 15 is the rank-based version of the nWSS equation. Furthermore,

if we substitute the rank-based terms with confusion matrix terms (nr% =

TP + FP ), we can show that this formula is identical to Equation 10:

nWSS@r% =
|E|+ r · |I| − nr%

|E|

nWSS@r% =
(TN +��FP ) + r · |I| − (TP +��FP )

|E|

nWSS@r% =
TN + r · |I| − TP

|E|

nWSS@r% =
TN +��TP −��TP

|E|

nWSS@r% =
TN

TN + FP
. (16)

5. Benchmark Results with TNR@95%

In this section, we calculate the TNR scores on previous benchmark results

of citation screening datasets from Cohen et al. (2006). We used Equation 7 to

convert WSS@95% scores reported by previous studies to the TNR@95% recall

scores. The performance of past models evaluated with TNR@95%, together210

with averaged WSS@95% is presented in Table 1. Other researchers can use

these scores to compare their models on the most popular citation screening

benchmark collection.
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Furthermore, compared with the average WSS scores aggregated from these

15 datasets, we can notice that the model’s ordering changes when evaluated215

with averaged TNR. When ordered by their average WSS score, models from

best to lowest score are D, E, C, G, F, B and A. However, when evaluated with

TNR, the order is the following: D, E, C, G, B, F and A. Hence, with only seven

models, we have already noticed that the incorrect usage of WSS to compare

averaged performance across several datasets proved to yield erroneous order of220

models.

6. Discussion

6.1. Comparison with Precision

Figure 1 presents the dynamic of evaluation measures’ scores as a function

of the number of true negatives detected by an algorithm for a fixed recall level225

of 95%. We consider two types of datasets having the same total number of

documents N = 2000 but differing in the |I|/|E| ratio: heavily imbalanced

towards the negative class with only 5% of positive examples (Figure 1a), and

perfectly balanced dataset (Figure 1b). On both datasets, WSS and TNR scores

rise linearly with the rising number of true negatives detected by the algorithm,230

but a change in the Precision scores is not linear, and its derivative depends

on the class imbalance. In addition, out of these three measures, only TNR is

always bounded by 0 and 1. Again, minimum Precision value depends on the

class imbalance, which for WSS is the case for both minimum and maximum

values.235

TNR score can also be directly translated to the number of documents re-

viewers do not need to screen manually. Furthermore, when used with appro-

priate multipliers, assuming all documents are equal, one can convert the TNR

score into the time and money saved by using automation tools.

6.2. Comparison with AUC240

As already mentioned, measures like ROC or Precision-Recall curve are more

suitable for comparing a model’s effectiveness across multiple recall levels. How-

14



(a) Evaluation measures’ scores versus the number of True Negatives for an imbalanced dataset

with 5% of positive examples (|I| = 100, |E| = 1900).

(b) Evaluation measures’ scores versus the number of True Negatives for a perfectly balanced

dataset (|I| = |E| = 1000).

Figure 1: Dynamics of evaluation measures (WSS, TNR (nWSS) and Precision) scores as a

function of the number of True Negatives (TN) at 95% recall for two sample datasets.

15



Figure 2: Receiver Operating Characteristic (ROC) curves for two hypothetical models with

their corresponding AUC scores. Model A achieves a higher value of AUC, despite the fact

that its TPR performance reaches 80% only at the FPR level almost equal to 100%, and

model B achieves maximum recall at FPR level of 35%.

ever, they do not allow for automatic comparisons across multiple models and

are not suitable for score aggregations across several datasets. Fawcett (2006)

mentions that even though ROC curves may be used to evaluate classifiers, care245

should be taken when using them to conclude classifier superiority.

Figure 2 presents ROC curves and corresponding AUC scores for two hypo-

thetical models on the same dataset. Model A, which obtains a higher AUC

score, quickly achieves ¿60% recall, but its score plateaus and only manages

to exceed recall of 80% at the very end. On the other hand, model B, which250

“struggles” initially but reaches perfect recall at an FPR level of 0.35, obtains

a lower AUC score. For the general search task, model A might be more suit-

able. However, for technology-assisted reviews where we want to ensure that

the model achieves very high recall (and even in the case of rapid reviews or

e-discovery, this should very rarely be lower than 70%), model B is the only one255

16



which delivers some gain to the user.

Hence, we believe that compared to TNR, AUC scores can favour models

that achieve good recall scores at low values of FPR, which are of no value for

citation screening tasks. An alternative can be to calculate partial AUC score

(pAUC), a practice for highly sensitive diagnostic tests (McClish, 1989; Jiang260

et al., 1996). Similarly to the TNR@r% and WSS@r% calculations, one could

parameterise AUC by the desired minimum recall (TPR) level. Then, the pAUC

is computed in the part of the ROC space where the recall is greater than a

given threshold r.

6.3. Limitations265

Work Saved over Sampling cannot account for the amount of manual work re-

quired to kick-start the automated screening. Current classification approaches

use some type of cross-validation to train and evaluate their models. Usage of

different train/test splits provides another challenge as TNR@r% (unlike bur-

den or utility) does not measure the amount of data that needs to be labelled270

manually before training the classifier. To overcome this problem, plotting the

learning curves for TNR@r% could be one way to compare the performance of

these models.

Alternatively, a set of standard benchmarks with fixed train/test splits would

need to be introduced. Future work will focus on this aspect and the applica-275

bility of the measure in the active learning scenario.

7. Conclusions

This paper analyses Work Saved over Sampling (WSS), a measure commonly

used to evaluate automated citation screening models. We inspect the terms

and properties of WSS and show drawbacks of the measure.280

We propose min-max normalisation of Work Saved over Sampling at r%

recall (nWSS@r%). It improves on the commonly used WSS measure as it

normalises possible scores into the [0, 1] range. This enables fair comparison

17



between different models and score aggregations from multiple datasets. nWSS

also simplifies over WSS as it does not contain two WSS terms that were shown285

to be constants by our analysis. Moreover, we show that nWSS is equal to True

Negative Rate (TNR), further simplifying the understanding of the measure.

TNR has a linear correlation with the number of documents that a manual

reviewer does not need to screen and can be directly translated to the time (and

money) saved when using automation tools. We suggest the usage of TNR at290

r% of recall as an evaluation measure for the citation screening task if the score

is to be compared between multiple models across several datasets.
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